Кпд физика формула: Коэффициент полезного действия механизма — урок. Физика, 7 класс.

Содержание

Урок 25. тепловые двигатели. кпд тепловых двигателей – Физика – 10 класс

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно

– это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело – тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно – самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 10

6 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

Коэффициент полезного действия | Физика

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу Aз и полезную работу Aп. Если, например, наша цель — поднять груз массой m на высоту h, то полезная работа — это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

    Aп = Fтh = mgh.      (24.1)

Если же мы применяем для подъема груза блок или какой-либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:

Aз > Aп

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется

коэффициентом полезного действия механизма.

Сокращенное обозначение коэффициента полезного действия — КПД.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой η (читается «эта»):

    η =* 100%    (24.2)

Поскольку числитель Aп в этой формуле всегда меньше знаменателя Aз, то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

    Aз ≈ Aп     (24.3)

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя.

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

    F1s1 ≈ F2s2     (24.4)

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют «золотым правилом» механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.

«Золотое правило» механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы? 2. Что называют коэффициентом полезного действия механизма? 3. Может ли КПД механизма быть равным 1 (или 100%)? Почему? 4. Каким образом увеличивают КПД? 5. В чем заключается «золотое правило» механики? Кто его автор? 6. Приведите примеры проявления «золотого правила» механики при использовании различных простых механизмов.

Формула ⚠️ полезной работы в физике для КПД: как найти, формула

Выбирая техническое устройство, всегда обращают внимание на эффективность его работы. Иными словами, насколько высока энергоэффективность. Получить ответ на этот вопрос можно, если произвести вычисление коэффициента его полезного действия. Тогда становится понятным, насколько затраченные усилия будут обеспечивать полезный результат работы.

Понятие КПД (коэффициента полезного действия)

Термин «КПД» широко используется не только среди профессионалов, но и в быту. Под ним понимают, насколько совершенная работа превышает полезную, т.е. ту, ради которой механизм или прибор приобретается.

Учеными разработана специальная формула, из которой следует, что КПД всегда меньше единицы. Чтобы рассчитать коэффициент, нужно полезную работу, выраженную в Джоулях, разделить на энергию, которая затрачена на эту работу. Поскольку энергия также выражается в Джоулях, конечная расчетная величина безразмерна.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Источник: mashintop.ru

Объяснить бытовым языком данное понятие можно так: энергия, выделяемая от плиты, на которой должен закипеть чайник, расходуется не только на его нагревание. Она должна нагреть саму посудину, воздух вокруг нее, сам нагревательный элемент. И только ее часть будет расходоваться на передачу воде. Чтобы сориентироваться, насколько долго будет закипать чайник одного объема на различного вида печах, нужно знать их КПД.

В поисках наиболее эффективного прибора не стоит стремиться к единице. Такого не бывает. Например, КПД атомной электростанции примерно равно 35%.

Происходит это по двум причинам:

  1. Исходя из закона сохранения энергии, получить больше работы, чем затрачено энергии, невозможно.
  2. Любая работа сопровождается определенными потерями, будь-то нагревание тары или преодоление сил трения при движении по поверхности.

Термин КПД применим практически к каждому процессу, в котором имеется затраченная и полезная работа.

Применение в различных сферах физики

Характеризуя КПД, следует учитывать, что он не является константой, поскольку в каждом случае свои особенности энергозатрат. С другой стороны, он не может быть установлен изолированно от конкретных процессов. Если рассмотреть работу электродвигателя, величина его КПД сложится исходя из преобразования энергии тока в механическую работу.

В данном случае КПД рассматривается не как соотношение полезной и общей работы, а как соотношение отдаваемой мощности и подводимой к рабочему механизму.

В формулу (η=P2/P1) должны быть включены P1 – первичная мощность и P2 – мощность прибора.

В качестве первого примера выведем формулу КПД для варианта определения с величинами работы и затраченной энергии (формула для определения КПД теплового двигателя). Условными обозначениями в ней будут являться:
Ап – работа полезная;

  • Q1 – количество энергии (или тепла), полученной от нагревающего устройства;
  • Q2 – количество энергии (или тепла), отданное в процессе деятельности;
  • Q1 – Q2 – та энергия (или тепло), которая пошла на процесс.

В итоге получится выражение:

 

Теперь выразим формулу через соотношение мощностей. Условные обозначения следующие:

Ротд – полезная (эффективная) мощность;

Рподв – номинальная мощность.

Формула будет выглядеть так:

 

Если затрата или передача энергии происходит неоднократно, общий КПД равен сумме КПД на каждом участке процесса:

 

Какой буквой обозначается, единицы измерения

В вышеприведенной формуле искомая величина коэффициента полезного действия обозначается буквой η, которая произносится “эта”.

Для упрощения понимания величины, КПД чаще выражается в процентах.

Физическая формула КПД

С учетом изложенных выше особенностей и необходимости выражения результата в %, физические формулы приобретают усовершенствованный внешний вид:

 

или

 

Примеры расчета КПД

Формула применяется для расчетов коэффициентов машин различного типа.

Задача 1

Имеется 10 кг дров, теплота сгорания которых составляет 95 Дж/кг. При их сгорании в помещении объемом 75 м3 установилась температура 22оС (допускаем, что удельная теплоемкость воздуха равна 1,3 кДж/ кгхград).

Решение состоит из нескольких действий:

  1. 1300 Дж умножить на 75 (объем) и 22 (температуру). Получаем 2 145 кДж. Это то тепло, выраженное в кДж, которое поступило в воздух помещения.
  2. 10700000Дж умножаем на 10 (количество дров) =10х107 кДж.
  3. При делении полезного тепла и полного, выработанного обогревателем, получаем значение 2,5%. Это говорит о низкой эффективности прибора и большой затрате дров и необходимости внесения конструктивных изменений, например, оборудования возможности дымоходам нагревать не только воздух, но и предметы в помещении.

Задача 2

В доме установлен электробойлер объемом 80 литров. Нагревательный элемент имеет мощность 2 кВт. Было замечено, что для нагревания воды от 12оС до 70оС уходит 3 часа. Нужно определить КПД прибора.

Дополнительные данные: плотность воды составляет 1000 кг/м3, ее теплоемкость – 4200 Дж/кг*оС.

Решать задачу нужно по формуле:

\(\eta=Q_{пол}\div Q_{зат}\times100\%\)

\(Q_{зат}=N\times t=10800(сек)\)

\(Q_{пол}=c\times m\times(T_2-T_1)\)

\(m=\rho\times V\)

\(T_1=12\) oC

\(T_2=70\) oC

Конечная формула:

\(\eta=(c\times\rho\times V\times(T_2-T_1)\div N\times t)\times100\%=90\%\)

Задача 3

Температура воды, налитой в котел паровой машины, составляет 160оС. Температура холодильника – 10оС. Коэффициент полезного действия машины – 60%. В топке сжигается 200 кг угля. Его удельная теплота сгорания – 2,9 • 107 Дж/кг. О какой максимальной работе может идти речь для данной машины?

Решение следующее. Амакс возможна для идеальной тепловой машины, которая функционирует по циклу Карно. Ее КПД равно (Т12)/Т1. В этой формуле Т1 и Т2 – температуры нагревателя, холодильника.

Определяем КПД, пользуясь формулой: \( \eta\;=\;A\div Q_1\). В этой формуле А – работа тепловой машины, Q1 – теплота, полученная от нагревателя. С другой стороны, она равна \(\eta_1\times m\times q\).

\(Q_1\;=\;\eta_1\times m\times q\)

\((T_1-T_2)\div T_1=A\div\eta_1\times m\times g\)

Итоговая формула:

\(А\;=\;\eta_1\times m\times q\times(1\;-\;Т_2\div Т_1)\)

Подставив значение, получаем ответ: 1,2*109 Дж.

Коэффициент полезного действия 💡, формула КПД в физике. Как найти КПД⚡

Автор Даниил Леонидович На чтение 7 мин. Просмотров 35.4k. Опубликовано Обновлено

Что такое КПД

Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.

Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.

Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство. Остальная часть идет на нагревание чайника и воды в нем. Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.

Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Единицы измерения

Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах. Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо. Умножая на 100 процентов, мы показываем, сколько в числе сотых.

От чего зависит величина КПД

Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.

А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.

Как обозначается

В русских учебниках обозначается двояко. Либо так и пишется – КПД, либо обозначается греческой буквой η. Эти обозначения равнозначны.

Символ, обозначающий КПД

Символом является греческая буква эта η. Но чаще все же используют выражение КПД.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

Для сравнения, коэффициенты полезного действия различных устройств:

  • гидроэлектростанций 93-95%;
  • АЭС – не более 35%;
  • тепловых электростанций – 25-40%;
  • бензинового двигателя – около 20%;
  • дизельного двигателя – около 40%;
  • электрочайника – более 95%;
  • электромобиля – 88-95%.

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Расчет коэффициента полезного действия: формулы для электрической цепи

1001student.ru > Физика > Формула коэффициента полезного действия в физике и примеры задач

Каждый механизм, совершающий работу, затрачивает на её выполнение определённую энергию. Её разница с потребляемой для этого мощностью называется коэффициентом полезного действия.

Для физики формула, определяющая это значение, является фундаментальной. С её помощью рассчитывают эффективность энергетических процессов.

Можно утверждать, что этот параметр занимает важное место в характеристиках любого технического устройства.

Общие сведения и определения

Энергия — это характеристика, являющаяся скалярной величиной и служащая мерой различного перемещения и взаимодействия материи при переходе в ту или иную форму. С фундаментальной точки зрения, она состоит из импульса и его момента, связанных с неоднородностью времени. В физике понятие «энергия» применяется для замкнутых систем.

Как было установлено опытным путём из-за независимости физических законов от момента времени, энергия не исчезает и не появляется из ничего, она просто есть и переходит из одного состояния в другое.

Это утверждение называется Законом сохранения.

В математике это правило эквивалентно системе дифференциальных уравнений, описывающих их динамику и обладающих первым интегралом движения, симметричного относительно сдвига во времени.

Чтобы система совершила работу, она должна получить энергию снаружи. То есть на неё должен воздействовать импульс. Но не вся получаемая энергия идёт на достижение нужной цели. По факту она разделяется на два вида:

  • затрачиваемая — полная величина, которая была взята извне;
  • полезная — та, что не затрачивается на преодоление различных сил.

Например, пусть необходимо поднять груз. Другими словами, совершить работу. Для того чтобы достичь заданной цели, нужно преодолеть ряд сил: тяжести, трения. Эти затраты и считаются неполезными.

Так, для механических устройств энергия затрачивается на преодоление сил, возникающих при контакте поверхностей, в электричестве — на сопротивление проводников.

Вот такого типа потери и называют затратными.

В соответствии с Законом сохранения, взятая системой энергия не может просто исчезнуть. Поэтому и рассчитывают, какое количество её было трансформировано в другую «побочную» форму. Если общую работу обозначить за A, то можно записать равенство: A = Aп + Aз, где Aз — работа затраченная, а Aп — полезная. Так как идеальных систем не существует, то всегда Aз > Aп.

Научное общество с давних времён занимается проблемой уравнивания этих величин. Периодически появляются сведения об изобретении «вечного двигателя».

Это устройство, у которого вся потребляемая энергия идёт на выполнение полезного действия. К сожалению, сегодняшние возможности и знания не позволяют полностью исключить затраты.

Поэтому все такие изобретения являются ложными, а перед учёными стоит задача свести потери к минимуму.

Нахождение полезного действия

Если затраченную работу увеличить в несколько раз, то на это же число возрастёт и взятая полезная энергия. Если бы механизм был идеальный, то их отношение равнялось единице.

Но так как в реальности оно всегда меньше, то соотношение Ап к Аз используется для описания качества. Этому параметру и присвоили название КПД.

Расшифровка этой аббревиатуры звучит как «коэффициент полезного действия».

Другими словами, если нужно найти КПД по формуле, то следует просто вычислить отношение: η = Ап / Аз. Для обозначения характеристики применяют букву греческого алфавита η (эта). Таким образом, полезным действием называют физическую величину, равную отношению работы, выполненной самим механизмом, к затраченной энергии по приведению его в действие. Измерять КПД принято в процентах.

Если система тел способна совершить работу, то говорят, что она обладает энергией. Измеряется она в джоулях. Существует несколько видов энергии, с помощью которых можно определять работу, а значит, и вычислять КПД. Наиболее часто приходится исследовать две энергии:

  1. Потенциальную — ею называется энергия взаимодействия тел или частей одной физической частицы. Её вычисление зависит от принятой системы. Для тела, поднятого над землёй, она будет равна: Eп = mgh. То есть приобретённая потенциальная энергия — это полезная работа. Например, её сообщают телу при поднятии его по наклонной плоскости.
  2. Кинетическую — это та энергия, которой обладает движущееся тело. Она пропорциональна массе тела и квадрату его скорости: Ек = mv2 / 2.

Следует отметить, что при расчёте работы, связанной с потенциальной энергией, имеет значение уровень, от которого она отсчитывается.

На первый взгляд кажется, что эта ситуация приводит к неоднозначностям. Но это не так, потому что работа равняется не самой энергии, а её изменению. При этом существует закономерность, что уменьшение потенциальной энергии приводит к увеличению кинетической. Это правило действует и в обратную сторону.

Тепловые и электродвигатели

Тепловыми машинами называют механизмы, которые преобразовывают внутреннюю энергию в механическую работу. Это ветряные и водяные мельницы, устройства, работающие от всевозможного топлива. К основным частям любого теплового двигателя относят:

  • нагреватель — приспособление с высокой температурой по отношению к окружающей среде;
  • рабочее тело — часть, непосредственно выполняющая поставленную задачу, например, газ или пар;
  • охладитель.

Количество теплоты, полученной от нагревателя телом, будет равно совершённой работе плюс изменение внутренней энергии: Q = A + Δ U. Максимальное КПД такого устройства будет, когда ΔU = 0. Внутренняя энергия газов зависит от температуры. Значит, при совершении работы она не должна изменяться. Другими словами, происходящий процесс должен быть изотермическим.

Становится понятным, что для повышения КПД нужно, чтобы работа по сжатию была меньше той, которую совершает тело при расширении. Достичь это можно охлаждением: A = Q1 — Q2.

В это время часть энергии будет возвращаться в систему. Значит, КПД равно: η = (Q1 — Q2) / Q1.

При этом наибольший коэффициент находится по формуле: η = (T1 — T2) / T2, где T1 и T2 — температуры нагревателя и охладителя соответственно.

У электродвигателей потери энергии обусловлены нагреванием проводников при прохождении по ним электрического тока, а также воздействием паразитных магнитных потоков. Кроме этого, дополнительный расход энергии может затрачиваться на механические потери, вызванные элементами двигателя.

У электромашины КПД может изменяться от 10% до 99%. Находят его через следующее отношение: η = P2 / P1, где P2 — механическая мощность, а P — подводимая к двигателю. Нужно отметить, что эффективность эксплуатации двигателя сильно упадёт, если его применять для обеспечения движения механизма, обладающего более низким коэффициентом полезной энергии.

Повышение КПД электрической машины возможно путём использования качественных деталей, например, подшипников качения, крыльчаток с уменьшенным сопротивлением воздуху. Для снижения нагрева применяют сверхпроводники, обладающие малым сопротивлением. Магнитные потери уменьшают применением электромагнитной стали с высокой степенью изоляции.

Решение задач

Любое вычисление коэффициента полезного действия сводится к нахождению отношений работы. Так как это безразмерная величина, ответ записывают в процентах. Существует ряд типовых задач, позволяющих лучше разобраться в теории и понять, для чего можно использовать знания на практике. Вот некоторые из них:

  1. На стройке с помощью рычажного механизма паллету массой 190 кг подняли на один метр. При этом длинное плечо опустилось на два метра. Найти КПД, учитывая, что приложенная сила к рычагу составила 1000 ньютон. Для решения этого задания нужно рассчитать полную и полезную работу. Так как общая энергия характеризуется силой, которая была приложена к плечу рычага, то найти её можно из выражения: Аз = F * S = 1000 Н/кг * 2 м = 2000 Дж. В то же время полезная работа — это та, что позволила поднять груз. Находится она следующим образом: Ап = mgh = 190 кг * 1 м * 10 Н/кг = 1900 Дж. Отсюда искомая сила равна: n = 1900 Дж / 2000 Дж = 0,95 * 100 = 95%.
  2. Производительность насоса составляет 300 литров в минуту при подаче воды на 20 метров. Найти, какая мощность мотора, если КПД устройства составляет 80%. Для того чтобы выполнить расчёт, понадобится знать плотность воды. Она составляет 1000 кг / м3. Решать эту задачу нужно следующим образом. Полезная работа при поднятии воды насосом равняется: Aп = P * s1 = mgh, где m — масса воды, которую можно найти, зная плотность и объём. Тогда Ап = p * V * h = 1000 кг / м3 * 0,3 м3 * 20 м = 60 000 Дж. Полную же затраченную энергию можно найти по формуле: Аз = n * t. Отсюда: n = Ап / Аз = Ап / n * t = 60 000 Дж / 0,8 * 60с = 1250 Вт.
  3. Куб массой 200 кг поднимают по наклонной доске. Высота отклонения от горизонтальной линии составляет полтора метра, а длина пути — десять метров. Определить необходимую силу, если КПД составляет 60%. Полезная работа в этом случае находится из произведения веса куба и высоты: Aп = mgh. Полная же энергия рассчитывается так: Аз = F * l. Эти выражения можно подставить в формулу нахождения КПД и из неё уже выразить искомую силу: F = mgh / n = (200 кг * 10 Н/кг * 1,5 м) / (0,6 * 10 м) = 3000 / 6 = 500 Н.

Таким образом, при решении задач необходимо сначала правильно определить полезную и полную работу. Для этого нужно разобраться, с какой целью используется тот или иной механизм. Ведь за всю энергию принимается та, которая совершается самим устройством.

Источник: https://1001student.ru/fizika/formula-koeffitsienta-poleznogo-dejstviya-i-primery-zadach.html

(901) Электрические цепи постоянного тока. Руководство по выполнению базовых экспериментов эцпот. 001 Рбэ (901) 2006

Подборка по базе: Презентация — Руководство и лидерство.pdf, метод.указания по выполнению курсовой работы.docx, Общие требования по выполнению письменного ответа в ходе аттеста, Методические указания к выполнению ЛР3А (физика).

pdf, Методические указания по выполнению курсовой работы (3).doc, ПКБ ЦТ.06.0046 Руководство по ремонту Ермаков.docx, Требования к выполнению контр.docx, Методические рекомендации по выполнению практических работ по ди, Методические указания по выполнению контрольных работ.

doc, Методические рекомендации к выполнению РГР 1.pdf.

Отношение отдаваемой (выходной) мощности (или энергии) к мощности (или энергии) подводимой (входной) есть мера качества процесса преобразования.

Это отношение, называемое коэффициентом полезного действия, определяется так:

= PВЫХ  PВХ ;  = WВЫХ  WВХ . Поскольку выходная мощность (энергия) из-за потерь меньше, чем входная, коэффициент полезного действия (КПД) всегда меньше 1.

Задание

Определите КПД простой резистивной цепи (рис. 9.1) путем измерения тока и напряжения.Рис. 9.1

Порядок выполнения эксперимента

  • Соберите цепь согласно схеме (рис. 9.1). Резисторы R1 и R2 имитируют потери в линии электропередачи.
  • Мощность PВХ, подводимую к входным зажимам линии 1 – 2, и мощность PВЫХ, отводимую от выходных зажимов 3 – 4, следует найти, измеряя ток и напряжение.
  • По измеренным величинам тока и напряжения найдите мощность, используя формулу P = U I, а затем определите КПД по формуле

= PВЫХ PВХ.

Мощность, подводимая к линии Коэффициент полезного действия

I =

U =  = PВЫХ  PВХ =

PВХ = U I =

Мощность, отводимая от линии Коэффициент полезного действия в %

I = U =  = ( PВЫХ  PВХ ) 100 =

PВЫХ = U I =

Выходные величины напряжения, тока и мощности источника напряжения зависят от его первоначального напряжения (ЭДС) и внутреннего сопротивления, так же как от подключенной к нему нагрузки.Режим называется согласованным, если сопротивление нагрузки равно внутреннему сопротивлению источника. При этом в нагрузке потребляется максимальная мощность.Рис.11.2Рис. 10.1

Задание

Измеряя напряжение и ток источника (рис. 10.2), установите, когда имеется согласование. Измерения должны быть выполнены в режимах холостого хода, короткого замыкания и различных по величине нагрузок.Порядок выполнения эксперимента

  • Соберите цепь согласно схеме (рис. 10.2). Поскольку используемый источник питания сам по себе стабилизированный, что означает фактически RВН = 0, он дополнен последовательно включенным резистором 22 Ома, имитирующим внутреннее сопротивление.

Рис. 10.2

  • Затем следует измерить напряжение UН и ток IН при значениях сопротивления нагрузки RН, указанных в табл. 10.1. Они могут быть набраны с использованием последовательного и параллельного соединения резисторов.

Таблица 10.1

RН, Ом 6,9 (1022) 13,2 (2233) 22 33 43(10+33) 55(22+33) 65(22+33+10)
UН, В
IН, мА
Р, мВт
  • Мощность источника напряжения рассчитывается по формуле Р = UI или измеряется непосредственно виртуальным ваттметром.
  • Занесите все величины в табл. 10.1 и на график (рис. 10.3) для построения кривых IН = f(RН), UН = f(RН) и Р = f(RН).

Рис. 10.3

Вопрос: Когда имеют место согласование по току, согласование по напряжению и согласование по мощности?

Ответ: ……………………..

Кроме резисторов, в электрических и электронных цепях наиболее часто применяются конденсаторы. Их применения и конструкции многообразны.

Основные параметры конденсаторов следующие:

  • Емкость C, характеризующая способность конденсатора накапливать заряды на своих обкладках (электродах), величина которой пропорциональна площади обкладок конденсатора, диэлектрической постоянной изоляционного материала и обратно пропорциональна расстоянию между обкладками.
  • Номинальное напряжение как наибольшее допустимое напряжение, которое может быть приложено к обкладкам конденсатора в течение продолжительного времени.
  • Сопротивление изоляции между обкладками конденсатора, которое должно быть как можно большим ( 1 ГОм), так чтобы ток утечки был как можно меньше.
  • Заряд, запасаемый в конденсаторе, который зависит от зарядного тока и времени его протекания.

В процессе заряда постоянным напряжением или разряда конденсатора ток в нем и напряжение между его обкладками изменяются по экспоненциальному закону.

iС = (U R) e-t ;

uС = U ( 1 — e-t  ).

Время , за которое зарядный ток снижается в е раз (2,718), называется постоянной времени.

Таким образом через отрезок времени ток разряда составляет примерно 0,37 от первоначального значения U/R, через 2 – 0,135U/R, через 30,05 U/R и т.д.

Соответственно, напряжение на конденсаторе возрастает за время до 0,63 U, за 2 – до 0,865U, за 3 до 0,95 U/R и т.д. За время (3…4) процесс почти полностью затухает.

  1. Постоянная времени цепи, содержащей последовательно соединенные R и C, равна
  2. = R С.
  3. iС = — (U R) e-t ;
  4. uС = U e-t ,
  5. где также = R С.
  6. Задание

Выведите на дисплей виртуального осциллографа кривые изменения напряжения и тока заряда/разряда конденсатора и определите по кривым следующие параметры:

  • постоянную времени цепи ,
  • емкость С,
  • мгновенное значение напряжения uC на обкладках конденсатора спустя 0,5 мс после начала разряда.

Порядок выполнения эксперимента

Рис. 11.1

  • Соберите цепь согласно схеме (рис. 11.1) и подсоедините к ее входным зажимам регулируемый источник напряжений специальной формы, настроенный на прямоугольные импульсы положительной полярности с параметрами: Um = 10 B, f = 250 Гц. Измерительные приборы А1, V0, V1 в схеме – это соответствующие пары гнезд коннектора.
  • Приведите компьютер в рабочее состояние, «подключите» к виртуальным приборам A1 и V1 два входа виртуального осциллографа и настройте изображение.
  • Воспроизведите осциллограммы тока и напряжения на графике (рис.11.2).

Рис.11.2

  • Определите указанные в задании величины, используя экспериментальные кривые.
  • Экспериментальные данные проверьте вычислением.
  • Постоянная времени  цепи с конденсатором
  • Ёмкость конденсатора C
  • Мгновенное значение напряжения uC спустя 0,5 мс после включения
  • Катушки индуктивности выполняются медным, как правило, проводом, причем число витков и размеры проводника меняются в очень широких пределах.

Эксперимент:Расчет:Эксперимент:Расчет:Эксперимент:Расчет:

Основным параметром катушки является индуктивность L, которая характеризует величину противоЭДС, наводимой (индуктируемой) в катушке при заданном изменении тока в ней. Индуктивность пропорциональна числу витков катушки в квадрате и обратно пропорциональна магнитному сопротивлению пути, по которому замыкается магнитный поток, создаваемый током катушки.

После подключения к цепи с катушкой постоянного напряжения ток в ней нарастает по экспоненциальному закону. Так, за время, равное значению постоянной времени цепи, ток увеличится до 63% своего установившегося значения.

Постоянная времени , измеряемая в секундах, зависит от индуктивности катушки L, измеряемой в Генри (Гн), и эквивалентного омического сопротивления цепи R в Омах:

= L R.

После приложения постоянного напряжения к цепи с катушкой спустя время падение напряжения на катушке уменьшается до 37 % его максимальной величины и после примерно 3…4 достигает своего наименьшего значения, зависящего от омического сопротивления катушки.

  1. При коротком замыкании катушки в ней наводится (индуктируется) ЭДС самоиндукции, которая имеет полярность, противоположную внешнему напряжению и почти полностью затухает за время, равное (3…4).
  2. Мгновенные значения тока iL и падения напряжения uL катушки при включении и при коротком замыкании катушки можно рассчитать, используя следующие формулы:
  3. iL = U R (1 — et ) .

Ток включения катушки под напряжение U: Падение напряжения на катушке при ее включении под напряжение U:uL = U et .

Ток короткого замыкания катушки:

  • iL = U R et .
  • uL = — U et .
  • Задание

Падение напряжения на катушке при ее коротком замыкании: Выведите на дисплей виртуального осциллографа кривые тока и напряжения при подключении катушки индуктивности к постоянному напряжению и ее коротком замыкании, определите следующие величины:

  • постоянную времени цепи с катушкой,
  • индуктивность катушки L,
  • мгновенное значение тока катушки iL спустя 0,02 мс после включения под напряжение.

Экспериментальная часть

Рис. 12.1

  • Соберите цепь согласно схеме (рис. 12.1) и подсоедините к ее входным зажимам регулируемый источник напряжений специальной формы, настроенный на прямоугольные импульсы положительной полярности с параметрами: Um = 10 B, f=250 Гц (V1, V0, A1 – соответствующие пары гнезд коннектора).
  • Приведите компьютер в рабочее состояние и «подключите» два входа виртуального осциллографа к виртуальным приборам V0 и A1 и настройте изображение.
  • Воспроизведите осциллограммы на графике (рис.12.2)
  • Определите указанные в задании величины, используя экспериментальные кривые.
  • Экспериментальные данные проверьте вычислением.
  1. Постоянная времени  цепи с катушкой
  2. Индуктивность катушки L
  3. Мгновенное значение тока катушки iL спустя 0,02 мс после включения
  4. под напряжение

Эксперимент:Расчет:Эксперимент:Расчет:Эксперимент:Расчет:Рис.12.2 1. Теоретические основы электротехники, Т 1, 2. Учебник для вузов / К.С. Демирчан, Л.Р.Нейман, Н.В. Коровин, В.Л.Чечурин. – СПб: Питер, 20042. Основы теории цепей. Учебник для вузов / Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –М.: Энергоатом издат, 1989.3. Атабеков Г.И. Основы теории цепей, Учебник для вузов. М.: Энергия, 1969.4. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. Учебник для электротехн., энерг., приборостроит. спец. вузов. – М.: Гардарики, 2000.5. Герасимов В.Г., Кузнецов Э.В., Николаева О.В. и др. Электротехника и электроника: В 3 кн. Учебник для студентов неэлектротехнических специальностей вузов. Кн 1. Электрические и магнитные цепи. – М.: Энергоатомиздат, 1996.6. Борисов Ю.М., Липатов Д.Н. Электротехника / Учебное пособие для неэлектротехнических специальностей вузов. – М.: Энергоатомиздат, 1985.7. Волынский Б.А., Зейн Е.Н., Матерников В.Е. Электротехника. Учебное пособие для вузов. – М.: Энергоатомиздат, 1985.8. Касаткин А.С., Немцов М.В. Электротехника: [Учебное пособие для неэлектротехнических специальностей вузов]: В 2 кн. – М.: Энергоатомиздат, 1995.1   …   8   9   10   11   12   13   14   15   16

Источник: https://topuch.ru/rukovodstvo-po-vipolneniyu-bazovih-eksperimentov-ecpot-001-rbe/index16.html

Коэффициент полезного действия ????, формула КПД в физике. Как найти КПД⚡

Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.

Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.

Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство.

Остальная часть идет на нагревание чайника и воды в нем.

Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.

Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж).

После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.

Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу.

Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Единицы измерения

Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах.

Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо.

Умножая на 100 процентов, мы показываем, сколько в числе сотых.

От чего зависит величина КПД

Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.

А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.

Как обозначается

В русских учебниках обозначается двояко. Либо так и пишется – КПД, либо обозначается греческой буквой η. Эти обозначения равнозначны.

Символ, обозначающий КПД

Символом является греческая буква эта η. Но чаще все же используют выражение КПД.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности.

Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная.

Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S.

То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду.

Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

Для сравнения, коэффициенты полезного действия различных устройств:

  • гидроэлектростанций 93-95%;
  • АЭС – не более 35%;
  • тепловых электростанций – 25-40%;
  • бензинового двигателя – около 20%;
  • дизельного двигателя – около 40%;
  • электрочайника – более 95%;
  • электромобиля – 88-95%.

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Кпд – коэффициент полезного действия трансформатора

КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Принцип работы трансформатора

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

Также читайте:  Режим холостого хода трансформатора

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

  • Формула для вычисления данного показателя может быть представлена в нескольких выражениях:
  • ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,
  • в которой:
  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.
  1. Из указанной формулы видно, что значение показателя КПД не может превышать единицу.
  2. После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:
  3. ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,
  4. в которой:
  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Также читайте:  Коэффициент трансформации

  • Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.
  • Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14): Открыть файл

Источник: https://OFaze.ru/teoriya/kpd-transformatora

По какой формуле находится работа. Коэффициент полезного действия. Формула, определение

Коэффициент полезного действия показывает отношение полезной работы, которая выполняется механизмом или устройством, к затраченной. Часто за затраченную работу принимают количество энергии, которое потребляет устройство для того, чтобы выполнить работу.

  • Вам понадобится
  • Автомобиль;
    — термометр;
  • — калькулятор.
  • Спонсор размещения P&G
    Статьи по теме «Как найти коэффициент полезного действия»
    Как вычислить КПД
    Как посчитать КПД
    Как найти силу трения
  • Инструкция
  • Другие новости по теме:
  • Полезная работа, выполняемая любой тепловой машиной, равна отношению разности теплоты полученной нагревателем и холодильником к теплоте, полученной нагревателем. В идеальной тепловой машине с максимальным КПД (цикл Карно), он равен отношению разности температур нагревателя и холодильника к

Для того чтобы рассчитать коэффициент полезного действия (КПД) поделите полезную работу Ап на работу затраченную Аз, а результат умножьте на 100% (КПД=Ап/Аз 100%). Результат получите в процентах.
При расчете КПД теплового двигателя, полезной работой считайте механическую работу, выполненную механизмом. За затраченную работу берите количество теплоты, выделяемое сгоревшим топливом, которое является источником энергии для двигателя.
Пример. Средняя сила тяги двигателя автомобиля составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q m, где q – удельная теплота сгорания топлива, для бензина она равна 42 10^6 Дж/кг, а m – масса этого топлива.6 7) 100%=30%.
В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.
Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.
Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m g h, где m – масса груза, g?10 м/с? ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз 100%=(m g h)/(Р t) 100%=%=(800 10 3,6)/(3200 10) 100%=90%. Как просто

Мощность электродвигателя, как правило, указывается в технической документации к нему или в специальной табличке на корпусе. Если так ее найти невозможно, рассчитайте ее самостоятельно. Это можно сделать, измерив ток в обмотках и напряжение на источнике. Также можно определить его мощность по

Коэффициент полезного действия (КПД) — это показатель эффективности какой либо системы, будь то двигатель автомобиля, машина или иной механизм. Он показывает, как эффективно данная система использует получаемую энергию. Вычислить КПД очень легко. Спонсор размещения P&G Статьи по теме «Как вычислить

Чтобы найти коэффициент полезного действия любого двигателя, нужно полезную работу поделить на затраченную и умножить на 100 процентов. Для теплового двигателя найдите данную величину по отношению мощности, умноженной на длительность работы, к теплу, выделившемуся при сгорании топлива. Теоретически

КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется

Для того чтобы найти номинальный ток для определенного проводника, воспользуйтесь специальной таблицей. В ней указывается, при каких значениях силы тока проводник может разрушиться. Для нахождения номинального тока для электрических двигателей различных конструкций, воспользуйтесь специальными

Коэффициент полезного действия (КПД)
— это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

КПД
— величина безразмерная, обычно ее выражают в процентах:

Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

Круговой цикл, включающий в себя две изотермы и две адиа- баты, соответствует максимальному КПД.
Французский инженер Сади Карно в 1824 г.

вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело — это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно.

Цикл Карно — реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

Тепловые двигатели
— это конструкции, в которых тепловая энергия превращается в механическую.

Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

  • нагреватель;
  • рабочее тело;
  • холодильник.

Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ. Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу.

При этом его давление падает, а объем увеличивается. Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

Источник: https://les74.ru/by-what-formula-is-the-work-efficiency.html

Формула КПД (коэффициента полезного действия)

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_{poln}$. При этом имеем:

Определение и формула КПД Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $eta $, тогда:

[eta =frac{A_p}{A_{poln}} left(2
ight).]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

[eta =frac{A_p}{A_{poln}}cdot 100\% left(2
ight).]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

[A_papprox A_{poln}left(3
ight).]

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

[F_1s_1approx F_2s_2left(4
ight).]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Кпд при передаче энергии

  • Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):
  • Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:
  • где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_{ch}$ — количество теплоты переданное холодильнику.
  • КПД идеальной тепловой машины, которая работает по циклу Карно равно:
  • где $T_n$ — температура нагревателя; $T_{ch}$ — температура холодильника.

[eta =frac{A_p}{Q}cdot 100\% left(5
ight).] [eta =frac{Q_n-Q_{ch}}{Q_n}left(6
ight),] [eta =frac{T_n-T_{ch}}{T_n}left(7
ight),]

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана? extit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

[A_p=mgh left(1.1
ight).]

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

[N=frac{A_{poln}}{Delta t} o A_{poln}=NDelta tleft(1.2
ight).]

Воспользуемся определением коэффициента полезного действия для его нахождения:

[eta =frac{A_p}{A_{poln}}cdot 100\%left(1.3
ight).]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

[eta =frac{mgh}{NDelta t}cdot 100\%.]

Ответ. $eta =frac{mgh}{NDelta t}cdot 100\%$

   
Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

[eta =frac{A_p}{Q}left(2.1
ight).]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.

1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$.

Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

[Q=Q_1=A_{12}left(2.2
ight).]

Газ совершает полезную работу, которую равна:

[A_p=Q_1-Q_2left(2.3
ight).]

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

[A_p=A_{12}+A_{34}left(2.4
ight).]

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

[eta =frac{A_{12}+A_{34}}{A_{12}} o A_{12}eta =A_{12}+A_{34} o A_{34}=(eta -1)A_{12}left(2.4
ight).]

Так как по условию $A_{12}=A_0, $окончательно получаем:

[A_{34}=left(eta -1
ight)A_0.]

Ответ. $A_{34}=left(eta -1
ight)A_0$

   

Читать дальше: формула линейной скорости.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_132_formula_kojefficienta_poleznogo_dejstvija.php

Доказана универсальность формулы для максимального КПД реальной тепловой машины

Сади Карно в XIX веке вывел формулу для максимального КПД идеальной тепловой машины с нулевой мощностью. Результат для реальных тепловых машин был получен в частном случае 30 лет назад. И только сейчас удалось доказать, что этот результат является универсальным законом неравновесной термодинамики.

Эффективность любого двигателя характеризуется его коэффициентом полезного действия, КПД. Чем выше КПД машины, тем больше полезной работы она производит при тех же самых энергозатратах.

Конечно, двигатели бывают очень сложные, однако их, как правило, можно разложить на отдельные простые рабочие блоки. Примером такого простого блока служит тепловая машина — двигатель, который работает исключительно на перепаде температур между горячим и холодным телами без использования каких-либо иных источников энергии. Так возникает один из ключевых вопросов энергетики: каким максимальным КПД может обладать тепловая машина при фиксированной температуре горячего (T0) и холодного (T1) тел?

В принципе, этот вопрос был решен еще в позапрошлом веке французским физиком Сади Карно. Его формула, давно вошедшая в школьные учебники, гласит:

Впрочем, столь высокий КПД достижим только в идеальном случае тепловой машины Карно, а она, к сожалению, обладает бесконечно малой мощностью и потому не представляет интереса для техники. В этом случае встает иной вопрос: каков максимальный КПД мощной тепловой машины?

Исчерпывающий ответ на этот, казалось бы, классический вопрос был дан буквально на днях. Автор статьи C. Van der Broeck, Physical Review Letters, 95 190602 (2 November 2005) на двух страницах доказал, что наибольший КПД максимально мощной тепловой машины составляет

Для сравнения: если тепловая машина нагревается за счет водяного пара, а охлаждается за счет льда, то КПД Карно составляет 27%, а КПД мощной машины равен всего 14%.

Интересно, что эта формула была выведена еще 30 лет назад, правда лишь для одного конкретного случая. Простота формулы наводила на мысль, что тот же результат верен и для других тепловых машин, но долгое время отсутствовало строгое доказательство этого предположения. Именно это доказательство и нашел бельгийский физик, превратив, таким образом, частный факт в новый универсальный закон линейной неравновесной термодинамики.

Игорь Иванов

Расчет коэффициента полезного действия: формулы для электрической цепи

Для оценки эффективности расхода энергии на выполнение работы необходимо выяснить, как найти КПД. Полученные сведения пригодятся для оптимизации параметров электрических компонентов цепи, рычагов и других передаточных механизмов. С помощью предварительных вычислений можно увеличить длительность действия автономного источника питания, решить другие практические задачи.

Формула КПД поясняет основные определения

Что такое КПД источника тока

Неподвижный заряд не выполняет работу. Уменьшение энергетического запаса в аккумуляторе происходит за счет химических реакций. Фактически это свидетельство несовершенства конструкции.

После подключения источника к проводникам с подключенной нагрузкой заряды перемещаются по цепи, выполняя определенную работу. Полезная составляющая мощности (Pпол) определяется параметрами внешнего контура. Полная (Pп) – содержит совокупные затраты. Если электротехник пользуется привычными терминами, он быстро установит для коэффициента полезного действия формулу:

КПД = Рпол/Рп = (U*I)/(Е*I) = U/E.

Для чего нужен расчет КПД

Наглядный пример недостаточно эффективного устройства – классическая лампа накаливания. Пропускание тока через вольфрамовую спираль повышает температуру проводника. В рабочем режиме значительное количество потребляемой мощности расходуется на генерацию излучения. Однако к видимой части диапазона относится только небольшая часть спектра. Так как вырабатываемая теплота не выполняет полезного действия, соответствующие энергетические затраты следует узнавать по излишним.

Если выразить КПД через мощность в этом случае, следует одновременно учесть долговечность. Эта методика повышает точность оценки, так как подразумевает необходимость периодической замены испорченного излучателя.

В типовом рабочем режиме лампа накаливания нагревает нить до 2600-2800К. При таком значении срок службы составляет 900-1200 часов, КПД – от 5 до 7%. Увеличить эффективность в 2-5 раз можно повышением температуры до 3400-3600К. Однако в этом варианте долговечность уменьшается до 5-6 часов. Подобные практические характеристики нельзя признать удовлетворительными.

Сравнение эффективности и других параметров разных типов ламп

Эта таблица демонстрирует превосходство экономичных источников света. Срок службы современных светодиодов измеряется десятками тысяч часов. Даже на завершающих этапах рабочих циклов обеспечиваются высокая яркость и качественное распределение спектральных составляющих.

Нахождение тока в полной цепи

Для изучения эффективности потребления энергии в электротехнике можно использовать базовые формулы. В полной цепи по базовому определению рассматривают источник тока (I) с внутренним сопротивлением (r). Подключенная нагрузка потребляет определенную мощность. Она характеризуется электрическим сопротивлением R.

Прохождение тока по такой цепи обеспечивает энергия источника, которая определена значением электродвижущей силы (ЭДС – E). Ее можно выразить как отношение выполненной сторонними силами работы (A) по передвижению заряда (q) с положительным знаком по соответствующему контуру. С учетом известной формулы I= q/t несложно определить зависимость между рассматриваемыми величинами:

А = E * I * t,

где t – контрольный временной интервал.

Отдельно можно рассмотреть участки с внутренним и внешним сопротивлением. Каждый из них выделяет определенное законом Джоуля-Ленца количество теплоты Q = I2 * R * t. Так как энергия не пропадает бесследно, можно сделать правильный вывод о равенстве Q = A. Подставив значения в исходное выражение, получают:

E = I*R + I*r.

ЭДС полной цепи вычисляется сложением двух падений напряжений на внутреннем и внешнем участке. Элементарное преобразование позволяет узнать силу тока в соответствующем проводнике:

I = E/ (R+r).

Расчет КПД электрической цепи

После определения основных параметров можно перейти к изучению эффективности системы. Для вычисления КПД обозначение потребления электроэнергии удобно сделать по стандартным формулам.

Определить мощность можно по следующим соотношениям силы тока, напряжения, электрического сопротивления

Выполняемая работа в цепи определяется количеством перемещенных зарядов, а также скоростью данного процесса. Для объективной оценки последнего параметра измерения выполняют с учетом определенных временных интервалов (Δt). Работу и мощность можно определить следующими формулами:

  • A = P * Δt;
  • P = A / Δt.

Как и в классической механике, работу можно измерить в джоулях (Дж). Мощность, по стандартам СИ, указывают в ваттах (Вт). Зависимость между отмеченными единицами:

Вт = Дж/ с (для электрических цепей вольт * ампер).

Для обозначения КПД символ «η» применяют в типовых формулах. Базовое определение с учетом приведенных замечаний можно преобразовать следующим образом:

η = A / Q * 100%,

где:

  • A – выполненная работа;
  • Q – энергия, полученная из источника.

Как найти КПД, формула для полной цепи

Любое подключенное устройство характеризуется определенными потерями. Резистор выделяет тепло. Трансформатор тратит часть энергии на преобразование электромагнитных волн. На примере лампы накаливания показана низкая эффективность изделия. С применением КПД увеличивают объективность оценки разных систем, подключаемых потребителей, генераторов. В следующем пункте представлена технология проверки силовых агрегатов.

Методика и порядок измерений

Идеальные условия можно рассматривать только в теории. Для корректной оценки замкнутой системы необходимо учитывать энергетические потери на выполнение необходимой работы. Ниже показано, как определить КПД механических силовых агрегатов с применением разных исходных данных.

Движению поршня в блоке цилиндров двигателя внутреннего сгорания препятствует сила трения. Поступательно-возвратные движения в ходе стандартного цикла преобразуются во вращение вала с дополнительными потерями. Высокая температура не выполняет в данном случае полезные функции. Чтобы не допустить разрушения агрегата, необходимо поддерживать определенный тепловой режим. Приходится обеспечить циркуляцию охлаждающей жидкости с помощью помпы.

Понятно, что в подобном случае сделать общий КПД расчет с учетом каждого компонента конструкции непросто. Однако можно узнать в ходе эксперимента с высокой точностью, какое количество топлива (масса – m) придется затратить на 100 км пробега машины за соответствующее время (t). Далее нужно взять из сопроводительной документации (справочников) следующие данные:

  • мощность мотора – Рм;
  • удельную теплоту бензина – У.

В этом варианте для расчета КПД двигателя формула преобразуется следующим образом: 

η = (Pм * t) / (У * m).

Для отображения результата в % итоговое значение умножают на 100.

Если мощность силового агрегата не известна, определять эффективность можно по массе авто (Mа). Измерять ее несложно с помощью промышленных весов (на станции техосмотра, элеваторе). В ходе эксперимента разгоняются с места до контрольной скорости (v). Массу топлива вычисляют по объему (переведенному из литров в м кв.), который умножают на плотность (справочная величина в кг на куб. м).

В этом случае КПД расчет находят по формуле:

η = (Mа * v2)/(2 * У * m).

Следует перевести предварительно скорость из км/час в м/с.

Проще измеряется эффективность электродвигателя с паспортной мощностью (P). Его подключают к источнику питания с известным напряжением (U). После выхода на стабильную частоту вращения фиксируют значение тока (I) в цепи. Далее применяют классическую формулу:

η = P/ (U * I).

Если сопроводительная документация отсутствует, технические параметры берут с официального сайта производителя. Однако и в этом случае следует понимать ограниченную точность подобных данных. В процессе эксплуатации характеристики могут ухудшиться за счет естественного износа. Погрешность увеличивается после длительной интенсивной эксплуатации, при подключении редуктора или другого переходного устройства.

Значительно улучшить точность можно с применением простой методики:

  • устанавливают на вал шкив с закрепленным тросом;
  • поднимают на контрольную высоту (h) груз c массой m;
  • секундомером фиксируют время (t) на выполнение этой работы;
  • мультиметром измеряют напряжение (U) и силу тока (I) на клеммах источника питания и в разрыве цепи, соответственно.

Для нахождения КПД в физике формула выглядит следующим образом:

η = (m * h * g)/(I * U * t),

где g – это гравитационная постоянная (9,80665).

Эффективность любого силового агрегата определяют по соотношению полезной работы к расходованной энергии. Чтобы корректно определять класс техники, пользуются переводом в проценты. Следует подчеркнуть, что значение больше 100% обозначает ошибку в расчетах. Создатель подобного агрегата станет «властелином мира», так как изобретет вечный двигатель.

Видео

Как рассчитать эффективность работы

Обновлено 20 сентября 2019 г.

Автор С. Хуссейн Атер

Все, что принимает входные данные и производит выходные, будь то электрический генератор или простая система шкивов, можно измерить, насколько хорошо оно использует работа вложена в это. Формула эффективности работы поможет вам количественно оценить это и оценить эффективность любой машины.

Формула эффективности работы

Формула для расчета эффективности работы – это отношение выходного к входному , выраженное в процентах.Для машины вы можете определить объем работы, вложенной в машину, в зависимости от того, как она работает. Обычно вы можете рассчитать работу, умножив силу на расстояние для движения.

Убедитесь, что вы правильно рассчитываете ввод и вывод машины или объекта, который выполняет работу, а также учитываете другие факторы, такие как человек, управляющий машиной.

Формула эффективности работы: эффективность = выход / затраты , и вы можете умножить результат на 100, чтобы получить эффективность работы в процентах.Это используется в различных методах измерения энергии и работы, будь то производство энергии или эффективность машин.

Пример расчета эффективности работы

Канат шкива, который оттягивает груз весом 10 фунтов на 1 фут от земли из-за того, что человек прилагает 6 фунтов силы, чтобы тянуть канат шкива 2 фута, имеет эти специфические входные и выходные силы. Человеческая сила, входящая сила, выполняет 6 фунтов работы на 2 фута или 12 футов фунта работы. Движение машины, выходная сила, тогда составляет 10 фунтов умножить на 1 фут работы или 10 фут-фунтов работы.

Эффективность работы – это отношение выпуска к затратам в процентной форме. Это будет 10/12 или 0,83. Умножьте это на 100, чтобы преобразовать в процент, который даст эффективность работы 83 процента.

Определение эффективности работы Физика

Отношение результатов работы к затратам используется как мера эффективности во многих областях физики и техники. Исследователи считают полезным описать процентное соотношение продуктов и расходных материалов для процесса, чтобы определить, как сэкономить энергию, мощность или другие ограниченные количества.

Определение отношения вывода к вводу дает вам представление о том, насколько эффективна система, процесс, метод, конвейер или что-то еще, что используется.

При анализе термодинамики тепловых двигателей, например, полезный выход работы, который тепловой двигатель, такой как тепловой двигатель Карно, может измерять, работу, которую двигатель может выполнять как выходную, с высокотемпературным теплом, которое двигатель использует в качестве входа.

Формула эффективности работы на практике

Физики и инженеры используют эффективность труда при определении того, насколько продуктивными и энергосберегающими являются процессы для электрических цепей (электрический КПД), тепловых двигателей (тепловой КПД), радиоактивных процессов (радиационная эффективность) и других процессов. в том числе квантовая механика (квантовая эффективность).

Простое соотношение выходных и входных данных означает, что ученые и инженеры могут использовать свои упрощенные универсальные математические формулы для достижения любого необходимого уровня эффективности или цели. Например, вы можете использовать отношение мощности, излучаемой антенной, к мощности, которую она поглощает на своих выводах, при обнаружении радиочастот в качестве меры эффективности.

Эффективность чаще выражается в процентах, поскольку она напрямую сравнивает два фактора, вход и выход. Однако есть случаи, в которых эффективность может быть измерена без процента, например удельный импульс , импульс, деленный на массу для ракеты, с учетом того, как она использует пропеллент или топливо, а также сопротивление воздуха и другие силы.Конкретный импульс дает физикам и инженерам определить тягу, КПД и меры использования топлива при проектировании двигателя.

Эффективность (физика): определение, формула и примеры

Обновлено 28 декабря 2020 г.

Автор: Эми Дусто

Эффективность – это способ описания количества полезных результатов , которые процесс или машина может генерировать, в процентах входа , необходимого для его работы. Другими словами, он сравнивает, сколько энергии используется для выполнения работы, с тем, сколько теряется или тратится впустую для окружающей среды.Чем эффективнее машина, тем меньше тратится энергии.

Например, если тепловой двигатель способен приводить в движение 75 процентов получаемого топлива, а 25 процентов теряется в виде тепла в процессе, это будет 75 процентов эффективности. Из исходных 100 процентов топлива 75 процентов было произведено как полезная работа.

Тепловые двигатели

В физике термин тепловые двигатели может относиться к нескольким типам машин или процессов. Формально тепловой двигатель – это любая термодинамическая система, преобразующая тепловую энергию в механическую энергию или движение.

Базовый рецепт теплового двигателя включает в себя следующее:

  • Тепловая баня или какой-либо тип высокотемпературного источника тепла
  • Низкотемпературный холодный резервуар, в который отводится тепло
  • Сам двигатель , который поглощает тепло из горячего резервуара для создания некоторой формы расширения системы, которая воздействует на окружающую среду (например, вращает двигатель), а затем выделяет тепловую энергию в холодный резервуар, когда он возвращается в исходное состояние.

Например, в автомобиле горящее топливо является источником тепла, среда вокруг автомобиля является резервуаром холода, а двигатель внутреннего сгорания выполняет работу по преобразованию тепла в выхлопные газы, когда он перемещает поршни и вращает коленчатый вал, позволяющий машине двигаться.

Энергоэффективность теплового двигателя

Эффективность теплового двигателя – это отношение полезной работы, выполняемой системой (также называемой полезной энергией или выходной энергией системы), к тепловой энергии, добавленной к системе. (входная энергия).

Это показатель того, насколько хорошо тепловой двигатель превращает тепловую энергию в механическую работу.

Где W – выполненная работа, Q – добавленное тепло, и оба значения указаны в единицах СИ для энергии: джоулях.

Поскольку КПД – это коэффициент, он всегда выражается в процентах или в виде значения от 0 (нет КПД) до 1 (общий КПД – вся входная энергия преобразуется в полезную выходную мощность). Эффективность никогда не может быть больше 1 или 100 процентов, потому что это нарушило бы закон сохранения энергии, если бы количество выходной энергии было больше, чем вложенная энергия! Это означало бы, что энергия создается из ничего, что невозможно в этой вселенной.

КПД Карно

Цикл Карно – это термодинамический цикл с максимально возможной эффективностью. Поскольку никакие процессы в природе не являются полностью обратимыми – некоторая энергия всегда теряется в виде тепла благодаря второму закону термодинамики – цикл Карно описывает идеальный тепловой двигатель . Другими словами, никто не мог его построить.

Ценность цикла Карно заключается в установке верхних границ того, насколько эффективным может быть любой действующий двигатель.Она выражается в единицах температуры T h и T c , резервуаров горячей и холодной энергии в единицах СИ в кельвинах.

Его также можно выразить через Q h и Q c , добавленное и отдаваемое тепло, соответственно, в джоулях.

Калькулятор КПД

Этот калькулятор КПД представляет собой простой инструмент для расчета отношения полезной выходной энергии к затраченной энергии.Вы можете использовать его для определения пропорций тепловой энергии, электроэнергии, механической работы или даже химической энергии. Продолжайте читать, чтобы узнать, как рассчитать эффективность в каждом из этих случаев, и узнать, каковы реальные применения формулы эффективности.

Что такое эффективность?

Эффективность определяется как отношение выходной энергии к вложенной энергии. Каждый раз, когда вы подаете энергию или тепло к машине (например, к двигателю автомобиля), определенная часть этой энергии тратится впустую, и лишь некоторая часть преобразуется в фактическую производительность труда.Чем эффективнее машина, тем выше производительность.

Особым видом эффективности является эффективность Карно. Он определяется как эффективность двигателя Карно, который является идеальным двигателем, максимально увеличивающим выходную мощность.

Как рассчитать КПД?

Для расчета КПД необходимо применить следующую формулу:

η = Eвых. / Ein * 100%

где:

  • η – КПД (выраженный в процентах),
  • Eout – выходная энергия (в Джоулях), а
  • Ein – подводимая энергия (также в Джоулях).

Результатом будет число от 0% до 100%. КПД, равный 0%, означает, что вся энергия тратится впустую, а выход энергии равен нулю. С другой стороны, 100% -ный КПД означает, что нет никаких потерь энергии.

Основной закон сохранения энергии гласит, что вы не можете создавать энергию. Из этого следует, что КПД любой машины никогда не может превышать 100%. Тем не менее, вы, вероятно, встретите статьи, в которых говорится, что светодиодные фонари или тепловые насосы могут иметь КПД 300% и более.

Как это возможно? Кажущаяся эффективность 300% является результатом определения эффективности, которое мы используем. Электрическая мощность, подаваемая на светодиодные лампы, может быть на самом деле ниже выходной мощности, но это не означает, что энергия была создана в процессе. Это просто означает, что свет получил некоторую тепловую энергию из окружающей среды и преобразовал ее в выходную энергию. Поскольку мы не можем измерить эти дополнительные входные данные, кажущаяся эффективность превышает 100%.

Реальные приложения

Даже если вы, вероятно, этого не замечаете, мы применяем определение эффективности к другим явлениям реальной жизни.Некоторые примеры включают:

  • Рентабельность инвестиций (ROI) . Если вы посмотрите на формулу ROI более внимательно, вы увидите, что она аналогична уравнению эффективности. Это значение описывает, какова «эффективность» ваших вложений. В отличие от энергоэффективности показатель ROI может (и фактически должен) превышать 100%.

  • Топливная эффективность . Несмотря на то, что формула MPG (миль на галлон) напрямую не связана с уравнением эффективности, она описывает, насколько эффективно ваш двигатель преобразует топливо в фактическую мощность.Чем менее эффективен двигатель, тем больше топлива ему нужно, чтобы преодолеть такое же расстояние.

Эффективность – образование в области энергетики

Рис. 1. Потребляемая мощность в тепловом двигателе измеряется в МВт, а выходная мощность, полученная в виде электричества, измеряется в МВт. [1] Отношение выходной мощности к входящей – это КПД.

Слово может иметь множественные и неоднозначные значения в повседневном языке, но в науке они имеют точные значения. Эффективность в физике (и часто в химии) – это сравнение выходной энергии с вложенной энергией в данной системе.Он определяется как процентное отношение выходной энергии к входной энергии, определяемое уравнением:

[math] Эффективность = \ frac {E_ {out}} {E_ {in}} \ times 100 \% [/ math]

Это уравнение обычно используется для представления энергии в виде тепла или мощности.

«Эффективность» часто путают с «эффективностью», и при анализе энергетических систем их следует различать. Энергоэффективность измеряет, сколько система извлекает из потока топлива или первичной энергии, которую она использует.Если энергетическая система эффективна, она использует эту энергию для достижения правильной цели. Например, автомобиль является очень эффективным средством передвижения, поскольку он может перемещать людей на большие расстояния и в определенные места. Однако автомобиль может не очень эффективно перевозить людей из-за того, как он расходует топливо. [2]

Типы КПД

Тепловой КПД

Эффективность очень часто используется в науке для описания эффективности теплового двигателя и называется термической эффективностью. [3] Эта эффективность описывает, сколько работы двигатель может получить от используемого топлива. Согласно второму закону термодинамики, известному как КПД Карно, существуют верхние пределы того, насколько эффективными могут быть двигатели. Этот КПД Карно зависит только от температуры источника тепла и поглотителя холода и предназначен для идеального (невозможного) двигателя, у которого нет изменения энтропии. Хотя такой двигатель мог бы максимизировать эффективность , с точки зрения эффективности он ужасно непрактичен, поскольку его идеализированные процессы требуют так много времени для выполнения значительного объема работы.По словам Шредера, «не беспокойтесь об установке двигателя Карно в свой автомобиль; хотя это увеличит расход топлива, вас будут обгонять пешеходы». [4] [5]

Эффективность передачи электроэнергии

Электроэнергия имеет тенденцию терять энергию в электрической сети, поскольку она передается из одного места в другое, в зависимости от величины электрического тока, конкретных проводников и длины линии передачи. По мере увеличения напряжения эти потери значительно снижаются из-за их связи с током.Типичные потери от электростанции для пользователя в их доме колеблются от 8% до 15%. [6]

КПД ветряной турбины

Ветровые турбины ограничены максимальным теоретическим КПД 59,3%, который известен как предел Беца. [7] Этот закон получен путем анализа сохранения массы и количества движения в потоке жидкости вокруг привода ветряной турбины. Эффективность ветряной турбины означает, сколько энергии она может получить от ветра, проходящего через роторы.

Последствия

Эффективность используется для описания энергии, которую определенная система может извлекать и использовать из своего источника энергии. К таким системам относятся силовые установки, двигатели и турбины. Любая система , которая использует энергию топлива или первичного потока, имеет определенный КПД.

КПД электростанций, работающих на угле и природном газе, составляет от 32% до 42%. [8] Если электростанция имеет КПД 35%, то на каждые 100 Дж тепла от угля около 35 Дж становится электричеством, а остальные 65 Дж – теплом.Это тепло уходит на нагревание атмосферы или, возможно, водоема, такого как река или озеро.

Это не технический сбой, а ограничение, установленное термодинамикой, с максимальной эффективностью таких установок, определяемой КПД Карно. Чем ниже эффективность таких электростанций, тем более пагубное воздействие они оказывают на окружающую среду, поскольку необходимо использовать больше этих видов топлива для удовлетворения энергетических потребностей. Возможность повышения эффективности является предметом текущих исследований, в первую очередь из-за того, что возможность повышения эффективности снизит воздействие на окружающую среду от использования энергии и сократит потребности в ресурсах в будущем.Наряду с эффективностью для окружающей среды и здоровья людей важно, чтобы подходящие виды топлива были доступны.

Когенерационные установки используют отходящее тепло электростанций и других тепловых систем (например, двигатель автомобиля с обогревателем) для питания других частей системы, тем самым повышая общий КПД. [9]

Для дальнейшего чтения

Список литературы

  1. Сделано внутри команды энциклопедии
  2. ↑ Diffen, Эффективность и эффективность [Онлайн], Доступно: http: // www.diffen.com/difference/Effectiveness_vs_Efficiency
  3. ↑ Р. Вольфсон, «Энтропия, тепловые двигатели и второй закон термодинамики» в Энергия, окружающая среда и климат , 2-е изд., Нью-Йорк, Нью-Йорк: W.W. Norton & Company, 2012, гл. 4, сек. 7. С. 81-84.
  4. ↑ Hyperphysics, Цикл Карно [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/carnot.html
  5. ↑ McMaster Physics and Astronomy, Цикл Карно [Online], Доступно: http: // www.Physics.mcmaster.ca/~morozov/3K03/Lecture9.pdf
  6. ↑ IEC, ЭФФЕКТИВНАЯ ПЕРЕДАЧА И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ [Онлайн], Доступно: http://www.iec.ch/about/brochures/pdf/technology/transmission.pdf
  7. ↑ Программа WindPower, The Betz limit [Online], Доступно: http://www.wind-power-program.com/betz.htm
  8. ↑ Bright Hub Engineering, Эффективность различных типов электростанций [Онлайн], Доступно: http: //www.brighthubengineering.ru / электростанции / 72369-сравнить-эффективность-разных-электростанций /
  9. ↑ Forbes, Самые эффективные электростанции [Онлайн], Доступно: http://www.forbes.com/2008/07/03/energy-efficiency-cogeneration-biz-energy_cx_jz_0707efficiency_horror.html

Расчет энергоэффективности – физический класс [видео 2021]

Формула

А теперь представьте, что вы владелец местной картинной галереи. Вы выставляете все свои произведения искусства с 8 утра до 8 вечера.Вы заинтересованы в энергоэффективности, потому что на самом деле тратите довольно много денег на питание всех светильников в своей галерее.

Вы хотите знать, сколько электричества, за которое вы платите, фактически превращается вашими лампочками в полезный свет. Чтобы понять это, воспользуйтесь следующей формулой для определения энергоэффективности:

  • Греческая буква эта , которая выглядит почти как «н», обозначает вашу энергоэффективность.
  • W представляет собой количество работы или энергии в джоулях. Его умножают на 100, чтобы превратить его в процент.

Вычисление

Воспользуйтесь этой формулой, чтобы увидеть, насколько хорошо ваши лампочки выполняют свою работу. Ваши лампочки в настоящее время потребляют 4500 Джоулей энергии каждую минуту. И каждую минуту они излучают 99 Джоулей световой энергии. Итак, получаем:

Вау! Ваши лампочки потребляют много энергии, но не производят много света.Итак, куда уходит остальная энергия? Помните, закон сохранения энергии гласит, что энергия не теряется и не создается в какой-либо закрытой системе, а просто изменяется.

Итак, поскольку только 2,2% электричества, которое вы даете своим лампочкам, превращается в свет, куда уходят остальные 97,8% электричества? Вы когда-нибудь прикасались к горящей лампочке? Руку обжег, не так ли? Да, эта энергия превращается в тепло, много тепла.

В идеальном процессе вся ваша потребляемая энергия превращалась бы в полезную выходную энергию, а ваша эффективность была бы на уровне 100%, что означает, что вся ваша энергия будет преобразована в выходную энергию.Итак, идеальная лампочка превратит всю вашу электрическую энергию в свет и останется прохладной на ощупь. Это не превратит электрическую энергию в тепло.

Пример энергоэффективности

Теперь вы попробуете вычислить энергоэффективность конкретного процесса.

На этот раз процесс – это велосипедист, едущий на своем велосипеде. Велосипедист затрачивает 650 Джоулей работы на то, чтобы крутить педали на своем велосипеде. Велосипед преобразует эту энергию в 150 Джоулей выходной энергии, которая толкает велосипед вперед.Какова энергоэффективность велосипедиста?

Чтобы ответить на этот вопрос, вам сначала нужно найти свои входные и выходные данные. Ваш рабочий вклад – это количество энергии, которое вы вкладываете в процесс. В данном случае 650 Джоулей от велосипедиста. Выходная работа – это энергия, выделяемая процессом, 150 Джоулей энергии, выделяемой велосипедом. Теперь вы можете включить эти числа в свое уравнение.

Энергоэффективность велосипедиста – 23.1%. Опять же, большая часть энергии, вкладываемой в систему, преобразуется во что-то еще. В этом случае его тоже много тепла. Вот почему вы греетесь, когда тренируетесь.

Резюме урока

Определение энергоэффективности – это количество энергии, произведенной в процессе, по сравнению с количеством энергии, отданной процессу. Формула:

Греческая буква эта (которая выглядит как «n») представляет эффективность в процентах.Ваша работа или энергия на входе и выходе (Вт) выражаются в джоулях.

Чтобы использовать эту формулу, найдите объем вашей работы и затраты на нее и вставьте их в формулу для оценки.

Эффективность машин Рона Куртуса

SfC Home> Физические науки> Машины>

Рона Куртуса (от 27 июня 2016 г.)

КПД машины показывает, насколько хорошо его входная энергия преобразуется в полезную выходную энергию или работу.Это главный фактор полезности машины и представляет собой долю или процент выхода, деленный на вход.

Согласно Закону сохранения энергии , общая выходная энергия или работа должна равняться общей входной энергии. Однако часть входящей энергии не влияет на выходную работу и теряется на трение и тепло.

Примеры эффективности машины включают рычаг, автомобиль и вечный двигатель.

Вопросы, которые могут у вас возникнуть:

  • Что такое уравнение эффективности?
  • Как влезают убытки?
  • Какие примеры эффективности?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Уравнение эффективности

Эффективность машины зависит от того, сколько энергии теряется на трение и тепло во время ее работы. Поскольку работа – это изменение кинетической энергии, эффективность машины может быть выражена как процент выходной работы, деленный на входную работу за вычетом работы, потерянной на трение и тепло.

Eff = W O / W I

где

  • Eff – десятичная дробь эффективности
  • W O – выходная работа или энергия
  • W I – входное усилие, работа или энергия

Умножьте Eff на 100% , чтобы получить процент эффективности .

убытков

Согласно закону сохранения энергии , выходная работа или энергия равна входной работе за вычетом работы, потерянной из-за трения и тепла:

W O = W I – W Потери

Подставив W O в уравнение эффективности:

Eff = (W I – W Потери ) / W I

или

Eff = 1 – W Потери / W I

Примеры

Примеры эффективности включают рычаг и автомобиль.

Рычаг

Простой рычаг теряет около 2% или 0,02 подводимой энергии на внутреннее трение в своей точке опоры:

Вт Потери = 0,02 Вт I

Таким образом:

Eff = 1 – 0,02 Вт I / W I

Эфф = 1 – 0,02

Eff = 0,98 или 98%

Автомобиль

С другой стороны, КПД автомобиля составляет всего около 15%.Около 75% энергии теряется из-за потерь тепла от двигателя, а еще 10% теряется из-за внутреннего трения, включая потери из-за трения в шинах.

Вечный двигатель

Если потери на трение и тепло равны нулю, КПД машины составляет:

Eff = W O / W O

Eff = 1,0 или 100%

Такая машина называется вечным двигателем , поскольку после запуска она будет работать вечно.Изобретатели годами работали над созданием такой машины, но безуспешно.

Сводка

Полезность машины определяется ее эффективностью. Машина преобразует силу, создаваемую входящей энергией, в выходную работу. Закон сохранения энергии требует, чтобы общая входная энергия равнялась общей выходной энергии.

Согласно Закону сохранения энергии , общая выходная энергия или работа должна равняться общей входной энергии.Однако часть входящей энергии не влияет на выходную работу и теряется на трение и тепло.

Примеры эффективности машины включают рычаг, автомобиль и вечный двигатель.


Использование науки для повышения эффективности


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Эффективность машин (PDF) – Carolina Curriculum

Механическая эффективность – Википедия

Машины Ресурсы

Книги

Книги по простым машинам с самым высоким рейтингом

Книги по машинам с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/machines/
эффективность.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или тезисе.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Станки

КПД машин

4 примера формулы эффективности

Формула эффективности – это мера эффективности процессов и машин. Основная формула представляет собой отношение выпуска к вводу, выраженное в процентах: эффективность = (выпуск / ввод) × 100 .

Производство энергии

Энергоэффективность – это отношение полезной энергии к затраченной энергии. КПД = (полезная энергия / входная энергия) × 100 Например, солнечная панель, которая вырабатывает 300 Вт электроэнергии из 1500 Вт солнечного света: КПД = (300/1500) × 100 = 20%

Энергопотребление

Энергоэффективность машины, потребляющей энергию, рассчитывается как полезная энергия, выделяемая машиной, по сравнению с потребляемой энергией. Например, электромобиль, который потребляет 100 кВтч, что приводит к 60 кВтч мощности на колесах, имеет КПД: КПД = (60/100) × 100 = 60% КПД по энергии всегда ниже 100%, поскольку машины всегда вырабатывают некоторое количество энергии. отходы, такие как тепло, выделяемое двигателем.Эффективность бизнес-процессов обычно рассчитывается в долларовом выражении на основе стоимости результатов и затрат на вводимые ресурсы. Например, в производственных процессах используются такие ресурсы, как рабочая сила, электричество, материалы и детали, которые стоят 3 доллара. Результат имеет значение 4 доллара. КПД = (4/3) × 100 = 133,3% КПД машины можно измерить с точки зрения энергоэффективности или производительности оборудования. В последнем подходе используется стоимость результатов и стоимость вложений. В месяц сверлильный станок потребляет такие затраты, как рабочая сила, электричество, материалы и амортизация самого станка, которые стоят 50 000 долларов.Машина производит детали на сумму 60 000 долларов. КПД = (60 000/50 000) × 100 = 120% Более новый станок сверлит отверстия в 10 раз быстрее. Затраты на рабочую силу такие же, и машина расходует меньше электроэнергии и материалов. В месяц машина потребляет 410 000 долларов на входе и производит продукцию на сумму 600 000 долларов. КПД = (600,000 / 410,000) × 100 = 146%

КПД

Это полный список статей, которые мы написали об эффективности.

Если вам понравилась эта страница, добавьте в закладки Simplicable.

© 2010-2020 Простое.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *