Количество теплоты. Тепловой баланс 8 класс онлайн-подготовка на Ростелеком Лицей
Введение
Все тела состоят из атомов и молекул, которые непрерывно движутся и взаимодействуют между собой. Нас интересует суммарная энергия их движения (кинетическая) и взаимодействия (потенциальная) – внутренняя энергия тела.
Внутреннюю энергию можно изменить двумя способами: выполняя работу и с помощью теплообмена.
Про механическую работу мы уже говорили, в ответвлении подробнее рассмотрим, как это связано с изменением внутренней энергии.
Механическая работа и превращение энергии
В механике мы использовали закон сохранения механической энергии:
Полная механическая энергия системы, в которой действуют только консервативные силы, остается постоянной.
Под полной механической энергией мы понимаем сумму кинетической и потенциальной энергии. Значит, энергия превращается из кинетической в потенциальную, и наоборот, чтобы их сумма оставалась постоянной (см.
рис. 1).
Рис. 1. Превращение кинетической и потенциальной энергий
Изменение кинетической энергии равно изменению потенциальной энергии со знаком минус – это значит, на сколько увеличилась кинетическая энергия, на столько же уменьшилась потенциальная. А работа консервативных сил равна этому изменению:
Что же происходит с энергией тела, если на него действуют неконсервативные силы, например сила трения? Механическая энергия не сохраняется, она превращается в другие виды энергии, в частности в тепловую (или внутреннюю энергию тела) (см. рис. 2).
Рис. 2. Превращение механической энергии в тепловую
Работа неконсервативной силы равна изменению механической энергии (а оно равно изменению внутренней энергии со знаком минус, для превращения кинетической энергии в потенциальную мы записывали так же).
При изучении тепловых явлений нас как раз интересует изменение внутренней энергии.
Передача энергии от более теплого объекта к менее теплому
Рассмотрим второй способ изменения внутренней энергии тела – это передача энергии от более теплого объекта к менее теплому.
Назвали это теплопередачей и выделили виды теплопередачи: через излучение и через соударения молекул, назвав это теплопроводностью (см. рис. 3).
Рис. 3. Виды теплопередачи
Теплопередача может сопровождаться перемещением вещества, этот процесс мы назвали конвекцией.
Но для того чтобы количественно описывать тепловые процессы, нам недостаточно знать сам факт, что теплота передается.
Предположим, что в системе тел неконсервативные силы не совершают механическую работу. Рассмотрим энергию, которую передает или получает тело в результате теплообмена. Вследствие этого изменяется его внутренняя энергия. Эту полученную энергию, равную изменению внутренней энергии, назовем теплотой, а для ее количественного выражения часто будем употреблять название количество теплоты.
О терминах «теплота» и «количество теплоты»
Мы определили теплоту как энергию, которую передает или получает тело в процессе теплообмена.
Это физическая величина, единицы измерения у нее те же, что и для энергии. То есть можно сказать «теплота равна 10 Дж» и т. д. Но в русском языке сложилась такая ситуация: если о многих других величинах можно сказать «какая масса?», «какая скорость?», то к теплоте более естественно применить вопрос «сколько?». То есть не «чему равна теплота?», а «сколько теплоты?», или, другими словами: «какое количество теплоты?». Это понятие, «количество теплоты», мы применяем наряду с понятием «теплота», но стоит помнить, что подразумевается одна и та же физическая величина. Просто иногда удобнее сказать «теплота передалась», а иногда «количество теплоты равно 10 Дж».
Обратите внимание: теплота равна изменению внутренней энергии тела. То есть мы не будем говорить об абсолютном количестве теплоты, а только о его изменении. То есть отвечать на вопрос: «Сколько теплоты получило или передало тело?». А привычные нам понятия «тепло/холодно» лучше всего описывает такая физическая величина, как температура.
Ощущаем ли мы температуру?
Касаясь чашки с горячим чаем, вы чувствуете ее тепло (см. рис. 4).
Рис. 4. Чашка с горячим чаем
Кажется, что мы определяем ее температуру и можем судить о внутренней энергии. А попробуйте провести следующий опыт: опустите одну руку в теплую воду, другую – в холодную, чтобы руки «привыкли» к температуре (см. рис. 5).
Рис. 5. Проведение эксперимента
А затем поместите их обе в воду комнатной температуры. Одной рукой вы почувствуете холод, другой – тепло. Получается, что наши ощущения связаны не с абсолютным значением температуры тела, а с разностью температур тела и нашей руки и с направлением теплообмена между ними.
Одна рука чувствует тепло, поскольку теплота передается от воды к руке. А вторая рука чувствует холод, поскольку тепло передается от руки к воде. При этом в случае холодной воды это не вода передает руке холод, а рука отдает воде тепло.
Конечно, мы иногда говорим «закрой дверь – холод напустишь» (как будто подразумеваем передачу именно холода), но это обывательский оборот, который закрепился в языке.
Например, при игре в пятнашки мы всегда двигаем сами «костяшки», но часто говорим о перемещении пустой клетки.
Мы говорим: «становится темно». Хотя темнота – это отсутствие света. Августин Блаженный говорил: «Нет зла, есть недостаток добра».
Так и с холодом – это отсутствие тепла. Нет передачи холода, есть теплопередача в том или ином направлении. Поэтому и лед, и чай, укутанные в шубу, будут некоторое время сохранять температуру, здесь у шубы одна и та же функция – теплоизоляция.
Количество теплоты
Обычно количество теплоты обозначается буквой Q. Количество теплоты – это изменение внутренней энергии при теплообмене, значит, эта величина измеряется, как и энергия, в джоулях: [Q] = Дж.
Обозначим внутреннюю энергию U. Тогда определение количества теплоты можно записать следующим образом:
Q = ΔU при равной нулю механической работе внешних сил (о чем мы договорились в начале урока).
Если тело получило 10 Дж теплоты и если тело потеряло 10 Дж теплоты – это не одно и то же (см.
рис. 6).
Рис. 6. Получение и потеря теплоты
Как это обозначить? Для этого можем использовать удобный математический инструмент – отрицательные числа. Мы его уже использовали для обозначения направления движения. Если рассматривать прямолинейное движение вдоль одной прямой, удобно выбрать ось координат и одно направление считать положительным (см. рис. 7).
Рис. 7. Выбор положительного направления
В проекции на эту ось скорости тел 5 м/с и –5 м/с означают, что тела движутся со скоростью 5 м/с в противоположных направлениях.
Так и здесь: договоримся, что если тело получает теплоту (наши руки получили от теплой воды 10 Дж тепла), то Q положительно (запишем Q = 10 Дж), а если отдает – отрицательно, запишем Q = –10 Дж.
Остановимся пока на изучении тех случаев, когда агрегатное состояние вещества не меняется. Тогда если передать тепло телу, то оно нагреется, увеличится его температура (см. рис. 8)
.
Рис. 8. Агрегатное состояние вещества не изменяется при получении теплоты
Разберемся, как количественно описать этот процесс.
Чайник закипит быстрее, если в него залить теплую воду, а не холодную (см. рис. 9).
Рис. 9. Закипание чайника с теплой и холодной водой
То есть чем большей разности конечной и начальной температур нужно достичь, тем больше нужно передать энергии. Полный чайник будет закипать дольше, чем почти пустой (см. рис. 10).
Рис. 10. Закипание полного чайника и полупустого
То есть чем больше масса воды, тем больше нужно передать энергии, чтобы ее нагреть. И наверняка есть разница, нагреть на одни и те же 10 градусов килограмм воды или килограмм железа – это тоже нужно учесть (см. рис. 11).
Рис. 11. Нагревание разных веществ
Можно провести эксперименты и установить более точные закономерности.
Оказывается, количество теплоты, которое необходимо передать телу, прямо пропорционально изменению температуры: , где обозначает изменение температуры: конечная температура минус начальная .
Если тело отдает тепло, то оно охлаждается.
Конечная температура будет меньше начальной: . Тогда . Количество теплоты также будет . Это согласуется с введенным понятием количества теплоты: если тело отдает тепло, то .
Экспериментально также было установлено, что: (количество теплоты, которое необходимо передать телу, прямо пропорционально массе тела).
Почему изменение внутренней энергии пропорционально массе?
Количество теплоты, которое получает тело, идет на увеличение его внутренней энергии. Внутренняя энергия – это суммарная энергия частиц вещества: атомов или молекул. Значит, изменение внутренней энергии должно быть пропорционально количеству частиц: .
Однако таким параметром, как количество молекул, мы пользуемся редко. Более удобной характеристикой, эквивалентной количеству частиц данного вещества, является масса.
Масса вещества равна массе одной частицы (атома или молекулы), умноженной на количество частиц: , тогда количество молекул равно .
Получаем, что или , т.
к. масса одной молекулы – величина постоянная для данного вещества и она будет заложена в коэффициенте пропорциональности, который определяется отдельно для каждого вещества и учитывает его параметры: массу молекул, связь между ними, связь кинетической энергии молекул и температуры и т. д.
Удельная теплоемкость
Количество теплоты пропорционально массе тела и изменению его температуры:
Кроме того, количество теплоты, необходимое для нагревания данной массы на данную температуру, зависит от вещества: для спирта нужно меньше теплоты, чем для воды (см. рис. 12), а для золота – меньше, чем для железа (см. рис. 13).
Рис. 12. Количество теплоты для нагревания воды и спирта
Рис. 13. Количество теплоты для нагревания железа и золота
Для данного вещества количество теплоты, которое нужно передать для нагревания данной m на данную , оказалось постоянной величиной.
Отношение назвали удельной теплоемкостью, которую принято обозначать буквой c.
Это количество теплоты, которое нужно передать 1 кг вещества, чтобы нагреть его на 1 °С (или 1 К, потому что мы говорим об изменении температуры, а цена деления этих двух шкал одинакова (см. рис. 14)).
Рис. 14. Шкалы температур Цельсия и Кельвина
Для разных веществ это отношение отличается.
Единицы измерения удельной теплоемкости:
Различные вещества имеют различные удельные теплоемкости. Почему это так – поговорим в ответвлении.
c = const
Удельная теплоемкость с зависит от температуры t. Чтобы нагреть один и тот же железный шарик с 10 градусов до 11 и с 200 до 201 – нужно разное количество теплоты (см. рис. 15).
Рис. 15. Нагрев одного и того же шарика на 1 градус
Изменение удельной теплоемкости с изменением температуры достаточно мало, поэтому для решения задач мы можем считать, что с = const и зависимость линейная (на участках, где не изменяется агрегатное состояние вещества (см.
рис. 16)).
Рис. 16. Линейная зависимость на участках, где не изменяется агрегатное состояние вещества
На самом деле, с, кроме температуры, зависит и от давления, но обычно мы будем решать задачи, в которых описаны процессы при нормальном атмосферном давлении, поэтому и здесь можно считать с = const.
Почему у веществ различные удельные теплоемкости
Почему для нагревания одной и той же массы на одну и ту же температуру для разных веществ нужно разное количество энергии?
Мы определили внутреннюю энергию тела как сумму кинетической и потенциальной энергии всех частиц тела. Когда теплота передается телу, часть ее идет на увеличение кинетической энергии (а значит, увеличение температуры), а часть – на увеличение потенциальной энергии частиц (см. рис. 17).
Рис. 17. Внутренняя энергия тела
У разных веществ соотношение этих частей разное.
Например, двум разным телам передали 100 Дж теплоты (см.
рис. 18).
Рис. 18. Нагревание разных тел
У одного тела 40 Дж ушло в кинетическую энергию, а 60 – в потенциальную. У другого в кинетическую энергию перешло 20 Дж, 80 – в потенциальную. Итого тела получили одинаковое количество теплоты, но первое тело нагрелось больше, чем второе, т. к. кинетическая энергия его частиц увеличилась сильнее (40 Дж > 20 Дж). Это значит, что удельная теплоемкость второго вещества больше – ведь его труднее нагреть, чем первое.
Для разных веществ полученная энергия может распределяться по-разному – для нас это не ново.
Возьмем три мяча (см. рис. 19): хорошо накачанный, спущенный и деревянный.
Рис. 19. Опыт с тремя мячами
Если ударить по ним, сообщив одинаковую энергию, полетят они с разной скоростью. Часть переданной энергии пойдет на неупругую деформацию мяча и обуви бьющего, а часть – на увеличение кинетической энергии мяча. Для перечисленных мячей соотношение этих частей будет разное.
Значения удельных теплоемкостей различных веществ уже измерены, их можно найти в соответствующих таблицах.
Итак, на основе всего вышесказанного можно записать формулу для расчета количества теплоты, необходимого для нагревания тела:
Процессы нагревания и охлаждения отличаются лишь знаком , так что формулу можно использовать и для расчета количества теплоты, которое выделяет тело при охлаждении.
Для задач, которые мы будем решать в ближайшее время, нам достаточно такого очевидного утверждения: тепло передается от тела с большей температурой к телу с меньшей температурой до тех пор, пока температуры этих тел не уравняются (см. рис. 20).
Рис. 20. Теплообмен между телами с разной температурой
Более точно эта закономерность сформулирована в виде законов термодинамики, но их мы будем подробно изучать позже.
Тепловой баланс
Мы сейчас рассматриваем изменение внутренней энергии тел через передачу теплоты. Если выделить систему тел, которые будем рассматривать вместе в рамках решения конкретной задачи, то возможны два варианта.
Первый – энергия может быть получена извне этой системы (см. рис. 21)
Рис. 21. Теплообмен с другими телами вне системы
(например, теплообмен с другими телами вне системы, превращение механической энергии в тепловую и т. д.). Второй вариант – считаем, что энергия передается посредством теплообмена только внутри системы, тогда суммарная энергия системы не меняется (см. рис. 22).
Рис. 22. Теплообмен только внутри системы
Рассмотрим первый случай, когда тепло передается системе тел извне.
Задача 1
В алюминиевой кастрюле массой 1,5 кг находится 5 кг воды при температуре 20 °С (см. рис. 23).
Рис. 23. Задача 1
Найти количество теплоты, необходимое для нагревания воды до температуры кипения. Передачей тепла в окружающую среду пренебречь.
Имеется два тела: кастрюля и вода. Нужно передать какое-то количество теплоты, чтобы нагреть их. Потерями тепла в окружающую среду пренебрегаем – значит, все тепло пойдет на нагревание кастрюли с водой.
Потери тепла
Предположим, что для выполнения условия задачи мы поставили кастрюлю с водой на электроплиту. Понятно, что часть тепла, которое выделяет плита, будет тратиться на нагревание кастрюли, окружающего воздуха и самой электроплиты (см. рис. 24).
Рис. 24. Потери тепла на нагревание кастрюли, окружающего воздуха и самой электроплиты
Это ненужные нам «потери тепла», как их называют. Но без них не обойтись – кастрюля и окружающий воздух неизбежно будут греться вместе с водой.
Обычно потери тепла незначительные и мы их можем не учитывать. Если в задаче отдельно не оговорено иное, потерями при решении пренебрегаем. Если же мы хотим получить более точное решение, придется учитывать (и рассчитывать) эти потери.
В нашей задаче в условии прямо сказано: «Передачей тепла в окружающую среду пренебречь».
Если бы в условии не были даны материал и масса кастрюли, то подразумевалось бы, что нагреванием самой кастрюли тоже можно пренебречь.
Однако в данной конкретной задаче сказано, что кастрюля алюминиевая (то есть можно найти ее удельную теплоемкость по таблице), а также дана масса кастрюли. Значит, можно и нужно посчитать, какое количество теплоты пойдет на нагревание самой кастрюли.
Для нагревания алюминиевой кастрюли нужно:
Для нагревания воды нужно:
Всего нужно передать:
Массы воды и кастрюли даны в условии, удельные теплоемкости можно найти в таблице. Вода должна нагреться от до кипения, то есть до . Кастрюля нагревается вместе с водой, поэтому изменение ее температуры будет таким же:
Осталось подставить численные данные и найти ответ.
Решение задачи
Итак, мы получили систему уравнений:
Численные данные из условия:
Из таблицы:
Вычисляем:
Ответ: .
В предыдущем ответвлении мы говорили о том, учитывать ли потери теплоты.
В данной задаче мы пренебрегли потерями на нагревание окружающего воздуха, но учли нагрев кастрюли. Если решить задачу, не учитывая нагрев кастрюли, останется количество теплоты, необходимое для нагревания только воды:
Как видим, этот результат отличается от полученного ранее приблизительно на 6 %. Много это или мало – зависит от цели. Если мы греем воду для чая, то погрешностью в 6 % можно пренебречь. Если же вода нужна для выращивания клеток в биологической лаборатории со строгим температурным режимом, то 6 % могут оказаться очень большой разницей и пренебрегать нельзя.
Теперь рассмотрим модель, в которой можно не учитывать теплообмен системы тел с окружающими телами: тепло только передается от одного тела к другому.
Задача 2
В чашке находится горячий чай при температуре 95 °С (см. рис. 25).
Рис. 25. Задача 2
Масса чая – 150 г. Определите массу холодной воды, которую нужно долить в чашку с чаем, чтобы понизить температуру чая до 60 °С.
Температура холодной воды – 5 °С. Теплоемкость чая считать равной теплоемкости воды, потерями тепла пренебречь.
Почему чай будет остывать? Мы долили в чашку холодную воду, поэтому чай будет отдавать тепло, его температура будет уменьшаться (см. рис. 26).
Рис. 26. Доливание холодной воды в чашку
Вода будет получать тепло, ее температура будет увеличиваться. В некоторый момент температура воды станет равной температуре чая, теплообмен прекратится. В условии сказано, что потерями тепла можно пренебречь, значит, все тепло, которое отдал чай, получит вода.
Чай отдал , вода получила . Тогда .
Откуда в формуле появились модули
Было оговорено, что направление теплопередачи обозначать знаком количества теплоты: плюс – если тело получает теплоту, и минус – если отдает (см. рис. 27).
Рис. 27. Получение (слева) и отдача (справа) теплоты
Если записывать как , знак Q получится таким, как мы договорились.
Можно использовать такой подход: записать общее количество теплоты для всех тел ( и приравнять его к нулю – суммарная внутренняя энергия системы не изменилась, теплообмен вне системы равен нулю:
Q чая и воды имеют противоположные знаки.
Можно направление теплообмена учесть по-другому: записать модули и (то есть при вычислении просто от большей температуры отнимаем меньшую), но перенести в правую часть уравнения переданную теплоту, оставив в левой части полученную:
То есть сколько тепла отдал горячий чай, столько и получила холодная вода.
Решать задачи можно любым удобным способом, главное, чтобы направление теплообмена было учтено правильно.
Из условия: ; изменения температур: , . На этом физическая часть решения закончена, осталось лишь выразить неизвестную величину, подставить численные значение и получить ответ.
Решение задачи
Имеем систему уравнений:
Уравнений много, но все они очень простые. Подставим значения и найдем изменение температуры:
Второе и третье уравнение подставим в первое:
С учетом , сократим на теплоемкость:
Подставим численные значения:
Если в задаче будет больше тел, то алгоритм решения будет аналогичным:
1) определить, какие тела получают тепло, а какие отдают;
2) записать общее количество теплоты, которое было отдано и которое было получено телами;
3) приравнять модули полученного и отданного тепла.
Либо же не брать модули, оставить разные знаки Q для разных направлений теплообмена и сумму Q внутри замкнутой системы приравнять нулю, как мы показали в ответвлении.
А дальше останется только техника – математические расчеты.
Итоги
В подобных задачах всегда есть баланс: сколько теплоты одни тела отдают, столько другие тела получают. Они так и называются: задачи на тепловой баланс. В этом уроке мы рассмотрели процессы, при которых изменялась температура, но не рассмотрели процессы изменения агрегатного состояния вещества. Но мы можем взять лед при температуре 0 ℃, расплавить его и получить воду при 0 ℃ – ∆t равно нулю (см. рис. 28).
Рис. 28. Плавление льда
Греть его для этого нужно, энергии этот процесс требует. Значит, здесь что-то другое, модель не работает.
Например, тепло полученное от солнца, идет на то, чтобы расплавить лед в замерзших лужах. Другой пример: если надолго оставить на плите кастрюлю с водой, то тепло будет тратиться на испарение воды, превращение ее в пар.
Как решать задачи с процессами агрегатных превращений – плавлением, парообразованием и пр. – мы рассмотрим на следующем уроке.
Список литературы
- Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: издательство «Ранок», 2005. – 464 с.
- А.В. Перышкин. Физика 8 кл.: учеб. для общеобразоват. учреждений. – М.: Дрофа, 2013. – 237 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Сайт объединения учителей Санкт-Петербурга (Источник)
- Интернет-сайт «Класс!ная физика – для любознательных» (Источник)
- 3Интернет-сайт «Класс!ная физика – для любознательных» (Источник)
- Какие вы знаете способы изменения внутренней энергии?
- Назовите 3 вида теплопередачи. В каком из них теплопередача может сопровождаться перемещением вещества?
- Что такое количество теплоты, в каких единицах оно измеряется?
- Что такое удельная теплоемкость вещества? В каких единицах она измеряется? Где ее можно посмотреть?
- Металлическую деталь, масса которой 200 г, нагрели до 100 , а затем опустили в воду массой 800 г и температурой 20 .
Через некоторое время температура воды и детали стала равна 25 °С. Определите удельную теплоемкость металлической детали. Тепловыми потерями пренебречь.
Единица количества теплоты в системе СИ
4.7
Средняя оценка: 4.7
Всего получено оценок: 192.
4.7
Средняя оценка: 4.7
Всего получено оценок: 192.
Передача энергии от одного тела к другому без совершения работы называется теплопередачей или теплообменом. Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Разберемся: какие единицы используются в физике для измерения теплоты.
Работа и количество теплоты
Внутренняя энергия тела изменяется при совершении работы, когда тело перемещается под действием приложенной к нему силы. Механическая работа равна силе, умноженной на путь, пройденный по направлению силы. Но это не единственный способ изменения энергии.
При установлении контакта между телами с разными температурами, в результате взаимодействия атомов и молекул на границе соприкосновения тел, происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже.
2]}}$$
Когда количество тепла представляет собой очень большую величину, допускается использование кратных единиц — килоджоуль (кДж), мегаджоуль (МДж), гигаджоуль (ГДж):
- 1 кДж = 1000 Дж = 10
3 Дж; - 1 МДж = 1000000 Дж = 106 Дж;
- 1 ГДж = 1000000000 Дж = 109 Дж.
Джеймс Джоуль изучал закономерности термодинамических процессов. Своими экспериментами он доказал справедливость закона сохранения энергии и открыл закон, устанавливающий связь количества тепла и электрического тока в цепи. Теоретически определил скорость движения молекул газа и вывел формулу ее зависимости от температуры.
Калория
Джоуль в качестве универсальной энергетической единицы был введен в 1889 г. Но количество теплоты исследователи начали измеряли задолго до этого. Для этих целей была введена специальная единица — калория (от латинского слова calor — “тепло”), равная количеству теплоты, которое необходимо для нагревания одного грамма воды на один градус Цельсия при нормальном атмосферном давлении.
Калория (кал) и кратная ей единица — килокалория (ккал), до сих пор используются в качестве внесистемной единицы для некоторых областей деятельности. Например, килокалорию применяют в теплоэнергетике для расчетов потребленной тепловой энергии в домах, подключенных к централизованному отоплению в холодное время года.
Экспериментально установлено соответствие между калорией и джоулем, чтобы иметь возможность перевода количества тепла из одних единиц в другие:
- 1 Дж = 0,2388 кал;
- 1 кДж = 238,8 кал
- 1 кал = 4,19 Дж;
- 1 ккал = 4190 Дж.
Прибор для получения информации о количестве теплоты в научных экспериментах (физике, химии, биологии и медицине) называется калориметром. Внутреннее устройство калориметров определяется диапазоном температур, временем и характером изучаемых явлений.
Рис. 3. Примеры калориметров.Что мы узнали?
Итак, мы узнали что единица количества теплоты — это джоуль. Наряду с джоулем используются кратные ему единицы.
Кроме джоуля в отдельных областях деятельности допускается использование устаревшей единицы — калории.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
Айана Капсаргина
5/5
Александр Коновалов
5/5
Оценка доклада
4.7
Средняя оценка: 4.7
Всего получено оценок: 192.
А какая ваша оценка?
Передача энергии теплом – термодинамика
Тепло не является собственностью. Энергия, передаваемая через границу системы в виде тепла, всегда является результатом разницы температур между системой и ее непосредственным окружением. Передача энергии в результате разницы температур — это то, что отличает передачу тепла от работы. Мы не будем рассматривать способ передачи тепла, будь то теплопроводность, конвекция или излучение, поэтому количество теплоты, передаваемой в любом процессе, будет либо задано, либо оценено как неизвестное уравнения энергии.
По соглашению:
$$Q>0: \quad \text{теплообмен в систему}$$
$$Q<0: \quad \text{теплопередача из системы}$$ Это соглашение о знаках будет использоваться на протяжении всего курса. Обратите внимание, что это соглашение противоположно тому, что дано для работы!!
Дифференциальное количество теплоты [латекс]\дельта Q[/латекс] может быть проинтегрировано по процессу, чтобы найти общее количество теплоты, переданной во время этого процесса из состояния (1) в конечное состояние (2), но обратите внимание, что пределы интеграла не представляют значения тепла в состояниях, так как тепло не может быть измерено. Не поддавайтесь искушению оценивать [латекс]Q_{2}-Q_{1}[/латекс] 9{t_2} \dot{Q} dt.$$
При отсутствии теплообмена процесс называется адиабатическим.
Проводка
Кондуктивный теплообмен происходит в веществах, которые относительно неподвижны, но может происходить в твердых телах, жидкостях и газах.
$$\dot{Q} = -\каппа A \frac{dT}{dx}$$
Таким образом, большая теплопроводность, площади контакта и температурные градиенты способствуют увеличению кондуктивной теплопередачи.
Конвекция
Конвекция – это передача тепла между твердой поверхностью и прилегающей к ней движущейся жидкостью. Мы количественно определяем конвекцию с помощью
$$\dot{Q} = hA(T_\text{s}-T_\text{f}),$$
, где ч — коэффициент теплопередачи, зависящий от типа жидкости и условий течения, A — площадь, а [латекс]T_\text{s}[/latex] и [латекс]T_\text{f }[/latex] и температуры поверхности и объема жидкости соответственно.
Радиация
Все поверхности при температурах выше абсолютного нуля излучают тепловую энергию или фотоны. В отличие от двух предыдущих способов передачи тепла, для распространения излучения не требуется промежуточная среда, и поэтому мы получаем солнечную энергию через пустое пространство. Все вещества излучают, поглощают и пропускают тепловое излучение в той или иной степени. Дальнейшее обсуждение радиации выходит за рамки этого курса.
14.2 Изменение температуры и теплоемкость – College Physics главы 1-17
14 Методы теплопередачи и переноса
Резюме
- Наблюдайте за теплопередачей и изменением температуры и массы.
- Рассчитать конечную температуру после теплопередачи между двумя объектами.
Одним из основных эффектов теплопередачи является изменение температуры: нагревание повышает температуру, а охлаждение снижает ее. Мы предполагаем, что фазового перехода нет и что над системой или системой не совершается никакой работы.
Опыты показывают, что передаваемое тепло зависит от трех факторов — изменения температуры, массы системы, вещества и фазы вещества.

Зависимость от изменения температуры и массы легко понять. Благодаря тому, что (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и числу атомов или молекул. Благодаря тому, что переданное тепло равно изменению внутренней энергии, теплота пропорциональна массе вещества и изменению температуры. Переносимое тепло также зависит от вещества, так что, например, теплота, необходимая для повышения температуры, для спирта меньше, чем для воды. Для одного и того же вещества передаваемая теплота также зависит от фазы (газовая, жидкая или твердая).
ТЕПЛОПЕРЕДАЧА И ИЗМЕНЕНИЕ ЭНЕРГИИ
Количественная связь между теплопередачей и изменением температуры содержит все три фактора:
[латекс]\жирныйсимвол{Q=mc\Delta{T}},[/латекс]
где[латекс ]\boldsymbol{Q}[/latex]– обозначение теплопередачи, [latex]\boldsymbol{m}[/latex]– масса вещества, а [latex]\boldsymbol{\Delta{T}}[ /латекс] — изменение температуры.
{ \circ}\textbf{C)}}.[/latex]Напоминаем, что изменение температуры[latex]\boldsymbol{(\Delta{T})}[/latex]одинаково в единицах кельвина и градусах Цельсия. Если теплоотдачу измерять в килокалориях, то 9{\circ}\textbf{C)}}.[/латекс]
Значения удельной теплоемкости обычно нужно искать в таблицах, потому что нет простого способа их рассчитать. В общем случае удельная теплоемкость также зависит от температуры. В таблице 1 приведены репрезентативные значения удельной теплоемкости для различных веществ. За исключением газов, зависимость теплоемкости большинства веществ от температуры и объема слабая. Из этой таблицы мы видим, что удельная теплоемкость воды в пять раз больше, чем у стекла, и в десять раз больше, чем у железа, а это значит, что требуется в пять раз больше теплоты, чтобы поднять температуру воды на ту же величину, что и для стекла, и в десять раз больше, чем для стекла. много тепла, чтобы поднять температуру воды, как для железа. На самом деле вода имеет одну из самых больших удельных теплоемкостей среди всех материалов, что важно для поддержания жизни на Земле.
9{\circ}\textbf{C}}.[/latex](a) Сколько тепла требуется? Какой процент тепла используется для повышения температуры (b) кастрюли и (c) воды?
Стратегия
Посуда и вода всегда имеют одинаковую температуру. Когда вы ставите кастрюлю на плиту, температура воды и сковороды увеличивается на одинаковую величину. Воспользуемся уравнением теплообмена при заданном изменении температуры и массы воды и алюминия. Удельные теплоемкости воды и алюминия приведены в табл. 1. 94\textbf{J}=27.0\textbf{кДж}}.[/latex]
[латекс]\boldsymbol{Q_{\textbf{Всего}}=Q_{\textbf{W}}+Q_{\textbf{Al}}=62,8\textbf{кДж}+ 27,0\textbf{кДж}=89,8\ textbf{кДж}}.[/латекс]
Таким образом, количество тепла, идущего на нагрев сковороды, составляет
[латекс]\boldsymbol{\frac{27,0\textbf{кДж}}{89,8\textbf{кДж}}}[/latex][латекс]\boldsymbol {\times100\%=30,1\%},[/латекс]
, а количество, идущее на нагрев воды, равно
[латекс]\boldsymbol{\frac{62,8\textbf{кДж}}{89,8\textbf{кДж}}}[/latex][латекс]\boldsymbol{\times100 \%=69,9\%}.
[/latex]
Обсуждение
В этом примере тепло, переданное контейнеру, составляет значительную долю от общего количества переданного тепла. Хотя масса кастрюли в два раза больше массы воды, удельная теплоемкость воды более чем в четыре раза больше, чем у алюминия. Следовательно, для достижения заданного изменения температуры воды требуется чуть более чем в два раза больше тепла по сравнению с алюминиевой кастрюлей.
Рисунок 2. Дымящиеся тормоза на этом грузовике являются видимым свидетельством механического эквивалента тепла.Пример 2: Расчет увеличения температуры по работе, проделанной над веществом: Перегрев тормозов грузовика при движении под уклон тормозной материал. Это преобразование предотвращает преобразование потенциальной энергии гравитации в кинетическую энергию грузовика. Проблема заключается в том, что масса грузовика велика по сравнению с массой тормозного материала, поглощающего энергию, и повышение температуры может происходить слишком быстро, чтобы достаточное количество тепла передавалось от тормозов в окружающую среду.
9{\circ}\textbf{C}}[/latex], если материал удерживает 10% энергии от 10 000-килограммового грузовика, спускающегося с высоты 75,0 м (при вертикальном перемещении) с постоянной скоростью.Стратегия
Если тормоза не задействованы, гравитационная потенциальная энергия преобразуется в кинетическую энергию. При торможении потенциальная энергия гравитации преобразуется во внутреннюю энергию тормозного материала. Сначала мы вычисляем гравитационную потенциальную энергию[латекс]\boldsymbol{(Mgh)}[/латекс], которую весь грузовик теряет при спуске, а затем находим повышение температуры только в тормозном материале. 9{\circ}\textbf{C}}.[/латекс]
Обсуждение
Эта температура близка к температуре кипения воды. Если бы грузовик какое-то время ехал, то непосредственно перед спуском температура тормозов, вероятно, была бы выше температуры окружающей среды. Повышение температуры при спуске, вероятно, повысит температуру тормозного материала выше точки кипения воды, поэтому этот метод нецелесообразен.
Однако та же идея лежит в основе новейшей гибридной технологии автомобилей, где механическая энергия (потенциальная энергия гравитации) преобразуется тормозами в электрическую энергию (аккумулятор).
| Вещества | Удельная теплоемкость ( c ) | |
|---|---|---|
| Твердые вещества | Дж/кг⋅ºC | ккал/кг⋅ºC 2 |
| Алюминий | 900 | 0,215 |
| Асбест | 800 | 0,19 |
| Бетон, гранит (средний) | 840 | 0,20 |
| Медь | 387 | 0,0924 |
| Стекло | 840 | 0,20 |
| Золото | 129 | 0,0308 |
| Тело человека (в среднем при 37 °C) | 3500 | 0,83 |
| Лед (средний, от -50°C до 0°C) | 2090 | 0,50 |
| Железо, сталь | 452 | 0,108 |
| Свинец | 128 | 0,0305 |
| Серебро | 235 | 0,0562 |
| Дерево | 1700 | 0,4 |
| Жидкости | ||
| Бензол | 1740 | 0,415 |
| Этанол | 2450 | 0,586 |
| Глицерин | 2410 | 0,576 |
| Меркурий | 139 | 0,0333 |
| Вода (15,0 °С) | 4186 | 1. 000 |
| Газы 3 | ||
| Воздух (сухой) | 721 (1015) | 0,172 (0,242) |
| Аммиак | 1670 (2190) | 0,399 (0,523) |
| Углекислый газ | 638 (833) | 0,152 (0,199) |
| Азот | 739 (1040) | 0,177 (0,248) |
| Кислород | 651 (913) | 0,156 (0,218) |
| Пар (100°C) | 1520 (2020) | 0,363 (0,482) |
| Таблица 1. Удельная теплоемкость 1 различных веществ | ||
Обратите внимание, что пример 2 является иллюстрацией механического эквивалента тепла. В качестве альтернативы, повышение температуры может быть произведено с помощью паяльной лампы вместо механического. 9{\circ}\textbf{C}}.[/latex]Предположим, что кастрюля находится на изолированной подушке и что незначительное количество воды выкипает.
При какой температуре вода и кастрюля через короткое время достигают теплового равновесия?
Стратегия
Кастрюля размещена на изолирующей подушке, чтобы обеспечить небольшой теплообмен с окружающей средой. Первоначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода. Затем теплопередача восстанавливает тепловое равновесие, когда вода и кастрюля соприкасаются. Поскольку теплопередача между кастрюлей и водой происходит быстро, масса испаряемой воды пренебрежимо мала, а величина тепла, теряемого кастрюлей, равна теплу, приобретаемому водой. Обмен теплом прекращается, как только достигается тепловое равновесие между чашей и водой. Теплообмен можно записать как[латекс]\жирныйсимвол{|Q_{\textbf{горячий}}|=Q_{\textbf{холодный}}}.[/латекс] 9{\circ}\textbf{C})}.[/латекс]
{\circ}\textbf{C}).} \end{массив}[/latex] 9{\circ}\textbf{C}}?[/latex]Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, таким образом, претерпевает небольшое изменение температуры при заданной теплопередаче. Большому водоему, такому как озеро, требуется большое количество тепла, чтобы заметно повысить его температуру. Это объясняет, почему температура озера остается относительно постоянной в течение дня даже при больших изменениях температуры воздуха. Однако температура воды меняется в течение более длительного времени (например, с лета на зиму).ДОМАШНИЙ ЭКСПЕРИМЕНТ: ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ ЗЕМЛИ И ВОДЫ
Что нагревается быстрее, земля или вода?
Для изучения различий в теплоемкости:
- Поместите равные массы сухого песка (или почвы) и воды одинаковой температуры в два небольших сосуда. (Средняя плотность почвы или песка примерно в 1,6 раза выше, чем у воды, поэтому вы можете получить примерно равные массы, используя [латекс]\boldsymbol{50\%}[/латекс]больше воды по объему.

Через некоторое время температура воды и детали стала равна 25 °С. Определите удельную теплоемкость металлической детали. Тепловыми потерями пренебречь.
000