M формула физика: Формула массы тела в физике

{n} m_{i}(1)$$

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Содержание

Инертная масса

Свойство инертности материальной точки состоит в том, что если на точку действует внешняя сила, то у нее возникает конечное по модулю ускорение. Если внешних воздействий нет, то в инерциальной системе отсчета тело находится в состоянии покоя или движется равномерно и прямолинейно. Масса входит во второй закон Ньютона:

$$\bar{F}=m \bar{a}(2)$$

где масса определяет инертные свойства материальной точки (инертная масса).

Гравитационная масса

Масса материальной точки входит в закон всемирного тяготения, при этом она определяет гравитационные свойства данной точки.при этом она носит название гравитационной (тяжелой) массы.

Эмпирически получено, что для всех тел отношения инертных масс к гравитационным являются одинаковыми.

{2}}}}$$

Слишком сложно?

Формула массы тела не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какова масса 2м3 меди?

Решение. Будем считать, что медь однородна и для решения задачи используем формулу:

$$m=\rho V$$

При этом если известно вещество (медь), то можно при помощи справочника найти ее плотность. Плотность меди будем считать равной $\rho$ Cu=8900 кг/м3 . Для расчета все величины известны. Проведем вычисления:

$m=8900 \cdot 2=17800$ (кг)

Ответ. $m=8900 \cdot 2=17800$ (кг)

Читать дальше: Формула момента силы.

Сила тяжести – в чем измеряется? Чему равна?

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.


Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.



Сила тяготения

В 1682 году Исаак Ньютон открыл Закон Всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон Всемирного тяготения

F = GMm/R2

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6.

67 × 10-11 м3 кг-1 с-2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря Закону Всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей

Несколько лет назад ученые открыли такое явление, как гравитационные волны — но это не тоже самое, что гравитация:

Источник: YouTube-канал «Это работает»

Сила тяжести

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с2

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны.

Но разница все-таки есть, давайте разбираться.

Эта формула и правда аналогична силе тяжести. Вес тела в состоянии покоя численно равен массе тела, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.


Также, важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. Вес зависит также от ускорения, с которым движутся тело или опора.

Например, в лифте вес тела зависит от того, куда и с каким ускорением движется тело. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения.

F = mg

F = GMm/R2

Приравниваем правые части:

mg = GMm/R2

Делим на массу левую и правую части:

g = GM/R2

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально, эта формула нужна.

Формула для ускорения свободного падения

g = GM/R2

F — сила тяготения [Н]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6. 67 × 10-11 м3 кг-1 с-2

А теперь задачка

Определить силу тяжести, действующую на тело массой 80 кг.

Решение:

Не смотря на кажущуюся простоту, тут есть над чем подумать.Вроде бы просто нужно взять формулу F = mg, подставить числа и дело в шляпе.

Да, но есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значения, что мы указывали выше: g = 9,8 м/с2.

В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с2.

Итак, F = mg.

F = 80*10 = 800 Н

Ответ: 800 Н.

Учимся летать

В серии книг Дугласа Адамса «‎Автостопом по Галактике»‎ говорится, что летать — это просто промахиваться мимо Земли. Если ты промахнулся мимо Земли и достиг первой космической скорости 7,9 км/с, то ты стал искусственным спутником Земли.

Искусственный спутник Земли — космический летательный аппарат, который вращается вокруг Земли по геоцентрической орбите. Чтобы у него так получалось, аппарат должен иметь начальную скорость, равную или большую первой космической скорости.

Кстати, есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы.

Подробнее о возможностях полетов и невесомости читайте в нашей статье про вес тела.

Основные формулы молекулярной физики – материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

В кодификаторе ЕГЭ нет тем, непосредственно относящихся к содержанию данного листка. Однако без этого вводного материала дальнейшее изучение молекулярной физики невозможно.

Введём основные величины молекулярной физики и соотношения между ними.

— масса вещества, — объём вещества, — плотность вещества (масса единицы объёма). Отсюда

— число частиц вещества (атомов или молекул).
— масса частицы вещества. Тогда

— концентрация вещества (число частиц в единице объёма), . Отсюда

Что получится, если умножить на ? Произведение массы частицы на число частиц в единице объёма даст массу единицы объёма, т. е. плотность. Формально:

Итак,

Массы и размеры частиц невообразимо малы по нашим обычным меркам. Например, масса атома водорода порядка г, размер атома порядка см. Из-за столь малых значений масс и размеров число частиц в макроскопическом теле огромно.

Оперировать столь грандиозными числами, как число частиц, неудобно. Поэтому для измерения количества вещества используют специальную единицу — моль.

Один моль — это количество вещества, в котором содержится столько же атомов или молекул, сколько атомов содержится в граммах углерода. А в граммах углерода содержится примерно атомов. Стало быть, в одном моле вещества содержится частиц. Это число называется постоянной Авогадро: моль.

Количество вещества обозначается . Это число молей данного вещества.

Что получится, если умножить на ? Число молей, умноженное на число частиц в моле, даст общее число частиц:

Масса одного моля вещества называется молярной массой этого вещества и обозначается ( = кг/моль). Ясно, что

Как найти молярную массу химического элемента? Оказывается, для этого достаточно заглянуть в таблицу Менделеева! Нужно просто взять атомную массу (число нуклонов) данного элемента — это будет его молярная масса, выраженная в г/моль. Например, для алюминия , поэтому молярная масса алюминия равна г/моль или кг/моль.

Почему так получается? Очень просто. Молярная масса углерода равна г/моль по определению. В то же время ядро атома углерода содержит нуклонов. Выходит, что каждый нуклон вносит в молярную массу г/моль. Поэтому молярная масса химического элемента с атомной массой оказывается равной г/моль.

Молярная масса вещества, молекула которого состоит из нескольких атомов, получается простым суммированием молярных масс. Так, молярная масса углекислого газа равна г/моль кг/моль.

Будьте внимательны с молярными массами некоторых газов! Так, молярная масса газообразного водорода равна г/моль, поскольку его молекула состоит из двух атомов . То же касается часто встречающихся в задачах азота и кислорода Вместе с тем, наиболее частый персонаж задач — гелий — является одноатомным газом и имеет молярную массу г/моль, предписанную таблицей Менделеева.

Ещё раз предостережение: при расчётах не забывайте переводить молярную массу в кг/моль! Если ваш ответ отличается от правильного на три порядка, то вы наверняка сделали именно эту, очень распространённую ошибку 🙂

Что получится, если умножить на ? Масса частицы, умноженная на число частиц в моле, даст массу моля, т. е. молярную массу:

Урок 21. релятивистские эффекты – Физика – 11 класс

Физика, 11 класс

Урок №21. Релятивистские эффекты

На уроке рассматриваются понятия: энергия покоя, полная энергия частиц; связь массы и энергии в специальной теории относительности; релятивистский импульс частицы, релятивистская кинетическая энергия; принцип соответствия.

Глоссарий урока:

Релятивистская механика – раздел физики, где описывается движение частиц со скоростями близкими к скорости света.

Закон взаимосвязи энергии и массы – тело обладает энергией и при нулевой скорости, такую энергию называют энергией покоя.

Релятивистская энергия составляет сумму собственной энергии частицы и релятивистской кинетической энергии.

Безмассовыми называют частицы массы, которых в состоянии покоя равны нулю, они существуют только в движении, при этом во всех инерциальных системах отсчёта их импульс и энергия не равны нулю.

Массовыми называют частицы, для которых масса является важной характеристикой, мерой инертности тела.

Принцип соответствия – это подтверждение законов Ньютона и классических представлений о пространстве и времени, рассматриваются как частный случай релятивистских законов при скоростях намного меньших скорость света.

Согласно принципу соответствия любая теория, претендующая на более глубокое описание явлений и на более широкую сферу применимости, должна включать предыдущую теорию, как предельный случай.

Обязательная литература:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 239 – 241.
  2. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 147 – 149

Дополнительная литература:

  1. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений – М. : Мнемозина, 2001. – С. 253-260.
  2. Кирик Л.А., Генденштейн Л.Э., Гельфгат И.М.. Задачи по физике. 10-11 классы для профильной школы. – М.: Илекса, 2010. – С. 311-315.
  3. Айзексон У., Эйнштейн. Жизнь гения; пер. с анг. А.Ю. Каннуниковой. – М: АСТ, 2016 – С.144-157

Основное содержание темы

«Основы физики претерпели неожиданные и радикальные изменения благодаря смелости молодого и революционно мыслящего гения.»

Вернер Гейзенберг

Эти слова и множество других восхищённых эпитетов будут высказаны в адрес гениального учёного Альберта Эйнштейна. Эйнштейн не боялся опровергать общепринятые утверждения. Он разрушил представление об абсолютном времени и незыблемости пространства. Его теория утверждала, что есть движущиеся системы координат со своим относительным временем. А пространство существует, пока в нём существует всё материальное. Время идёт тем медленнее, если быстрее движется тело. Такие удобные и понятные принципы классической физики: о постоянстве массы, длины, времени, скорости – опровергаются следствиями из постулатов специальной теории относительности Эйнштейна.

Альберт (Einstein) Эйнштейн

14 марта 1879 г. – 18 апреля 1955 г.

Физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист.

По законам классической физики: масса – это мера инертности тела. Но Эйнштейн утверждает другое: масса – это мера энергии, содержащейся в теле.

Любое тело обладает энергией уже в силу своего существования. Альбертом Эйнштейном была установлена пропорциональность между энергией и массой:

На первый взгляд, простая формула, является фундаментальным законом природы, законом взаимосвязи энергии и массы.

Согласно этой формуле тело обладает энергией даже при нулевой скорости, в таком случае энергию называют E энергией покоя. А массу, которая входит в формулу Эйнштейна назовём m0 массой покоя.

Как же будет выглядеть закон взаимосвязи массы и энергии для движущегося тела? К нему добавляем радикал (релятивистский множитель) из преобразований Лоренца:

Такую формулу называют релятивистской энергией или полной энергией движущегося тела.

Релятивистская механика – раздел физики, где описываются движения тел и частиц со скоростями близкими к скорости света, где используются преобразования Лоренца, перехода из одной инерциальной системы в другую, когда одна система движется относительно другой со скоростью вдоль оси ОХ.

Любые изменения физических величин, связанные с сокращением размеров:

эффект замедления времени:

изменение массы тела при изменении энергии:

закон сложения скоростей:

в специальной теории относительности называют релятивистскими изменениями.

По законам классической физики полная энергия равна сумме кинетической и потенциальной энергий тела или частицы

Отсюда выразим кинетическую энергию тела

Релятивистская энергия составляет сумму собственной энергии частицы и релятивистской кинетической энергии

В классической физике кинетическая энергия вычисляется по формуле

Получим ещё одно выражение

Выразим кинетическую энергию из формулы релятивистской энергии:

Поставим релятивистский радикал, который можно преобразовать при малых скоростях и получим релятивистскую кинетическую энергию частицы:

Или другой способ выражения кинетической энергии, если использовать классическую кинетическую энергию, то получим

– выражение для определения релятивистской кинетической энергии.

Путём не сложных математических вычислений можно доказать, что формула определения кинетической энергии в классической физикеи формула кинетической энергии в релятивистской физике равны между собой.

Давайте проверим работают ли главные законы механики – законы Ньютона в релятивистской физике.

Первый закон Ньютона: существуют системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела.

Первый постулат СТО Эйнштейна: все физические явления протекают одинаково во всех инерциальных системах отсчёта, или никакими опытами, проводимыми в инерциальной системе отсчёта, невозможно установить её движение относительно других инерциальных систем.

Внимание! Они не противоречат друг другу!

Третий закон Ньютона: силы с которыми тела действуют друг на друга равны по модулю и направлены вдоль одной прямой в противоположные стороны. Этот закон тоже работает в релятивистской физике (смотрите первый постулат СТО).

А что же со вторым законом классической механики? Второй закон Ньютона: ускорение тела прямо пропорционально силе и обратно пропорционально его массе.

Рассмотрим предельный случай: если на тело долгое время t (время стремится к бесконечности) действовать с постоянной силой F = const, то ускорение будет постоянным a = const. Ускорение в свою очередь, зависит от скорости, с которой движется тело:

Отсюда скорость тоже будет стремиться к бесконечности, а это невозможно (смотрите второй постулат СТО), так как скорость тела или частицы не может быть больше предельного значения скорости света ()!

Но давайте рассмотрим другую формулировку второго закона Ньютона, когда сила прямо пропорциональна изменению импульсов тела ко времени этого изменения:

В классической механике импульс равен произведению массы тела или частицы на его скорость: , где m – постоянная величина, мера инертности тела.

В релятивистской механике выражение импульса можно записать, используя преобразования Лоренца:

При скоростях намного меньших, чем скорость света 𝟅с, формула принимает вид классической механики Ньютона

Эти проявления – подтверждение законов Ньютона и классических представлений о пространстве и времени, рассматривают как частный случай релятивистских законов при скоростях намного меньших скорости света и называют принципом соответствия. Согласно принципу соответствия любая теория, претендующая на более глубокое описание явлений и на более широкую сферу применимости, должна включать предыдущую теорию, как предельный случай. То есть законы классической механики подтверждаются релятивистской, но только для частиц или тел, движущихся с малыми скоростями.

В природе существуют такие частицы (фотоны, мюоны, нейтрино), скорость которых равна или близка к скорости света. Массы таких частиц в состоянии покоя равны нулю, эти частицы называют безмассовыми. Они существуют только в движении, но во всех инерциальных системах отсчёта их импульс и энергия не равны нулю. Тогда подтверждается утверждение Эйнштейна, что масса – это мера энергии тела. Частицы, для которых масса является важной характеристикой – мерой инертности, называют массовыми.

Найдём соотношение между энергией и импульсом:

Взаимно уничтожаются подкоренные выражения, сокращается произведение массы на скорость света, и мы получим простое соотношение энергии и импульса, где нет зависимости от массы.

Энергия и импульс связаны соотношением

Поэтому во всех инерциальных системах отсчёта импульс и энергия не равны нулю. При превращениях элементарных частиц, обладающих массой покоя , в частицы у которых , их энергия покоя целиком превращается в кинетическую энергию вновь образовавшихся частиц. Этот факт является наиболее очевидным экспериментальным доказательством существования энергии покоя.

Во всех инерциальных системах отсчёта импульс частицы и её энергия связаны соотношением:

или

– эта формула является фундаментальным соотношением энергии и импульса для массовых частиц релятивистской механики. Эти соотношения экспериментально подтверждены.

Следовательно, для безмассовых частиц, где или , выражение примет вид

Основное выражение энергии через её импульс записывают так:

Отсюда, масса, движущейся частицы, будет равна

Если частица покоится, то её значение можно определить из основной формулы Эйнштейна взаимосвязи массы и энергии:

В обычных условиях, при нагревании тела или его охлаждении, при химической реакции, эти приращения массы происходят, их можно вычислить, но изменения массы не так заметны. Энергию, полученную из расщепления ядер на атомных электростанциях, используют на благо человека, где незначительные массы радиоактивного топлива вырабатывают энергию, питающую электроэнергией огромные города. Но, к сожалению, такую энергию, высвобождающуюся при цепной реакции, люди использовали и военных целях, для уничтожения городов, людей. Поэтому, только в последствии, понимая ответственность за свои открытия, учёные искренне становятся общественными деятелями: правозащитниками и борцами за мир.

Рассмотрим задачи тренировочного блока урока:

1. Чтобы выработать количество энергии, которой обладает тело массой 1 кг, Красноярской ГЭС потребуется времени _________ суток (1,5·107; 173,6; 182,3). Мощность Красноярской ГЭС 6000МВт.

Дано:

m = 1 кг

P = 6000 МВт = 6·109 Вт

t – ? (сутки)

Воспользуемся выражением, описывающим зависимость энергии тела от массы:

И зависимостью мощности от работы и времени:

Выразим секунды в часах, а затем в сутках:

Ответ: 173,6 суток.

2. Чему равен импульс протона, летящего со скоростью 8,3·107 м/с? На сколько будет допущена ошибка, если пользоваться формулами классической физики? Данные поученных вычислений занесите в таблицу:

Физические величины

Показатели

Масса покоя протона, m

1,67·10-27 кг

Скорость света, с

3·108 м/с

Скорость движения протона, 𝟅

8,3·107 м/с

Импульс протона по классическим законам, рк

?

Импульс протона по релятивистским законам, рр

?

Разница в вычислениях импульса протона,

?

Воспользуемся формулами для определения импульса релятивистским и классическим способами:

Вычислим разницу показаний:

Физические величины

Показатели

Масса покоя протона, m

1,67·10-27кг

Скорость света, с

3·108 м/с

Скорость движения протона, 𝟅

8,3·107 м/с

Импульс протона по классическим законам, рк

1,38·10-19кг·м/с

Импульс протона по релятивистским законам, рр

5,2·10-19 кг·м/с

Разница в вычислениях импульса протона,

в 3,8 раза

Вес тела в физике: формула, масса, сила тяжести

 

В жизни мы очень часто говорим: «вес 5 килограмм», «весит 200 грамм» и так далее. И при этом не знаем, что допускаем ошибку, говоря так. Понятие веса тела изучают все в курсе физики в седьмом классе, однако ошибочное использование некоторых определений смешалось у нас настолько, что мы забываем изученное и считаем, что вес тела и масса это одно и то же.

Однако это не так. Более того, масса тела величина неизменная, а вот вес тела может меняться, уменьшаясь вплоть до нуля. Так в чем же ошибка и как говорить правильно? Попытаемся разобраться.

Вес тела и масса тела: формула подсчета

Масса это мера инертности тела, это то, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли.

Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной.2

Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору.

Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.

Вес тела в невесомости

В состоянии невесомости вес тела равен нулю. Тело не будет давить на опору или растягивать подвес и весить ничего не будет. Однако, будет по-прежнему обладать массой, так как, чтобы придать телу какую-либо скорость, надо будет приложить определенное усилие, тем большее, чем больше масса тела.

В условиях же другой планеты масса также останется неизменной, а вес тела увеличится или уменьшится, в зависимости от силы притяжения планеты. Массу тела мы измеряем весами, в килограммах, а чтобы измерить вес тела, который измеряется в ньютонах, можно применить динамометр специальное устройство для измерения силы.

Конечно, в быту не принципиально, если мы смешиваем понятия веса и массы. Но знать разницу все же необходимо для того, чтобы считать себя образованным человеком.

Нужна помощь в учебе?



Предыдущая тема: Сила упругости: закон Гука.
Следующая тема:&nbsp&nbsp&nbspЕдиницы силы: Ньютон

Инвариантная масса • Физика элементарных частиц • LHC на «Элементах»

Инвариантная масса — исключительно важная характеристика коллектива частиц, описывающая их разлет относительно друг друга. Без измерения и обсуждения инвариантной массы не обходится практически никакой анализ современных коллайдерных данных. Однако прежде, чем рассказывать об инвариантной массе, начнем с одного недоразумения, касающегося понятия массы.

Масса не растет со скоростью!

Есть широко распространенное убеждение, что масса растет со скоростью; ее часто называют «релятивистской массой». Это убеждение основано на неправильной интерпретации связи между энергией и массой: мол, раз с увеличением скорости растет энергия, значит растет и масса. Это утверждение встречается не только во многих популярных книжках, но и в школьных и даже в вузовских учебниках физики.

Это утверждение неверно (для пущей педантичности см. приписку ниже мелким шрифтом). Масса — в том виде, в котором это слово понимает современная физика, и в особенности физика элементарных частиц, — от скорости не зависит. От скорости зависит энергия частицы и ее импульс, при околосветовых скоростях меняются законы динамики и кинематики. Но масса частицы — величина, которая связана с полной энергией E и импульсом p формулой

m2 = E2/c4 – p2/c2,

остается неизменной. В популярных материалах эту величину называют «массой покоя» и противопоставляют ее «релятивистской массе», но подчеркнем еще раз: это разделение проводится только в популярных материалах и в некоторых курсах физики. В современной физике нет никакой «релятивистской массы», в ней есть только «масса», определенная этим уравнением. Термин «релятивистская масса» — это неудачный прием популяризации физики, давным-давно уже от настоящей физики оторвавшийся.

Для читателя, который уже наслышан об этой проблеме, а может быть, даже поучаствовал в спорах по поводу нее, такая точка зрения может показаться несколько «экстремистской». Ведь формально мы можем ввести понятие релятивистской массы и переписать все уравнения с помощью нее, а не настоящей массы, и никакой математической ошибки мы при этом не совершим. Так почему же «релятивистскую массу» лишают права на существование?

Дело в том, что этот термин бесплоден с научной точки зрения и вреден с педагогической. Во-первых, опыт показывает, что он вовсе не упрощает понимание теории относительности (если под пониманием подразумевать что-то большее, чем просто знание нескольких слов). Во-вторых, он сбивает с толку «житейскую интуицию» непосвященного читателя и часто приводит его к ошибочным умозаключениям (например, о том, что тело, движущееся со скоростью, достаточно близкой к скорости света, неизбежно превратится в черную дыру из-за «возросшей массы»). Этот термин подспудно настраивает интуицию читателя на принятие выводов о том, что с частицей могут происходить изменения, зависящие от системы отсчета. И наконец, — повторим снова! — «релятивистская масса» не соответствует ни одной реальной характеристике частицы, которые знает современная физика; это исключительно прием популяризации физики.

Поэтому с образовательной точки зрения намного полезнее вообще не вводить этот термин.

Подробнее про происхождение и вред этого заблуждения см. в многочисленных публикациях выдающегося физика Льва Борисовича Окуня, например в заметке «Релятивистская» кружка.

Инвариантная масса

Пусть у нас есть две частицы с энергиями E1 и E2 и импульсами p1 и p2 (жирный шрифт указывает на то, что импульс — вектор). Это могут быть две сталкивающиеся или две разлетающиеся частицы, неважно. Их массы, разумеется, вычисляются по энергиям и импульсам в соответствии с приведенной выше формулой.

Мы хотим теперь что-то узнать о свойстве этой пары частиц как единой системы. Мы можем написать полную энергию E12 и полный импульс p12 этой системы, E12 = E1 + E2, p12 = p1 + p2, при этом импульсы суммируются как вектора. А значит, мы можем вычислить и некую похожую на массу величину m12 по формуле

m122 = E122/c4 – p122/c2.

Эта величина m12 и называется инвариантной массой пары частиц. Ее важнейшее свойство состоит как раз в том, что она инвариантна, то есть не зависит от системы отсчета, в которой мы проводим вычисление (хотя энергии и импульсы зависят).

Обратим внимание, что инвариантная масса вовсе не равна сумме масс двух частиц! Более того, несложно доказать, что m12 ≥ m1 + m2, причем равенство возможно только тогда, когда две частицы движутся с одинаковыми скоростями (то есть первая частица покоится с точки зрения второй). Итак, для пары частиц у нас имеются три независимых характеристики, не зависящие от системы отсчета: m1, m2 и m12.

Если мы изучаем не две частицы, а больше, то инвариантные массы по этим правилам можно сосчитать не только для всей системы целиком, но и для любой пары, тройки и вообще любой комбинации этих частиц. Заметьте, что сосчитав эти массы, мы еще ничего не утверждаем про сами частицы, про их происхождение, про то, в каких «отношениях» они состоят друг с другом. Это просто дополнительные кинематические величины, которые не зависят от системы отсчета.

Инвариантная масса как «метка» происхождения частиц

Инвариантная масса характеризует, насколько бурно частицы разлетаются друг от друга, насколько интенсивен этот разлет (или их столкновение, если речь идет о сталкивающихся частицах). Говоря совсем упрощенно, если разлет частиц представить себе как «микровзрыв» коллектива частиц, то инвариантная масса характеризует «энергетический баланс» этого микровзрыва. Для примера на рис. 1 показаны две ситуации, в которых энергии двух частиц E1 и E2 и модули их импульсов |p1| и |p2| одни и те же, но инвариантные массы разные.

Главная польза от инвариантной массы в том, что она помогает узнать происхождение этих частиц: получились ли они от распада какой-то одной промежуточной нестабильной частицы или же родились в разных процессах. В первом случае их инвариантная масса примерно совпадает с массой этой нестабильной частицы, а во втором случае она может быть произвольной. Этот прием сплошь и рядом используется при анализе результатов столкновений элементарных частиц; именно с помощью него мы узнаем о быстротечном существовании нестабильных частиц и умеем отделять разные типы событий друг от друга.

Возьмем ставший уже знаменитым пример: поиск хиггсовского бозона на Большом адронном коллайдере через его распад на два фотона. Если хиггсовский бозон рождается в столкновении, он может распасться на два фотона (рис. 2, слева). Но такая же пара фотонов может получиться и сама по себе, безо всяких промежуточных частиц, просто за счет излучения фотонов кварками (рис. 2, справа). Детектор в обоих случаях увидит пару фотонов и не сможет сказать, за счет чего они появились. Просто детектируя фотоны, мы не сможем доказать, что у нас действительно иногда происходит рождение и распад бозона Хиггса.

На помощь приходит изучение инвариантной массы двух фотонов mγγ. В каждом конкретном событии с двумя фотонами надо вычислить эту инвариантную массу, а затем подсчитать, сколько событий с какой инвариантной массой у нас получилось, и построить график: количество событий в зависимости от mγγ. Если хиггсовского бозона в данных нет (или пока не видно), эта зависимость будет плавной — ведь энергии и импульсы двух фотонов не связаны, поэтому инвариантная масса может получиться какой угодно. Если же хиггсовский бозон есть, на графике должен проступить бугорок. Этот бугорок — это те дополнительные события, которые получились именно за счет рождения бозона Хиггса и его распада на два фотона. Положение бугорка укажет на массу бозона, а его высота — на интенсивность этого процесса.

На рис. 3 показаны данные детектора ATLAS по результатам 2011-го и 2012 года в области инвариантной массы двух фотонов от 100 до 160 ГэВ. Виден более-менее плавный фон, уменьшающийся с ростом mγγ и вызванный как раз независимым рождением двух фотонов. И на этом фоне хорошо заметен нужный бугорок в районе 125 ГэВ. Он не слишком сильный, но благодаря маленьким погрешностям у него большая статистическая значимость, а значит, существование новой частицы, распадающейся на два фотона, можно считать экспериментально доказанным.

Дополнительная литература:

Потенциальная энергия: определение, виды, формулы

Определение потенциальной энергии

Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.

Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии

Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.

Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии

Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.

А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:

А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.

Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.

Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.

Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.

Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):

А = –Fупр(ср.)*s,

Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.

Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:

Fупр(ср.) = (Fупр(нач.) + Fупр(конеч.))/2

И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:

А = —kх*s/2

Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.

В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.

Что еще почитать?

Методические советы учителям

1) Обязательно обратите внимание учащихся на связь энергии и работы.

2) Не давайте учащимся формулы потенциальной энергии без вывода.

3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.

4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.

5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Equations of Motion – The Physics Hypertextbook

Обсуждение

постоянное ускорение

Для большей точности этот раздел следует называть «Одномерные уравнения движения при постоянном ускорении». Учитывая, что такое название было бы стилистическим кошмаром, позвольте мне начать этот раздел со следующей оговорки. Эти уравнения движения действительны только тогда, когда ускорение постоянное и движение ограничено прямой линией.

Учитывая, что мы живем в трехмерной вселенной, в которой единственная константа – это изменение, у вас может возникнуть соблазн сразу отказаться от этого раздела.Было бы правильно сказать, что ни один объект никогда не двигался по прямой с постоянным ускорением в любом месте Вселенной в любое время – ни сегодня, ни вчера, ни завтра, ни пять миллиардов лет назад, ни тридцать миллиардов лет в будущем. , никогда. Об этом я могу сказать с абсолютной метафизической уверенностью.

Так что же тогда хорошего в этом разделе? Что ж, во многих случаях полезно предположить, что объект путешествовал или будет двигаться по прямому пути с почти постоянным ускорением; то есть любое отклонение от идеального движения можно по существу игнорировать.Движение по криволинейной траектории можно считать фактически одномерным, если существует только одна степень свободы для задействованных объектов. Дорога может изгибаться и поворачиваться и исследовать всевозможные направления, но автомобили, движущиеся по ней, имеют только одну степень свободы – свободу двигаться в одном или противоположном направлении. (Вы не можете ездить по дороге по диагонали и надеетесь остаться на ней надолго.) В этом отношении это мало чем отличается от движения, ограниченного прямой линией. Аппроксимация реальных ситуаций моделями, основанными на идеальных ситуациях, не считается обманом.Так поступают в физике. Это настолько полезный метод, что мы будем использовать его снова и снова.

Наша цель в этом разделе состоит в том, чтобы вывести новые уравнения, которые можно использовать для описания движения объекта в терминах его трех кинематических переменных: скорости ( v ), положения ( с, ) и времени ( т ). Есть три способа объединить их в пары: скорость-время, положение-время и скорость-положение. В этом порядке их также часто называют первым, вторым и третьим уравнениями движения, но нет веских причин для изучения этих имен.

Поскольку мы имеем дело с движением по прямой линии, направление будет обозначено знаком – положительные величины указывают в одну сторону, а отрицательные величины указывают в противоположную сторону. Определение того, какое направление является положительным, а какое отрицательным, совершенно произвольно. Законы физики изотропны ; то есть они не зависят от ориентации системы координат. Однако некоторые проблемы легче понять и решить, если одно направление предпочтительнее другого.Пока вы последовательны в решении проблемы, это не имеет значения.

скорость-время

Связь между скоростью и временем проста при равномерно ускоренном прямолинейном движении. Чем дольше ускорение, тем больше изменение скорости. Изменение скорости прямо пропорционально времени, когда ускорение постоянно. Если скорость увеличивается на определенную величину за определенное время, она должна увеличиваться вдвое на эту величину в два раза быстрее. Если объект уже стартовал с определенной скоростью, то его новая скорость будет равна старой скорости плюс это изменение.Вы должны быть в состоянии увидеть уравнение уже мысленным взором.

Это самое простое из трех уравнений, которое можно вывести с помощью алгебры. Начнем с определения ускорения.

Расширить ∆ v до v v 0 и сжать ∆ t до t .

Затем найдите v как функцию от t .

v = v 0 + при [1]

Это первое уравнение движения .Он записан как полином – постоянный член ( v 0 ), за которым следует член первого порядка ( на ). Поскольку наивысший порядок равен 1, правильнее называть его линейной функцией .

Символ v 0 [vee naught] называется начальной скоростью или скоростью за время t = 0. Его часто называют «первой скоростью», но это довольно наивный способ Опишите это. Лучшее определение было бы сказать, что начальная скорость – это скорость, которую имеет движущийся объект, когда он впервые становится важным в проблеме.Скажем, метеор был замечен глубоко в космосе, и проблема заключалась в том, чтобы определить его траекторию, тогда начальная скорость, вероятно, будет той скоростью, которую он имел при первом наблюдении. Но если проблема заключалась в том, что тот же самый метеор сгорает при входе в атмосферу, тогда начальная скорость, вероятно, будет той скоростью, которую он имел при входе в атмосферу Земли. Ответ на вопрос “Какая начальная скорость?” “Это зависит от обстоятельств”. Это оказывается ответом на множество вопросов.

Обозначение v – это скорость через некоторое время t после начальной скорости.Ее часто называют конечной скоростью , но это не делает ее «последней скоростью» объекта. Возьмем случай с метеором. Какая скорость обозначена символом v ? Если вы внимательно слушали, значит, вы должны были ожидать ответа. По-разному. Это может быть скорость метеора, когда он проходит мимо Луны, входит в атмосферу Земли или ударяется о поверхность Земли. Это также может быть скорость метеорита, находящегося на дне кратера.(В этом случае v = 0 м / с.) Является ли какое-либо из этих значений конечной скоростью? Кто знает. Кто-то мог извлечь метеорит из дыры в земле и уехать вместе с ним. Это актуально? Наверное, нет, но это зависит от обстоятельств. Для такого рода вещей нет правил. Вы должны проанализировать текст задачи на предмет физических величин, а затем присвоить значение математическим символам.

Последняя часть этого уравнения на – это изменение скорости по сравнению с начальным значением. Напомним, что a – это скорость изменения скорости, а t – это время после некоторого начального события .Ставка раз время меняется. Если объект ускоряется со скоростью 10 м / с 2 , через 5 с он будет двигаться на 50 м / с быстрее. Если бы он стартовал со скоростью 15 м / с, то его скорость через 5 с была бы…

15 м / с + 50 м / с = 65 м / с

время позиции

Смещение движущегося объекта прямо пропорционально скорости и времени. Двигайся быстрее. Иди дальше. Двигайтесь дольше (как и дольше). Иди дальше. Ускорение усугубляет эту простую ситуацию, поскольку скорость теперь также прямо пропорциональна времени.Попробуйте сказать это словами, и это прозвучит нелепо. «Смещение прямо пропорционально времени и прямо пропорционально скорости, которая прямо пропорциональна времени». Время увеличивается в два раза, поэтому смещение пропорционально квадрату времени. Автомобиль, разгоняющийся в течение двух секунд, преодолеет в четыре раза больше расстояния, чем автомобиль, разгоняющийся всего за одну секунду (2 2 = 4). Автомобиль, разгоняющийся за три секунды, преодолеет расстояние в девять раз (3 2 = 9).

Если бы это было так просто.Этот пример работает, только когда начальная скорость равна нулю. Смещение пропорционально квадрату времени, когда ускорение постоянное, а начальная скорость равна нулю. Истинное общее утверждение должно учитывать любую начальную скорость и то, как она менялась. Это приводит к ужасно запутанному утверждению соразмерности. Смещение прямо пропорционально времени и пропорционально квадрату времени, когда ускорение постоянно. Функция, которая является одновременно линейной и квадратной, называется квадратичной , что позволяет нам значительно сжать предыдущее утверждение.Смещение является квадратичной функцией времени при постоянном ускорении

Формулировки пропорциональности полезны, но не столь общие, как уравнения. Мы до сих пор не знаем, каковы константы пропорциональности для этой проблемы. Один из способов понять их – использовать алгебру.

Начнем с определения средней скорости.

Увеличьте ∆ с до с с 0 и сконденсируйте ∆ т до т .

Определите позицию.

с = с 0 + vt [a]

Чтобы продолжить, нам нужно прибегнуть к небольшому трюку, известному как теорема о средней скорости или правило Мертона . Я предпочитаю второй вариант, поскольку правило может применяться к любой величине, которая изменяется с одинаковой скоростью, а не только к скорости. Правило Мертона было впервые опубликовано в 1335 году в Мертон-колледже, Оксфорд, английским философом, математиком, логиком и калькулятором Уильямом Хейтсбери (1313–1372).Когда скорость изменения величины постоянна, ее среднее значение находится на полпути между ее конечным и начальным значениями.

v = ½ ( v + v 0 ) [4]

Подставьте первое уравнение движения [1] в это уравнение [4] и упростите его, исключив v .

v = ½ [( v 0 + при ) + v 0 ]

v = ½ (2 v 0 + при )

v = v 0 + ½ при [b]

Теперь замените [b] на [a], чтобы исключить v [vee bar].

с = с 0 + ( v 0 + ½ при ) т

И, наконец, найдите s как функцию от t .

с = с 0 + v 0 т + ½ при 2 [2]

Это второе уравнение движения . Он записывается как полином – постоянный член ( s 0 ), за которым следует член первого порядка ( v 0 t ), за которым следует член второго порядка (½ при 2 ). ).Поскольку наивысший порядок равен 2, правильнее называть его квадратичным .

Символ s 0 [ess naught] часто рассматривается как начальная позиция . Символ s – это позиция через некоторое время t позже. Если хотите, вы можете назвать ее конечной позицией . Изменение положения (∆ s ) называется смещением или расстоянием (в зависимости от обстоятельств), и некоторые люди предпочитают писать второе уравнение движения таким образом.

с = v 0 t + ½ при 2 [2]

скорость-позиция

Каждое из первых двух уравнений движения описывает одну кинематическую переменную как функцию времени. По сути…

  1. Скорость прямо пропорциональна времени при постоянном ускорении ( v t ).
  2. Смещение пропорционально квадрату времени при постоянном ускорении (∆ с т 2 ).

Объединение этих двух утверждений приводит к третьему, не зависящему от времени. При замене должно быть очевидно, что…

  1. Смещение пропорционально квадрату скорости при постоянном ускорении (∆ с v 2 ).

Это утверждение особенно важно для безопасности вождения. Когда вы вдвое увеличиваете скорость автомобиля, требуется в четыре раза больше расстояния, чтобы его остановить. Увеличьте скорость втрое, и вам понадобится в девять раз больше расстояния.Это хорошее практическое правило, которое следует запомнить.

Концептуальное введение сделано. Пришло время вывести формальное уравнение.

метод 1

Объедините первые два уравнения вместе таким образом, чтобы исключить время как переменную. Самый простой способ сделать это – начать с первого уравнения движения…

v = v 0 + при [1]

реши на время…

и подставляем во второе уравнение движения…

с = с 0 + v 0 т + ½ при 2 [2]

нравится…

с = с 0 + в 0

в в 0

+ ½ а

в в 0 2

а а
с с 0 = vv 0 v 0 2 + v 2 -2 vv 0 + v 0 2
а 2 а
2 a ( с с 0 ) = 2 ( vv 0 v 0 2 ) + ( v 2 – 2 vv 0 + v 0 2 )
2 a ( с с 0 ) = v 2 v 0 2

Возведите объект в квадрат скорости, и все готово.

v 2 = v 0 2 + 2 a ( s s 0 ) [3]

Это третье уравнение движения . Еще раз, символ s 0 [ess naught] – это начальная позиция , , а s, – это позиция через некоторое время от до . Если вы предпочитаете, вы можете написать уравнение, используя ∆ s – изменение положения , смещение или расстояние в зависимости от ситуации.

v 2 = v 0 2 + 2 a s [3]

метод 2

Более сложный способ вывести это уравнение – начать со второго уравнения движения в этой форме…

с = v 0 t + ½ при 2 [2]

и решите ее на время. Это непростая работа, поскольку уравнение квадратично. Переставьте термины так…

½ при 2 + v 0 t – ∆ s = 0

и сравните его с общей формой квадратичной.

топор 2 + bx + c = 0

Решение этого дается известным уравнением…

x = b ± √ ( b 2 – 4 ac )
2 а

Замените символы в общем уравнении эквивалентными символами из нашего преобразованного второго уравнения движения…

т = v 0 ± √ [ v 0 2 – 4 (½ a ) (∆ s )]
2 (½ a )

почисти немного…

т = v 0 ± √ ( v 0 2 – 2 a s )
а

, а затем подставьте его обратно в первое уравнение движения.

v = v 0 + при [1]

v = v 0 + a

v 0 ± √ ( v 0 2 – 2 a s )

а

Материал отменяется, и мы получаем это…

v = ± √ ( v 0 2 + 2 a s )

Выровняйте обе стороны, и все готово.

v 2 = v 0 2 + 2 a s [3]

Это было не так уж и плохо, не так ли?

исчисления выводов

Исчисление – это сложная математическая тема, но она значительно упрощает вывод двух из трех уравнений движения. По определению, ускорение – это первая производная скорости по времени. Возьмите операцию в этом определении и отмените ее. Вместо того, чтобы дифференцировать скорость, чтобы найти ускорение, интегрируйте ускорение, чтобы найти скорость.Это дает нам уравнение скорости-времени. Если мы предположим, что ускорение постоянное, мы получим так называемое первое уравнение движения [1].

а =
дв = a dt
=
v v 0 = при
в = v 0 + at [1]

Опять же, по определению, скорость – это первая производная положения по времени.Выполните эту операцию в обратном порядке. Вместо того, чтобы различать положение для определения скорости, интегрируйте скорость, чтобы найти положение. Это дает нам уравнение положения-времени для постоянного ускорения, также известное как второе уравнение движения [2].

в =
DS = v dt
DS = ( v 0 + at ) dt
=
т

( v 0 + at ) dt
0
с с 0 = v 0 t + ½ при 2
с = с 0 + v 0 t + ½ при 2 [2]

В отличие от первого и второго уравнений движения, нет очевидного способа вывести третье уравнение движения (то, которое связывает скорость с положением) с помощью расчетов.Мы не можем просто перепроектировать это по определению. Нам нужно разыграть довольно изощренный трюк.

Первое уравнение движения связывает скорость со временем. По сути, мы вывели его из этой производной…

Второе уравнение движения связывает положение со временем. Это произошло от этой производной…

Третье уравнение движения связывает скорость с положением. По логике, это должно происходить от производной, которая выглядит так…

Но что это значит? Ну, ничего по определению, но, как и все количества, оно равно себе.Он также равен самому себе, умноженному на 1. Мы будем использовать специальную версию 1 ( dt dt ) и специальную версию алгебры (алгебра с бесконечно малыми). Посмотрите, что происходит, когда мы это делаем. Мы получаем одну производную, равную ускорению ( dv dt ), и другую производную, равную обратной скорости ( dt ds ).

дв = дв 1
DS DS
дв = дв дт
DS DS дт
дв = дв дт
DS дт DS
дв = a 1
DS в

Следующий шаг, разделение переменных.Соберите вместе похожие вещи и интегрируйте их. Вот что мы получаем при постоянном ускорении…

=
в дв = и DS
=
½ ( v 2 v 0 2 ) = a ( с с 0 )
в 2 = v 0 2 + 2 a ( s s 0 ) [3]

Безусловно, умное решение, и оно было не так уж сложно, чем первые два варианта.Однако на самом деле это сработало только потому, что ускорение было постоянным – постоянным во времени и постоянным в пространстве. Если бы ускорение каким-либо образом менялось, этот метод был бы неудобно трудным. Мы вернемся к алгебре, чтобы спасти свое рассудок. Не то чтобы в этом что-то не так. Алгебра работает, а здравомыслие стоит сэкономить.

против = v 0 + при [1]
+
с = с 0 + v 0 t + ½ при 2 [2]
=
v 2 = v 0 2 + 2 a ( s s 0 ) [3]

Специальные символы – Гипертекст по физике

Это условные обозначения, используемые в этой книге.

Вязкость Сопротивление ⇐
Пространство и время
символ количество символ шт.
r , r положение, разделение, радиус, радиус кривизны кв.м. метр
с , с перемещение, расстояние кв.м. метр
θ , φ , θ, φ угол, угловое перемещение, угловое разделение, угол поворота рад радиан
x , y , z декартовы координаты кв.м. метр
î , , k декартовых единичных вектора безразмерный
r , θ, φ сферические координаты м, рад метр, радиан
r̂, θ̂, φ̂ сферических единичных вектора безразмерный
ρ, φ, z цилиндрические координаты м, рад метр, радиан
ρ̂, φ̂, ẑ цилиндрических единичных векторов без агрегата
нормальный единичный вектор без агрегата
тангенциальный единичный вектор без агрегата
ч высота, глубина кв.м. метр
ℓ, л длина кв.м. метр
г расстояние, отрыв, толщина кв.м. метр
т толщина кв.м. метр
D диаметр кв.м. метр
С окружность кв.м. метр
A , A площадь, площадь поперечного сечения, площадь проекции, площадь поверхности м 2 кв.м.
В том м 3 куб.м.
т время, продолжительность с секунды
т период, периодическое время с секунды
τ постоянная времени с секунды
f частота Гц герц
ω угловая частота рад / с радиан в секунду
Механика
символ количество символ шт.
v , v скорость, скорость м / с метр в секунду
а , а ускорение м / с 2 метр в секунду в квадрате
a c , a c центростремительное ускорение, центробежное ускорение м / с 2 метр в секунду в квадрате
г , г гравитационное поле, ускорение свободного падения м / с 2 метр в секунду в квадрате
м масса кг килограмм
F , F сила N ньютон
F г , W , W сила тяжести, вес N ньютон
Ф n , N , N нормальная сила, нормальная N ньютон
F f , f s , f k сила трения (статическая, кинетическая) N ньютон
μ с , μ k коэффициент трения (статический, кинетический) без агрегата
п., п импульс кг м / с килограмм-метр в секунду
Дж , Дж импульс Н с ньютон секунда
Вт работа Дж джоуль
E энергия, общая энергия Дж джоуль
K , K т , K r кинетическая энергия (поступательная, вращательная) Дж джоуль
U , U g , U s потенциальная энергия (гравитационная, пружинная) Дж джоуль
V г гравитационный потенциал Дж / кг джоуль на килограмм
η КПД безразмерный
п. мощность Вт Вт
ω , ω скорость вращения, частота вращения рад / с радиан в секунду
α , α ускорение вращения рад / с 2 радиан на секунду в квадрате
τ , τ крутящий момент Н м Ньютон-метр
I момент инерции кг м 2 килограмм метр в квадрате
л , л угловой момент кг м 2 / с килограмм-метр в секунду
H , H угловой импульс Н м Ньютон-метр секунда
к жесткая пружина Н / м ньютон на метр
п. давление Па паскаль
σ нормальное напряжение Па паскаль
τ напряжение сдвига Па паскаль
ρ плотность, объемно-массовая плотность кг / м 3 килограмм на кубический метр
σ удельная масса поверхности, поверхностная плотность массы кг / м 2 килограмм на квадратный метр
λ линейная массовая плотность кг / м килограмм на метр
Ф B , B , B плавучесть, подъемная сила N ньютон
q м массовый расход кг / с килограмм в секунду
q V объемный расход м 3 / с кубометров в секунду
F D , R , R сопротивление, аэродинамическое сопротивление, сопротивление воздуха N ньютон
C , C D коэффициент аэродинамического сопротивления, коэффициент аэродинамического сопротивления безразмерный
η, вязкость динамическая Па · с паскаль-секунда
ν кинематическая вязкость м 2 / с квадратных метра в секунду
млн лет Машинный номер безразмерный
Re число Рейнольдса без агрегата
Fr номер фронта без агрегата
E Модуль Юнга, модуль упругости Па паскаль
G Модуль сдвига, модуль жесткости Па паскаль
К Модуль объемной упругости, модуль сжатия Па паскаль
ε линейная деформация безразмерный
γ деформация сдвига безразмерный
θ объемная деформация без агрегата
γ поверхностное натяжение Н / м ньютон на метр
Теплофизика
символ количество символ шт.
т температура К кельвин
α линейное расширение, коэффициент линейного теплового расширения К -1 обратный кельвин
β объемное расширение, коэффициент объемного теплового расширения К -1 обратный кельвин
Q тепло Дж джоуль
в удельная теплоемкость, удельная теплоемкость Дж / кг K джоуль на килограмм кельвина
л скрытая теплота, удельная скрытая теплота Дж / кг джоуль на килограмм
n количество вещества моль
N количество частиц без агрегата
п. тепловой поток Вт Вт
к теплопроводность Вт / м K ватт на метр кельвин
ε излучательная способность безразмерный
U внутренняя энергия Дж джоуль
S энтропия Дж / К джоуль на кельвин
w пути, количество одинаковых микросостояний безразмерный
COP коэффициент полезного действия без агрегата
Электричество и магнетизм
символ количество символ шт.
q , Q заряд, электрический заряд С кулон
ρ плотность заряда, объемная плотность заряда С / м 3 кулон на кубический метр
σ поверхностная плотность заряда, поверхностная плотность заряда С / м 2 кулонов на квадратный метр
λ линейная плотность заряда С / м кулонов на метр
F E , F E электрическая сила, электростатическая сила N ньютон
E , E электрическое поле Н / З, В / м ньютон на кулон, вольт на метр
Φ E электрический поток Н · м 2 / C, В · м Ньютон-метр в квадрате на кулон, вольтметр
U , U E потенциальная энергия, электрическая потенциальная энергия Дж джоуль
В, В E напряжение, потенциал, электрический потенциал В вольт
электродвижущая сила, ЭДС В вольт
С емкость F фарад
κ диэлектрическая постоянная безразмерный
I ток, электрический ток А ампер
справа , справа , электрическое сопротивление, внутреннее сопротивление Ом Ом
ρ удельное сопротивление Ом · м омметр
G проводимость S siemens
σ проводимость См / м сименс на метр
F B , F B магнитная сила N ньютон
B , B магнитное поле Т тесла
Φ B магнитный поток Wb Вебер
N количество витков без агрегата
n витка на единицу длины, плотность витков м −1 счетчик обратный
η плотность энергии Дж / м 3 джоуль на кубический метр
S , S вектор пойнтинга, интенсивность Вт / м 2 Вт на квадратный метр
Математические обозначения и обозначения
символ описание
+ плюс, сложение, плюс
минус, вычесть, отрицательное значение
± неопределенность, погрешность, плюс-минус
· умножение, точка, скалярное произведение, скалярное произведение
× умножение, крест, векторное произведение, векторное произведение
÷, / делить
x 2 квадрат
x 3 куб
корень квадратный, корень, корень
кубический корень
1 x , x −1 обратный, обратный
= равно, равенство
примерно равно
пропорционально
не равно, неравенство
~ на заказ, тильда
< менее
> больше
меньше или равно
больше или равно
⇒, логическое следствие
логическая эквивалентность
и так далее, многоточие
следовательно
f ( x ) функция
грех синус
cos косинус
желто-коричневый касательная
зол гиперболический синус
сш гиперболический косинус
танх гиперболический тангенс
единичный вектор, шляпа, циркумфлекс
параллельно
перпендикуляр
x среднее, среднее, античастица, столбик, линия над чертой
x медиана, суперсимметричная частица, тильда
⟨⟩ среднее по времени, среднее по ансамблю, брекет
p ( x ) распределение вероятностей, функция плотности вероятности
приращение, изменение, дельта
г дифференциал, d
частичный дифференциал, d частичный
градиент, дель
∇ · расхождение, деление, точка
∇ × локон, дель-крест
2 лапласиан, дельта квадрат
суммирование, сигма
интегральный
двойной интегральный
тройной интеграл
контур интегральный
поверхность интегральная
объемный интегральный
бесконечность
0 трансфинитное число, алеф ноль

Линейный импульс и сила | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Определите количество движения.
  • Объясните взаимосвязь между импульсом и силой.
  • Укажите второй закон движения Ньютона с точки зрения количества движения.
  • Вычислить импульс с учетом массы и скорости.

Линейный импульс

Научное определение количества движения согласуется с интуитивным пониманием количества движения большинства людей: большой, быстро движущийся объект имеет больший импульс, чем меньший и более медленный объект. Линейный импульс определяется как произведение массы системы на ее скорость.В символах линейный импульс выражается как p = m v .

Импульс прямо пропорционален массе объекта, а также его скорости. Таким образом, чем больше масса объекта или чем больше его скорость, тем больше его импульс. Импульс p – это вектор, имеющий то же направление, что и скорость v . Единица измерения количества движения в системе СИ – кг · м / с.

Линейный импульс

Линейный импульс определяется как произведение массы системы на ее скорость:

p = м v

Пример 1.Расчет импульса: футболист и футбол

  1. Рассчитайте импульс футболиста весом 110 кг, бегущего со скоростью 8,00 м / с.
  2. Сравните импульс игрока с импульсом сильно брошенного футбольного мяча весом 0,410 кг, который имеет скорость 25,0 м / с.
Стратегия

Никакой информации относительно направления не дается, поэтому мы можем вычислить только величину импульса, p . (Как обычно, курсивом обозначена величина, а курсивом, полужирным шрифтом и стрелкой – вектор.) В обеих частях этого примера величина импульса может быть вычислена непосредственно из определения импульса, данного в уравнении, которое становится p = mv , когда учитываются только величины.

Решение для части 1

Чтобы определить импульс игрока, подставьте известные значения массы и скорости игрока в уравнение.

p игрок = (110 кг) (8,00 м / с) = 880 кг · м / с

Решение для части 2

Чтобы определить импульс мяча, подставьте известные значения массы и скорости мяча в уравнение.

p мяч = (0,410 кг) (25,0 м / с) = 10,3 кг · м / с

Отношение количества движения игрока к импульсу мяча равно

.

[латекс] \ displaystyle \ frac {p _ {\ text {player}}} {p _ {\ text {ball}}} = \ frac {880} {10.3} = 85.9 \\ [/ latex]

Обсуждение

Хотя мяч имеет большую скорость, игрок имеет гораздо большую массу. Таким образом, как вы могли догадаться, импульс игрока намного больше, чем импульс футбола. В результате, если игрок ловит мяч, это лишь незначительно влияет на его движение.В следующих разделах мы дадим количественную оценку тому, что происходит при таких столкновениях, с точки зрения количества движения.

Импульс и второй закон Ньютона

Важность импульса, в отличие от энергии, была признана на раннем этапе развития классической физики. Импульс считался настолько важным, что его называли «количеством движения». Ньютон фактически сформулировал свой второй закон движения в терминах количества движения: чистая внешняя сила равна изменению количества движения системы, деленному на время, в течение которого он изменяется.Используя символы, это закон

.

[латекс] \ displaystyle {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta \ mathbf {p}} {\ Delta t} [/ latex],

, где F net – чистая внешняя сила, Δp – изменение количества движения, а Δ t – изменение во времени.

Второй закон движения Ньютона по импульсу

Чистая внешняя сила равна изменению количества движения системы, деленному на время, в течение которого он изменяется.

[латекс] \ displaystyle {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta \ mathbf {p}} {\ Delta t} [/ latex]

Установление связей: сила и импульс

Сила и импульс тесно связаны.Сила, действующая с течением времени, может изменять импульс, и второй закон движения Ньютона может быть сформулирован в его наиболее широко применимой форме с точки зрения количества движения. Импульс продолжает оставаться ключевым понятием при изучении атомных и субатомных частиц в квантовой механике.

Это утверждение второго закона движения Ньютона включает более знакомую F net = м a как частный случай. Мы можем получить эту форму следующим образом. Во-первых, обратите внимание, что изменение импульса Δp определяется выражением Δp = Δ ( m v).

Если масса системы постоянна, то Δ ( м v) = м Δv.

Таким образом, для постоянной массы второй закон движения Ньютона принимает вид

.

[латекс] \ displaystyle {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta \ mathbf {p}} {\ Delta t} = \ frac {m \ Delta \ mathbf {v} } {\ Delta {t}} [/ latex]

Поскольку [latex] \ frac {\ Delta \ mathbf {v}} {\ Delta {t}} = \ mathbf {a} \\ [/ latex], мы получаем знакомое уравнение F net = m a при постоянной массе системы .

Второй закон движения Ньютона, выраженный в единицах количества движения, более широко применим, поскольку его можно применять к системам с изменяющейся массой, таким как ракеты, а также к системам с постоянной массой. Рассмотрим подробнее системы с разной массой; однако связь между импульсом и силой остается полезной, когда масса постоянна, как в следующем примере.

Пример 2. Расчетное усилие: ракетка Винус Уильямс

Во время Открытого чемпионата Франции 2007 года Винус Уильямс показала самую быструю подачу в женском матче, достигнув скорости 58 м / с (209 км / ч).Какова средняя сила, прилагаемая ракеткой Винус Уильямс к теннисному мячу весом 0,057 кг, если предположить, что скорость мяча сразу после удара составляет 58 м / с, что начальная горизонтальная составляющая скорости до удара пренебрежимо мала и что мяч оставался в контакте с ракеткой в ​​течение 5,0 мс (миллисекунд)?

Стратегия

Эта проблема включает только одно измерение, потому что мяч не имеет горизонтальной составляющей скорости до удара. Второй закон Ньютона, выраженный в единицах количества движения, записывается как

[латекс] \ displaystyle {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta \ mathbf {p}} {\ Delta t} [/ latex]

Как отмечалось выше, когда масса постоянна, изменение количества движения определяется выражением Δ p = m Δ v = m ( v f v i ).

В этом примере даны скорость сразу после удара и изменение во времени; таким образом, после вычисления Δ p можно использовать [latex] {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta {p}} {\ Delta t} [/ latex] найти силу.

Решение

Чтобы определить изменение количества движения, подставьте значения начальной и конечной скоростей в приведенное выше уравнение.

[латекс] \ begin {array} {lll} \ Delta {p} & = & m (v _ {\ text {f}} – v {\ text {i}}) \\ & = & (0,057 \ text {кг }) (58 \ текст {м / с} -0 \ текст {м / с}) \\ & = & 3.{-3} \ text {s}} \\ & = & 661 \ text {N} \ приблизительно660 \ text {N} \ end {array} \\ [/ latex]

, где на последнем этапе мы оставили только две значащие цифры.

Обсуждение

Эта величина была средней силой, прилагаемой ракеткой Винус Уильямс к теннисному мячу во время его кратковременного удара (обратите внимание, что мяч также испытал силу тяжести 0,56 Н, но эта сила не была вызвана ракеткой). Эту проблему также можно решить, сначала найдя ускорение, а затем используя F net = ma , но потребуется один дополнительный шаг по сравнению со стратегией, использованной в этом примере.

Сводка раздела

  • Линейный импульс (для краткости) определяется как произведение массы системы на ее скорость.
  • В символах, импульс p определен как p = m v , где m – масса системы, а v – ее скорость.
  • Импульс в системе СИ: кг · м / с.
  • Второй закон движения Ньютона с точки зрения количества движения гласит, что чистая внешняя сила равна изменению количества движения системы, деленному на время, в течение которого он изменяется.
  • В символах второй закон движения Ньютона определяется как [latex] {\ mathbf {F}} _ {\ text {net}} = \ frac {\ Delta \ mathbf {p}} {\ Delta t} \\ [/ latex], F net – чистая внешняя сила, Δ p – изменение количества движения, а Δ t – время изменения.

Концептуальные вопросы

  1. Объект с небольшой массой и объект с большой массой имеют одинаковый импульс. Какой объект имеет наибольшую кинетическую энергию?
  2. Объект с малой массой и объект с большой массой имеют одинаковую кинетическую энергию.Какая масса имеет наибольший импульс?
  3. Профессиональное приложение. Футбольные тренеры советуют игрокам блокировать, бить и отбиваться ногами на земле, а не прыгать в воздухе. Используя концепции импульса, работы и энергии, объясните, как футболист может быть более эффективным, стоя на земле.
  4. Как малая сила может передать объекту такой же импульс, что и большая сила?

Задачи и упражнения

  1. (a) Вычислите импульс слона весом 2000 кг, который атакует охотника со скоростью 7.50 м / с. (b) Сравните импульс слона с импульсом дротика с транквилизатором весом 0,0400 кг, выпущенного со скоростью 600 м / с. (c) Каков импульс 90-килограммового охотника, бегущего со скоростью 7,40 м / с после того, как пропустил слона?
  2. (a) Какова масса большого корабля, имеющего импульс 1,60 × 10 9 кг · м / с, когда корабль движется со скоростью 48,0 км / ч? (b) Сравните импульс корабля с импульсом артиллерийского снаряда массой 1100 кг, выпущенного со скоростью 1200 м / с.
  3. (a) С какой скоростью будет 2.00 × 10 4 -кг самолет должен лететь, чтобы иметь импульс 1,60 × 10 9 кг · м / с (такой же, как импульс корабля в задаче выше)? (b) Какова инерция самолета, когда он взлетает со скоростью 60,0 м / с? (c) Если корабль является авианосцем, который запускает эти самолеты с помощью катапульты, обсудите последствия вашего ответа на вопрос (b), поскольку он относится к эффектам отдачи катапульты на корабль.
  4. (a) Каков импульс мусоровоза, который составляет 1,20 × 10 4 кг и движется со скоростью 10.0 м / с? (b) На какой скорости мусор весом 8 кг может иметь такую ​​же скорость, что и грузовик?
  5. Неуправляемый вагон массой 15 000 кг движется по рельсам со скоростью 5,4 м / с. Вычислите время, необходимое для того, чтобы заставить автомобиль остановиться, приложив усилие в 1500 Н.
  6. Масса Земли составляет 5,972 × 10 24 кг, а ее орбитальный радиус составляет в среднем 1,496 × 10 11 м. Рассчитайте его импульс.

Глоссарий

импульс: произведение массы на скорость

второй закон движения: физический закон, который гласит, что чистая внешняя сила равна изменению количества движения системы, деленному на время, в течение которого он изменяется

Избранные решения проблем и упражнения

1.а) 1,50 × 10 4 кг м / с; (б) 625 к 1; (в) 6,66 × 10 2 кг ⋅ м / с

3. (а) 8.00 × 10 4 м / с; (б) 1,20 × 10 6 кг · м / с; (c) Поскольку импульс самолета на 3 порядка меньше, чем у корабля, корабль не будет сильно отскакивать. Отдача составит -0,0100 м / с, что, вероятно, не заметно.

5. 54 с

Формула моментума

Формула моментума Вопросы:

1) Общая масса мотоцикла и человека, едущего на нем, составляет 200.0 кг. Если гонщик движется с постоянной скоростью 30,0 м / с, каков импульс мотоцикла и гонщика?

Ответ: Импульс можно найти по формуле:

p = mv

p = (200,0 кг) (30,0 м / с)

p = 6000 кг · м / с

Импульс мотоцикла и гонщика 6000 кг · м / с.

2) Хоккейная шайба скользит по льду со скоростью 43,80 м / с. Имеет массу 0,165 кг.Шайба попадает в камень для керлинга весом 19,10 кг, который изначально находится в состоянии покоя. Хоккейная шайба отскакивает от камня и скользит в противоположном направлении со скоростью 43,0 м / с. Какова скорость скручивающейся скалы после столкновения?

Ответ: Этот вопрос зависит от сохранения количества движения при упругих столкновениях. Общий импульс до этого равен общему импульсу после:

p шайба, до + p скала, до = p шайба, после + p скала, после

м шайба v шайба, до + м скала v скала, до = м шайба v шайба, после + м скала v скала, после

Масса шайбы м шайба = 0.165 кг . Масса породы м, порода = 19,10 кг. Скорость шайбы до столкновения составляет v шайба, до = +43,80 м / с. Скорость горной породы перед столкновением равна v rock, до = 0,0 м / с, потому что она находилась в состоянии покоя. Скорость шайбы после столкновения отрицательная, потому что она двигалась в противоположном направлении, как и до столкновения: v шайба, после = -43,0 м / с.

(0,165 кг) (43,80 м / с) + (19,10 кг) (0.0 м / с) = (0,165 кг) (- 43,0 м / с) + (19,10 кг) v порода, после

(0,165 кг) (43,80 м / с) = – (0,165 кг) (43,0 м / с) + (19,10 кг) v скала, после

Теперь уравнение можно изменить, чтобы найти камень v после .

(0,165 кг) (43,80 м / с) + (0,165 кг) (43,0 м / с) = (19,10 кг) против породы , после

v рок, после = +0,750 м / с

Скорость керлинга после столкновения с хоккейной шайбой плотностью льда равна v рок, после = +0.750 м / с.

Формула ускорения

Ускорение – это мера того, насколько быстро изменяется скорость объекта. Итак, ускорение – это изменение скорости, деленное на время. У ускорения есть величина (значение) и направление. Направление ускорения не обязательно должно совпадать с направлением скорости. Единицы измерения ускорения – метр на секунду в квадрате (м / с 2 ).

a = ускорение (м / с 2 )

v f = конечная скорость (м / с)

v i = начальная скорость (м / с)

t = время, в течение которого происходит изменение (с)

Δ v = краткая форма для «изменения» скорости (м / с)

Вопросы по формуле ускорения:

1) Спортивный автомобиль движется с постоянной скоростью v = 5.00 м / с . Водитель нажимает на педаль газа, и машина ускоряется вперед. Через 10,0 секунд водитель прекращает ускорение и поддерживает постоянную скорость v = 25,0 м / с . Какое было ускорение у машины?

Ответ: Начальная скорость v i = 5,00 м / с в прямом направлении. Конечная скорость v f = 25,0 м / с в прямом направлении. Время, за которое произошло это изменение, составляет 10,0 с . Ускорение в прямом направлении со значением:

Ускорение автомобиля равно 2.00 м / с 2 , вперед.

2) Ребенок роняет камень со скалы. Камень падает на 15.0 с перед тем, как удариться о землю. Ускорение свободного падения составляет g = 9,80 м / с 2 . Какая скорость была у камня за мгновение до того, как он упал на землю?

Ответ: Скала вышла из состояния покоя, поэтому начальная скорость составляет v i = 0,00 м / с . Время, в которое произошло изменение: 15,0 с .Ускорение 9,80 м / с 2 . Необходимо определить конечную скорость, поэтому измените уравнение:

v f = v i + при

v f = 0,00 м / с + (9,80 м / с 2 ) (15,0 с)

v f = 147 м / с

Камень падает, поэтому направление скорости вниз.

Импульс

Спортивный диктор говорит: «Перед перерывом на все звёзды Чикаго Уайт Сокс имеют импульс .Заголовки заявляют: «Чикаго Буллз набирает моментум ». Тренер накачивает своей команды в перерыве между таймами, говоря: «У вас есть импульс ; критическая необходимость состоит в том, чтобы вы использовали этот импульс и похоронили их в этом третьем квартале ».

Momentum – широко используемый термин в спорте. Команда, у которой есть импульс, находится на ходе и будет прилагать некоторые усилия, чтобы остановиться. Команда, которая имеет большой импульс, на самом деле на ходу и будет трудно остановить .Импульс – это физический термин; это относится к количеству движения, которое имеет объект. Спортивная команда в движении имеет импульс. Если объект находится в движении ( в движении ), то у него есть импульс.

Импульс можно определить как «массу в движении». Все объекты имеют массу; Итак, если объект движется, то у него есть импульс – его масса находится в движении. Количество импульса, которым обладает объект, зависит от двух переменных: сколько материала движется и насколько быстро движется материал .Импульс зависит от переменных массы и скорости. В терминах уравнения импульс объекта равен массе объекта, умноженной на его скорость.

Импульс = масса • скорость

В физике символом количества движения является строчная буква p . Таким образом, приведенное выше уравнение можно переписать как

p = m • v

, где m – масса, а v – скорость.Уравнение показывает, что импульс прямо пропорционален массе объекта и прямо пропорционален его скорости.

Единицами количества движения будут единицы массы, умноженные на единицы скорости. Стандартная метрическая единица импульса – кг • м / с. Хотя кг • м / с является стандартной метрической единицей количества движения, существует множество других единиц, которые являются приемлемыми (хотя и не традиционными) единицами количества движения. Примеры включают кг • миль / час, кг • км / час и г • см / с. В каждом из этих примеров единица массы умножается на единицу скорости, чтобы получить единицу количества движения.Это согласуется с уравнением для импульса.


Импульс как векторная величина

Momentum – это векторная величина . Как обсуждалось в предыдущем разделе, векторная величина – это величина, которая полностью описывается как величиной, так и направлением. Чтобы полностью описать импульс шара для боулинга весом 5 кг, движущегося на запад со скоростью 2 м / с, вы должны включить информацию как о величине, так и о направлении шара для боулинга.Этого недостаточно, чтобы сказать, что мяч имеет импульс 10 кг • м / с; импульс мяча равен и не описан полностью до тех пор, пока не будет дана информация о его направлении. Направление вектора импульса совпадает с направлением скорости мяча. В предыдущем разделе было сказано, что направление вектора скорости совпадает с направлением движения объекта. Если шар для боулинга движется на запад, то его импульс можно полностью описать, сказав, что он составляет 10 кг • м / с на запад.Как векторная величина, импульс объекта полностью описывается величиной и направлением .


Уравнение момента как руководство к мышлению

Из определения количества движения становится очевидным, что объект имеет большой импульс, если и его масса, и его скорость велики. Обе переменные одинаково важны для определения количества движения объекта. Представьте грузовик Mack и роликовые коньки, движущиеся по улице с одинаковой скоростью.Значительно большая масса грузовика Mack придает ему значительно большую динамику. И все же, если бы грузовик Mack был в состоянии покоя, то импульс наименее массивных роликовых коньков был бы самым большим. Импульс любого объекта, который находится в состоянии покоя, равен 0. Объекты в состоянии покоя не обладают импульсом – у них нет никакой «массы в движении». Обе переменные – масса и скорость – важны при сравнении количества движения двух объектов.

Уравнение импульса может помочь нам подумать о том, как изменение одной из двух переменных может повлиять на импульс объекта.Рассмотрим физическую тележку массой 0,5 кг, загруженную одним кирпичом массой 0,5 кг и движущуюся со скоростью 2,0 м / с. Полная масса загруженной тележки составляет 1,0 кг, а ее импульс – 2,0 кг • м / с. Если вместо этого тележка была загружена тремя кирпичиками по 0,5 кг, то общая масса загруженной тележки составила бы 2,0 кг, а ее импульс – 4,0 кг • м / с. Удвоение массы приводит к удвоению количества движения.

Аналогично, если бы тележка массой 2,0 кг имела скорость 8,0 м / с (вместо 2.0 м / с), то тележка будет иметь импульс 16,0 кг • м / с (вместо 4,0 кг • м / с). учетверение скорости дает учетверенное импульса. Эти два примера иллюстрируют, как уравнение p = m • v служит «руководством к мышлению», а – не просто « готовый рецепт для решения алгебраических задач».

Проверьте свое понимание

Выразите свое понимание концепции и математики импульса, ответив на следующие вопросы.Нажмите кнопку, чтобы просмотреть ответы.

1. Определите импульс …

а. 60-кг полузащитник движется на восток со скоростью 9 м / с.

г. Автомобиль весом 1000 кг движется на север со скоростью 20 м / с.

г. Первокурсник весом 40 кг движется на юг со скоростью 2 м / с.

2. Автомобиль имеет 20 000 единиц количества движения.Каким будет новый импульс автомобилю, если …

а. его скорость была увеличена вдвое.

г. его скорость увеличилась втрое.

г. его масса увеличена вдвое (за счет увеличения количества пассажиров и груза)

г. его скорость и масса увеличились вдвое.

3. По футбольному полю бегут полузащитник (m = 60 кг), тута (m = 90 кг) и лайнсмен (m = 120 кг).Рассмотрим их образцы тикерной ленты ниже.

Сравните скорости этих трех игроков. Во сколько раз скорость полузащитника и тугого конца больше, чем скорость лайнмена?

Какой игрок имеет наибольшую динамику? Объяснять.

Веб-сайт класса физики

Работа, энергия и сила: обзор набора задач

Этот набор из 32 задач нацелен на вашу способность использовать уравнения, связанные с работой и мощностью, для расчета кинетической, потенциальной и полной механической энергии, а также использовать соотношение работа-энергия для определения конечной скорости, тормозного пути или конечной высоты подъема. объект.Более сложные задачи обозначены цветом , синие проблемы .

Работа

Работа возникает, когда на объект действует сила, вызывающая смещение (или движение) или, в некоторых случаях, препятствуя движению. В этом определении важны три переменные – сила, смещение и степень, в которой сила вызывает или препятствует смещению. Каждая из этих трех переменных входит в уравнение работы.Это уравнение:

Работа = Сила • Смещение • Косинус (тета)

W = F • d • cos (тета)

Поскольку стандартной метрической единицей силы является Ньютон, а стандартной метрической единицей перемещения является метр, то стандартной метрической единицей работы является Ньютон • метр, определяемый как Джоуль и сокращенно J.

Самая сложная часть уравнения работы и расчетов работы – это значение угла тета в приведенном выше уравнении.Угол – это не просто заявленный угол в задаче; это угол между векторами F и d. При решении рабочих задач нужно всегда помнить об этом определении: тета – это угол между силой и вызываемым ею смещением. Если сила в том же направлении, что и смещение, то угол равен 0 градусов. Если сила направлена ​​в направлении, противоположном смещению, то угол составляет 180 градусов. Если сила направлена ​​вверх, а смещение вправо, то угол составляет 90 градусов.Это показано на рисунке ниже.


Мощность

Мощность определяется как скорость, с которой работа выполняется над объектом. Как и все величины скорости, мощность зависит от времени. Мощность связана с тем, насколько быстро выполняется работа. Две одинаковые работы или задачи можно выполнять с разной скоростью – медленно или быстро. Работа в каждом случае одинакова (поскольку это одинаковые рабочие места), но мощность разная.Уравнение мощности показывает важность времени:

Мощность = Работа / время

P = Вт / т

Единицей стандартной метрической работы является Джоуль, а стандартной метрической единицей измерения времени является секунда, поэтому стандартной метрической единицей измерения мощности является Джоуль / секунда, определяемая как ватт и сокращенно W. путайте единицу Ватт, обозначаемую сокращенно W, с количественной работой, также обозначаемой буквой W.

Объединение уравнений мощности и работы может привести ко второму уравнению мощности. Мощность – Вт / т, работа – F • d • cos (тета). Подставляя выражение для работы в уравнение мощности, получаем P = F • d • cos (theta) / t. Если это уравнение переписать как

P = F • cos (тета) • (d / t)

можно заметить возможное упрощение. Отношение d / t – это значение скорости для движения с постоянной скоростью или средняя скорость для ускоренного движения.Таким образом, уравнение можно переписать как

P = F • v • cos (тета)

где v – постоянная скорость или среднее значение скорости. Некоторые из задач в этом наборе задач будут использовать это производное уравнение для мощности.

Механическая, кинетическая и потенциальная энергии

Есть две формы механической энергии – потенциальная энергия и кинетическая энергия.

Потенциальная энергия – это накопленная энергия положения. В этом наборе задач нас больше всего будет интересовать запасенная энергия из-за вертикального положения объекта в гравитационном поле Земли. Такая энергия известна как потенциальная энергия гравитации (PE grav ) и рассчитывается по формуле

.

PE грав = м • г • ч

где м – масса объекта (в условных единицах килограмма), г – ускорение свободного падения (9.8 м / с / с) и h – это высота объекта (в стандартных единицах измерения) над произвольно заданным нулевым уровнем (например, землей или верхом лабораторного стола в комнате физики).

Кинетическая энергия определяется как энергия, которой обладает объект из-за своего движения. Объект должен двигаться, чтобы обладать кинетической энергией. Количество кинетической энергии ( KE ), которым обладает движущийся объект, зависит от массы и скорости. Уравнение кинетической энергии

КЕ = 0.5 • м • в 2

где м, – масса объекта (в условных единицах килограммов), а v – это скорость объекта (со стандартными единицами измерения м / с).

Полная механическая энергия, которой обладает объект, складывается из его кинетической и потенциальной энергий.

Связь между работой и энергией

Существует связь между работой и общей механической энергией.Взаимосвязь лучше всего выражается уравнением

TME i + W NC = TME f

Другими словами, это уравнение говорит о том, что начальное количество полной механической энергии ( TME i ) системы изменяется работой, совершаемой с ней неконсервативными силами ( W nc ). Конечное количество полной механической энергии ( TME f ), которой обладает система, эквивалентно начальному количеству энергии ( TME i ) плюс работа, выполняемая этими неконсервативными силами ( W nc ).

Механическая энергия, которой обладает система, представляет собой сумму кинетической энергии и потенциальной энергии. Таким образом, приведенное выше уравнение может быть преобразовано в форму

KE i + PE i + W NC = KE f + PE f

0,5 • m • v i 2 + m • g • h i + F • d • cos (theta) = 0,5 • m • v f 2 + m • g • h f

Работа, совершаемая системой неконсервативными силами (W nc ), может быть описана как положительная работа или как отрицательная работа.Положительная работа выполняется в системе, когда сила, выполняющая работу, действует в направлении движения объекта. Отрицательная работа выполняется, когда сила, выполняющая работу, противодействует движению объекта. Когда положительное значение для работы подставляется в уравнение работы-энергии выше, конечное количество энергии будет больше, чем начальное количество энергии; считается, что система получила механическую энергию. Когда отрицательное значение работы подставляется в приведенное выше уравнение работы-энергии, конечное количество энергии будет меньше начального количества энергии; считается, что система потеряла механическую энергию.Бывают случаи, когда единственными силами, выполняющими работу, являются консервативные силы (иногда называемые внутренними силами). Обычно такие консервативные силы включают гравитационные силы, силы упругости или пружины, электрические силы и магнитные силы. Когда единственные силы, выполняющие работу, – это консервативные силы, тогда член W nc в приведенном выше уравнении равен нулю. В таких случаях говорят, что система сохранила свою механическую энергию.

Правильный подход к проблеме работы-энергии включает в себя внимательное чтение описания проблемы и подстановку значений из него в уравнение работы-энергии, перечисленное выше.Выводы о некоторых терминах должны быть сделаны на основе концептуального понимания кинетической и потенциальной энергии. Например, если объект изначально находится на земле, то можно сделать вывод, что PE i равен 0, и этот член может быть исключен из уравнения работы-энергии. В других случаях высота объекта в исходном состоянии такая же, как и в конечном состоянии, поэтому члены PE i и PE f одинаковы. Таким образом, их можно математически исключить с каждой стороны уравнения.В других случаях скорость постоянна во время движения, поэтому члены KE i и KE f одинаковы и, таким образом, могут быть математически исключены из каждой стороны уравнения. Наконец, есть случаи, когда условия KE и / или PE не указаны; вместо этого даны масса (м), скорость (v) и высота (h). В таких случаях члены KE и PE могут быть определены с помощью соответствующих уравнений. Сделайте своей привычкой с самого начала просто начать с уравнения работы и энергии, отменить члены, которые равны нулю или неизменны, подставить значения энергии и работы в уравнение и найти указанное неизвестное.

Привычки эффективно решать проблемы

Эффективный решатель проблем по привычке подходит к физическим проблемам таким образом, чтобы отражать набор дисциплинированных привычек. Хотя не все эффективные специалисты по решению проблем используют один и тот же подход, все они имеют общие привычки. Эти привычки кратко описаны здесь. Эффективное решение проблем …

  • …. внимательно читает задачу и создает мысленную картину физической ситуации. При необходимости они набрасывают простую схему физической ситуации, чтобы помочь визуализировать ее.
  • … определяет известные и неизвестные величины в организованном порядке, часто записывая их на диаграмме. Они приравнивают заданные значения к символам, используемым для представления соответствующей величины (например, m = 1,50 кг, v i = 2,68 м / с, F = 4,98 Н, t = 0,133 с, v f = ???) .
  • … строит стратегию решения неизвестной величины; стратегия, как правило, сосредоточена вокруг использования физических уравнений и во многом зависит от понимания физических принципов.
  • … определяет подходящую (ые) формулу (ы) для использования, часто записывая их. При необходимости они выполняют необходимое преобразование количеств в правильные единицы.
  • … выполняет подстановки и алгебраические манипуляции, чтобы найти неизвестную величину.

Подробнее …

Дополнительная литература / Учебные пособия:

Следующие страницы из учебного пособия по физике могут быть полезны для понимания концепций и математики, связанных с этими проблемами.

Набор задач “Работа, энергия и мощность”

Просмотреть набор задач

Решения с аудиосистемой для работы, энергии и мощности

Просмотрите решение проблемы с аудиогидом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32

.

Оставить комментарий