Коты шредингера что это: Кошка Шредингера | это… Что такое Кошка Шредингера?

Содержание

Тред: Как кот Шрёдингера оказался не объяснением, а попыткой опровергнуть интерпретацию квантовой механики

Наука

Дамир Камалетдинов

А ещё он не кот, а кошка.

16 марта программист и блогер под псевдонимом Вастрик опубликовал на своём сайте лонгрид, в котором попытался максимально простым языком объяснить, как устроены квантовые компьютеры.

Квантовый Компьютер

Как устроен? Как программировать? Уже?

Он начал материал с азов квантовой механики и в том числе упомянул популярный пример с котом Шрёдингера, который часто используют для объяснения явления суперпозиции, когда частица может находится сразу в двух состояниях. Правда, больше автор решил этот пример не использовать из-за того, что тот устарел и «не даёт читателю никакого понимания как всё это реально можно использовать на практике».

Однако пользователь твиттера и ведущий разработчик Jet Infosystems Влад Зайцев напомнил, что пример с котом Шрёдингера никогда не был предназначен для объяснения явления суперпозиции.

И даже наоборот — задумывался для опровержения такой интерпретации.

Как пояснил Зайцев, Эрвину Шрёдингеру не нравилась интерпретация квантовой механики, в которой квантовая механика становилась вероятностной и непредсказуемой. В качестве примера он привёл фотон, который пролетает через одну из двух щелей: пока его никто не видит, он попадает в обе щели в виде кучи равновероятностных фотонов в разных позициях и «интерферирует» сам с собой.

Зайцев напомнил о первоначальной сути эксперимента Шрёдингера. В 1935 году учёный написал статью в журнал Naturwissenschaften («Естественные науки») в ответ на парадокс Эйнштейна, Подольского и Розена. В своём материале Шрёдингер рассуждал над вероятностной интерпретацией квантовой механики.

Учёный попытался довести до абсурда модель волновой функции, предложенную Гейзенбергом и Бором, чтобы показать её неполноту и указать на пробелы. Для этого он решил вывести состояние суперпозиции в большую вселенную и связать распад ядра атома с более крупным и совсем безумным примером — смертью кота.

Шрёдингер предложил мысленный эксперимент — посадить кота в стальной сейф, в котором размещён механизм, способный его убить. По задумке учёного, в счётчик Гейгера нужно положить крошечную частичку радиоактивного вещества, чтобы за час мог распасться только один из атомов, либо ни одного.

Если атом распадётся, то счётчик это фиксирует и приводит в действие молоток, разбивающий колбу с ядом. В противном случае кот выживает. Если бы это выражали через волновую функцию, то живой и мёртвый кот существовали бы одновременно с одинаковыми вероятностями, отмечал Шрёдингер.

Иллюстрация эксперимента с котом Шрёдингера Изображение пользователя «Википедии» под псевдонимом Dhatfield, лицензия Creative Commons CC BY-SA 3.0

В результате учёный пришёл к выводу, что кот не может быть одновременно и живым, и мёртвым. Таким образом, реальность не подчиняется волновой функции, подытожил Шрёдингер.

С ним согласился Эйнштейн, который тоже не принимал вероятностную интерпретацию Гейзенберга и Бора, также называемую копенгагенской.

После выхода статьи он написал Шрёдингеру, что его пример «очень красиво показывает неполное представление положения вещей в волновом представлении материи».

Как отметил Зайцев, несмотря на то, что многим пытались объяснить вероятностную интерпретацию именно через пример кота Шрёдингера, на самом деле учёный спроектировал эксперимент для опровержения концепции. Поэтому использовать подобный пример было бы бессмысленно.

Эйнштейн критиковал вероятностную интерпретацию квантовой механики из-за её противоречия его теории относительности. Для этого он даже разработал мысленный эксперимент, который прозвали ЭПР-парадоксом по первым буквам имён тех, кто над ним работал — Эйнштейна, Подольского и Розена.

Суть парадокса заключается в том, что вероятностная интерпретация приводит к «дальнодействию» — то есть можно моментально узнать состояние одного микрообъекта, измерив состояние другого. Таким образом информация передаётся быстрее скорости света, а это невозможно по теории относительности.

Позже учёные только выяснили, что квантовая механика верна, проверив ЭПР-парадокс опытным путём. Выяснилось, что состояние суперпозиции у частиц нестабильно и существует только пока они не взаимодействуют с чем-то макроскопическим. А сложные системы всегда будут находиться только в каком-то одном состоянии, поэтому в примере с котом он не мог бы оказаться в суперпозиции.

Зайцев также указал, что котом всё время была кошка. Это действительно так: Шрёдингер в своей статье использовал слово Katze, которое переводится как кошка, перед ним также стоял артикль Eine, который в немецком языке указывает на женский пол. Таким образом, кот Шрёдингера — это на самом деле кошка.

#треды #физика #соцсети

Кот Шрёдингера и парадокс близнецов. Семь интеллектуальных мемов, которые сделают вас в разы умнее

Если вы думаете, что мемы — это только глупые картинки в интернете, над которыми смеются подростки, спешим изменить ваше мнение. Мысленные эксперименты, странные аналогии и яркие примеры из научных статей и споров вполне можно назвать интеллектуальными мемами, о которых мы и расскажем.

1. «Кот Шрёдингера» (сложный мем о двойственности)

Физико-математический парадокс с котом в мешке, ящике, комнате или камере появился, когда австрийский физик-теоретик Эрвин Шрёдингер в статье о принципах квантовой механики описал мысленный эксперимент: кот заперт в стальной камере вместе с машиной для убийства, управляемой счетчиком Гейгера, — атом может распасться или не распасться, адская машина может сработать или не сработать в течение часа. Кот будет жив по истечении этого времени, если распада атома не произойдёт. Поэтому в течение часа мы не можем назвать кота ни живым, ни мёртвым, он с равной вероятностью может быть сочтен и живым, и мёртвым одновременно. Сложно? Вот так и с квантовой механикой.

Иллюстрация: Shutterstock (Tanistaja)

2. «Кочерга Витгенштейна» (философский мем о непознаваемости истины)

Кембридж, 1946 год. Три главных философа современности — Поппер, Витгенштейн, Рассел, специалисты по эпистемологии (наука о понимании, истине и знании), встречаются на заседании Клуба моральных наук.

Выступает доктор Карл Поппер. Название его доклада — «Существуют ли философские проблемы?» — не предвещает скандала. Однако между Поппером и Витгенштейном разгорается пылкий спор: действительно ли существуют философские проблемы (Поппер) или только головоломки (Витгенштейн). Этот спор мгновенно стал легендой.

По версии Поппера, он привёл примеры «действительно философских проблем». Витгенштейн отверг их все. Поппер вспоминает, что Витгенштейн «нервно поигрывал кочергой», которой, как указкой, подтверждал аргументы. А когда дело дошло до этики и моральных принципов, Поппер нашёлся и привел такой: «Не угрожать приглашенным докладчикам кочергой». В ответ Витгенштейн в ярости отшвырнул кочергу и выбежал из зала, громко хлопнув дверью. По версии Витгенштейна, «докладчик Поппер нёс какую-то муть».

Однако кочерга оказалась не так проста. Очевидцы и исследователи расходятся во взглядах на события того вечера. Все излагают историю по-разному, и проблема кочерги (а на самом деле того, что случилось в тот вечер и как по-разному все всё запомнили) продолжает занимать умы. Витгенштейн, вспоминая заседание философского клуба, вообще не упоминает кочергу! Поппер и Витгенштейн бились на кочергах, кочерга была раскалённой, ею угрожали, поднося к лицу, использовали как аргумент в споре и отшвыривали в угол — все запомнили вечер по-разному.

Все участники спора профессионально занимались вопросами истинности и были очевидцами произошедшего, но так и не сумели прийти к согласию. А вы говорите, истина существует.

3. «Жук в коробке» (аналитико-философский мем о несовершенстве сигнальной системы)

От кочерги — к жукам: еще один мысленный эксперимент, на этот раз из книги «Философские исследования» Людвига Витгенштейна.

Представьте себе, что у нескольких человек есть по одной закрытой коробочке. Внутри — объект, который каждый из обладателей коробки считает «жуком», причём содержимое может увидеть только владелец и никогда не показывает никому. Если человек объявит, что у него в коробке жук, что там на самом деле, будет знать только он. Объяснить друг другу, какой именно жук (да жук ли это) в коробках, практически невозможно.

Но с жуками ещё более-менее. Мы можем договориться, что значит «большой», «блестящий», формализовать описание длины усиков и, в конце концов, нарисовать или сфотографировать «жуков». Но что делать с внутренними субъективными ощущениями? Как объяснить, что такое «боль» и «мне так больно» (как именно?), дать почувствовать «ужасно», «страшно» и «восхитительно»? Кажется, объективно воспринять их нельзя, сообщает аналитическая философия, и тут есть только личный опыт каждого, личная боль и личный «жук» в коробке.

4. «Чайник Рассела» (логический мем о бремени доказательств)

Бертран Рассел, философ и математик, который участвовал в споре с участием «кочерги Витгенштейна», привёл чайник как логическую аналогию в статье «Существует ли Бог?» как пример того, что ученый не обязан доказывать, что чего-то не существует. И, наоборот, любое утверждение о существовании предмета или явления должно быть чем-то подкреплено.

«Если бы я стал утверждать, что между Землей и Марсом вокруг Солнца по эллиптической орбите вращается фарфоровый чайник, никто не смог бы опровергнуть моё утверждение, добавь я предусмотрительно, что чайник слишком мал, чтобы обнаружить его даже при помощи самых мощных телескопов».

«Но заяви я далее, что, поскольку моё утверждение невозможно опровергнуть, разумный человек не имеет права сомневаться в его истинности, то мне справедливо указали бы, что я несу чушь. Однако если бы существование такого чайника утверждалось в древних книгах, о его подлинности твердили каждое воскресенье и мысль эту вдалбливали с детства в головы школьников, то неверие в его существование казалось бы странным, а сомневающийся — достойным внимания психиатра в просвещённую эпоху, а ранее — внимания инквизитора».

Потомок «чайника Рассела» — Летающий Макаронный Монстр, приверженцы культа которого утверждают, что он существует, пока не доказано обратное. Теперь вы знаете, откуда у него растут ноги. Из космоса.

Иллюстрация: Wikimedia Commons (Niklas Jansson)

5. «Парадокс близнецов» (эйнштейновский мем про космические путешествия)

Ещё один мысленный эксперимент для демонстрации принципов общей и специальной теории относительности Эйнштейна и релятивистского замедления времени.

Представьте себе братьев-близнецов. Пусть один отправляется в межзвёздное путешествие (это брат-путешественник) со сверхсветовой скоростью до звезды, до которой пять световых лет, а второй (домосед) остаётся на Земле.

С точки зрения домоседа, путешественник остался моложе: он двигался относительно Земли со скоростью света, и, согласно специальной теории относительности, у него замедлилось время и 10 лет, которые прошли на Земле, пролетели на борту корабля за меньшее время. Значит, путешественник становится моложе, а домосед старше.

Иллюстрации: Shutterstock (Ron and Joe)

На самом деле этот знаменитый парадокс — творческая иллюстрация того, что специальная теория относительности позволяет разную трактовку релятивистских эффектов, а время относительно. Всё относительно.

Для рассмотрения различных эффектов теории относительности в парадокс вводят еще близнецов: третьего, который на другом звездолёте движется противоположно первому звездолёту. Оба двигаются относительно друг друга. Оба должны относительно друг друга быть моложе. Четвертого… В общем, есть над чем подумать. Парадокс близнецов — довольно частый мем; так пишут путешественники оставшимся дома, намекая, что они-то всё моложе и моложе.

6. «Квантовый Чеширский Кот» (современный мем — и снова про котиков)

«Видала я котов без улыбки. Но улыбку без кота!..»

Недавно новый парадокс квантовой механики — «Квантовый Чеширский Кот» — был продемонстрирован экспериментально. Суть его заключается в том, что при определённых условиях квантовой системы частицы могут существовать отдельно от своих свойств, а свойства — от частиц. Как и улыбка без котов, и коты без улыбки. Относится ли ваш кот к квантовым системам и умеет ли он улыбаться, редакции неизвестно. Но видите, так бывает!

7. «Демон Максвелла» (физический мем про вахтеров)

В 1867 году физик и математик Джеймс Максвелл придумал мысленный эксперимент для иллюстрации парадокса второго закона термодинамики (тепло переходит от горячего тела к холодному).

Представьте себе стеклянную емкость с газом, которая разделена перегородкой на две одинаковые части. В перегородке есть микроотверстие, которым управляет микроскопическое существо, строгий вахтёр молекул — демон Максвелла. Он позволяет проходить быстрым горячим молекулам в правую часть емкости из левой части, а холодные медленные частицы пропускает только в левую часть из правой.

Через некоторое время правая половина будет теплее левой. Система упорядочится по сравнению с исходным состоянием, и второе начало термодинамики будет нарушено, энтропия системы из двух равных частей в конце эксперимента будет меньше, чем в начале. Даже больше: разницу температур можно будет использовать для работы, а если вахтёр будет работать вечно, не требуя оплаты (без совершения энергии), получится вечный двигатель.

Иллюстрация: Wikimedia Commons (Htkym)

Несколько лет назад международная группа ученых экспериментально воспроизвела «демона Максвелла» для изучения поведения квантовых систем — за «демона Максвелла» в этих системах играет кубит, наименьший элемент для хранения информации в квантовом компьютере.

Кстати, в повести «Понедельник начинается в субботу» Стругацких именно «демоны Максвелла» открывали и закрывали двери в НИИЧАВО. Некоторые вообще считают, что это просто мем про охранников и вахтёров, забывая о втором законе термодинамики, оплате труда и потоке информации. Но мы не будем.

Что такое Кот Шредингера? – ХимияПросмотры

Артикул

Автор: Катарина Гедеке

Кот Шредингера — главный герой знаменитого мысленного эксперимента австрийского физика Эрвина Шредингера. Он использовал его, чтобы проиллюстрировать возможный парадокс, возникающий, когда копенгагенская интерпретация квантовой механики применяется к повседневным объектам.

Копенгагенская интерпретация была разработана между 1925 и 1927 годами Нильсом Бором и Вернером Гейзенбергом. В нем говорится, что физические системы, управляемые квантовой механикой, обычно не обладают определенными свойствами до того, как они будут измерены. Вместо этого объект может существовать в суперпозиции нескольких состояний, т. е. иметь разные свойства одновременно. Квантовый объект может, например, находиться в двух местах одновременно или иметь две разные скорости одновременно. Эти состояния имеют разные вероятности, описываемые волновой функцией объекта. При выполнении измерения множество возможных состояний сводятся к одному значению; говорят, что волновая функция «коллапсирует».

Мысленный эксперимент Шредингера связывает свойства такой маленькой квантово-механической системы (радиоактивного вещества) с повседневным большим объектом (кошкой).

Эксперимент устроен так (на фото справа): Кошка заперта в камере с радиоактивным веществом. Счетчик Гейгера измеряет, распадается ли атом радиоактивного вещества и испускает ли излучение. При обнаружении радиации колба, наполненная ядовитым цианистым водородом в камере, разбивается, и кошка умирает. Если ни один атом не распался, излучение не обнаружено, и кошка живет. Пока не заглянешь в коробку, т. е. не измеришь состояние системы, нельзя узнать, жив кот или мертв.

Если вероятность радиоактивного распада в течение определенного времени составляет, например, 50 %, волновая функция кошки после этого времени будет описывать ее как равные части живой и мертвой. Шредингер считал это невозможным и пришел к выводу, что копенгагенская интерпретация ошибочна.

Были предложены и другие интерпретации квантовой механики, такие как многомировая интерпретация, в которой реальность разделяется на разные ветви для всех возможных состояний. Философский вопрос, поставленный парадоксом, обсуждается и по сей день.

Кот Шрёдингера — ответ на вопрос «Угадай персонажа» (2).


  • Die gegenwärtige Situation in der Quantenmechanik (на немецком языке),
    E. Schrödinger,
    Naturwissenschaften 1935 , 23 –18.8.
    DOI: 10.1007/BF01491891


Также представляет интерес

  • Кот Шредингера одновременно в двух коробках,
    ChemistryViews. org 2016 .
    американских исследователей экспериментально реализовали квантово-физический аналог этого состояния

 

 

Поделиться