Коллайдер андронный для чего нужен – Большой адронный коллайдер — Википедия

Содержание

Большой адронный коллайдер — Википедия

Материал из Википедии — свободной энциклопедии

Перейти к навигации Перейти к поиску
Large Hadron Collider

Фрагмент LHC, сектор 3-4
Тип Синхротрон
Назначение Коллайдер
Страна Швейцария/ Франция
Лаборатория

ru.wikipedia.org

Адронный коллайдер зачем нужен? Для чего нужен большой адронный коллайдер

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения подземные коммуникации прежнего ускорителя элементарных частиц – большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и методы познания звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся возможности человека, управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной скорости света в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная криогенная камера для достижения эффекта сверхпроводимости поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились боевые колесницы. Освоило человечество металлургию – здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос “зачем нужен большой адронный коллайдер именно сейчас” на самом деле – не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает…

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков – всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут цепную ядерную реакцию, способную фатально испортить отдых в горах Швейцарии или во французской Ривьере…

Информационная диктатура

Настораживает, что голоса действительно учёных и разбирающихся в ядерной физике людей попросту изолируют от общественности. Средства массовой информации проходят мимо, не пытаясь даже освещать вопрос с этой точки зрения.

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность – делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

fb.ru

что это такое и зачем нужно

Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).

10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Где находится коллайдер

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

  1. Ускоритель частиц. Разгоняет и сталкивает протоны с помощью системы мощных электромагнитов, расположенных вдоль всего тоннеля.
  2. Детекторы. Результаты столкновения нельзя наблюдать напрямую, поэтому мощные детекторы улавливают максимум данных и направляют их на обработку.
  3. Грид. С детекторов поступают петабайты данных. Для их интерпретации используется грид-инфраструктура — сеть из компьютеров в 36 странах, которые совместно образуют один суперкомпьютер. Но даже этого хватает только на обработку 1% данных.
Момент столкновения частиц

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Читайте также: Что если изобретут телепортацию

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

Есть две причины, чтобы не волноваться.

  1. На БАК не происходит ничего такого, чего не делают космические лучи, которые ежедневно попадают на Землю, и эти лучи не создают чёрных дыр.
  2. Даже если Большой адронный коллайдер действительно создаст чёрную дыру, то она будет крошечной. Чем меньше чёрная дыра, тем короче ее жизнь. Такая чёрная дыра превратится в энергию, прежде чем сможет причинить вред людям.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Разобрались, что такое и зачем нужен Коллайдер?Poll Options are limited because JavaScript is disabled in your browser.
  • Нет 41%, 7 голосов

    7 голосов 41%

    7 голосов – 41% из всех голосов

  • Да 35%, 6 голосов

    6 голосов 35%

    6 голосов – 35% из всех голосов

  • Частично 24%, 4 голоса

    4 голоса 24%

    4 голоса – 24% из всех голосов

Всего голосов: 17

09.04.2019

×

Вы или с вашего IP уже голосовали.

topor.info

«Большой адронный коллайдер» – Яндекс.Знатоки

В Стандартной модели, которая фактически представляет собой квантовую теорию поля, все процессы описываются в терминах квантовых полей, а элементарные частицы отвечают колебаниям этого поля. Например, электромагнитные процессы описываются электромагнитным полем, колебаниями которого являются фотоны. Основной принцип этой модели — принцип симметрии. Другими словами, когда физики строили Стандартную модель, они предполагали, что поля останутся неизменными, если над ними произвести некоторые преобразования, сохраняющие симметрию модели (такие преобразования называют калибровочными). Подробнее о том, как такие простые требования помогают физикам построить теорию, можно прочитать в материале «На пути к теории всего».

Самый простой пример системы, которая обладает симметрией, — это цепочка взаимодействующих спинов (стрелочек), которые могут быть ориентированы либо вверх, либо вниз. Легко сообразить, что суммарная энергия такой конфигурации не изменится, если повернуть каждую стрелочку на 180 градусов — это преобразование эквивалентно развороту всей системы, которое не может сказаться на ее внутренней структуре. Симметрия полей Стандартной модели гораздо сложнее, однако принцип остается тем же. Например, наблюдаемые величины в электродинамике не изменятся, если сдвинуть 4-потенциал на полную производную от скалярной функции. Важно заметить, что эта симметрия не сохранялась бы, если бы фотоны в модели были массивными.

Так вот, теория электрослабого взаимодействия, расширяющая электродинамику, устроена похожим образом: чтобы сохранить симметрию модели, нужно потребовать, чтобы ее элементарные частицы — фотоны и векторные бозоны, — были безмассовыми. К сожалению, в действительности векторные бозоны массивны. Чтобы разрешить это противоречие и сохранить симметрию модели, нужно добавить в теорию новое скалярное поле. Если новое поле будет двигаться в потенциале, который имеет минимумы при ненулевой напряженности, оно «застрянет» в одном из минимумов, и все пространство заполнится однородным фоном, за который будут «цепляться» элементарные частицы. В результате на низких энергиях теория будет выглядеть так, будто частицы приобрели массу. Этот механизм в настоящее время называют механизмом Хиггса, а частицу, отвечающую колебаниям нового поля, — бозоном Хиггса. В то же время, на высоких энергиях массой частиц можно пренебречь, и симметрия теории восстанавливается.

yandex.ru

Большой адронный коллайдер – ускоритель частиц

Большой адронный коллайдер может изменить наш мир еще сильнее, чем это сделали полупроводники. Что не менее важно, человечество может получить ответы на вопросы о рождении Вселенной и возникновении всего сущего.

Что такое большой адронный коллайдер, и где он находится

Большой адронный коллайдер (БАК или, с английского, Large Hadron Collider, LHC) является самым мощным на данный момент ускорителем частиц на Земле. Адронным этот прибор называется из-за того, что работает с элементами атомного ядра, которые относятся к классу адронов. А коллайдером его назвали, потому что основное предназначение прибора — это столкновение частиц.

Коллайдер расположен на территории сразу двух государств — Франции и Швейцарии. От Женевы, швейцарской столицы, до него всего пять километров. Недалеко от Женевы находится также ЦЕРН — Европейская организация по ядерным исследованиям. Работающие там ученые занимаются проведением экспериментов на адронном коллайдере.

Сам БАК представляет собой систему закольцованных туннелей, расположенных под землей. Длина его крупнейшего кольца составляет 26 659 метров. Глубина, на которой расположена вся система, составляет 100 метров. Этого достаточно для изоляции проводимых там экспериментов от влияния внешних факторов, например, от воздействия солнечной радиации.

Строение большого адронного коллайдера

Как устроен БАК

Большой адронный коллайдер был построен всего за 6 лет при участии более чем полусотни стран. Отдельные детали поставляли со всех концов Европы, что было настоящим логистическим вызовом из-за их крупных размеров.

Чтобы лучше понять, что такое коллайдер, его можно условно разделить на две части:

  • Ускоритель. Он представляет собой систему туннелей, по которым протоны разгоняются до необходимой скорости. Эти туннели проложены в виде колец разного диаметра. Каждое кольцо — это труба с двумя каналами. По этим каналам в условиях вакуума проходят пучки протонов (они удерживаются внутри каналов специальными сверхпроводящими магнитами). Чем больше диаметр кольца, через которое проходит пучок, тем выше его скорость.
  • Детекторы. Они служат для снятия данных во время экспериментов — фиксируют столкновения частиц. Они расположены там, где кольца пересекаются, то есть там, где пучки сталкиваются друг с другом. По своим размерам детекторы напоминают трехэтажные дома. Есть четыре самых известных детектора: крупные — CMS и ATLAS, а также средние — LHCb и ALICE. Помимо них есть еще некоторое количество мелких детекторов.

Адронный коллайдер: принцип работы

Для исследований протоны необходимо разогнать до максимально возможной в природе скорости, которая равняется приблизительно 300 000 км/с. Происходит это так:

  1. Сначала в канал кольца запускают, например, положительно заряженные частицы — протоны.
  2. После этого к кольцу приближают положительно заряженный электрод. Эффект от этого такой же, как если бы соединили магниты одинаковыми полюсами. То есть протоны отталкиваются от электрода и получают ускорение.
  3. Ускорение частиц возрастает с прохождением колец все большего диаметра.
  4. Если прибор настроен правильно, то пучки достигают скорости света и готовы для участия в очередном эксперименте по столкновению с таким же разогнавшимся встречным пучком (для максимальной энергии столкновения пучки разгоняют навстречу друг другу).

Практически любой элемент адронного коллайдера можно настроить индивидуально. Для его обслуживания работает специальная группа машинных физиков. Они проводят расчеты и настраивают прибор для каждого эксперимента отдельно, поскольку требования всегда разные. Кроме того, одной из основных задач машинной группы является поиск оптимальных настроек, при которых пучок был бы стабильным.

Процесс настройки большого адронного коллайдера

Запись и обработка данных

Детекторы установлены в местах, где пути разогнавшихся по кольцам частиц пересекаются. Именно там происходит все самое интересное в эксперименте — протоны сталкиваются друг с другом и распадаются на еще более мелкие части.

У каждого детектора есть своя специализация. Каждый служит для определения частиц определенного вида. В ходе эксперимента детектор запечатлевает траекторию, с которой разлетаются частицы после столкновения, определяет вид частиц и энергию их столкновения (для этого важно знать скорость разгона пучков). Эти данные формируют исчерпывающую картину столкновения.

Данные экспериментов записываются на магнитные ленты. Это очень большие объемы информации. Чтобы ее обработать, используется специально настроенное вычислительное оборудование ЦЕРН. Эти компьютеры очень мощные, хотя и не самые лучшие из существующих. Кроме того, доступ к записанным данным по сети получают ученые из лабораторий, расположенных по всему миру. Такая система значительно ускоряет обработку результатов.

Значение БАК для фундаментальной науки

Адронный коллайдер перевел научные эксперименты на новый уровень. Он позволяет ставить очень глубокие задачи по структуре и свойствам материи. Наблюдение за тем, как ведет себя вещество при распаде, как возникают новые вещества и каким законам они подчиняются, позволяет исследовать мир на, в буквальном смысле слова, фундаментальном уровне. На основе подобных открытий была, например, изобретена лучевая терапия, а также протестирована работа электронного оборудования в условиях космических излучений, после чего оно смогло работать на Марсе и Венере.

При этом наука развивается не только за счет сделанных открытий, но и за счет создания технологической среды для исследований на совершенно ином уровне. Например, интернет, без которого вряд ли кто-то уже представляет свою жизнь, был побочным продуктом научной работы на ускорителе. Ученым просто необходима была сеть для мгновенного обмена информацией и получения данных. Теперь мгновенно обмениваться информацией и получать данные при помощи такой сети может практически все население Земли.

Главное открытие

В качестве примера ярких экспериментов, сделанных на БАК, приведем открытие бозона Хиггса. Несколько десятков лет ученые пытались разрешить вопрос о том, откуда у вещества возникает масса. Один из исследователей, Питер Хиггс, вынес предположение, что все пространство пронизано полем. Когда частицы двигаются сквозь него, то подвергаются силе трения. Одни частицы испытывают меньшее сопротивление и быстро проскакивают. Другие “увязают”, набирая массу за счет поля. Таким образом, получается, что масса — это сила трения, которую испытывает частица в поле Хиггса.

Чтобы найти эту частицу, было необходимо разбить ядро атома, провести множество экспериментов по столкновению частиц друг с другом, изучить последствия таких столкновений, а также собрать множество снимков происходящего. В 2012 году эксперименты увенчались успехом, и существование предполагаемого элемента подтвердилось. Он получил имя бозона Хиггса, в честь ученого, который вынес предположение о его существовании. В 2013 году Хиггсу и Энглеру за это открытие была присуждена Нобелевская премия.

Кроме того, технология, которую изобрели, чтобы поймать хиггсовский бозон в 2012 году, в 2018 году привела к новому прорыву, но уже в медицине. Ученые из Новой Зеландии сумели сконструировать на ее основе рентгеновское оборудование, которое позволяет делать цветные трехмерные снимки человеческого тела. Новый уровень четкости при сканировании позволит осуществлять более раннюю диагностику болезней и, следовательно, проводить более легкое и эффективное лечение.

Другие задачи и эксперименты

Естественно, что открытием бозона Хиггса исследовательские отделы не ограничиваются. Их целью является построение современной теории мира, в том числе на основе изучения свойств хиггсовской частицы. Для приближения к этой цели работы ведутся по следующим направлениям:

  • Исследование фотон-фотонных и фотон-адронных коллизий.
  • Исследование кварк-глюонной плазмы.
  • Исследование свойств самых тяжелых из известных кварков — топ-кварков.
  • Дальнейшей изучение хиггсовского механизма.
  • Поиски суперсимметрии.

Для решения многих из этих задач, например, поиска суперсимметрии, текущих мощностей прибора не хватает. Поэтому управление ЦЕРН приняло решение приостановить работу ускорителя до 2021 года. За это время прибор обновят, увеличат его фотосилу, за счет чего частицы смогут сталкиваться до семи раз чаще.

Опасения

БАК — это уникальнейший прибор, созданный человечеством, именно за счет своей мощности. Только этот ускоритель способен разгонять частицы до 99.99% скорости света. Эта его особенность породила множество страхов как у профессиональных физиков, так и у обывателей. Например, высказывалось опасение, что частицы, разогнавшись до такой большой скорости, настолько уплотнятся, что образуют микроскопическую черную дыру. А эта дыра затем поглотит всю планету.

Перед запуском машины два физика, Санчо и Вагнер, даже подали иск против организаций, стоящих за БАК. Но ЦЕРН объяснил свои расчеты при помощи теории относительно Эйнштейна, что подтверждало невозможность возникновения черной дыры, и иск отклонили. Но многие люди продолжают выступать против проведения подобных экспериментов, ведь Эйнштейн мог и ошибиться.

Стивен Хокинг на основе уже собственных теорий также опроверг опасение о том, что ускоритель может привести к поглощению планеты микроскопической черной дырой. Его довод заключался в том, что черные дыры не только поглощают материю, но и излучают ее, тем самым исходя на нет. Излучение тем интенсивнее, чем меньше объем дыры. Таким образом, маленькая черная дыра исчезнет практически мгновенно и не успеет нанести никакого вреда.

Адронный коллайдер — это не нечто, созданное исключительно человеком. В природе существует множество условий для столкновения частиц на огромнейшей скорости. Чтобы получить черную дыру, необходим прибор в миллион раз мощнее, чем самый мощный на планете ускоритель.

Есть ли ускорители в России

Адронный коллайдер — это дорогостоящий, но не такой уж редкий прибор. Строить их начали около семидесяти лет назад. В России есть два действующих андронных коллайдера и один, NICA, в процессе строительства. Закончить его монтаж планируют уже к 2020 году.

NICA строится в небольшом научном городке под названием Дубна, который стоит на Волге. Прибор будет гораздо менее мощным, чем БАК, но он и направлен на решение совсем другой задачи. NICA будет использоваться для того, чтобы смоделировать состояние вселенной в первую секунду после Большого взрыва. Ученые считают, что в то мгновение вещество находилось в ином агрегатном состоянии. Это не была жидкость, газ или твердое тело, это была кварк-глюонная плазма. Своеобразный суп из кварков.

В туннелях адронного коллайдера повторят Большой взрыв на микроуровне, чтобы посмотреть на мир в процессе его зарождения: ионы золота превратят в кварковый суп и проведут эксперименты для изучения его свойств — неизведанных свойств четвертого (а точнее первого) агрегатного состояния вещества. В случае успеха этих исследований на фундаментальные вопросы о возникновении мира, сущности пространства и времени будут получены вполне конкретные ответы. И кто знает, как это повлияет на состояние современной науки и какие новые технологии появятся в результате этих открытий.

Поделиться ссылкой:

Facebook

Twitter

Вконтакте

Google+

hikosmos.ru

Большой Адронный Коллайдер (БАК или LHC)

Большой Адронный Коллайдер (БАК или LHC)

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Большой адронный коллайдер под землей комплекса ЦЕРНа

Далее разберемся подробнее в задачах и работе Большого адронного коллайдера.

Предыстория

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Инф

spacegid.com

Зачем вообще нужен LHC? • Устройство и задачи Большого адронного коллайдера

Узнав впервые о существовании LHC, повосхищавшись его размерами, поудивлявшись непонятности и практической бесполезности его задач, читатель, как правило, задает вопрос: а зачем вообще нужен этот LHC?

В этом вопросе есть сразу несколько аспектов. Зачем людям вообще нужны эти элементарные частицы, зачем тратить столько денег на один эксперимент, какая будет польза для науки от экспериментов на LHC? Здесь я попробую дать ответы, пусть краткие и субъективные, на эти вопросы.

Зачем обществу нужна фундаментальная наука?

Начну с аналогии. Для первобытного человека связка бананов имеет очевидную пользу — их можно съесть. Острый нож тоже полезен на практике. А вот электродрель с его точки зрения — бессмысленная вещь: ее нельзя съесть, из нее нельзя извлечь какую-либо иную непосредственную пользу. Думая исключительно об удовлетворении сиюминутных потребностей, он не сможет понять ценность этого агрегата; он просто не знает, что бывают ситуации, в которых электродрель оказывается чрезвычайно полезной.

Отношение большей части общества к фундаментальной науке — примерно такое же. Только вдобавок человек в современном обществе уже пользуется огромным количеством достижений фундаментальной науки, не задумываясь об этом.

Да, люди, конечно, признают, что высокие технологии делают жизнь комфортнее. Но при этом они неявно полагают, что технологии эти — результат чисто прикладных разработок. А вот это — большое заблуждение. Надо четко понимать, что перед практической наукой регулярно встают задачи, которые она сама решить просто не в состоянии — ни с помощью накопленного практического опыта, ни через прозрение изобретателей-рационализаторов, ни методом проб и ошибок. Зато они решаются с помощью фундаментальной науки. Скажем, те свойства вещества, которые недавно казались совершенно бесполезными, вдруг открывают возможность для создания принципиально новых устройств или материалов с неожиданными возможностями. Или же вдруг обнаруживается глубокая параллель между какими-то сложными объектами из сугубо прикладной и из фундаментальной науки, и тогда абстрактные научные результаты удается использовать на практике.

В общем, фундаментальная наука — это основа технологий в долгосрочной перспективе, технологий, понимаемых в самом широком значении. И если какие-то небольшие усовершенствования существующих технологий можно сделать, ограничиваясь сугубо прикладными исследованиями, то создать новые технологии — и с их помощью преодолевать новые проблемы, регулярно встающие перед обществом! — можно, лишь опираясь на фундаментальную науку.

Опять же, прибегая к аналогиям, можно сказать, что пытаться развивать науку, ориентируясь только на немедленную практическую пользу — это словно играть в футбол, прыгая исключительно на одной ноге. И то, и другое, в принципе, можно себе представить, но в долгосрочной перспективе эффективность от обоих занятий почти нулевая.

Почему фундаментальной наукой занимаются сами ученые?

Кстати, стоит подчеркнуть, что большинство ученых занимается наукой вовсе не потому, что это может оказаться полезно для общества. Люди занимаются наукой, потому что это жутко интересно. Даже когда просто изучаешь открытые кем-то законы или построенные кем-то теории, это уже «щекочет мозги» и приносит огромное удовольствие. А те редкие моменты, когда удается самому открыть какую-то новую грань нашего мира, доставляют очень сильные переживания.

Эти ощущения отдаленно напоминают чувства, возникающие при чтении детектива: автор построил перед тобой загадку, а ты пытаешься разгадать ее, стараясь увидеть в описываемых фактах скрытый, взаимосвязанный смысл. Но если в детективе глубина и стройность загадки ограничены фантазией автора, то фантазия природы выглядит пока неограниченной, а ее загадки — многоуровневыми. И эти загадки не придуманы кем-то искусственно, они настоящие, они вокруг нас. Вот ученым и хочется справиться хотя бы с кусочком этой вселенской головоломки, подняться еще на один уровень понимания.

Кому нужны элементарные частицы?

Хорошо, положим, фундаментальной наукой действительно стоит заниматься, раз она спустя несколько десятков лет сможет привести к конкретным практическим достижениям. Тогда давайте будем изучать фундаментальное материаловедение, будем манипулировать отдельными атомами, будем развивать новые методики диагностики веществ, поучимся рассчитывать сложные химические реакции на молекулярном уровне. Можно легко поверить в то, что спустя десятки лет всё это приведет к новым практическим приложениям.

Но трудно себе представить, какая в принципе может быть конкретная практическая польза от топ-кварков или от хиггсовского бозона. Скорее всего, вообще никакой. Тогда какой толк в развитии физики элементарных частиц?

Толк огромный, и заключается он вот в чём.

Физические явления эффективнее всего описываются на языке математики. Эту ситуацию обычно называют удивительной (знаменитое эссе Ю. Вигнера о «непостижимой эффективности математики»), но тут есть и другой, не менее сильный повод для удивления. Всё головокружительное разнообразие явлений, происходящих в нашем мире, описывается лишь очень небольшим числом математических моделей. Осознание этого поразительного, совсем не очевидного свойства нашего мира — одно из самых важных открытий в физике.

Пока знания ограничиваются лишь «повседневной» физикой, эта тенденция может оставаться незаметной, но чем глубже знакомишься с современной физикой, тем более яркой и завораживающей выглядит эта «математическая экономность» природы. Явление сверхпроводимости и хиггсовский механизм возникновения масс элементарных частиц, электроны в графене и безмассовые элементарные частицы, жидкий гелий и внутренности нейтронных звезд, теория гравитации в многомерном пространстве и сверххолодное облачко атомов — вот лишь некоторые пары разных природных явлений с удивительно схожим математическим описанием. Хотим мы или нет, но эта связь между разными физическими явлениями через математику — это тоже закон природы, и им нельзя пренебрегать! Это полезный урок для тех, кто пытается рассуждать о физических явлениях, опираясь только на их «природную сущность».

Аналогии между объектами из разных областей физики могут быть глубокими или поверхностными, точными или приблизительными. Но благодаря всей этой сети математических аналогий наука физика предстает как многогранная, но цельная дисциплина. Физика элементарных частиц — это одна из ее граней, которая через развитие математического формализма крепко связана со многими более «практическими» областями физики, да и естественных наук в целом.

Поэтому, кто знает, может быть, изучая теорию гравитации, мы в конце концов придем к пониманию турбулентности, развитие методов квантовой теории поля позволит по-иному взглянуть на генетическую эволюцию, а эксперименты по изучению устройства протона откроют нам новые возможности для создания материалов с экзотическими свойствами.

Кстати, иногда в ответ на вопрос о пользе физики элементарных частиц начинают перечислять те конкретные методики и приборы, которые явились побочным результатом изучения элементарных частиц. Их уже немало: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия, цифровые малодозные рентгеновские установки, самые разнообразные применения синхротронного излучения, плюс еще несколько методик в процессе разработки. Это всё верно, но надо понимать, что это именно побочная, а не главная польза от физики элементарных частиц.

Зачем надо изучать нестабильные частицы?

Окружающий нас мир состоит из частиц трех типов: протонов, нейтронов, электронов. Казалось бы, если мы хотим знать устройство нашего мира, давайте изучать только эти частицы. Кому интересны частицы, которые живут мгновения, а потом снова распадаются? Какое отношение эти частицы имеют к нашему микромиру?

Причин тут две.

Во-первых, многие из этих нестабильных частиц напрямую влияют на свойства и поведение наших обычных частиц — и это, кстати, одно из важных открытий в физике частиц. Оказывается, эти нестабильные частицы на самом деле присутствуют в нашем мире, но не в виде самостоятельных объектов, а в виде «некоторого» облачка, окутывающего каждую обычную частицу. И то, как обычные частицы взаимодействуют друг с другом, зависит не только от них самих, но и от окружающих их «облачков». Эти облачка порождают ядерные силы, связывающие протоны и нейтроны в ядра, они заставляют распадаться свободный нейтрон, они наделяют обычные частицы массой и другими свойствами.

Эти нестабильные частицы — невидимая, но совершенно неотъемлемая часть нашего мира, заставляющая его крутиться, работать, жить.

Вторая причина тоже вполне понятная. Если вам надо разобраться с устройством или с принципом работы какой-то очень сложной вещи, ваша задача станет намного проще, если вам разрешат как-то изменять, перестраивать эту вещь. Собственно, этим и занимаются отладчики (не важно чего: техники, программного кода и т. п.) — они смотрят, что изменится, если сделать так, повернуть эдак.

Экзотические для нашего мира элементарные частицы — это тоже как бы обычные частицы, у которых «что-то повернуто не так». Изучая все эти частицы, сравнивая их друг с другом, можно узнать о «наших» частицах гораздо больше, чем в экспериментах только с протонами да электронами. Уж так устроена природа — свойства самых разных частиц оказываются глубоко связаны друг с другом!

Зачем нужны такие огромные ускорители?

Ускоритель — это по своей сути микроскоп, и для того, чтобы разглядеть устройство частиц на очень малых масштабах, требуется увеличивать «зоркость» микроскопа. Предельная разрешающая способность микроскопов определяется длиной волны частиц, используемых для «освещения» мишени — будь то фотоны, электроны или протоны. Согласно квантовым законам, уменьшить длину волны квантовой частицы можно путем увеличения ее энергии. Поэтому-то и строятся ускорители на максимально достижимую энергию.

В кольцевых ускорителях частицы летают по кругу и удерживаются на этой траектории магнитным полем мощных сверхпроводящих магнитов. Чем больше энергия частиц — тем большее требуется магнитное поле при постоянном радиусе или тем большим должен быть радиус при постоянном магнитном поле. Увеличивать силу магнитного поля очень трудно с физической и инженерной точки зрения, поэтому приходится увеличивать размеры ускорителя.

Впрочем, физики сейчас работают над новыми, намного более эффективными методиками ускорения элементарных частиц (см., например, новость Первое применение лазерных ускорителей будет медицинским). Если эти методы оправдают свои ожидания, то в будущем максимально достижимая энергия частиц сможет увеличиться при тех же размерах ускорителей. Однако ориентироваться тут можно лишь на срок в несколько десятков лет.

Но не стоит думать, что гигантские ускорители — это единственное орудие экспериментальной физики элементарных частиц. Есть и «второй фронт» — эксперименты с меньшей энергией, но с очень высокой чувствительностью. Тут примером могут служить так называемые b-фабрики BaBar в Стэнфорде и Belle в Японии. Это электрон-позитронные коллайдеры со скромной энергией (около 10 ГэВ), но с очень высокой светимостью. На этих коллайдерах рождаются B-мезоны, причем в таких больших количествах, что удается изучить чрезвычайно редкие их распады и заметить проявление разнообразных тонких эффектов. Эти эффекты могут быть вызваны новыми явлениями, которые изучаются (правда, с другой точки зрения) и на LHC. Поэтому такие эксперименты столь же важны, как и эксперименты на коллайдерах высоких энергий.

Зачем нужны такие дорогие эксперименты?

Часто можно услышать возмущенные голоса: а по какому праву физики тратят такие огромные деньги налогоплательщиков на удовлетворение собственного любопытства? Ведь их можно потратить и с гораздо большей конкретной практической пользой!

На самом деле, если взглянуть на ситуацию реалистично, то альтернатива LHC состояла не в том, чтобы пустить эти же деньги на какую-то «практически полезную» деятельность, а в том, чтобы провести на них еще несколько десятков экспериментов по физике элементарных частиц, но среднего масштаба.

Логика тут совершенно прозрачна. Правительства большинства стран понимают, что некоторую долю бюджета необходимо тратить на фундаментальные научные исследования — от этого зависит будущее страны. Эта доля, кстати, не такая уж и большая, порядка 2-3% (для сравнения, военные расходы составляют, как правило, десятки процентов). Расходы на фундаментальную науку выделяются, разумеется, не в ущерб другим статьям бюджета. Государства тратят деньги и на здравоохранение, и на социальные проекты, и на развитие технологий с конкретными практическими применениями, и на благотворительность, и на помощь голодающим Африки и т. д. «Научные» деньги — это отдельная строка бюджета, и эти деньги сознательно направлены на развитие науки.

Как это финансирование распределяется между разными научными дисциплинами, зависит от конкретной страны. Значительная часть уходит в биомедицинские исследования, часть — в исследования климата, в физику конденсированных сред, астрофизику и т. д. Своя доля уходит и в физику элементарных частиц.

Типичный годовой бюджет экспериментальной физики элементарных частиц, просуммированный по всем странам, — порядка нескольких миллиардов долларов (см., например, данные по США). Большинство этих денег тратится на многочисленные эксперименты небольшого масштаба, которых поставлено в последние годы порядка сотни, причем они финансируются на уровне отдельных институтов или в редких случаях — стран. Однако опыт последних десятилетий показал, что если объединить хотя бы часть денег, выделяемых на ФЭЧ во многих странах, в результате может получиться эксперимент, научная ценность которого намного превзойдет суммарную ценность множества мелких разрозненных экспериментов.

Именно с целью резкого увеличения научной эффективности при тех же деньгах и был создан LHC. Подробности про ожидаемую научную ценность экспериментов можно узнать из списка задач, стоящих перед LHC.

elementy.ru

Оставить комментарий