Магнитное поле электромагнитная индукция формулы: 1.20. Электромагнитная индукция. Правило Ленца

Содержание

Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля

Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.


Поиск на сайте DPVA

Поставщики оборудования

Полезные ссылки

О проекте

Обратная связь

Ответы на вопросы.

Оглавление

Таблицы DPVA.ru – Инженерный Справочник



Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница / / Техническая информация/ / Физический справочник / / Физика для самых маленьких. Шпаргалки. Школа. / / Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля

Поделиться:   

Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера


и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный
поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля

Магнитное поле. Вектор магнитной индукции. Правило буравчика:

  • Магнитное поле: это особая форма, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами
  • Вектор магнитной индукции B [Тл]: это силовая характеристика магнитного поля. Направление В это направление от южного полюса к северному полюсу магнитной стрелки, свободно устанавливающейся в магнитном поле (совпадает с направлением положительной нормали к замкнутому контуру с током).
  • Правило Буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора В.
  • Модуль вектора магнитной индукции В
    – это отношение максимальной силы Fm, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока I на длину этого участка Δl :

Сила Ампера, Закон Ампера, правило левой руки:

  • Сила Ампера: это сила, действующая на проводник с током, помещенный в магнитное поле
  • Закон Ампера: сила Ампера равна произведению модуля вектора магнитной индукции на силу тока, длину участка проводника
    Δl
    и на синус угла α между магнитной индукцией и участком проводника:
    • при этом, очевидно, что если ток (проводник) перпендикулярен вектору магнитной индукции, то
    • sin α = 1, и формула принимает вид:
      • FА=B |I| ΔL sin α
  • Правило левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению движения тока, то отогретый на 90о большой палец покажет направление силы, действующей на отрезок проводника

Сила Лоренца, правило левой руки:

  • Сила Лоренца: это сила, действующая на движущуюся заряженную частицу со стороны магнитного поля:
    • при этом, очевидно, что если скорость частицы перпендикулярна вектору магнитной индукции,
    • то sin α = 1, и формула принимает вид:
      • FЛ=|q| v B
  • Правило левой руки: если левую руку расположить так, чтобы составляющая вектора В перпендикулярная скорости заряда входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогрутый на 90
    о
    большой палец покажет направление действующей заряд силы Лоренца

Явление электромагнитной индукции, магнитный поток, поток магнитной индукции:

  • Электромагнитная индукция: это явление возникновения электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется
  • Магнитный поток (=поток магнитной индукции) [Вб]:
    через поверхность площадью S это величина равная произведению модуля вектора магнитной индукции В на площадь и косинус угла между вектром В и нормалью к плоскости S:
    • при этом, очевидно, что если магнитная индукция перпендикулярна плоскости,
    • то cos α = 1, и формула принимает вид:
      • Ф=BS

Правило Ленца:

  • Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного поля, которым он вызван.

Закон электромагнитной индукции:

  • ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взатой со знаком “-“

Самоиндукция:

  • Самоиндукция это частный случай электромагнитной индукции, при котором изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле:
    • , где L  – индуктивность

Энергия магнитного поля тока:

  • Энергия магнитного поля тока: Энергия магнитного поля тока равна работе, которую должен совершить источник, чтобы создать данный ток

Поиск в инженерном справочнике DPVA.

Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно – другие подразделы данного раздела:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Магнитная индукция, магнитный поток: определение, формулы, смысл

Содержание:

Теория

Электромагнитное поле – аналог механической силы, проявляется воздействием на перемещающиеся носители электрического заряда, тела с магнитным моментом. Характеризуется механической силой, которое поле оказывает на проводники либо магниты.

Опыты показывают, что магнитное поле пытается сориентировать магнитную стрелку, развернуть её относительно плоскости витка, в направлении, которое называется направлением поля. Для планеты его принимают за линию, направленную с географического севера на юг. Электрическое поле характеризуется векторной величиной E – напряженностью. Для описания магнитного воздействия применяют величину B, названную магнитной индукцией.

Во избежание путаницы характеристики носят разные названия.

Направлением B считают то, куда укажет магнитная стрелка относительно витка с электрическим током. Его модуль определяют по максимальному значению вращающего момента Mmax, действующего на стрелку. При одинаковом значении индукции в каждой точке пространства поле называется однородным, когда его величина проявляется в веществе в разной степени – неоднородным.

Магнитное поле: все формулы

В однородное поле помещают плоские контуры – изготовленные из точнейшей проволоки замкнутые проводники – с током. Измерения пикового вращающего момента показывает, что он:

  1. прямо пропорционален силе протекающего через контур электрического тока I;
  2. зависит от площади контура S;
  3. не зависит от формы замкнутого проводника при равной площади.

Магнитный момент контура с током равен:

pm = IS.

Рассмотрим остальные формулы, позволяющие рассчитать электромагнитное поле.

Вращающий и магнитный моменты характеризуют электромагнитную индукцию, по модулю она равняется:

B= Mmax : pm.

Измеряется в теслах (Тл), названа в честь величайшего сербского учёного XX века Николы Теслы.

При расчётах неоднородных полей в них помещают маленькие контуры, по габаритам сравнимые с расстояниями, на которых наблюдаются изменения.

Магнитное полевое образование характеризуется напряжённостью H, пропорциональной индукции в вакууме:

B = μ0H,

μ0 = 4π*10-7 Гн/м или Тл*м/А.

При вычислениях для вещества добавляется коэффициент магнитной проницаемости μ, для вакуума он равен единице.

B = μ μ0H.

Магнитная индукция соленоида:

B = μ0nI, здесь:

  • n = N : l, N – число витков катушки, l – её длина;
  • I – сила протекающего тока.

Формула энергии W магнитного поля для соленоида:

W = LI2 : 2 = ФI : 2

  • L – индуктивность катушки;
  • I – сила тока;
  • Ф – магнитный поток.

Сила взаимодействия между проводниками с электрическим током:

F = μ μ0I1I2l : 2πr, здесь:

  • I1, I2 – сила тока в обоих проводниках;
  • l – их длина;
  • r – расстояние между проводами с током.

Наибольший момент:

Mmax= BIS;

S – площадь контура.

Электромагнитное поле образуется вокруг намагниченных тел и проводников с током.

Поделитесь в социальных сетях: 18 октября 2021, 18:15 Физика 0.00% 00

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Другие формулы, где встречается B

Эти формулы также можно использовать для её расчёта.

Сила Ампера:


Сила Ампера: Fa=IBL sinα

Где:

  • Fa — сила Ампера (в Н — ньютон)
  • I — сила тока (в А — ампер)
  • B — индукция магнитного поля (в Тл)
  • L — длина проводника (в м)
  • α — угол между вектором В и одним из направлений (силы тока, скорости или др. ; измеряется в рад. или град.)
Сила Лоренца:


Сила Лоренца: Fл = qvB sinα

Где:

  • Fл — сила Лоренца (в Н — ньютон)
  • q — заряд частицы (в Кл — кулон)
  • v — скорость (в м/с)
  • B — индукция (в Тл)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))
Магнитный поток:


Магнитный поток: Ф = BS cosα

Где:

  • Ф — магнитный поток (в Вб – вебер)
  • B — индукция (в Тл)
  • S — площадь рамки (в м²)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Направление линий магнитной индукции

Рассматриваемая индукция является векторной величиной, то, куда она направлена, определяется посредством помещаемой в поле магнитной стрелки: местоположение северного полюса будет направлением вектора. Поместив стрелку вблизи катушки или в какую-либо иную точку поля, можно определить, куда направлен вектор в этой конкретной точке.

Важно! Можно воспользоваться также правилом буравчика: когда он движется в одну сторону с током, вектор идет в одну сторону с вращением ручки.

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Линии магнитной индукции

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали.

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Закон Био-Савара-Лапласа

Формула индукции ЭДС

Описывает правила поиска B → магнитного поля, которое создает постоянный электрический ток. Это экспериментально установленная модель. Био и Савар в 1820 году показали это на практике, Лаплас смог его сформулировать. Этот закон является фундаментальным в магнитостатике. На практике рассматривался фиксированный провод малого сечения, по которому пропускался электрический ток. Для исследования был выбран небольшой участок проволоки, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил также рассматривать движение электрона как ток и на этом утверждении с помощью этого закона доказал возможность определения МП наступающего точечного заряда.

Согласно этому физическому правилу каждый сегмент dl проводника, по которому протекает электрический ток I, образует магнитное поле dB в пространстве вокруг себя с интервалом r и под углом α:

дБ = µ0 * I * dl * sin α / 4 * π * r2,

где это находится:

  • дБ – магнитная индукция, Тл;
  • µ0 = 4 π * 10-7 – магнитная постоянная, Гн / м;
  • I – сила тока, А;
  • dl – отрезок жилы, м;
  • r – расстояние от точки, где находится магнитная индукция, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП требуемого тока. Он будет равен векторной сумме.

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого движения электронов;
  • поля кругового движения заряженных частиц.

Формула депутата первого рода:

В = µ * µ0 * 2 * I / 4 * π * r.

Для кругового движения это выглядит так:

В = µ * µ0 * I / 4 * π * r.

В этих формулах µ – (относительная) магнитная проницаемость среды).

Рассматриваемый закон следует из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, когда электрическое поле постоянно, только что рассматривали Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому полный вектор магнитной индукции в определенной точке равен векторной сумме всех векторов MI, созданных разными токами в данной точке:

B → = B1 → + B2 → + B3 →… + Bn→

Правило Ленца

Для определения направления индукционного тока необходимо использовать правило Ленца.

С академической точки зрения это правило звучит так: индукционный ток, возбуждаемый в замкнутой цепи при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле предотвращает изменение магнитного потока, вызывая индукционный ток.

Попробуем немного попроще: катушка в данном случае – недовольная бабушка. Они забирают магнитный поток: она несчастна и создает магнитное поле, которое этот магнитный поток хочет восстановить.

Они дают ей магнитный поток, они принимают его, они говорят, они используют его, и она такая – “Потому что ваш магнитный поток сдался мне!” и создает магнитное поле, которое вытесняет этот магнитный поток.

Что такое катушка индуктивности

Что вы себе представляете под словом «катушка» ? Ну… это, наверное, какая-нибудь «фиговинка», на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух — это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

[quads id=1]

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.


А при параллельном соединении получаем вот так:


При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Предыдущая

РазноеЭлектротехника для чайников. Как научиться разбираться в электрике: уроки для начинающих

Следующая

РазноеАвтоматический выключатель — от чего защищает и как он устроен

13.S: Электромагнитная индукция (Резюме) – Physics LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    10307
    • OpenStax
    • OpenStax

    Основные термины

    обратная ЭДС ЭДС, создаваемая работающим двигателем, поскольку состоит из катушки, вращающейся в магнитном поле; он противостоит напряжению, питающему двигатель
    вихретоковый токовая петля в проводнике, вызванная ЭДС движения
    электрогенератор устройство для преобразования механической работы в электрическую энергию; он индуцирует ЭДС, вращая катушку в магнитном поле
    Закон Фарадея ЭДС индукции создается в замкнутом контуре за счет изменения магнитного потока через контур
    индуцированное электрическое поле создан на основе изменения магнитного потока во времени
    ЭДС индукции кратковременное напряжение, создаваемое проводником или катушкой, движущейся в магнитном поле
    Закон Ленца направление ЭДС индукции противоположно изменению магнитного потока, вызвавшего ее; это отрицательный знак в законе Фарадея
    магнитное демпфирование сопротивление, создаваемое вихревыми токами
    магнитный поток измерение количества силовых линий магнитного поля, проходящих через заданную площадь
    ЭДС индукции движения напряжение, создаваемое движением проводника в магнитном поле
    пиковая ЭДС максимальная ЭДС, создаваемая генератором

    Ключевые уравнения

    Магнитный поток \(\displaystyle Φ_m=∫_S\vec{B}⋅\шляпа{n}dA\)
    Закон Фарадея \(\displaystyle ε=-N\frac{dΦ_m}{dt}\)
    ЭДС индукции движения \(\displaystyle ε=Blv\)
    ЭДС движения вокруг цепи \(\displaystyle ε=∮\vec{E}⋅d\vec{l}=-\frac{dΦ_m}{dt}\)
    ЭДС, создаваемая электрическим генератором \ (\ Displaystyle ε = NBAωsin (ωt) \)

    Резюме 92\).

  • ЭДС индукции в замкнутом контуре из-за изменения магнитного потока через контур известен как закон Фарадея. Если магнитный поток не изменяется, ЭДС индукции не создается.
  • 13.3 Закон Ленца

    • Закон Ленца можно использовать для определения направлений индуцированных магнитных полей, токов и ЭДС.
    • Направление ЭДС индукции всегда противоположно изменению магнитного потока, которое вызывает ЭДС, результат, известный как закон Ленца.

    13.4 ЭДС движения

    • Соотношение между ЭДС индукции εε в проводе, движущемся с постоянной скоростью v через магнитное поле B , задается выражением \(\displaystyle ε=Blv\).
    • ЭДС индукции по закону Фарадея создается ЭДС движения, противодействующей изменению потока.

    13.5 Наведенные электрические поля

    • Изменяющийся магнитный поток индуцирует электрическое поле.
    • И изменяющийся магнитный поток, и индуцированное электрическое поле связаны с индуцированной ЭДС из закона Фарадея.

    13.6 Вихревые токи

    • Токовые петли, возникающие в движущихся проводниках, называются вихревыми токами. Они могут создавать значительное сопротивление, называемое магнитным демпфированием.
    • Манипуляции с вихревыми токами нашли применение в таких устройствах, как металлодетекторы, тормоза в поездах или американских горках, а также индукционные варочные панели.

    13.7 Электрические генераторы и обратная ЭДС

    • Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, определяемую как функция времени \(\displaystyle ε=NBAωsin(ωt)\), где A — это площадь N -витковой катушки, вращающейся с постоянной угловой скоростью \(\displaystyle ω\) в однородном магнитном поле \(\displaystyle \vec{B}\).
    • Пиковая ЭДС генератора равна \(\displaystyle ε_0=NBAω\).
    • Любая вращающаяся катушка производит ЭДС индукции. В двигателях это называется обратной ЭДС, потому что она противодействует входу ЭДС в двигатель.

    13.8 Применение электромагнитной индукции

    • Жесткие диски используют магнитную индукцию для чтения/записи информации.
    • Другие применения магнитной индукции можно найти в графических планшетах, электрических и гибридных транспортных средствах, а также в транскраниальной магнитной стимуляции.

    Авторы и авторство

    Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойолы Мэримаунт) и Билл Моебс со многими сотрудничающими авторами. Эта работа находится под лицензией OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).


    Эта страница под названием 13.S: Электромагнитная индукция (резюме) распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Автор
        ОпенСтакс
        Лицензия
        СС BY
        Версия лицензии
        4,0
        Программа OER или Publisher
        ОпенСтакс
        Показать оглавление
        нет
      2. Теги
        1. source@https://openstax. org/details/books/university-physics-volume-2

      Закон электромагнитной индукции Ленца

      Содержание

      Что такое закон Ленца?

      По закону Ленца (который ввел русский прибалтийский немецкий физик Генрих Фридрих Эмиль Ленц в 1834 г.), можно найти направление тока. когда ток через катушку изменяет магнитное поле, напряжение создается в результате изменения магнитного поля, направление индуцированного напряжения таково, что оно всегда препятствует изменению тока.

      Закон Ленца описывает, как можно определить направление индуцированной ЭДС в катушке. «Таким образом, в нем говорится, что направление индуцированной ЭДС таково, что она противостоит вызывающему ее изменению.

      Другими словами, закон Ленца гласит, что когда в цепи индуцируется ЭДС, установленный ток всегда противостоит движению или изменению тока, которое его вызывает. ИЛИ

      Наведенная ЭДС заставит ток течь в замкнутой цепи в таком направлении, что его магнитный эффект будет противодействовать изменению, вызвавшему его.

      Проще говоря, закон Ленца гласит, что индуцированное следствие всегда таково, что противодействует причине, вызвавшей его.

      Объяснение закона Ленца

      Закон Ленца (который немного сложен и запутан для новичков) можно понять с помощью приведенной выше схемы, где изолированная катушка подключена к чувствительному гальванометру и статическому и сплошной стержневой магнит. Посмотрим, как это работает

      1. Когда и стержневой магнит, и катушка находятся в статическом положении, не течет ток и не индуцируется ЭДС (даже небольшая величина потока (N полюсов статического магнитного стержня), связанная с движением катушки), следовательно, нет отклонения в гальванометре .
      2. Когда стержень магнита быстро движется к катушке, например, в гальванометре происходит быстрое отклонение. Имейте в виду, что отклонение будет оставаться постоянным до непрерывного движения стержня магнита относительно катушки (т.е. относительного момента между стержнем магнита и катушкой). Если и стержень магнита, и катушка достигают статического положения, отклонение гальванометра будет в нулевом положении (как показано на рис. 1А).
      3. Когда стержень магнита удаляется от катушки, в гальванометре снова будет отклонение до тех пор, пока относительное движение между стержнем магнита и катушкой не станет неподвижным или статическим. Имейте в виду, что направление гальванометра противоположно рис. 1А (как показано на рис. 1В).
      4. То же самое происходит (этапы 2 и 3), если стержень магнита находится в статическом положении, в то время как катушка движется к стержню статического магнита или удаляется от него.

      Это ясно показывает, что когда стержень магнита (в движении) находится рядом с катушкой, он отсекает или связывает большую часть потока, тогда как скорость потокосцепления меньше в случае, когда стержень магнита удаляется от катушки.

      Отклонение в гальванометре показывает индуцированную ЭДС в катушке, вызванную внезапным перемещением магнитного стержня к катушке или его удалением. Точная причина наведенной ЭДС – это изменение потокосцепления по отношению к катушке, которое продолжается до тех пор, пока движение магнитного стержня или катушки не остановится. Другими словами, сильное магнитное поле или поток не будет индуцировать ЭДС в проводнике статического электричества. Следовательно, изменение потока является обязательным явлением, чтобы индуцировать ЭДС либо в катушке, либо в проводниках.

      Приведенное выше объяснение показывает, что когда полюс «N» магнита перемещается к катушке, ЭДС индуцируется в катушке и течет ток в ней против часовой стрелки (если смотреть на катушку сбоку), следовательно, передний конец катушки становится полюсом «N» (рис. 1.A).

      Таким образом, северный полюс магнита отражает северный полюс катушки N. Механическая энергия используется для управления этой силой отталкивания, которая преобразуется в электрическую энергию в виде ЭДС в катушке.

      Аналогично, когда Северный полюс магнита отодвигается от катушки, обращенный к нему конец катушки становится S-полюсом. Таким образом, полюс N магнитного стержня притягивает полюс S катушки. Чтобы контролировать эту силу притяжения между катушкой и магнитным стержнем, опять же требуется механическая энергия, которая преобразуется в электрическую энергию в виде ЭДС индукции в катушке.

      Это доказывает, что индуцированный ток всегда течет в таком направлении, что он противодействует изменению магнитного поля  (движению к/от магнитного стержня к катушке), которое его вызвало.

      Похожие сообщения:

      • Закон электромагнитной индукции Фарадея
      • Закон электростатики Кулона с примером
      • Законы магнитной силы Кулона – решенный пример

      Формула и уравнения для закона Ленца

      Основная версия закона Ленца может быть математически выражена следующим образом.

      e = – (dΦ B /dt)

      На самом деле, символ «-» в законе электромагнитной индукции Фарадея представляет собой закон Лена. Так как он основан на принципе сохранения энергии, а также на третьем законе Ньютона (каждое действие имеет равную реакцию, но величина направлена ​​в противоположную сторону).0126

      Другие формы уравнений и формул для закона Ленца следующие.

      • e = – N (dΦ B /dt)
      • e = – Н (ΔΦ/Δt)
      • e = – N (δΦ B /δt)

      Где:

      • e = ЭДС индукции в катушке/проводнике
      • N = количество витков или петель в катушке
      • B , ΔΦ, δΦ B = изменение скорости магнитного потока
      • dt, Δt, δt = Изменение скорости времени

      Применение закона Ленца основной принцип закона Ленца используется в

      • Электромагнитное торможение в поездах.
      • Индукционные горелки, варочные панели и индукционный нагрев.
      • Электрические генераторы/альтернаторы переменного тока, трансформаторы и двигатели (противо-ЭДС).

      Оставить комментарий