Кто создал транзистор: История транзистора, часть 3: многократное переизобретение / Хабр

История транзистора, часть 3: многократное переизобретение / Хабр

<< До этого: Из горнила войны

Более сотни лет аналоговая собака виляла цифровым хвостом. Попытки расширить возможности наших органов чувств – зрения, слуха, и даже, в каком-то смысле, осязания, вели инженеров и учёных на поиски лучших компонентов для телеграфа, телефона, радио и радаров. Лишь по счастливой случайности эти поиски обнаружили путь к созданию новых типов цифровых машин. И я решил рассказать историю этой постоянной экзаптации, во время которой инженеры электросвязи поставляли исходные материалы для первых цифровых компьютеров, а иногда даже сами проектировали и создавали эти компьютеры.

Но к 1960-м годам это плодотворное сотрудничество подошло к концу, а с ним и моя история. Изготовителям цифрового оборудования уже не нужно было заглядывать в мир телеграфа, телефона и радио в поисках новых, улучшенных переключателей, поскольку сам транзистор обеспечил неисчерпаемый источник улучшений. Год за годом они копали всё глубже и глубже, всегда находя способы экспоненциально увеличивать скорость работы и уменьшать стоимость.

Однако ничего этого бы не произошло, если бы изобретение транзистора остановилось бы на работе Бардина и Бреттейна.

Все статьи цикла:

  • История реле
    • Метод «быстрой передачи сведений», или Зарождение реле
    • Дальнописец
    • Гальванизм
    • Предприниматели
    • А вот, наконец, и реле
    • Говорящий телеграф
    • Просто соединить
    • Забытое поколение релейных компьютеров
    • Электронная эра
  • История электронных компьютеров
    • Пролог
    • Колосс
    • ENIAC
    • Электронная революция
  • История транзистора
    • Пробираясь на ощупь в темноте
    • Из горнила войны
    • Многократное переизобретение
  • История интернета
    • Опорная сеть
    • Распад, ч. 1
    • Распад, ч.2
    • Открывая интерактивность
    • Расширяя интерактивность
    • ARPANET — зарождение
    • ARPANET — пакет
    • ARPANET — подсеть
    • Компьютер как устройство связи
    • Межсетевое взаимодействие
  • Эра фрагментации
    • Коэффициент нагрузки
    • Засев пустоши
    • Статисты
    • Анархисты
  • Восхождение интернета
    • Экспоненциальный рост
    • Появление частных и публичных компаний
    • Опорная магистраль интернета

Медленный старт

В популярной прессе не наблюдалось активного энтузиазма в связи с объявлением лабораторий Белла об изобретении транзистора. 1 июля 1948 года в The New York Times этому событию отвели три абзаца внизу сводки «Новостей радио». Причём эта новость появилась после других, очевидно, считавшихся более важными: например, часового радиошоу «Время вальса», которое должно было появиться на NBC.

Задним умом мы, возможно, захотим посмеяться, или даже побранить неизвестных авторов – как же они не смогли распознать перевернувшее мир событие?

Но взгляд в прошлое искажает восприятие, усиливая те сигналы, значимость которых нам известно, хотя в то время они терялись в море шума. Транзистор 1948 года сильно отличался от транзисторов компьютеров, на одном из которых вы читаете эту статью (если вы не решили её распечатать). Отличались так сильно, что, несмотря на одинаковое название, и связывающую их непрерывную линию наследования, их нужно считать разными видами, если не разными родами. У них разные составы, разная структура, разный принцип функционирования, не говоря уже о гигантском различии в размерах. Только благодаря постоянным повторным изобретениям неуклюжее устройство, сооружённое Бардином и Бреттейном, смогло преобразовать мир и нашу жизнь.

На самом деле, германиевый транзистор с одной точкой контакта не заслуживал внимания большего, чем получил. У него было несколько дефектов, унаследованных от электронной лампы. Он, конечно, был гораздо меньше самых компактных ламп. Отсутствие раскалённой нити означало, что он выдаёт меньше тепла, потребляет меньше энергии, не перегорает и не требует прогрева перед использованием.

Однако накопление грязи на контактной поверхности приводило к отказам и сводило на нет потенциал к более долгому сроку службы; он давал более шумный сигнал; работал только при низких мощностях и в узком диапазоне частот; отказывал при наличии жары, холода или влажности; и его не получалось производить единообразно. Несколько транзисторов, созданных одним и тем же способом одними и теми же людьми, обладали бы вызывающе разными электрическими характеристиками. И всё это сопровождалось стоимостью в восемь раз большей, чем у стандартной лампы.

Только к 1952 году лаборатории Белла (и другие владельцы патента) решили проблемы производства достаточно для того, чтобы транзисторы с одной точкой контакта стали практичными устройствами, и даже тогда они не особенно распространились дальше рынка слуховых аппаратов, на котором чувствительность к ценам была относительно низкой, а преимущества, касающиеся времени работы от аккумулятора, превышали недостатки.

Однако тогда уже начались первые попытки превратить транзистор в нечто лучшее и более полезное. Они вообще-то начались гораздо раньше того момента, когда общественность узнала о его существовании.

Амбиции Шокли

К концу 1947 года Билл Шокли в большом возбуждении предпринял поездку в Чикаго. У него были смутные идеи по поводу того, как превзойти недавно изобретённый Бардиным и Бреттейном транзистор, но ему пока не представилось шанса разработать их. Поэтому вместо того, чтобы наслаждаться перерывом между этапами в работе, он провёл Рождество и Новый год в отеле, заполнив порядка 20 страниц блокнота своими идеями. Среди них было предложение нового транзистора, состоящего из полупроводникового сэндвича – ломтика из германия p-типа между двумя кусочками n-типа.

Подбадриваемый наличием такого туза в рукаве, Шокли предъявил Бардину и Бреттейну претензии по их возвращению в Мюррей-Хилл, требуя всей славы за изобретение транзистора.

Разве не его идея о полевом эффекте заставила Бардин и Бреттейна засесть в лаборатории? Разве не нужно из-за этого передать все права на патент ему? Однако хитрость Шокли вышла ему боком: патентные юристы лабораторий Белла выяснили, что неизвестный изобретатель, Юлий Эдгар Лилиенфельд, запатентовал полупроводниковый усилитель на полевом эффекте почти за 20 лет до этого, в 1930. Лилиенфельд, конечно, так и не воплотил свою идею, учитывая состояние материалов на то время, но риск пересечения был слишком велик – лучше было полностью избежать упоминания полевого эффекта в патенте.

Так что, хотя лаборатории Белла и выдали Шокли щедрую долю славы изобретателя, в патенте они упомянули только Бардина и Бреттейна. Однако, сделанного не воротишь: амбиции Шокли уничтожили его взаимоотношения с двумя подчинёнными. Бардин прекратил работу над транзистором, и сконцентрировался на сверхпроводимости. Он ушёл из лабораторий в 1951. Бреттейн остался там, но отказался вновь работать с Шокли, и настоял на перевод в другую группу.

Из-за неспособности работать с другими людьми Шокли так и не продвинулся в лабораториях, поэтому тоже ушёл оттуда. В 1956 он вернулся домой в Пало-Альто, чтобы основать собственную компанию по производству транзисторов, Shockley Semiconductor. Перед отъездом он расстался с женой Джин, когда она восстанавливалась от рака матки, и сошёлся с Эмми Леннинг, на которой вскоре женился. Но из двух половин его калифорнийской мечты – новая компания и новая жена – исполнилась лишь одна. В 1957 лучшие его инженеры, разгневанные его стилем управления и направлением, в котором он вёл компанию, ушли от него, чтобы основать новую фирму, Fairchild Semiconductor.


Шокли в 1956

Так что Шокли бросил пустую оболочку своей компании и устроился в департамент электротехники в Стэнфорде. Там он продолжал отталкивать от себя своих коллег (и своего старейшего друга, физика Фреда Зейтца) заинтересовавшими его теориями расового вырождения и расовой гигиены – темами, непопулярными в США со времени окончания последней войны, особенно в академических кругах.

Он находил удовольствие в развязывании споров, взвинчивании СМИ и вызывании протестов. Он умер в 1989 году, отдалившись от детей и коллег, и посещаемый только вечно преданной ему второй женой, Эмми.

Хотя его жалкие попытки на поприще предпринимательства провалились, Шокли уронил зерно в плодотворную почву. Область залива Сан-Франциско произвела на свет множество небольших фирм, производящих электронику, которые сдабривало финансированием федеральное правительство во время войны. Fairchild Semiconductor, случайный отпрыск Шокли, породил десятки новых фирм, парочка которых известна и сегодня: Intel и Advanced Micro Devices (AMD). К началу 1970-х эта область заслужила насмешливое прозвище «Кремниевая долина». Но постойте-ка – ведь Бардин и Бреттейн создали германиевый транзистор. Откуда взялся кремний?


Так в 2009 году выглядело заброшенное место в Маунтин-Вью, где ранее находилась Shockley Semiconductor. Сегодня здание снесено.

К кремниевому перекрёстку

Судьба нового типа транзистора, придуманного Шокли в чикагском отеле, была гораздо счастливее, чем у его изобретателя. Всё благодаря стремлению одного человека выращивать единые чистые полупроводниковые кристаллы. Гордон Тил, физический химик из Техаса, изучавший бесполезный тогда германий для своей докторской, в 30-х годах устроился на работу в лаборатории Белла. Узнав о транзисторе, он уверился в том, что его надёжность и мощность можно значительно улучшить, создав его из чистого монокристалла, а не из использовавшихся тогда поликристаллических смесей. Шокли отверг его попытки, считая их бесполезной тратой ресурсов.

Однако Тил упорствовал и добился успеха, с помощью инженера-механика Джона Литла создав аппарат, достающий крохотный зародыш кристалла из расплавленного германия. Охлаждаясь вокруг зародыша, германий расширял его кристаллическую структуру, создавая непрерывную и почти чистую полупроводящую решётку. К весне 1949 года Тил и Литл могли создавать кристаллы по заказу, и испытания показали, что они оставляют далеко позади своих поликристаллических конкурентов. В частности, добавленные в них неосновные переносчики могли выживать внутри сотню микросекунд или даже дольше (против не более чем десяти микросекунд в других пробах кристаллов).

Теперь Тил мог позволить себе больше ресурсов, и набрал в свою команду больше людей, среди которых был ещё один физический химик, пришедший в лаборатории Белла из Техаса – Морган Спаркс. Они начали менять расплав для изготовления германия p-типа или n-типа, добавляя шарики соответствующих примесей. Ещё за год они усовершенствовали технологию до такой степени, что могли выращивать германиевый n-p-n сэндвич прямо в расплаве. И он работал именно так, как предсказывал Шокли: электрический сигнал материала p-типа модулировал электрический ток между двумя проводниками, соединёнными с окружающими его кусочками n-типа.


Морган Спаркс и Гордон Тил за верстаком в лабораториях Белла

Этот транзистор с выращенным переходом превзошёл своего предка с одним точечным контактом почти по всем статьям. В особенности, он стал более надёжным и предсказуемым, выдавал гораздо меньше шума (и, следовательно, был более чувствительным), и чрезвычайно энергоэффективным – потребляя в миллион раз меньше энергии, чем типичная электронная лампа. В июле 1951 года лаборатории Белла организовали ещё одну пресс-конференцию, чтобы объявить о новом изобретении. Ещё до того, как первый транзистор сумел выйти на рынок, он, по сути, уже стал несущественным.

И всё же это было лишь начало. В 1952 году General Electric (GE) объявила о разработке нового процесса создания транзисторов с переходом, сплавного метода. В его рамках два шарика индия (донор p-типа) сплавлялись с двух сторон тонкого ломтика из германия n-типа. Этот процесс был проще и дешевле, чем выращивание переходов в сплаве, такой транзистор давал меньше сопротивления и поддерживал большие частоты.


Выращенные и сплавные транзисторы

В следующем году Гордон Тил решил вернуться в свой родной штат, и устроился на работу в Texas Instruments (TI) в Далласе. Компания была основана под именем Geophysical Services, Inc., и сначала производила оборудование для разведывания нефтяных месторождений, TI открыла подразделение электроники во время войны, и теперь выходила на рынок транзисторов по лицензии от Western Electric (производственного подразделения лабораторий Белла).

Тил принёс с собой новые навыки, полученные в лабораториях: способность выращивать и легировать монокристаллы кремния. Самой очевидной слабостью германия была его чувствительность к температуре. Подвергаясь воздействию тепла, атомы германия в кристалле быстро сбрасывали свободные электроны, и он всё больше превращался в проводник. При температуре в 77 °C он вообще переставал работать, как транзистор. Главной целью продаж транзисторов были вооружённые силы – потенциальный потребитель с низкой ценовой чувствительностью и огромной потребностью в стабильных, надёжных и компактных электронных компонентах. Однако чувствительный к температуре германий не пригодился бы во многих случаях военного применения, особенно в аэрокосмической области.

Кремний был гораздо стабильнее, однако расплачиваться приходилось гораздо более высокой точкой плавления, сравнимой с точкой плавления стали. Это вызывало огромные трудности, учитывая, что для создания высококачественных транзисторов требовались очень чистые кристаллы. Горячий расплавленный кремний впитывал бы загрязнения из любого тигля, в котором бы находился. Тил с командой из TI сумели преодолеть эти трудности при помощи сверхчистых образцов кремния от DuPont. В мае 1954 на конференции института радиоинженеров в Дайтоне (Огайо) Тил продемонстрировал, что новые кремниевые устройства, произведённые в его лаборатории, продолжали работать, даже будучи погружёнными в горячее масло.

Успешные выскочки

Наконец, примерно через семь лет после первого изобретения транзистора, его можно было изготавливать из материала, с которым он стал синонимом. И ещё примерно столько же времени пройдёт до появления транзисторов, грубо напоминающих ту форму, что используется в наших микропроцессорах и чипах памяти.

В 1955 году учёные из лабораторий Белла успешно научились делать кремниевые транзисторы с новой технологией легирования – вместо того, чтобы добавлять твёрдые шарики примесей в жидкий расплав, они внедряли газообразные добавки в твёрдую поверхность полупроводника (термодиффузия). Тщательно контролируя температуру, давление и длительность процедуры, они достигали точно необходимой глубины и степени легирования. Усиление контроля над производственным процессом дало усиление контроля над электрическими свойствами конечного продукта. Что ещё важно, термодиффузия дала возможность производить продукт партиями – можно было легировать большую плиту кремния, а потом нарезать её на транзисторы. Военные обеспечили финансирование лабораторий Белла, поскольку на организацию производства требовались высокие предварительные траты. Им требовался новый продукт для ультравысокочастотной линии раннего радиолокационного обнаружения (“линии Дью”), цепочке арктических радарных станций, предназначенных для обнаружения советских бомбардировщиков, летящих со стороны Северного полюса, и они готовы были выложить по $100 за транзистор (это были времена, когда новый автомобиль можно было купить за $2000).

Легирование вместе с фотолитографией, управлявшей расположением примесей, открыли возможность вытравливать весь контур целиком на одной полупроводниковой подложке – до этого одновременно додумались в Fairchild Semiconductor и Texas Instruments в 1959. “Планарная технология” от Fairchild использовала химическое осаждение металлических плёнок, соединяющих электрические контакты транзистора. Она избавляла от необходимости создания проводки вручную, уменьшала стоимость производства и увеличивала надёжность.

Наконец, в 1960-м два инженера из лабораторий Белла (Джон Аталла и Дэвон Кан) реализовали оригинальную концепцию Шокли транзистора на полевом эффекте. Тонкий слой оксида на поверхности полупроводника смог эффективно подавлять поверхностные состояния, в результате чего электрическое поле от алюминиевого затвора проникало внутрь кремния. Так родился MOSFET [metal-oxide semiconductor field-effect transistor] (или МОП-структура, от металл-оксид-полупроводник), который оказалось так легко миниатюризировать, и который до сих пор используется почти во всех современных компьютерах (интересно, что Аталла был родом из Египта, а Кан из Южной Кореи, и практически только эти двое инженеров из всей нашей истории не имеют европейских корней).

Наконец, спустя тринадцать лет после изобретения первого транзистора, появилось нечто, напоминающее транзистор вашего компьютера. Его было проще производить, он использовал меньше энергии, чем плоскостной транзистор, однако он довольно медленно реагировал на сигналы. Только после распространения крупных интегральных схем с сотнями или тысячами компонентов, расположенными на едином чипе, преимущества полевых транзисторов вышли на первый план.


Иллюстрация из патента на полевой транзистор

Полевой эффект стал последним серьёзным вкладом лабораторий Белла в разработку транзистора. Крупные производители электроники, такие, как лаборатории Белла (с их Western Electric), General Electric, Sylvania и Westinghouse наработали впечатляющий объём исследований полупроводников. С 1952 по 1965 только лаборатории Белла зарегистрировали более двух сотен патентов на эту тему. И всё же коммерческий рынок быстро перешёл в руки таких новых игроков, как Texas Instruments, Transitron и Fairchild.

Ранний рынок транзисторов был слишком маленьким для того, чтобы на него обращали внимание крупные игроки: порядка $18 млн в год в середине 1950-х, по сравнению с общим объёмом рынка электроники в $2 млрд. Однако исследовательские лаборатории этих гигантов служили непреднамеренными тренировочными лагерями, где молодые учёные могли впитывать знания, касающиеся полупроводников, чтобы после переходить к продаже своих услуг менее крупным фирмам. Когда рынок ламповой электроники в середине 1960-х начал серьёзно ужиматься, для лабораторий Белла, Westinghouse и остальных было уже слишком поздно состязаться с выскочками.

Переход компьютеров на транзисторы

В 1950-х транзисторы вторглись в мир электроники в четырёх наиболее значимых областях. Первыми двумя были слуховые аппараты и портативные радиоприёмники, в которых низкое энергопотребление, и, как следствие, долгая работа от батареи, пересиливали остальные соображения. Третьей было военное применение. Армия США возлагала большие надежды на транзисторы, как на надёжные и компактные компоненты, которые можно использовать везде, от полевого радио до баллистических ракет. Однако в первое время их траты на транзисторы больше были похожи на ставку на будущее технологии, чем на подтверждение их тогдашней ценности. И, наконец, были ещё цифровые вычисления.

В компьютерной области недостатки переключателей на электронных лампах были хорошо известны, причём некоторые скептики до войны даже считали, что электронный компьютер не удастся сделать практичным устройством. Когда тысячи ламп собирали в одном устройстве, они пожирали электроэнергию, выдавая огромное количество тепла, а в плане надёжности можно было положиться только на их регулярное выгорание. Поэтому мало потребляющий, холодный и не имеющий нити транзистор стал спасителем компьютерных производителей. Его недостатки как усилителя (к примеру, более шумный выходной сигнал) не представляли такой уж проблемы при использовании его в качестве переключателя. Единственным препятствием была стоимость, и в своё время она начнёт резко падать.

Все ранние американские эксперименты с транзисторными компьютерами происходили на пересечении желания военных изучить потенциал многообещающей новой технологии, и желания инженеров перейти на улучшенные переключатели.

В лабораториях Белла в 1954 году построили TRADIC для ВВС США, чтобы посмотреть, дадут ли транзисторы возможность установить цифровой компьютер на борту бомбардировщика, заменив им аналоговую навигацию и помощь в поиске целей. Лаборатория Линкольна из MIT разработала компьютер TX-0 в рамках обширного проекта ПВО в 1956. Машина использовала ещё один вариант транзистора, поверхностно-барьерный, хорошо подходивший для высокоскоростных вычислений. Philco построила свой компьютер SOLO по контракту с ВМФ (однако реально – по запросу АНБ), закончив его в 1958 (используя ещё один вариант поверхностно-барьерного транзистора).

В Западной Европе, не настолько обеспеченной ресурсами в ходе Холодной войны, история была совсем другой. Такие машины, как Manchester Transistor Computer, Harwell CADET (ещё одно название, вдохновлённое проектом ENIAC, и зашифрованное написанием задом наперёд), и австрийский Mailüfterl были побочными проектами, использовавшими ресурсы, которые их создатели могли наскрести – включая транзисторы с одной точкой контакта первого поколения.

Идёт множество споров по поводу титула первого компьютера, использовавшего транзисторы. Всё, конечно, упирается в выбор правильных определений таких слов, как «первый», «транзисторный» и «компьютер». В любом случае известно, где история заканчивается. Коммерциализация транзисторных компьютеров началась почти сразу. Год за годом компьютеры за одну и ту же цену становились всё более мощными, а компьютеры одной мощности становились всё дешевле, и этот процесс казался настолько неумолимым, что его возвели в ранг закона, рядом с гравитацией и сохранением энергии. Нужно ли нам спорить о том, какой камушек стал первым в обвале?

Откуда взялся закон Мура?

Приближаясь к окончанию истории переключателя, стоит задать вопрос: что привело к появлению этого обвала? Почему закон Мура существует (или существовал – поспорим об этом в другой раз)? Для самолётов или пылесосов закона Мура нет, как нет его для электронных ламп или реле.

Ответ состоит из двух частей:

  1. Логические свойства переключателя как категории артефакта.
  2. Возможность использовать чисто химические процессы для изготовления транзисторов.

Сначала о сути переключателя. Свойства большинства артефактов обязаны удовлетворять широкому спектру неумолимых физических ограничений. Пассажирский самолёт должен выдерживать общий вес множества людей. Пылесос должен уметь засасывать определённое количество грязи за определённое время с определённой физической площади. Самолёты и пылесосы будут бесполезными, если уменьшить их до наномасштабов.

У переключателя же – автоматического переключателя, которого никогда не касалась рука человека – физических ограничений гораздо меньше. У него должно быть два различных состояния, и он должен уметь сообщать другим таким же переключателям изменение их состояний. То есть, всё, что он должен уметь, это включаться и выключаться. Что же такого особенного в транзисторах? Почему другие виды цифровых переключателей не испытали таких экспоненциальных улучшений?

Тут мы подходим ко второму факту. Транзисторы можно изготавливать при помощи химических процессов без механического вмешательства. С самого начала ключевым элементом производства транзисторов было применение химических примесей. Затем появился планарный процесс, устранивший последний механический шаг из производства – присоединение проводов. В результате он избавился от последнего физического ограничения на миниатюризацию. Транзисторам уже не нужно было быть достаточно крупными для пальцев человека – или для любого механического устройства. Всё делала простая химия, на невообразимо маленьком масштабе: кислота для травления, свет для управления тем, какие части поверхности будут противостоять травлению, и пары для внедрения примесей и металлических плёнок на вытравленные дорожки.

А зачем вообще нужна миниатюризация? Уменьшение размера давало целую плеяду приятных побочных эффектов: увеличение скорости переключения, уменьшение потребления энергии и стоимости отдельных экземпляров. Эти мощные стимулы побудили всех заниматься поиском способов дальнейшего уменьшения переключателей. И полупроводниковая индустрия за время жизни одного человека перешла от изготовления переключателей размером с ноготь до упаковки десятков миллионов переключателей на квадратный миллиметр. От запроса восьми долларов за один переключатель до предложения двадцати миллионов переключателей за доллар.


Чип памяти Intel 1103 от 1971 года. Отдельные транзисторы, размером всего в десятки микрометров, уже неразличимы глазом. А с тех пор они уменьшились ещё в тысячу раз.

Что ещё почитать:


  • Ernest Bruan and Stuart MacDonald, Revolution in Miniature (1978)
  • Michael Riordan and Lillian Hoddeson, Crystal Fire (1997)
  • Joel Shurkin, Broken Genius (1997)

Далее: Опорная сеть >>

60 лет транзистору

Б. М. Малашевич

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника.

Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п. Но электронная лампа имеет неустранимые недостатки: большие габариты, высокое энергопотребление, большое время вхождения в рабочий режим, низкую надежность. В результате через 2-3 десятка лет существования ламповая электроника во многих применениях подошла к пределу своих возможностей. Электронной лампе требовалась более компактная, экономичная и надежная замена. И она нашлась в виде полупроводникового транзистора. Его создание справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия, коренным образом изменившим мир. Оно было отмечено Нобелевской премией по физике, присужденной в 1956 г. американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли. Но у нобелевской тройки в разных странах были предшественники .

И это понятно. Появление транзисторов – результат многолетней работы многих выдающихся ученых и специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Советские ученые внесли в это общее дело огромный вклад. Очень много было сделано школой физики полупроводников академика А.Ф. Иоффе – пионера мировых исследований по физике полупроводников. Еще в 1931 году он опубликовал статью с пророческим названием: «Полупроводники – новые материалы электроники». Немалую заслугу в исследование полупроводников внесли Б.В. Курчатов и В.П. Жузе. В своей работе – «К вопросу об электропроводности закиси меди» в 1932 году они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Советский физик Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать т еоретическую модель полупроводника, сформулировав при этом основы «зонной теории полупроводников». В 1938 г. Мотт в Англии, Б.Давыдов в СССР, Вальтер Шоттки в Германии независимо друг от друга предложили теорию выпрямляющего действия контакта металл-полупроводник. В 1939 году Б.Давыдов опубликовал работу «Диффузионная теория выпрямления в полупроводниках». В 1941 г. В. Е. Лашкарев опубликовал статью «Исследование запирающих слоев методом термозонда» и в соавторстве с К. М. Косоноговой – статью «Влияние примесей на вентильный фотоэффект в закиси меди». Он описал физику «запорного слоя» на границе раздела «медь – закись меди», впоследствии названного «p-n» переходом. В 1946 г. В. Лошкарев открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Им же был раскрыт механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы. Большой вклад в исследование свойств полупроводников внесли И.В.Курчатов, Ю.М.Кушнир, Л.Д.Ландау, В.М.Тучкевича, Ж.И.Алферов и др. Таким образом, к концу сороковых годов двадцатого века основы теоретической базы для создания транзисторов были проработаны достаточно глубоко, чтобы приступать к практическим работам.

Рис. Транзитрон Г.Матаре и Г.Велкера

Первой известной попыткой создания кристаллического усилителя в США предпринял немецкий физик Юлиус Лилиенфельд, запатентовавший в 1930, 1932 и 1933 гг. три варианта усилителя на основе сульфида меди. В 1935 г. немецкий у ченый Оскар Хейл получил британский патент на усилитель на основе пятиокиси ванадия. В 1938 г. немецкий физик Поль создал действующий образец кристаллического усилителя на нагретом кристалле бромида калия. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Эти усилители можно считать прообразом современных полевых транзисторов. Однако построить устойчиво работающие приборы не удавалось, т.к. в то время еще не было достаточно чистых материалов и технологий их обработки. В первой половине тридцатых годов точечные триоды изготовили двое радиолюбителей – канадец Ларри Кайзер и тринадцатилетний новозеландский школьник Роберт Адамс. В июне 1948 г. (до обнародования транзистора) изготовили свой вариант точечного германиевого триода, названный ими транзитроном, жившие тогда во Франции немецкие физики Роберт Поль и Рудольф Хилш. В начале 1949 г. было организовано производство транзитронов, применялись они в телефонном оборудовании, причем работали лучше и дольше американских транзисторов. В России в 20-х годах в Нижнем Новгороде О.В.Лосев наблюдал транзисторный эффект в системе из трех – четырех контактов на поверхности кремния и корборунда. В середине 1939 г. он писал: «…с полупроводниками может быть построена трехэлектродная система, аналогичная триоду», но увлекся открытым им светодиодным эффектом и не реализовал эту идею. К транзистору вело множество дорог.

Первый транзистор

Слава направо: Уильям Шокли,
Джон Бардин (сидит), Уолтер Бреттейн.
Фото из http://gete.ru/page_140.html

Выше описанные примеры проектов и образцов транзисторов были результатами локальных всплесков мысли талантливых или удачливых людей, не подкрепленные достаточной экономической и организационной поддержкой и не сыгравшие серьезной роли в развитии электроники. Дж. Бардин, У. Браттейн и У. Шокли оказались в лучших условиях. Они работали по единственной в мире целенаправленной долговременной (более 5 лет) программе с достаточным финансовым и материальным обеспечением в фирме Bell Telephone Laboratories, тогда одной из самых мощных и наукоемких в США. Их работы были начаты еще во второй половине тридцатых годов, работу возглавил Джозеф Бекер, который привлек к ней высококлассного теоретика У. Шокли и блестящего экспериментатора У. Браттейна. В 1939 г. Шокли выдвинул идею изменять проводимость тонкой пластины полупроводника (оксида меди), воздействуя на нее внешним электрическим полем. Это было нечто, напоминающее и патент Ю. Лилиенфельда, и позже сделанный и ставший массовым полевой транзистор. В 1940 г. Шокли и Браттейн приняли удачное решение ограничить исследования только простыми элементами – германием и кремнием. Однако все попытки построить твердотельный усилитель ни к чему не привели, и после Пирл-Харбора (практическое начало Второй мировой войны для США) были положены в долгий ящик. Шоккли и Браттейн были направлены в исследовательский центр, работавший над созданием радаров. В 1945 г. оба возвратились в Bell Labs. Там под руководством Шокли была создана сильная команда из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли У. Браттейн и физик-теоретик Дж. Бардин. Шокли сориентировал группу на реализацию своей довоенной идеи. Но устройство упорно отказывалось работать, и Шокли, поручив Бардину и Браттейну довести его до ума, сам практически устранился от этой темы.

Два года упорного труда принесли лишь отрицательные результаты. Бардин предположил, что избыточные электроны прочно оседали в приповерхностных областях и экранировали внешнее поле. Эта гипотеза подсказала дальнейшие действия. Плоский управляющий электрод заменили острием, пытаясь локально воздействовать на тонкий приповерхностный слой полупроводника.

Первый транзистор У. Браттейна и Дж. Бардина

Однажды Браттейн нечаянно почти вплотную сблизил два игольчатых электрода на поверхности германия, да еще перепутал полярность напряжений питания, и вдруг заметил влияние тока одного электрода на ток другого. Бардин мгновенно оценил ошибку. А 16 декабря 1947 г. у них заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен он был очень просто – на металлической подложке-электроде лежала пластинка германия, в которую упирались два близко расположенных (10-15 мкм) контакта. Оригинально были сделаны эти контакты. Треугольный пластмассовый нож, обернутый золотой фольгой, разрезанной надвое бритвой по вершине треугольника. Треугольник прижимался к германиевой пластинке специальной пружиной, изготовленной из изогнутой канцелярской скрепки. Через неделю, 23 декабря 1947 г. прибор был продемонстрирован руководству фирмы, этот день и считается датой рождения транзистора. Все были рады результатом, кроме Шокли: получилось, что он, раньше всех задумавший полупроводниковый усилитель, руководивший группой специалистов, читавший им лекции по квантовой теории полупроводников – не участвовал в его создании. Да и транзистор получился не такой, как Шокли задумывал: биполярный, а не полевой. Следовательно на соавторство в «звездном» патенте он претендовать не мог.

Прибор работал, но широкой публике эту внешне несуразную конструкцию показывать было нельзя. Изготовили несколько транзисторов в виде металлических цилиндриков диаметром около 13 мм. и собрали на них «безламповый» радиоприемник. 30 июня 1948 г. в Нью-Йорке состоялась официальная презентация нового прибора – транзистора (от англ. Transver Resistor – трансформатор сопротивлений). Но специалисты не сразу оценили его возможности. Эксперты из Пентагона «приговорили» транзистор к использованию лишь в слуховых аппаратах для старичков. Так близорукость военных спасла транзистор от засекречивания. Презентация осталась почти незамеченной, лишь пара абзацев о транзисторе появилась в «Нью-Йорк Тайме» на 46 странице в разделе «Новости радио». Таким было явление миру одного из величайших открытий XX века. Даже изготовители электронных ламп, вложившие многие миллионы в свои заводы, в появлении транзистора угрозы не увидели.

Позже, в июле 1948 года, информация об этом изобретении появилась в журнале «The Physical Review». Но т олько через некоторое в ремя специалисты поняли, что произошло грандиозное событие, определившее дальнейшее развитие прогресса в мире.

Bell Labs сразу оформила патент на это революционное изобретение, но с технологией было масса проблем. Первые транзисторы, поступившие в продажу в 1948 году, не внушали оптимизма – стоило их потрясти, и коэффициент усиления менялся в несколько раз, а при нагревании они и вовсе переставали работать. Но зато им не было равных в миниатюрности. Аппараты для людей с пониженным слухом можно было поместить в оправе очков! Поняв, что вряд ли она сама сможет справиться со всеми технологическими проблемами, Bell Labs решилась на необычный шаг. В начале 1952 года она объявила, что полностью передаст права на изготовление транзистора всем компаниям, готовым выложить довольно скромную сумму в 25 000 долларов вместо регулярных выплат за пользование патентом, и предложила обучающие курсы по транзисторной технологии, помогая распространению технологии по всему миру. Постепенно росла очевидность важности этого миниатюрного устройства. Транзистор оказался привлекательным по следующим причинам: был дешев, миниатюрен, прочен, потреблял мало мощности и мгновенно включался (лампы долго нагревались). В 1953 г. на рынке появилось первое коммерческое транзисторное изделие – слуховой аппарат (пионером в этом деле выступил Джон Килби из ф. Centralab , который через несколько лет сделает первую в мире полупроводниковую микросхему), а в октябре 1954 г. – первый транзисторный радиоприе мник Regency TR1, в нем использовалось всего четыре германиевых транзистора. Немедленно принялась осваивать новые приборы и индустрия вычислительной техники, первой была фирма IBM . Доступность технологии дала свои плоды – мир начал стремительно меняться.

Польза конструктивного честолюбия

У честолюбивого У.Шокли случившееся вызвало вулканический всплеск его творческой энергии. Хотя Дж. Бардин и У.Браттейн нечаянно получили не полевой транзистор, как планировал Шокли, а биполярный, он быстро разобрался в сделанном. Позднее Шокли вспоминал о своей «страстной неделе», в течение которой он создал теорию инжекции, а в новогоднюю ночь изобрел плоскостной биполярный транзистор без экзотических иголочек.

Что бы создать что-то новое, Шокли по-новому взглянул на давно известное – на точечный и плоскостный полупроводниковые диоды, на физику работы плоскостного «p – n» перехода, легко поддающуюся теоретическому анализу. Поскольку точечный транзистор представляет собой два очень сближенные диода, Шокли провел теоретическое исследования пары аналогично сближенных плоскостных диодов и создал основы теории плоскостного биполярного транзистора в кристалле полупроводника, со держащего два «p – n» перехода. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность и, главное, более высокие повторяемость параметров и надежность. Но, пожалуй, главным их преимуществом была легко автоматизируемая технология, исключающая сложные операции изготовления, установки и позиционирования подпружиненных иголочек, а также обеспечивавшая дальнейшую миниатюризацию приборов.

30 июня 1948 г. в нью-йоркском офисе Bell Labs изобретение было впервые продемонстрировано руководству компании. Но оказалось, что создать серийноспособный плоскостной транзистор гораздо труднее, чем точечный. Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек относительно чистого и вполне тогда доступного германия. А вот техника легирования полупроводников в конце сороковых годов, необходимая для изготовления плоскостного транзистора, еще находилась в младенчестве, поэтому изготовление серийноспособного транзистора «по Шокли» удалось только в 1951 г. В 1954 году Bell Labs разработала процессы окисления, фотолитографии, диффузии, которые на многие годы стали основой производства полупроводниковых приборов.

Первый кремниевый транзистор, 1950 г.

Точечный транзистор Бардина и Браттейна – безусловно огромный прогресс по сравнению с электронными лампами. Но не он стал основой микроэлектроники, век его оказался короток, около 10 лет. Шокли быстро понял сделанное коллегами и создал плоскостной вариант биполярного транзистора, который жив и сегодня и будет жить, пока существует микроэлектроника. Патент на него он получил в 1951 г. А в 1952 г. У. Шокли создал и поле вой транзистор, так же им запатентованный. Так что свое участие в Нобелевской премии он заработал честно.

Число производителей транзисторов росло как снежный ком. Bell Labs, Shockley Semiconductor, Fairchild Semiconductor, Western Electric, GSI (с декабря 1951 г. Texas Instruments), Motorola, Tokyo Cousin (С 1958 г. Sony), NEC и многие другие.

В 1950 г. фирма GSI разработала первый кремниевый транзистор, а с 1954 г., преобразившись в Texas Instruments , начала его серийное производство.

«Холодная война» и ее влияние на электронику

После окончания Второй мировой войны мир раскололся на два враждебных лагеря. В 1950-1953 гг. эта конфронтация вылилась в прямое военное столкновение – Корейскую войну. Фактически это была опосредованная война между США и СССР. В это же время США готовились к прямой войне с СССР. В 1949 г. в США был разработан опубликованный ныне план «Последний выстрел» (Operation Dropshot), фактически план Третье мировой войны, войны термоядерной. План предусматривал прямое нападение на СССР 1 января 1957 г . В течение месяца предполагалось сбросить на наши головы 300 50-килотонных атомных и 200 000 обычных бомб. Для этого план предусматривал разработку специальных баллистических ракет, подводных атомных лодок, авианосцев и многого другого. Так началась развязанная США беспрецедентная гонка вооружений, продолжавшаяся всю вторую половину прошлого века, продолжающаяся, не столь демонстративно, и сейчас.

В этих условиях перед нашей страной, выдержавшей беспрецедентную в моральном и экономическом отношении четырехлетнюю войну и добившейся победы ценой огромных усилий и жертв, возникли новые гигантские проблемы по обеспечению собственной и союзников безопасности. Пришлось срочно, отрывая ресурсы от измученного войной и голодного народа, создавать новейшие виды оружия, содержать в постоянной боеготовности огромную армию. Так были созданы атомные и водородные бомбы, межконтинентальные ракеты, система противоракетной обороны и многое другое. Наши успехи в области обеспечения обороноспособности страны и реальная возможность получения сокрушительного ответного удара вынудили США отказаться от реализации плана «Dropshot» и других ему подобных.

Одним из последствий «холодной войны» была почти полная экономическая и информационная изоляция противостоящих сторон. Экономические и научные связи были весьма слабы, а в области стратегически важных отраслей и новых технологий практически отсутствовали. Важные открытия, изобретения, новые разработки в любой области знаний, которые могли быть использованы в военной технике или способствовать экономическому развитию, засекречивались. Поставки прогрессивных технологий, оборудования, продукции запрещались. В результате советская полупроводниковая наука и промышленность, развивались в условиях почти полной изоляции, фактической блокады от всего того, что делалось в этой области в США, Западной Европе, а затем и Японии.

Следует также отметить, что советская наука и промышленность во многих направлениях тогда занимала лидирующее в мире положение. Наши истребители в корейской войне были лучше американских, наши ракеты были мощнее всех, в космосе в те годы мы были впереди планеты всей, первый в мире компьютер с производительностью выше 1 млн. оп/с был наш, водородную бомбу мы сделали раньше США, баллистическую ракету первой сбила наша система ПРО и т.п. Отстать в электронике означало потянуть назад все остальные отрасли науки и техники.

Значение полупроводниковой техники в СССР понимали прекрасно, но пути и методы ее развития были иными, чем в США. Руководство страны сознавало, что противостояние в холодной войне можно обеспечить путем развития оборонных систем, управляемых надежной, малогабаритной электроникой. В 1959 году были основаны такие заводы полупроводниковых приборов, как Александровский, Брянский, Воронежский, Рижский и др. В январе 1961 г. было принято Постановление ЦК КПСС и СМ СССР «О развитии полупроводниковой промышленности», в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах. Причем базой для создания первых предприятий полупроводниковой промышленности стали совершенно не приспособленные для этих целей помещения (здания коммерческого техникума в Риге, Совпартшколы в Новгороде, макаронная фабрика в Брянске, швейная фабрика в Воронеже, ателье в Запорожье и т.д.). Но вернемся к истокам.

Первые советские транзисторы

В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p — n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного — нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» — первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 — С4.  В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).

Первый советские промышленные транзистор:
точечный С1Г (слева) и плоскостный П1А (справа)

В мае 1953 г. был образован специализированный НИИ (НИИ-35, позже – НИИ «Пульсар»), учрежден Межведомственный Совет по полупроводникам. В 1955 г. началось промышленное производство транзисторов на заводе «Светлана» в Ленинграде, а при заводе создано ОКБ по разработке полупроводниковых приборов. В 1956 г. московский НИИ-311 с опытным заводом переименован в НИИ «Сапфир» с заводом «Оптрон» и переориентирован на разработку полупроводниковых диодов и тиристоров.

На протяжении 50-х годов в стране были разработаны ряд новых технологий изготовления плоскостных транзисторов: сплавная, сплавно-диффузионная, меза-диффузионная.

Полупроводниковая промышленность СССР развивалась достаточно быстро: в 1955 г. было выпущено 96 тысяч, в 1957 г. – 2,7 млн, а в 1966 г. – более 11 млн. транзисторов. И это было только начало.

Статья помещена в музей 6.01.2008

Очерк истории транзистора

Воссоздание Первый транзистор

Чет Huntley, Reporting
Фильм QuickTime на этой странице

ПОМОЩЬ
Что это КОРОБКА на этой странице?

“Просто для смеха”

Джин Андерсон

Джон Бардин

Александр Белл

Уолтер Браттейн

Роберт Браттейн

Уолтер Браун

Ли Де Форест

Фил Фой

Роберт Гибни

Лилиан Ходдесон

Ник Холоньяк

Тед Хофф

Карл Ларк-Горовиц

Масару Ибука

Джордж Индиг

Мервин Келли

Джек Килби

Гордон Мур

Акио Морита

Боб Нойс

Рассел Ол

Джон Пирс

Майкл Риордан

Ян Росс

Фред Зейтц

Гарри Селло

Билл Шокли

Шокли, Браттейн
и Бардин

Джоэл Шуркин

Бетти Спаркс

Морган Спаркс

Чарльз Стюарт

Артур Торсильери

Гордон Тил

Фред Терман

Предательская восьмерка

Теодор Вейл

АТ&Т

Белл Лаборатории

Фэирчайлд Полупроводник

Интел

Шокли Полупроводник

Кремний Долина

Сони

Инструменты Техаса

 

“Транзистор был, наверное, самым важное изобретение 20-го века и история изобретения это одно из столкновений эго и сверхсекретных исследований. ..”

Take_a

Быстрый тур

Это краткое введение описывает вовлеченных лиц и организации в истории транзистора. Для более богатой картины, пожалуйста, следуйте ссылки на этом веб-сайте.

Белл Лаборатории, одна из крупнейших в мире промышленных лабораторий, был исследовательским подразделением гигантской телефонной компании American Telephone. и Телеграф (AT&T). В 1945, Белл Лабс начал искать решение давней проблемы.

1907 – Проблема

AT&T привезла своего бывшего президента Теодора Вейла, выхода на пенсию, чтобы помочь ему бороться с конкуренцией, возникающей из-за истечение срока полномочий Александра Грэма Белла телефонные патенты. Решение Vail: трансконтинентальная телефонная связь.

В 1906 году эксцентричный американский изобретатель Ли Де Форест разработал триод в вакуумной лампе. Это было устройство, которое могло усиливать сигналы, включая, как надеялись, сигналы по телефонным линиям, когда они передавались по стране от одной распределительной коробки к другой. AT&T купила De Патент Фореста и значительно улучшил трубку. Это позволило подать сигнал регулярно усиливаться по линии, что означает, что телефонный разговор может проходить на любом расстоянии, пока есть усилители вдоль путь.

Но электронные лампы, которые сделали это усиление возможным были крайне ненадежны, потребляли слишком много энергии и производили слишком много нагревать. В 1930-х годах директор по исследованиям Bell Lab Мервин Келли понял, что необходимо более совершенное устройство. чтобы телефонный бизнес продолжал расти. Он чувствовал, что ответ может лежать в странном классе материалов, называемых полупроводниками.

1945 – Решение

После окончания Второй мировой войны Келли собрал команду ученых для разработки твердотельного полупроводникового переключателя, который заменит проблемная вакуумная трубка. Команда использовала некоторые достижения в области исследований полупроводников во время война, которая сделала радары возможными. Молодой, блестящий теоретик, Билл Шокли был выбран в команду лидер. (См. Шокли, Браттейн и Бардин? команда и товарищи по команде)

Шокли выбрал Уолтера Браттейна из Bell Lab, физика-экспериментатора. который мог построить или починить что угодно, и нанял физика-теоретика Джон Бардин из Университета Миннесоты. Шокли пополнил свою команду эклектичная смесь физиков, химиков и инженеров. Группа была разнообразны, но сплочены. Уолтер Браун, физик, присоединившийся к группе в 1951 году, вспоминает, что слышал об вечеринки и хорошие обеды. Бетти Спаркс, Секретарь Шокли вспомнила приподнятое настроение группы на ее свадьбе. к Моргану Спарксу. Они позвонили в свою лабораторию. “Адский Лаборатория колоколов».

Весной 1945 года Шокли спроектировал то, на что надеялся. будет первым полупроводниковым усилителем, основанным на так называемом «эффект поля». Его устройство представлял собой небольшой цилиндр, тонко покрытый кремнием, установленный близко к небольшая металлическая пластина. Это было, как инженер-электрик Университета Иллинойса Ник Холоньяк сказал, сумасшедшая идея. Верно, устройство не сработало, и Шокли поручил Бардину и Браттейну узнать почему. По словам автора Джоэла Шуркина, двое в основном работали без присмотра; Шокли проводил большую часть своего времени работает одна дома.

Находится в помещениях Bell Labs в Мюррей Хилл, Бардин. и Браттейн начали отличное партнерство. Бардин, теоретик, предложил эксперименты и интерпретировал результаты, в то время как Браттейн строил и запускал эксперименты. Техник Фил Фой вспоминает что время шло без особого успеха, внутри него начала нарастать напряженность. лабораторная группа.

Осенью 1947 года автор Лилиан Ходдесон говорит, что Браттейн решил попробовать замочить весь аппарат. в ванну с водой. Удивительно, но это сработало… немного.

Браттейн начал экспериментировать с золотом на германии, устраняя жидкий слой на теории, что он замедляет работу устройства. Это не сработало, но команда продолжала экспериментировать с этим дизайном. отправная точка.

Незадолго до Рождества к Бардину пришло историческое озарение. Все думали, что знают, как ведут себя электроны в кристаллах, но Бардин обнаружил, что ошиблись. Электроны образовали барьер на поверхности. Его прорыв был тем, что им было нужно. Не сказав Шокли о изменения, которые они вносили в расследование, Бардин и Браттейн работал над. 16 декабря 1947, они построили транзистор с точечным контактом, из полосок золотой фольги на пластиковом треугольнике, вставленном в контакт с пластиной германия.

Когда Бардин и Браттейн позвонили Шокли, чтобы сообщить ему изобретения, Шокли был доволен результатами группы и в ярости, что он не принимал непосредственного участия. Он решил, что для сохранения его положение, он должен был бы сделать Бардина и Браттейна лучше.

Его устройство, многослойный транзистор, было развивается в порыве творчества и гнева, в основном в гостиничном номере в Чикаго. Всего ему потребовалось четыре недели работы пером на бумаге, хотя потребовалось еще два года, прежде чем он смог построить его. Его устройство было более прочным и практичным, чем устройство Бардина и Браттейна. транзистор с точечным контактом, и гораздо проще для производства. Он стал центральным артефактом электронной возраст. Автор Майкл Риордан говорит, что Бардина и Браттейна «оттеснили». Это оскорбление разрушило команду, превратив когда-то совместную атмосферу в тот, который был высококонкурентным. Проблемы, чьи имена должны быть на патенте на устройство, и кто должен быть представлен в рекламе фотографии, еще больше усилили напряжение.

Лаборатории Белла решили представить изобретение 30 июня. 1948. С помощью инженера Джона Пирса который в свободное время писал научную фантастику, Bell Labs остановились на название “транзистор” — объединяющее идеи «транс-сопротивление» с названиями других устройств, таких как термисторы.

Изобретение в то время не привлекло особого внимания, либо в популярной прессе или в промышленности. Но Шокли увидел его потенциал. Он покинул Bell Labs, чтобы основать Shockley Semiconductor в Пало-Альто, Калифорния. Он нанял превосходных инженеров и физиков, но, по химик Гарри Селло, личность Шокли изгнал восемь из его лучших и умнейших. Эти «предательские восемь” основал новую компанию под названием Fairchild Полупроводник. Боб Нойс и Гордон Мур, двое из восьми, сформировал корпорацию Intel. Они (и другие в Техасе Instruments) изобрели интегральную схему. Сегодня, Intel ежедневно производит миллиарды транзисторов на своих интегральных схемах, тем не менее Бардин, Браттейн и Шокли зарабатывали очень мало денег на своих исследовать. Тем не менее, компания Шокли положила начало Silicon. Долина.

Бардин ушел из Bell Labs в Университет Иллинойса, где он получил вторую Нобелевскую премию. Браттейн оставался там несколько лет, а потом ушел преподавать. Шокли потерял компанию и преподавал в Стэнфорде. какое-то время, а затем был вовлечен в пресловутый спор о расе, генетика и интеллект, которые разрушили его репутацию.

В 1950-х и 1960-х годах большинство компаний США решили сосредоточиться их внимание на военный рынок в производстве транзисторной продукции. Это оставило дверь широко открытой для японских инженеров, таких как Масару. Ибука и Акио Морита, основавший новую компанию Sony Electronics. которая массово производила крошечные транзисторные радиоприемники. Президент Bell Labs Почетный Ян Росс сказали, что часть их успеха заключалась в развитии способности для быстрого массового производства транзисторов.

Транзисторное радио изменило мир, открыв век информации. Информация могла быстро разлететься по концам Земли до такой степени, что историк Чарльз Стюарт услышал о убийство Мартина Лютера Кинга-младшего бедуинскими племенами в Сахара вскоре после того, как это произошло.

Первоначальная тройка встречалась несколько раз после расставания: однажды в Стокгольме, Швеция, чтобы получить 1956 Нобелевская премия за их вклад в физику, и еще раз в Bell Labs в 1972 году в ознаменование 25 -й годовщины их изобретения. Они праздновали то, чего не могли знать, когда впервые начали работать над транзистором – что они собирались изменить Мир.

Наверх

__________________
Для дополнительного чтения
, см. Майкл Риордан и Лилиан Кристалл Ходдесона Огонь: изобретение транзистора и рождение информационного века, Нью-Йорк, В. В. Нортон (1998)

Ресурсы: Новостной видеоролик на этой странице произведено Bell Labs, авторские права принадлежат AT&T Bell Labs.


-PBS Online- -Сайт Кредиты- -Фото Кредиты- -Отзывы-

Авторское право 1999 г. , ScienCentral, Inc. и Американский институт физики. Нет часть этого веб-сайта может быть воспроизведена без письменного разрешения. NavKnob является товарным знаком ScienCentral, Inc. Все права защищены.

№ 2798: Вот мощный транзистор

№ 2798: ТРАНЗИСТОР

от Fitz Walker

Щелкните здесь для прослушивания аудио эпизода 2798

Сегодня маленький предмет производит большое впечатление. Университет Хьюстона представляет сериал о машинах, на которых работает наша цивилизация, и о людях, чья изобретательность их создала.

В конце прошлого века много говорили о лучших изобретениях ХХ века. Телевидение, интернет, самолеты — все это высоко оценивается медиа-экспертами. Я не помню, чтобы в то время был достигнут какой-либо консенсус. Но я помню свои мысли о том, что должно было стать изобретением номер один: о транзисторе.

Трудно представить себе какое-либо другое устройство, которое так сильно повлияло бы на нашу жизнь. Без транзисторов у нас не было бы компактной персональной электроники, смартфонов, умной техники и всего умного. Персональный компьютер был бы немыслимо огромен. И забудьте о том, чтобы положить мобильный телефон в карман. Транзисторы образуют строительные блоки компьютерных микросхем и являются частью всех современных электронных устройств. Наше передовое общество обязано этой крошечной, недооцененной части технологии.


Реплика первого транзистора.

До появления транзисторов нам приходилось использовать электронные лампы для управления электрическими цепями. Вакуумные трубки большие, неэффективные и быстро изнашиваются. Эти качества делают их непрактичными для небольших и сложных устройств. Транзисторы могут выполнять ту же работу в гораздо меньшем корпусе и делать все это без износа.

Транзистор обязан своим созданием трем ученым Лаборатории Белла: Джону Бардину, Уильяму Шокли и Уолтеру Браттейну. Им поручили решить задачу. Массовый рост использования телефонов потребовал эффективных и надежных электронных усилителей голоса.

Итак, Уильям Шокли собрал группу ученых для экспериментов с новыми материалами, называемыми полупроводниками — названными так потому, что их электрические свойства находятся между свойствами изолятора и проводника. Полупроводники впервые нашли широкое применение в радиолокационных системах времен Второй мировой войны. Команда Shockleys решила посмотреть, смогут ли они использовать эти уникальные свойства для создания лучшего усилителя.

В результате их экспериментов в 1947 году было получено примитивное электронное устройство, изготовленное из кристалла германия и золота. Это странное устройство позволяло контролировать большое количество энергии при малом потреблении энергии. Он был примитивным и не очень маленьким, но работал. Шокли лично усовершенствовал дизайн грубой и капризной версии, впервые разработанной его командой. К 19В 50-х годах транзисторы производились массово, и они произвели революцию в мире.


Изобретатели транзистора Джон Бардин, Уильям Шокли и Уолтер Браттейн.

Транзисторы

не сразу стали хитом. Первые годы были связаны с высокими производственными затратами и незначительными полезными качествами. В течение почти двадцати лет большая часть производства транзисторов предназначалась для военных. Только в конце 1960-х транзисторы были достаточно дешевы и надежны, чтобы штурмом завоевать потребительский рынок.

Их первое настоящее усовершенствование было сделано малоизвестной компанией Texas Instruments. Они разработали использование более дешевого кремния вместо германия. А затем они продолжили разработку первых очень компактных корпусов транзисторов, называемых интегральными схемами. Это были первые компьютерные чипы. С тех пор транзисторы трансформировались и эволюционировали в такое множество форм, что их изобретатели, вероятно, были бы неузнаваемы, будь они живы сейчас.


Современные компьютерные чипы могут содержать около 500 миллионов транзисторов.

Что касается Уильяма Шокли, отца транзистора, он покинул Bell Labs, чтобы основать собственную компанию в Пало-Альто, Калифорния. Его компания станет первой в коридоре высоких технологий, который мы сегодня знаем как Силиконовую долину.

Я Фитц Уокер от имени Университета Хьюстона, интересуюсь тем, как работают изобретательные умы.

(Музыкальная тема)


Первые два изображения — это реверанс с commons.wikimedia.org, а последнее изображение любезно предоставлено Фитцем Уокером.

Краг, Хельге. Квантовые поколения: история физики в двадцатом веке . Издательство Принстонского университета, 1999. Печать.

http://inventors.about.com/od/tstartinventions/a/transistor_history.htm

http://www.

Оставить комментарий