Магнитное поле силовые линии: Силовые линии магнитного поля – направление, свойства

Содержание

Магнитное поле: силовые линии магнитного поля

 

Примерно две с половиной тысячи лет назад люди обнаружили, что некоторые природные камни обладают способностью притягивать к себе железо. Объясняли такое свойство присутствием у этих камней живой души, и некой «любовью» к железу.

Сегодня мы уже знаем, что эти камни являются природным магнитами, и магнитное поле, а вовсе не особое расположение к железу, создает эти эффекты. Магнитное поле – это особый вид материи, который отличается от вещества и существует вокруг намагниченных тел. 

Постоянные магниты

Природные магниты, или магнетиты, обладают не очень сильными магнитными свойствами. Но человек научился создавать искусственные магниты, обладающие значительно большей силой магнитного поля. Делаются они из специальных сплавов и намагничиваются внешним магнитным полем. А после этого их можно использовать самостоятельно. 

Силовые линии магнитного поля

Любой магнит имеет два полюса, их назвали северным и южным полюсами.

На полюсах концентрация магнитного поля максимальна. Но между полюсами магнитное поле располагается тоже не произвольно, а в виде полос или линий. Они называются силовыми линиями магнитного поля. Обнаружить их довольно просто – достаточно поместить в магнитное поле рассыпанные железные опилки и слегка встряхнуть их. Они расположатся не как угодно, а образуют как бы узор из линий, начинающихся у одного полюса и заканчивающихся у другого. Эти линии как бы выходят из одного полюса и входят в другой. 

Железные опилки в поле магнита сами намагничиваются и размещаются вдоль силовых магнитных линий. Именно подобным образом функционирует компас. Наша планета – это большой магнит. Стрелка компаса улавливает магнитное поле Земли и, поворачиваясь, располагается вдоль силовых линий, одним своим концом указывая на северный магнитный полюс, другим – на южный. Магнитные полюса Земли немного не совпадают с географическими, но при путешествиях вдали от полюсов, это не имеет большого значения, и можно считать их совпадающими.

Переменные магниты

До сих пор речь шла о постоянных магнитах. Но человек научился изготавливать и переменные магниты, действие которых можно включать и выключать по желанию. Когда люди начали изучать электричество, то обнаружили, что ток, передвигаясь по проводам, создает вокруг них магнитное поле. Это позволило создавать магниты, магнитное действие которых обусловлено протекающим в них электрическим током.

Область применения магнитов в наше время чрезвычайно широка. Их можно обнаружить внутри электродвигателей, телефонов, динамиков, радиоприборов. Даже в медицине, например, при проглатывании человеком иглы или другого железного предмета, его можно достать без операции магнитным зондом.

Нужна помощь в учебе?



Предыдущая тема: Закон Джоуля-Ленца: работа тока равна количеству теплоты
Следующая тема:&nbsp&nbsp&nbspМагнитное поле катушки: электромагниты

Силовые линии магнитного поля

Магнитным полем называют особый вид материи, который проявляется в воздействии на перемещающиеся заряженные тела и тела, имеющие магнитный момент.

Источники магнитного поля – это электрические токи.

Магнитное поле является одной из составляющих электромагнитного поля.

Магнитные поля можно разделить на:

  • Стационарные – постоянные во времени.
  • Однородные, для которых во всех точках поля выполняется равенство: $ \vec{B}=const.$
  • Неоднородные поля (большая часть магнитных полей). Для этих полей: $\vec{B}\ne const.$

Изображение магнитного поля

Для наглядности магнитное поле, как и электрическое, можно изображать графически с помощью силовых линий. Данные линии носят название линий магнитной индукции.

Определение 1

Линиями магнитной индукции (или силовыми линиями магнитного поля) называют кривые, изображающие магнитное поле так, что если провести касательную в любой точке к этой линии, то она будет направлена так же как вектор магнитной индукции в избранной точке.

Эти линии всегда замкнуты или начинаются и заканчиваются в бесконечности. В этом состоит качественное отличие магнитного поля от электростатического. Силовые линии магнитного поля охватывают проводники с токами. Тот факт, что силовые линии магнитного поля всегда замкнуты, говорит том, что не существует в природе свободных магнитных зарядов.

Силовые линии электростатического поля разомкнуты. Они начинаются на положительных и заканчиваются на отрицательных зарядах.

Как направлены линии магнитной индукции, находят, применяя правило правого винта (правило буравчика, его еще называют правилом Максвелла). Если правый винт вкручивать в соответствии с направлением течения тока, то направление вращения головки винта укажет на направление линий магнитной индукции поля.

Рассмотрим круговой виток с током (рис.1). Плоскость витка лежит в плоскости чертежа. Вращаем головку буравчика по току, получаем, направление линий магнитной индукции указанное на рисунке. Плоскость, в которой они лежат, перпендикулярна плоскости чертежа. Линии индукции поля бесконечно навиваются на виток, плотно заполняют все пространство, но никогда не возвращаются дважды в одну точку поля.

Рисунок 1. Круговой виток с током. Автор24 — интернет-биржа студенческих работ

Схематичное изображение магнитного поля при помощи силовых линий рассказывает не только о направлении поля. В нем должна быть заключена информация о величине магнитной индукции этого поля. Линии магнитной индукции изображают с такой частотой, что количество их, пересекающих единицу площадки, нормальной к этим линям, было прямо пропорционально модулю вектора магнитной индукции.

В неоднородных полях в точках увеличения магнитной индукции число силовых линий на единицу площади увеличивается. Там, где поле ослабевает, силовые линии редеют.

В однородном магнитном поле, в котором во всех точках $ \vec{B}=const$, линии магнитной индукции чертят в виде совокупности равноудаленных прямых.

У постоянного магнита силовые линии начинаются на северном полюсе и приходят к южному. Внутри этого магнита линии магнитной индукции не разрываются (рис.2). Внешнее магнитное поле полосового магнита неоднородное (силовые линии искривлены), внутри этого магнита магнитное поле можно считать однородным, так как линии магнитной индукции параллельные прямые, находящиеся на равных расстояниях друг от друга.

Рисунок 2. Линии магнитной индукции. Автор24 — интернет-биржа студенческих работ

Магнитный поток

С понятием силовых линий поля в магнитостатике, тесно связано понятие потока вектора магнитной индукции (или магнитного потока).

Допустим, что плоская площадка $S$ локализована в однородном магнитном поле магнитная индукция которого равна $\vec{B}$.

Определение 2

Потоком вектора магнитной индукции сквозь площадку $S$ называют физическую величину, равную:

$Ф=BS\cos \alpha=B_nS$,

где $ \alpha =\hat{\vec{n}\vec{B}}\quad$– угол между нормалью ($\vec{n})$ к площадке $S$ и вектором $\vec{B}$; $B_n$ – проекция вектора магнитной индукции на нормаль $\vec{n}$.

Поток вектора магнитной индукции пропорционален количеству силовых линий магнитного поля, которые пронизывают выделенную площадку $S$. Магнитный поток сквозь площадку $S$ может быть:

это определено знаком проекции вектора магнитной индукции на нормаль.

Допустим, что поверхность $S$ находится в неоднородном магнитном поле. Тогда чтобы найти магнитный поток, заданную поверхность разбиваем на элементарные участки. При этом каждый участок имеет площадь $dS$, и его можно считать плоским, а магнитное поле около его поверхности однородным. Чтобы найти магнитный поток сквозь $dS$, используем выражение:

${dФ}_{B}=BdS\cos {\alpha \, \left( 1 \right).}$

Суммарный магнитный поток сквозь всю поверхность $S$ найдем интегрированием:

$Ф_{B}=\int\limits_S {BdS\cos {\alpha \, \left( 2 \right).}}$

Пусть поверхность $S$ является замкнутой. Тогда формулу (2) перепишем в виде:

$Ф_{B}=\oint\limits_S {BdS\cos {\alpha \, \left( 3 \right).}} $

Поскольку линии магнитной индукции магнитного поля замкнуты, то каждая из силовых линий пересечет замкнутую поверхность $S$ два раза (вернее четное число раз). При этом один раз она в поверхность войдет и один раз выйдет, то есть один раз проекция магнитной индукции будет положительной, другой раз отрицательной.

Это означает, что результирующий магнитный поток, через замкнутую поверхность $S$ равен нулю:

$Ф_{B}=\oint\limits_S {BdS\cos {\alpha =0\left( 4 \right).}} $

Значение уравнения (4) состоит в том, что:

  • Электромагнитная теория считает, что выражение (4) применимо для всяких магнитных полей.
  • Эта формула входит в систему основных уравнений классической электродинамики (одно из уравнений системы Максвелла). Формула (4) отображает вихревой (соленоидальный) характер магнитного поля.

Физическим основанием для соленоидальности магнитных полей является отсутствие свободных магнитных зарядов, которые были бы аналогами электрических зарядов. Что превращает уравнения магнетизма в несимметричные по отношению к электричеству. Так, имеются электрические токи, которые порождают магнитные поля, но нет магнитных токов, которые создают электрические поля.

Теория Дирака

Асимметрия в основных положениях и уравнениях электричества и магнетизма вызывает недоумение, так как считается, что природные явления симметричны. В этой связи неоднократно выдвигалась идея о существовании магнитных зарядов (северного и южного). Эти заряды получили название магнитные монополии Дирака. Теория, построенная на основании существования магнитных монополий, исследовалась Дираком. Он сделал следующие выводы:

  1. Носители магнитных зарядов (микрочастицы) возникают парами (северный заряд всегда сопутствует южному).
  2. Когда частицы возникают, они пребывают на крайне маленьком расстоянии друг от друга и связаны притяжением друг к другу. Пока нет возможности отделить их друг от друга.

Существование магнитных зарядов дало возможность Дираку построить электродинамику с полной симметрией электричества и магнетизма.

Экспериментально найти монополии Дирака до сих пор не смогли. Вопрос о их существовании является открытым.

Магнитное поле | Самое простое объяснение для чайников

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

 

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

Если же приблизить одноименными полюсами, то произойдет их отталкивание

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

где

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м2

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

где

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ0   – магнитная постоянная = 4π × 10-7 Генри/метр или если написать по человечески 1,2566 × 10-6 Генри/метр.

PS.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

где

μ – это относительная магнитная проницаемость.

У разных веществ она разная

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

где

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

 

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину.  У нас должно получится что-то типа этого.

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог  – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

где

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

 

Похожие статьи по теме “магнитное поле”

Катушка индуктивности

Трансформатор

Электромагнитное реле

 

Силовые линии магнитного поля. Альтернативное объяснение причины их возникновения. Магнитное поле. Источники и свойства. Правила и применение

Магнитное поле, что это? – особый вид материи;
Где существует? – вокруг движущихся электрических зарядов (в том числе вокруг проводника с током)
Как обнаружить? – с помощью магнитной стрелки (или железных опилок) или по его действию на проводник с током.

Опыт Эрстеда:

Магнитная стрелка поворачивается, если по проводнику начинает протекать эл. ток, т.к. вокруг проводника с током образуется магнитное поле.

Взаимодействие двух проводников с током:

Каждый проводник с током имеет вокруг себя собственное магнитное поле, которое с некоторой силой действует на соседний проводник.

В зависимости от направления токов проводники могут притягиваться или отталкиваться друг от друга.

Вспомни прошлый учебный год:

МАГНИТНЫЕ ЛИНИИ (или иначе линии магнитной индукции)

Как изобразить магнитное поле? – с помощью магнитных линий;
Магнитные линии, что это?

Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты.

Вспомни прошлый учебный год:

НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика неоднородного магнитного поля: магнитные линии искривлены;густота магнитных линий различна;сила, с которой магнитное поле действует на магнитную стрелку, ична в разных точках этого поля по величине и направлению.

Где существует неоднородное магнитное поле?

Вокруг прямого проводника с током;

Вокруг полосового магнита;

Вокруг соленоида (катушки с током).

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика однородного магнитного поля: магнитные линии параллельные прямые;густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, динакова во всех точках этого поля по величине направлению.

Где существует однородное магнитное поле?
– внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр.

ИНТЕРЕСНО

Способность железа и его сплавов сильно намагничиваться исчезает при нагревании до высокой температуры. Чистое железо теряет такую способность при нагревании до 767 °С.

Мощные магниты, используемые во многих современных товарах, способны влиять на работу электронных стимуляторов сердца и вживленных сердечных устройств у кардиологических пациентов. Обычные железные или ферритовые магниты, которые легко отличить по тускло-серой окраске, обладают небольшой силой и практически не вызывают беспокойств.
Однако недавно появились очень сильные магниты – блестяще-серебристые по цвету и представляющие собой сплав неодима, железа и бора. Создаваемое ими магнитное поле очень сильно, благодаря чему они широко применяются в компьютерных дисках, наушниках и динамиках, а также в игрушках, украшениях и даже одежде.

Однажды на рейде главного города Майорки, появилось французское военное судно “Ля-Ролейн”. Состояние его было настолько жалким, что корабль едва дошел своим ходом до причала.. Когда на борт судна взошли французские ученые, в том числе двадцати двухлетний Араго, выяснилось, что корабль был разрушен молнией. Пока комиссия осматривала судно, покачивая головами при виде обгоревших мачт и надстроек, Араго поспешил к компасам и увидел то, что ожидал: стрелки компасов указывали в разные стороны…

Через год, копаясь в останках разбившегося вблизи Алжира генуэзского судна, Араго обнаружил, что стрелки компасов ыли размагничены В кромешной тьме туманной ночи капитан, направив по компасу судно к северу, подальше опасных мест, на самом деле неудержимо гался к тому, чего так старался избежать. Корабль шел к югу, о к скалам, обманутый пораженным молнией магнитным компасом.

В. Карцев. Магнит за три тысячелетия.

Магнитный компас был изобретен в Китае.
Уже 4000 лет тому назад караванщики брали с собой глиняный горшок и “берегли его в пути пуще всех своих дорогих грузов”. В нем на поверхности жидкости на деревянном поплавке лежал камень, любящий железо. Он мог поворачиваться и, все время указывал путникам в сторону юга, что при отсутствии Солнца помогало им выходить к колодцам.
В начале нашей эры китайцы научились изготавливать искусственные магниты, намагничивая железную иглу.
И только через тысячу лет намагниченную иглу для компаса стали применять европейцы.

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Земля – это большой постоянный магнит.
Южный магнитный полюс, хоть и расположен, по земным меркам, вблизи Северного географического полюса, их, тем не менее, разделяют около 2000 км.
На поверхности Земли имеются территории, где ее собственное магнитное поле сильно искажено магнитным полем железных руд, залегающих на небольшой глубине. Одна из таких территорий – Курская магнитная аномалия, расположенная в Курской области.

Магнитная индукция магнитного поля Земли составляет всего около 0,0004Теслы.
___

На магнитное поле Земли оказывает влияние повышенная солнечная активность. Примерно один раз в каждые 11.5 лет она возрастает настолько, что нарушается радиосвязь, ухудшается самочувствие людей и животных, а стрелки компасов начинают непредсказуемо “плясать” из стороны в сторону. В таком случае говорят, что наступает магнитная буря. Обычно она длится от нескольких часов до нескольких суток.

Магнитное поле Земли время от времени изменяет свою ориентацию, совершая и вековые колебания (длительностью 5–10 тыс. лет), и полностью переориентируясь, т.е. меняя местами магнитные полюсы (2–3 раза за миллион лет). На это указывают «вмороженное» в осадочные и вулканические породы магнитное поле отдаленных эпох. Поведение геомагнитного поля нельзя назвать хаотичным, оно подчиняется своеобразному «расписанию».

Направление и величина геомагнитного поля задаются процессами, происходящими в ядре Земли. Характерное время переполюсовки, определяемое внутренним твердым ядром, составляет от 3 до 5 тыс. лет, а определяемое внешним жидким ядром – около 500 лет. Этими временами и может обьясняться наблюдаемая динамика геомагнитного поля. Компьютерное моделирование с учетом различных внутриземных процессов ьпоказало возможность переполюсовки магнитного поля примерно за 5 тыс. лет.

ФОКУСЫ С МАГНИТАМИ

“Храм очарований, или механический, оптический и физический кабинет г. Гамулецкого де Колла” известного русского иллюзиониста Гамулецкого, просуществовавший до 1842 года, прославился помимо всего прочего тем, что посетители, поднимавшиеся по украшенной канделябрами и устланной коврами лестнице, еще издали могли заметить на верхней площадке лестницы золоченую фигуру ангела, выполненную в натуральный человеческий рост, которая парила в горизонтальном положении над дверью кабинета не будучи подвешена, ни оперта. В том, что фигура не имела никаких подпорок, мог убедиться каждый желающий. Когда посетители вступали на площадку, ангел поднимал руку, подносил ко рту валторну и играл на ней, шевеля пальцами самым естественным образом. Десять лет – говорил Гамулецкий, – я трудился, чтобы найти точку и вес магнита и железа, дабы удержать ангела в воздухе. Помимо трудов немало и средств употребил я на это чудо”.

В средние века весьма распространенным иллюзионным номером были так называемые “послушные рыбы”, изготовлявшиеся из дерева. Они плавали в бассейне и повиновались малейшему мановению руки фокусника, который заставлял их двигаться во всевозможных направлениях. Секрет фокуса был чрезвычайно прост: в рукаве у фокусника был спрятан магнит, а в головы рыб вставлены кусочки железа.
Более близкими к нам по времени были манипуляции англичанина Джонаса. Его коронный номер: Джонас предлагал некоторым зрителям положить часы на стол, после чего он, не прикасаясь к часам, произвольно менял положение стрелок.
Современным воплощением такой идеи является хорошо известные электрикам электромагнитные муфты, с помощью которых можно вращать устройства, отделенные от двигателя какой-нибудь преградой, например, стеной.

В середине 80-х годов 19 века пронеслась молва об ученом слоне, который умел не только складывать и вычитать, но даже умножать, делить и извлекать корни. Делалось это следующим образом. Дрессировщик, например, спрашивал слона: “Сколько будет семью восемь?” Перед слоном стояла доска с цифрами. После вопроса слон брал указку и уверенно показывал цифру 56. Точно так же производилось деление и извлечение квадратного корня. Фокус был достаточно прост: под каждой цифрой на доске был спрятан небольшой электромагнит. Когда слону задавался вопрос, в обмотку магнита, расположенного означающей правильный ответ, подавался ток. Железная указка в хоботе слона сама притягивалась к правильной цифре. Ответ получался автоматически. Несмотря на всю простоту этой дрессировки, секрет фокуса долгое время не могли разгадать, и “ученый слон” пользовался громадным успехом.

МАГНИТНОЕ ПОЛЕ. ОСНОВЫ ФЕРРОЗОНДОВОГО КОНТРОЛЯ

Мы живем в магнитном поле земли. проявлением магнитного поля является то, чтострелка магнитного компаса постоянно показывает направление на север. тот же результат можно получить, располагая стрелку магнитного компаса между полюсами постоянного магнита (рисунок 34).

Рисунок 34 – Ориентация магнитной стрелки около полюсов магнита

Обычно один из полюсов магнита (южный) обозначают буквой S , другой – (северный) – буквой N . На рисунке 34 изображены два положения магнитной стрелки. В каждом положении разноименные полюса стрелки и магнита притягиваются. Поэтому направление стрелки компаса изменилось, как только мы ее сдвинули из положения 1 в положение 2 . Причиной притяжения к магниту и поворота стрелки является магнитное поле. Поворот стрелки при ее смещении вверх и вправо показывает, что направление магнитного поля в разных точках пространства не остается неизменным.

На рисунке 35 показан результат опыта с магнитным порошком, насыпанным на лист плотной бумаги, который расположен над полюсами магнита. Видно, что частицы порошка образуют линии.

Частицы порошка, попадая в магнитное поле, намагничиваются. У каждой частицы появляются северный и южный полюсы. Расположенные рядом частицы порошка не только поворачиваются в поле магнита, но и прилипают друг к другу, выстраиваясь в линии. Эти линии принято называть силовыми линиями магнитного поля.

Рисунок 35 Расположение частиц магнитного порошка на листе бумаги, расположенном над полюсами магнита

Помещая магнитную стрелку вблизи такой линии, можно заметить, что стрелка располагается по касательной. Цифрами 1 , 2 , 3 на рисунке 35 показана ориентация магнитной стрелки в соответствующих точках. Вблизи полюсов плотность магнитного порошка больше, чем в других точках листа. Это означает, что величина магнитного поля там имеет максимальное значение. Таким образом, магнитное поле в каждой точке определяется значением величины, характеризующей магнитное поле, и ее направлением. Такие величины принято называть векторами.

Расположим стальную деталь между полюсами магнита (рисунок 36). Направление силовых линий в детали показано стрелками. В детали также возникнут силовые линии магнитного поля, только их будет намного больше, чем в воздухе.

Рисунок 36 Намагничивание детали простой формы

Дело в том, что стальная деталь содержит железо, состоящее из микромагнитов, которые называются доменами. Приложение к детали намагничивающего поля приводит к тому, что они начинают ориентироваться в направлении этого поля и усиливают его во много раз. Видно, что силовые линии в детали параллельны друг другу, при этом магнитное поле постоянно. Магнитное поле, которое характеризуется прямыми параллельными силовыми линиями, проведенными с одинаковой плотностью, называется однородным.

10.2 Магнитные величины

Важнейшей физической величиной, характеризующей магнитное поле, является вектор магнитной индукции, который принято обозначать В. Для каждой физической величины принято указывать ее размерность. Так, единицей силы тока является Ампер (А), единицей магнитной индукции – Тесла (Тл). Магнитная индукция в намагниченных деталях обычно лежит в интервале от 0,1 до 2,0 Тл.

Магнитная стрелка, помещенная в однородное магнитное поле, будет поворачиваться. Момент сил, поворачивающий ее вокруг оси, пропорционален магнитной индукции. Магнитная индукция характеризует также степень намагниченности материала. Силовые линии, показанные на рисунках 34, 35, характеризуют изменение магнитной индукции в воздухе и материале (детали).

Магнитная индукция определяет магнитное поле в каждой точке пространства. Для того, чтобы характеризовать магнитное поле на какой–то поверхности (например, в плоскости поперечного сечения детали), используется еще одна физическая величина, которая называется магнитным потоком и обозначается Φ.

Пусть однородно намагниченная деталь (рисунок 36) характеризуется значением магнитной индукции В , площадь поперечного сечения детали равна S , тогда магнитный поток определяется по формуле:

Единица магнитного потока – Вебер (Вб).

Рассмотрим пример. Магнитная индукция в детали равна 0,2 Тл, площадь поперечного сечения – 0,01 м 2 . Тогда магнитный поток равен 0,002 Вб.

Поместим длинный цилиндрический железный стержень в однородное магнитное поле. Пусть ось симметрии стержня совпадает с направлением силовых линий. Тогда стержень будет почти везде намагничен однородно. Магнитная индукция в стержне будет много больше, чем в воздухе. Отношение магнитной индукции в материале B м к магнитной индукции в воздухе В в называется магнитной проницаемостью:

μ=B м / B в. (10.2)

Магнитная проницаемость является безразмерной величиной. Для различных марок стали магнитная проницаемость лежит в интервале от 200 до 5 000.

Магнитная индукция зависит от свойств материала, что затрудняет технические расчеты магнитных процессов. Поэтому была введена вспомогательная величина, которая не зависит от магнитных свойств материала. Она называется вектором напряженности магнитного поля и обозначается H. Единица напряженности магнитного поля – Ампер/метр (А/м). При неразрушающем магнитном контроле деталей напряженность магнитного поля изменяется от 100 до 100 000 А/м.

Между магнитной индукцией В в и напряженностью магнитного поля Н в воздухе существует простая зависимость:

В в =μ 0 H, (10.3)

где μ 0 = 4π 10 –7 Генри/метр – магнитная постоянная.

Напряженность магнитного поля и магнитная индукция в материале связаны между собой соотношением:

B=μμ 0 H (10.4)

Напряженность магнитного поля Н – вектор. При феррозондовом контроле требуется определять составляющие этого вектора на поверхности детали. Эти составляющие можно определить, пользуясь рисунком 37. Здесь поверхность детали принята за плоскость xy , ось z перпендикулярна этой плоскости.

На рисунке 1.4 из вершины вектора H опущен перпендикуляр на плоскость x,y . В точку пересечения перпендикуляра и плоскости из начала координат проведен вектор H который называется тангенциальной составляющей напряженности магнитного поля вектора H . Опустив перпендикуляры из вершины вектора H  на оси x и y , определим проекции H x и H y вектора H. Проекция H на ось z называется нормальной составляющей напряженности магнитного поля H n . При магнитном контроле чаще всего измеряют тангенциальную и нормальную составляющие напряженности магнитного поля.

Рисунок 37 Вектор напряженности магнитного поля и его проекции на поверхности детали

10.3 Кривая намагничивания и петля гистерезиса

Рассмотрим изменение магнитной индукции первоначально размагниченного ферромагнитного материала при постепенном возрастании напряженности внешнего магнитного поля. График, отражающий эту зависимость, показан на рисунке 38 и называется кривой начального намагничивания. В области слабых магнитных полей наклон этой кривой сравнительно невелик, а затем он начинает возрастать, достигая максимального значения. При еще больших значениях напряженности магнитного поля наклон уменьшается так, что изменение магнитной индукции с ростом поля становится незначительным – происходит магнитное насыщение, которое характеризуется величиной B S . На рисунке 39 показана зависимость магнитной проницаемости от напряженности магнитного поля. Для этой зависимости характерны две величины: начальная μ н и максимальная μ м магнитная проницаемость. В области сильных магнитных полей проницаемость падает с ростом поля. При дальнейшем увеличении внешнего магнитного поля намагниченность образца практически не изменяется, а магнитная индукция растёт только за счёт внешнего поля.

Рисунок 38 Кривая первоначального намагничивания

Рисунок 39 Зависимость проницаемости от напряженности магнитного поля

Магнитнаяиндукция насыщения B S зависитв основномот химического состава материала и для конструкционных и электротехнических сталей составляет 1,6-2,1 Тл. Магнитная проницаемость зависит не только от химического состава, но и от термической и механической обработки.

.

Рисунок 40 Предельная (1) и частная (2) петли гистерезиса

По величине коэрцитивной силы магнитные материалы разделяют на магнитомягкие (H c 5 000 А/м).

Для магнитомягких материалов требуются сравнительно малые поля для получения насыщения. Магнитотвердые материалы трудно намагнитить и перемагнитить.

Большинство конструкционных сталей являются магнитомягкими материалами. Для электротехнической стали и специальных сплавов коэрцитивная силасоставляет 1-100 А/м, для конструкционных сталей – не более 5 000 А/м. В приставных устройствах с постоянными магнитами используются магнитотвердые материалы.

При перемагничивании материал вновь насыщается, но значение индукции имеет другой знак (–B S ), соответствующий отрицательной напряженности магнитного поля. При последующем увеличении напряженности магнитного поля в сторону положительных значений индукция будет изменяться по другой кривой, называемой восходящей ветвью петли. Обе ветви: нисходящая и восходящая, образуют замкнутую кривую, называемую предельной петлей магнитногогистерезиса. Предельная петля имеет симметричную форму и соответствует максимальному значению магнитной индукции равному B S . При симметричном изменении напряженности магнитного поля в меньших пределах индукция будет изменяться по новой петле. Эта петля полностью располагается внутри предельной и называется симметричной частной петлей (рисунок 40).

Параметры предельной петли магнитного гистерезиса играют важную роль при феррозондовом контроле. При высоких значениях остаточной индукции и коэрцитивной силы возможно проведение контроля путем предварительного намагничивания материала детали до насыщения с последующим отключением источника поля. Намагниченность детали будет достаточной для выявления дефектов.

Вместе с тем явление гистерезиса приводит к необходимости контроля магнитного состояния. При отсутствии размагничивания материал детали может оказаться в состоянии, соответствующем индукции –B r . Тогда, включив магнитное поле положительной полярности, например, равное H c , можно даже размагнитить деталь, хотя предполагается, что мы ее намагничиваем.

Важное значение имеет также магнитная проницаемость. Чем больше μ , тем меньше требуемое значение напряженности магнитного поля для намагничивания детали. Поэтому технические параметры намагничивающего устройства должны быть согласованы с магнитными параметрами объекта контроля.

10.4 Магнитное поле рассеяния дефектов

Магнитное поле дефектной детали имеет свои особенности. Возьмем намагниченное стальное кольцо (деталь) с узкой щелью. Эту щель можно рассматривать как дефект детали. Если накрыть кольцо листом бумаги с насыпанным магнитным порошком, можно увидеть картину, сходную с приведенной на рисунке 35. Лист бумаги расположен вне кольца, а между тем частицы порошка выстраиваются вдоль определенных линий. Таким образом, силовые линии магнитного поля частично проходят вне детали, обтекая дефект. Эта часть магнитного поля называется полем рассеяния дефекта.

На рисунке 41 показана длинная трещина в детали, расположенная перпендикулярно силовым линиям магнитного поля, и картина силовых линий вблизи дефекта.

Рисунок 41 Обтекание силовыми линиями поверхностной трещины

Видно, что силовые линии магнитного поля обтекают трещину внутри детали и вне ее. Формирование магнитного поля рассеяния подповерхностным дефектом можно пояснить с помощью рисунка 42, где изображен участок намагниченной детали. Силовые линии магнитной индукции относятся к одному из трех участков поперечного сечения: над дефектом, в зоне дефекта и под дефектом. Произведение магнитной индукции на площадь поперечного сечения определяет магнитный поток. Составляющие полного магнитного потока на этих участках обозначены как Φ 1 ,.., Часть магнитного потока Ф 2 , будет перетекать выше и ниже сечения S 2 . Поэтому магнитные потоки в сечениях S 1 и S 3 будут больше, чем у бездефектной детали. То же самое можно сказать и о магнитной индукции. Другой важной особенностью силовых линий магнитной индукции является их искривление над и под дефектом. В результате часть силовых линий выходит из детали, создавая магнитное поле рассеяния дефекта.

3 .

Рисунок 42 Поле рассеяния подповерхностного дефекта

Количественно магнитное поле рассеяния можно оценить по магнитному потоку, выходящему из детали, который называют потоком рассеяния. Магнитный поток рассеяния тем больше, чем больше магнитный поток Φ 2 в сечении S 2 . Площадь поперечного сечения S 2 пропорциональна косинусу угла , показанному на рисунке 42. При  = 90° эта площадь равна нулю, при =0° она имеет наибольшее значение.

Таким образом, для выявления дефектов необходимо, чтобы силовые линии магнитной индукции в зоне контроля детали были бы перпендикулярны плоскости предполагаемого дефекта.

Распределение магнитного потока по сечению дефектной детали аналогично распределению потока воды в русле с преградой. Высота волны в зоне полностью погруженной преграды будет тем больше, чем ближе гребень преграды к поверхности воды. Аналогично этому подповерхностный дефект детали тем легче обнаружить, чем меньше глубина его залегания.

10.5 Обнаружение дефектов

Для обнаружения дефектов требуется прибор, позволяющий определить характеристики поля рассеяния дефекта. Это магнитное поле можно определить по составляющим Н х, Н у, Н z .

Однако поля рассеяния могут быть вызваны не только дефектом, но и другими факторами: структурной неоднородностью металла, резким изменением сечения (в деталях сложной формы), механической обработкой, ударами, шероховатостью поверхности и т. д. Поэтому анализ зависимости даже одной проекции (например, H z ) от пространственной координаты (x или y ) может оказаться непростой задачей.

Рассмотрим магнитное поле рассеяния вблизи дефекта (рисунок 43). Здесь показана идеализированная бесконечно длинная трещина с ровными краями. Она вытянута вдоль оси y , которая направлена на рисунке к нам. Цифрами 1, 2, 3, 4 показано как меняется величина и направление вектора напряженности магнитного поля при приближении к трещине слева.

Рисунок 43 Магнитное поле рассеяния вблизи дефекта

Измерение магнитного поля происходит на некотором расстоянии от поверхности детали. Траектория, по которой проводятся измерения, изображена пунктиром. Величины и направления векторов справа от трещины можно построить аналогичным образом (или воспользоваться симметрией рисунка). Правее картины поля рассеяния показан пример пространственного положения вектора H и двух его составляющих H x и H z . Графики зависимостей проекций H x и H z поля рассеяния от координаты x показаны ниже.

Казалось бы, отыскивая экстремум H x или ноль H z , можно найти дефект. Но как уже отмечалось выше, поля рассеяния образуются не только от дефектов, но и от структурных неоднородностей металла, от следов механических воздействий и т. д.

Рассмотрим упрощенную картину формирования полей рассеяния на простой детали (рисунок 44) похожей на ту, что была изображена на рисунке 41, и графики зависимостей проекций H z , H x от координаты x (дефект вытянут вдоль оси y ).

По графикам зависимостей H x и H z от x обнаружить дефект очень непросто, так как величины экстремумов H x и H z над дефектом и над неоднородностями соизмеримы.

Выход был найден, когда обнаружили, что в области дефекта максимальная скорость изменения (крутизна) напряженности магнитного поля какой-то координаты больше, чем другие максимумы.

Рисунок 44 показывает, что максимальная крутизна графика H z (x) между точками x 1 и x 2 (т.е. в зоне расположения дефекта) гораздо больше, чем в других местах.

Таким образом, прибор должен измерять не проекцию напряженности поля, а «скорость» ее изменения, т.е. отношение разности проекций в двух соседних точках над поверхностью детали к расстоянию между этими точками:

(10.5)

где H z (x 1), H z (x 2) – значения проекции вектора H на ось z в точках x 1 , x 2 (левее и правее дефекта), G z (x) принятоназывать градиентом напряженности магнитного поля.

Зависимость G z (x) показана на рисунке 44. Расстояние Dx = x 2 – x 1 между точками, в которых измеряются проекции вектора H на ось z, выбирается с учетом размеров поля рассеяния дефекта.

Как следует из рисунка 44, и это хорошо согласуется с практикой, значение градиента над дефектом существенно больше его значения над неоднородностями металла детали. Именно это позволяет достоверно регистрировать дефект по превышению градиентом порогового значения (рисунок 44).

Выбирая необходимое значение порога, можно свести ошибки контроля к минимальным значениям.

Рисунок 44 Силовые линии магнитного поля дефекта и неоднородностей металла детали.

10.6 Феррозондовый метод

Феррозондовый метод основан на измерении феррозондовым прибором градиента напряженности магнитного поля рассеяния, созданного дефектом в намагниченном изделии, и сравнении результата измерения с порогом.

Вне контролируемой детали существует определенное магнитное поле, которое создается для ее намагничивания. Применение дефектоскопа – градиентометра обеспечивает выделение сигнала, вызванного дефектом, на фоне довольно большой медленно изменяющейся в пространстве составляющей напряженности магнитного поля.

В феррозондовом дефектоскопе используется преобразователь, реагирующий на составляющую градиента нормальной составляющей напряженности магнитного поля на поверхности детали. Преобразователь дефектоскопа содержит два параллельно расположенных стержня из специального магнитомягкого сплава. При контроле стержни перпендикулярны поверхности детали, т.е. параллельны нормальной составляющей напряженности магнитного поля. Стержни имеют одинаковые обмотки, по которым протекает переменный ток. Эти обмотки соединены последовательно. Переменный ток создает в стержнях переменные составляющие напряженности магнитного поля. Эти составляющие совпадают по величине и направлению. Кроме того, имеется постоянная составляющая напряженности магнитного поля детали в месте размещения каждого стержня. Величина Δx , которая входит в формулу (10.5), равна расстоянию между осями стержней и называется базой преобразователя. Выходное напряжение преобразователя определяется разностью переменных напряжений на обмотках.

Разместим преобразователь дефектоскопа на участке детали без дефекта, где значения напряженности магнитного поля в точках х 1 ; х 2 (см. формулу (10.5)) одинаковы. Это означает, что градиент напряженности магнитного поля равен нулю. Тогда на каждый стержень преобразователя будут действовать одинаковые постоянная и переменная составляющие напряженности магнитного поля. Эти составляющие будут одинаково перемагничивать стержни, поэтому напряжения на обмотках равны между собой. Разность напряжений, определяющая выходной сигнал, равна нулю. Таким образом, преобразователь дефектоскопа не реагирует на магнитное поле, если нет градиента.

Если градиент напряженности магнитного поля не равен нулю, то стержни будут находиться в одинаковом переменном магнитном поле, но постоянные составляющие будут разными. Каждый стержень перемагничивается переменным током обмотки от состояния с магнитной индукцией –В S до + В S Согласно закону электромагнитной индукции напряжение на обмотке может появиться только тогда, когда изменяется магнитная индукция. Поэтому период колебаний переменного тока может быть разбит на интервалы, когда стержень находится в насыщении и, следовательно, напряжение на обмотке равно нулю, и на промежутки времени, когда насыщения нет, а, значит, напряжение отличается от нуля. В те промежутки времени, когда оба стержня не намагничены до насыщения, на обмотках появляются одинаковые напряжения. В это время выходной сигнал равен нулю. То же самое будет при одновременном насыщении обоих стержней, когда напряжение на обмотках отсутствует. Выходное напряжение появляется тогда, когда один сердечник находится в насыщенном состоянии, а другой – в ненасыщенном.

Одновременное воздействие постоянной и переменной составляющей напряженности магнитного поля приводит к тому, что каждый сердечник находится в одном насыщенном состоянии более длительное время, чем в другом. Более длительному насыщению соответствует сложение постоянной и переменной составляющих напряженности магнитного поля, более короткому – вычитание. Разность между интервалами времени, которые соответствуют значениям магнитной индукции +В S и –В S , зависит от напряженности постоянного магнитного поля. Рассмотрим состояние с магнитной индукцией +В S у двух стержней преобразователя. Неодинаковым значениям напряженности магнитного поля в точках х 1 и х 2 будет соответствовать разная длительность интервалов магнитного насыщения стержней. Чем больше разность между этими значениями напряженности магнитного поля, тем больше различаются временные интервалы. В те промежутки времени, когда один стержень насыщен, а другой – ненасыщен, возникает выходное напряжение преобразователя. Это напряжение зависит от градиента напряженности магнитного поля.

Примерно две с половиной тысячи лет назад люди обнаружили, что некоторые природные камни обладают способностью притягивать к себе железо. Объясняли такое свойство присутствием у этих камней живой души, и некой «любовью» к железу.

Сегодня мы уже знаем, что эти камни являются природным магнитами, и магнитное поле, а вовсе не особое расположение к железу, создает эти эффекты. Магнитное поле – это особый вид материи, который отличается от вещества и существует вокруг намагниченных тел.

Постоянные магниты

Природные магниты, или магнетиты, обладают не очень сильными магнитными свойствами. Но человек научился создавать искусственные магниты, обладающие значительно большей силой магнитного поля. Делаются они из специальных сплавов и намагничиваются внешним магнитным полем. А после этого их можно использовать самостоятельно.

Силовые линии магнитного поля

Любой магнит имеет два полюса, их назвали северным и южным полюсами. На полюсах концентрация магнитного поля максимальна. Но между полюсами магнитное поле располагается тоже не произвольно, а в виде полос или линий. Они называются силовыми линиями магнитного поля. Обнаружить их довольно просто – достаточно поместить в магнитное поле рассыпанные железные опилки и слегка встряхнуть их. Они расположатся не как угодно, а образуют как бы узор из линий, начинающихся у одного полюса и заканчивающихся у другого. Эти линии как бы выходят из одного полюса и входят в другой.

Железные опилки в поле магнита сами намагничиваются и размещаются вдоль силовых магнитных линий. Именно подобным образом функционирует компас. Наша планета – это большой магнит. Стрелка компаса улавливает магнитное поле Земли и, поворачиваясь, располагается вдоль силовых линий, одним своим концом указывая на северный магнитный полюс, другим – на южный. Магнитные полюса Земли немного не совпадают с географическими, но при путешествиях вдали от полюсов, это не имеет большого значения, и можно считать их совпадающими.

Переменные магниты

Область применения магнитов в наше время чрезвычайно широка. Их можно обнаружить внутри электродвигателей, телефонов, динамиков, радиоприборов. Даже в медицине, например, при проглатывании человеком иглы или другого железного предмета, его можно достать без операции магнитным зондом.

Таким образом, индукция магнитного поля на оси кругового витка с током убывает обратно пропорционально третьей степени расстояния от центра витка до точки на оси. Вектор магнитной индукции на оси витка параллелен оси. Его направление можно определить с помощью правого винта: если направить правый винт параллельно оси витка и вращать его по направлению тока в витке, то направление поступательного движения винта покажет направление вектора магнитной индукции.

3.5 Силовые линии магнитного поля

Магнитное поле, как и электростатическое, удобно представлять в графической форме – с помощью силовых линий магнитного поля.

Силовая линия магнитного поля – это линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции.

Силовые линии магнитного поля проводят так, что их густота пропорциональна величине магнитной индукции: чем больше магнитная индукция в некоторой точке, тем больше густота силовых линий.

Таким образом, силовые линии магнитного поля имеют сходство с силовыми линиями электростатического поля.

Однако им свойственны и некоторые особенности.

Рассмотрим магнитное поле, созданное прямым проводником с током I.

Пусть этот проводник перпендикулярен плоскости рисунка.

В различных точках, расположенных на одинаковых расстояниях от проводника, индукция одинакова по величине.

Направление вектора В в разных точках показано на рисунке.

Линией, касательная к которой во всех точках совпадает с направлением вектора магнитной индукции, является окружность.

Следовательно, силовые линии магнитного поля в этом случае представляют собой окружности, охватывающие проводник. Центры всех силовых линий расположены на проводнике.

Таким образом, силовые линии магнитного поля замкнуты (силовые линии электростатического не могут быть замкнуты, они начинаются и заканчиваются на зарядах).

Поэтому магнитное поле является вихревым (так называют поля, силовые линии которых замкнуты).

Замкнутость силовых линий означает ещё одну, очень важную особенность магнитного поля – в природе не существует (по крайней мере, пока не обнаружено) магнитных зарядов, которые являлись бы источником магнитного поля определённой полярности.

Поэтому не бывает отдельно существующе-го северного или южного магнитного полюса магнита.

Даже если распилить пополам постоянный магнит, то получится два магнита, каждый из которых имеет оба полюса.

3.6. Сила Лоренца

Экспериментально установлено, что на заряд, движущийся в магнитном поле, действует сила. Эту силу принято называть силой Лоренца:

.

Модуль силы Лоренца

,

где a – угол между векторами v и B .

Направление силы Лоренца зависит от направления вектора . Его можно определить с помощью правила правого винта или правила левой руки. Но направление силы Лоренца не обязательно совпадает с направлением вектора !

Дело в том, что сила Лоренца равна результату произведения вектора [v , В ] на скаляр q . Если заряд положительный, то F л параллельна вектору [v , В ]. Если же q v , В ] (см. рисунок).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен нулю. Следовательно, сила Лоренца на такой заряд не действует (sin 0 = 0, F л = 0).

Если же заряд будет двигаться перпендикулярно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен 90 0 . В этом случае сила Лоренца имеет максимально возможное значение: F л = qv B .

Сила Лоренца всегда перпендикулярна скорости движения заряда. Это означает, что сила Лоренца не может изменить величину скорости движения, но изменяет её направление.

Поэтому в однородном магнитном поле заряд, влетевший в магнитное поле перпендикулярно его силовым линиям, будет двигаться по окружности.

Если на заряд действует только сила Лоренца, то движение заряда подчиняется следующему уравнению, составленному на основе второго закона Ньютона: ma = F л.

Поскольку сила Лоренца перпендикулярна скорости, постольку ускорение заряженной частицы является центростремительным (нормальным): (здесь R – радиус кривизны траектории заряженной частицы).

Без сомнения, силовые линии магнитного поля сейчас известны всем. По крайней мере, еще в школе их проявление демонстрируют на уроках физики. Помните, как учитель под листом бумаги размещал постоянный магнит (или даже два, комбинируя ориентированность их полюсов), а сверху него насыпал металлические опилки, взятые в кабинете трудового обучения? Вполне понятно, что металл должен был удерживаться на листе, однако наблюдалось нечто странное – четко прослеживались линии, вдоль которых выстраивались опилки. Заметьте – не равномерно, а полосами. Это и есть силовые линии магнитного поля. Вернее, их проявление. Что же происходило тогда и как можно объяснить?

Начнем издалека. Вместе с нами в физическом мире видимом сосуществует особый вид материи – магнитное поле. Оно обеспечивает взаимодействие движущихся элементарных частиц или более крупных тел, обладающих электрическим зарядом или естественным Электрические и не только взаимосвязаны друг с другом, но и часто порождают сами себя. К примеру, провод, по которому протекает электрический ток, создает вокруг себя линии магнитного поля. Верно и обратное: воздействие переменных магнитных полей на замкнутый проводящий контур создает в нем движение носителей заряда. Последнее свойство применяется в генераторах, поставляющих электрическую энергию всем потребителям. Яркий пример электромагнитных полей – свет.

Силовые линии магнитного поля вокруг проводника вращаются или, что также верно, характеризуются направленным вектором магнитной индукции. Направление вращения определяют по правилу буравчика. Указываемые линии – условность, так как поле распространяется равномерно во все стороны. Все дело в том, что оно может быть представлено в виде бесконечного количества линий, некоторые из которых обладают более ярко выраженной напряженностью. Именно поэтому в и опилками четко прослеживаются некие «линии». Что интересно, силовые линии магнитного поля никогда не прерываются, поэтому нельзя однозначно сказать, где начало, а где конец.

В случае постоянного магнита (или подобного ему электромагнита), всегда есть два полюса, получившие условные названия Северного и Южного. Упомянутые линии в этом случае – это кольца и овалы, соединяющие оба полюса. Иногда это описывается с точки зрения взаимодействующих монополей, однако тогда возникает противоречие, согласно которому нельзя разделить монополя. То есть любая попытка деления магнита приведет к появлению нескольких двухполюсных частей.

Огромный интерес представляют свойства силовых линий. О непрерывности мы уже говорили, однако практический интерес представляет способность создавать в проводнике следствием которой является электрический ток. Смысл этого заключается в следующем: если проводящий контур пересекают линии (или сам проводник движется в магнитном поле), то электронам на внешних орбитах атомов материала сообщается дополнительная энергия, позволяющая им начинать самостоятельное направленное движение. Можно сказать, что магнитное поле словно «выбивает» заряженные частицы из кристаллической решетки. Данное явление получило название электромагнитной индукции и в настоящий момент является основным способом получения первичной электрической энергии. Оно было открыто опытным путем в 1831 году английским физиком Майклом Фарадеем.

Изучение магнитных полей началось еще в 1269 году, когда П. Перегрин обнаружил взаимодействие шарообразного магнита со стальными иглами. Почти через 300 лет У. Г. Колчестер предположил, что сам является огромным магнитом, обладающим двумя полюсами. Далее магнитные явления изучали такие известные ученые, как Лоренц, Максвелл, Ампер, Эйнштейн и пр.

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

В 2021 году казахстанские школьники будут сдавать по-новому Единое национальное тестирование. Помимо того, что главный школьный экзамен будет проходить электронно, выпускникам предоставят возможность испытать свою удачу дважды. Корреспондент zakon.kz побеседовал с вице-министром образования и науки Мирасом Дауленовым и узнал, к чему готовиться будущим абитуриентам.

— О переводе ЕНТ на электронный формат говорилось не раз. И вот, с 2021 года тестирование начнут проводить по-новому. Мирас Мухтарович, расскажите, как это будет?

— По содержанию все остается по-прежнему, но меняется формат. Если раньше школьник садился за парту и ему выдавали бумажный вариант книжки и лист ответа, то теперь тест будут сдавать за компьютером в электронном формате. У каждого выпускника будет свое место, огороженное оргстеклом.

Зарегистрироваться можно будет электронно на сайте Национального центра тестирования. Но, удобство в том, что школьник сам сможет выбрать дату, время и место сдачи тестирования.

Кроме того, в этом году ЕНТ для претендующих на грант будет длиться три месяца, и в течение 100 дней сдать его можно будет два раза.

— Расскажите поподробнее?

— В марте пройдет тестирование для желающих поступить на платной основе, а для претендующих на грант мы ввели новые правила. Школьник, чтобы поступить на грант, по желанию может сдать ЕНТ два раза в апреле, мае или в июне, а наилучший результат отправить на конкурс. Но есть ограничение — два раза в один день сдавать тест нельзя. К примеру, если ты сдал ЕНТ в апреле, то потом повторно можно пересдать его через несколько дней или в мае, июне. Мы рекомендуем все-таки брать небольшой перерыв, чтобы еще лучше подготовиться. Но в любом случае это выбор школьника.

— Система оценивания останется прежней?

— Количество предметов остается прежним — три обязательных предмета и два на выбор. Если в бумажном формате закрашенный вариант ответа уже нельзя было исправить, то в электронном формате школьник сможет вернуться к вопросу и поменять ответ, но до того, как завершил тест.

Самое главное — результаты теста можно будет получить сразу же после нажатия кнопки «завершить тестирование». Раньше уходило очень много времени на проверку ответов, дети и родители переживали, ждали вечера, чтобы узнать результат. Сейчас мы все автоматизировали и набранное количество баллов будет выведено на экран сразу же после завершения тестирования.
Максимальное количество баллов остается прежним — 140.

— А апелляция?

— Если сдающий не будет согласен с какими-то вопросами, посчитает их некорректными, то он сразу же на месте сможет подать заявку на апелляцию. Не нужно будет ждать следующего дня, идти в центр тестирования, вуз или школу, все это будет электронно.

— С учетом того, что школьникам не придется вручную закрашивать листы ответов, будет ли изменено время сдачи тестирования?

— Мы решили оставить прежнее время — 240 минут. Но теперь, как вы отметили, школьникам не нужно будет тратить час на то, чтобы правильно закрасить лист ответов, они спокойно смогут использовать это время на решение задач.

— Не секрет, что в некоторых селах и отдаленных населенных пунктах не хватает компьютеров. Как сельские школьники будут сдавать ЕНТ по новому формату?

— Задача в том, чтобы правильно выбрать время и дату тестирования. Центры тестирования есть во всех регионах, в Нур-Султане, Алматы и Шымкенте их несколько. Школьники, проживающие в отдаленных населенных пунктах, как и раньше смогут приехать в город, где есть эти центры, и сдать тестирование.

— На сколько процентов будет обновлена база вопросов?

— База вопросов ежегодно обновляется как минимум на 30%. В этом году мы добавили контекстные задания, то что школьники всегда просили. Мы уделили большое внимание истории Казахстана и всемирной истории — исключили практически все даты. Для нас главное не зазубривание дат, а понимание значения исторических событий. Но по каждому предмету будут контекстные вопросы.

— По вашему мнению система справится с возможными хакерскими атаками, взломами?

— Информационная безопасность — это первостепенный и приоритетный вопрос. Центральный аппарат всей системы находится в Нур-Султане. Связь с региональными центрами сдачи ЕНТ проводится по закрытому VPN-каналу. Коды правильных ответов только в Национальном центре тестирования.

Кроме того, дополнительно через ГТС КНБ (Государственная техническая служба) все тесты проходят проверку на предмет возможного вмешательства. Здесь все не просто, это специальные защищенные каналы связи.

— А что с санитарными требованиями? Нужно ли будет школьникам сдавать ПЦР-тест перед ЕНТ?

— ПЦР-тест сдавать не нужно будет. Требование по маскам будет. При необходимости Центр национального тестирования будет выдавать маски школьникам во время сдачи ЕНТ. И, конечно же, будем измерять температуру. Социальная дистанция будет соблюдаться в каждой аудитории.

— Сколько человек будет сидеть в одной аудитории?

— Участники ЕНТ не за семь дней будут сдавать тестирование, как это было раньше, а в течение трех месяцев. Поэтому по заполняемости аудитории вопросов не будет.

— Будут ли ужесточены требования по дисциплине, запрещенным предметам?

— Мы уделяем большое внимание академической честности. На входе в центры тестирования, как и в предыдущие годы, будут стоять металлоискатели. Перечень запрещенных предметов остается прежним — телефоны, шпаргалки и прочее. Но, помимо фронтальной камеры, которая будет транслировать происходящее в аудитории, над каждым столом будет установлена еще одна камера. Она же будет использоваться в качестве идентификации школьника — как Face ID. Сел, зарегистрировался и приступил к заданиям. Мы применеям систему прокторинга.

Понятно, что каждое движение абитуриента нам будет видно. Если во время сдачи ЕНТ обнаружим, что сдающий использовал телефон или шпаргалку, то тестирование автоматически будет прекращено, система отключится.

— А наблюдатели будут присутствовать во время сдачи тестирования?

— Когда в бумажном формате проводили ЕНТ, мы привлекали очень много дежурных. В одной аудитории было по 3-4 человека. При электронной сдаче такого не будет, максимум один наблюдатель, потому что все будет видно по камерам.

— По вашим наблюдениям школьники стали меньше использовать запрещенные предметы, к примеру, пользоваться телефонами?

— Практика показывает, что школьники стали ответственнее относиться к ЕНТ. Если в 2019 году на 120 тыс. школьников мы изъяли 120 тыс. запрещенных предметов, по сути у каждого сдающего был телефон. То в прошлом году мы на 120 тыс. школьников обнаружили всего 2,5 тыс. телефонов, и у всех были аннулированы результаты.

Напомню, что в 2020 году мы также начали использовать систему искусственного интеллекта. Это анализ видеозаписей, который проводится после тестирования. Так, в прошлом году 100 абитуриентов лишились грантов за то, что во время сдачи ЕНТ использовали запрещенные предметы.

— Сколько средств выделено на проведение ЕНТ в этом году?

Если раньше на ЕНТ требовалось 1,5 млрд тенге из-за распечатки книжек и листов ответов, то сейчас расходы значительно сокращены за счет перехода на электронный формат. Они будут, но несущественные.

— Все-таки почему именно в 2021 году было принято решение проводить ЕНТ в электронном формате. Это как-то связано с пандемией?

— Это не связано с пандемией. Просто нужно переходить на качественно новый уровень. Мы апробировали данный формат на педагогах школ, вы знаете, что они сдают квалификационный тест, на магистрантах, так почему бы не использовать этот же формат при сдаче ЕНТ. Тем более, что это удобно, и для школьников теперь будет много плюсов.

ПЕРЕСОЕДИНЕНИЕ МАГНИТНЫХ СИЛОВЫХ ЛИНИЙ • Большая российская энциклопедия

  • В книжной версии

    Том 25. Москва, 2014, стр. 665-666

  • Скопировать библиографическую ссылку:


Авторы: Л. М. Зелёный, Х. В. Малова

ПЕРЕСОЕДИНЕ́НИЕ МАГНИ́ТНЫХ СИ­ЛОВЫ́Х ЛИ́НИЙ в плаз­ме, из­ме­не­ние то­по­ло­гии си­ло­вых ли­ний маг­нит­но­го по­ля, свя­зан­ное с на­ру­ше­ни­ем их вмо­ро­жен­но­сти в плаз­му; обыч­но со­про­во­ж­да­ет­ся вы­сво­бо­ж­де­ни­ем сво­бод­ной маг­нит­ной энер­гии, на­ко­п­лен­ной в разл. плаз­мен­ных кон­фи­гу­ра­ци­ях, и её пре­об­ра­зо­ва­ни­ем в те­п­ло­вую и ки­не­тич. энер­гию час­тиц, ко­то­рые мо­гут ус­ко­рять­ся вплоть до ульт­ра­ре­ля­ти­ви­ст­ских ско­ро­стей. При П. м. с. л. воз­ни­ка­ют но­вые маг­нит­ные струк­ту­ры: маг­нит­ные пет­ли, ост­ро­ва, ней­траль­ные точ­ки и ли­нии, но­вые те­че­ния плаз­мы.

На­ру­ше­ние свой­ст­вен­ной иде­аль­ной маг­нит­ной гид­ро­ди­на­ми­ке вмо­ро­жен­но­сти маг­нит­но­го по­ля в плаз­му обу­слов­ли­ва­ет разл. ме­ха­низ­мы П. м. с. л.: ре­зи­стив­ный (вы­зван­ный ко­неч­ной элек­трич. про­во­ди­мо­стью плаз­мы $σ$), инер­ци­он­ный (обу­слов­лен­ный ко­неч­ной мас­сой но­си­те­лей за­ря­да – элек­тро­нов), а так­же свя­зан­ные с эф­фек­том Хол­ла, вяз­ко­стью и ани­зо­тро­пи­ей дав­ле­ния элек­трон­ной ком­по­нен­ты плаз­мы. Ки­не­тич. тео­рия по­зво­ля­ет учесть ме­ха­низм пе­ре­со­еди­не­ния, свя­зан­ный с бес­столк­но­ви­тель­ным ре­зо­нанс­ным Лан­дау за­ту­ха­ни­ем. П. м. с. л. воз­мож­но и при на­ли­чии ано­маль­но­го со­про­тив­ле­ния, воз­ни­каю­ще­го при рас­сея­нии элек­тро­нов на разл. плаз­мен­ных мик­ро­не­ус­той­чи­во­стях. Раз­ли­ча­ют вы­ну­ж­ден­ное и спон­тан­ное (про­ис­хо­дя­щее без внеш­не­го воз­дей­ст­вия) пе­ре­сое­ди­не­ние маг­нит­ных си­ло­вых ли­ний.

Рис. 1. Модель пересоединения Паркера – Свита.

В наи­бо­лее из­вест­ных мо­де­лях вы­нуж­ден­но­го пе­ре­со­еди­не­ния (мо­де­ли Пар­ке­ра – Сви­та, Пет­че­ка и Сы­ро­ват­ско­го) изу­ча­ют­ся те­че­ния плаз­мы под дей­ст­ви­ем внеш­не­го элек­трич. по­ля на­пря­жён­но­стью $\boldsymbol{E}_0$. В этих мо­де­лях маг­нит­ные по­ля ин­дук­ци­ей $\boldsymbol{B}_0$ на гра­ни­цах сис­те­мы на­прав­ле­ны ан­ти­па­рал­лель­но, по­это­му в центр. час­ти сис­те­мы су­ще­ст­ву­ет осо­бая ней­траль­ная ли­ния, где маг­нит­ное по­ле об­ра­ща­ет­ся в нуль. Ско­рость П. м. с. л. оп­ре­де­ля­ет­ся гра­нич­ны­ми ус­ло­вия­ми, т. е. спо­со­бом ор­га­ни­за­ции те­че­ния плаз­мы к об­лас­ти пе­ре­со­еди­не­ния, и чис­лом Ма­ха $M=u/v_A$, где $u=cE_0/B_0$ – ско­рость плаз­мен­но­го по­то­ка, $v_A=B_0/(4πnmi)^{1/2}$ – аль­ве­нов­ская ско­рость, $n$ – кон­цен­тра­ция ио­нов плаз­мы с мас­сой $m_i$, $c$ – ско­рость све­та. {1/2}$.

Мо­дель Пар­ке­ра – Сви­та хо­ро­шо опи­сы­ва­ет про­цес­сы мед­лен­но­го П. м. с. л. в столк­но­ви­тель­ной плаз­ме.

Рис. 2. Модель вынужденного пересоединения Петчека. Пересоединение силовых линий осуществляется в малой диффузионной области l. Синими линиями показаны ударные магнитогидродинамические волны, на котор…

В мо­де­ли Пет­че­ка (рис. 2) под дей­ст­ви­ем скре­щен­ных элек­трич. $\boldsymbol{E}_0$ и маг­нит­но­го $\boldsymbol{B}_0$ по­лей плаз­ма вме­сте с вмо­ро­жен­ны­ми маг­нит­ны­ми си­ло­вы­ми ли­ния­ми дрей­фу­ет со ско­ро­стью $\boldsymbol{u}$ к ней­траль­ной ли­нии, пер­пен­ди­ку­ляр­ной плос­ко­сти ри­сун­ка. Во­круг диф­фу­зи­он­ной об­лас­ти, где про­ис­хо­дит раз­рыв и пе­ре­со­еди­не­ние си­ло­вых ли­ний, рас­по­ло­же­ны че­ты­ре стоя­чие удар­ные вол­ны, пе­ре­се­кая ко­то­рые по­то­ки плаз­мы на­прав­ля­ют­ся на­пра­во или на­ле­во от об­лас­ти пе­ре­со­еди­не­ния. Удар­ные вол­ны из­ги­ба­ют маг­нит­ные си­ло­вые ли­нии; в ито­ге ско­рость пе­ре­со­еди­не­ния уве­ли­чи­ва­ет­ся до ве­ли­чи­ны $M∼1/\ln Re_m$.

Рис. 3. Модель токового слоя Сыроватского.

В мо­де­ли раз­ры­ва ней­траль­но­го то­ко­во­го слоя Сы­ро­ват­ско­го про­цесс П. м. с. л. рас­смат­ри­ва­ет­ся как ди­на­ми­че­ский и не­ста­цио­нар­ный (рис. 3). Ис­ход­ная кон­фи­гу­ра­ция маг­нит­ных по­лей схо­жа с кон­фи­гу­ра­ци­ей мо­де­ли Пет­че­ка, но в ней под дей­ст­ви­ем элек­трич. по­ля реа­ли­зует­ся те­че­ние не ква­зи­ста­цио­нар­но­го, а ку­му­ля­тив­но­го ти­па. По­ток вмо­ро­жен­но­го в плаз­му маг­нит­но­го по­ля, по­сту­паю­щий к ней­траль­ной ли­нии со ско­ро­стью $\boldsymbol{u}$, не ус­пе­ва­ет пе­ре­со­еди­нить­ся и «уп­лот­ня­ет­ся» в ок­ре­ст­но­сти уд­ли­няю­ще­го­ся в обе сто­ро­ны то­ко­во­го слоя, где плот­ность час­тиц бы­ст­ро убы­ва­ет, что при­во­дит к раз­ры­ву слоя. Воз­ни­ка­ют силь­ные им­пульс­ные ин­дук­ци­он­ные элек­трич. по­ля, ко­то­рые мо­гут ус­ко­рять час­ти­цы плаз­мы до боль­ших ско­ро­стей. Мо­дель Сы­ро­ват­ско­го, не­смот­ря на боль­шое ко­ли­че­ст­во уп­ро­щаю­щих пред­по­ло­же­ний, луч­ше дру­гих со­гла­су­ет­ся с совр. дан­ны­ми пря­мых спут­ни­ко­вых из­ме­ре­ний в маг­ни­то­сфе­ре Зем­ли. По­доб­ные ди­на­мич. мо­де­ли вы­ну­ж­ден­но­го пе­ре­со­еди­не­ния ис­поль­зу­ют­ся при ис­сле­до­ва­нии вспы­шек на Солн­це и в ла­бо­ра­тор­ных экс­пе­ри­мен­тах.

Рис. 4. Модель пересоединения магнитных силовых линий Данжи. Xд и Xн – нейтральные области,где происходит пересоединение. Красными стрелками показано направление движения плазмы при обтекании ма…

Про­цесс спон­тан­но­го пе­ре­со­еди­не­ния впер­вые ис­сле­до­ван в уп­ро­щён­ной мо­де­ли Хар­ри­са ней­траль­но­го то­ко­во­го слоя с ан­ти­па­рал­лель­ны­ми маг­нит­ны­ми по­ля­ми и ну­ле­вой по­пе­реч­ной ком­по­нен­той. На­ру­ше­ние вмо­ро­жен­но­сти маг­нит­но­го по­ля при­во­дит к пин­че­ва­нию по­пе­реч­но­го то­ка и об­ра­зо­ва­нию маг­нит­ных ост­ро­вов (см. рис. 1 в ст. Ней­траль­ный то­ко­вый слой). Спон­тан­ный про­цесс П. м. с. л. на­зы­ва­ет­ся раз­рыв­ной не­ус­той­чи­во­стью или ти­ринг-не­ус­той­чи­во­стью. Су­ще­ст­ву­ют её ре­зи­стив­ные, инер­ци­он­ные и ре­зо­нанс­ные мо­ды. Для бес­столк­но­ви­тель­ной кос­мич. плаз­мы ха­рак­тер­на ре­зо­нанс­ная мо­да, свя­зан­ная с за­туха­ни­ем Лан­дау. На­ли­чие нор­маль­ной ком­по­нен­ты маг­нит­но­го по­ля кар­ди­наль­но ме­ня­ет ус­той­чи­вость сис­те­мы. В бес­столк­но­ви­тель­ной плаз­ме раз­рыв­ная не­ус­той­чи­вость ста­би­ли­зи­ру­ет­ся, но маг­нит­ная кон­фи­гу­ра­ция ме­та­ста­биль­на. В сис­те­ме на­ка­п­ли­ва­ет­ся зна­чит. ко­ли­че­ст­во маг­нит­ной энер­гии, ко­то­рая при дос­ти­же­нии по­ро­го­вой ве­ли­чи­ны взрыв­ным об­ра­зом вы­сво­бо­ж­да­ет­ся. Эти свой­ст­ва про­цес­сов П. м. с. л. про­яв­ля­ют­ся в сол­неч­ных вспыш­ках и маг­ни­то­сфер­ных суб­бу­рях. В кос­мич. плаз­ме про­цес­сы П. м. с. л. кон­тро­ли­ру­ют струк­ту­ру и ди­на­ми­ку маг­ни­то­сфер пла­нет. Со­глас­но мо­де­ли Дан­жи (рис. 4), меж­пла­нет­ное и гео­маг­нит­ное по­ля пе­ре­со­еди­ня­ют­ся в ло­бо­вой об­лас­ти на гра­ни­це маг­ни­то­сфе­ры Зем­ли, об­ра­зуя ги­гант­ские маг­нит­ные «труб­ки» диа­мет­ром по­ряд­ка 1–2 ра­диу­сов Зем­ли. Эти маг­нит­ные «труб­ки» с по­то­ком сол­неч­ной плаз­мы, об­те­каю­щей маг­ни­то­сфе­ру, уно­сят­ся на ноч­ную сто­ро­ну Зем­ли и там сно­ва пе­ре­со­еди­ня­ют­ся в об­рат­ной по­сле­до­ва­тель­но­сти.

Силовая линия определение. Силовые линии электростатического поля

Теорема Остроградского–Гаусса, которую мы докажем и обсудим позже, устанавливает связь между электрическими зарядами и электрическим полем. Она представляет собой более общую и более изящную формулировку закона Кулона.

В принципе, напряженность электростатического поля, создаваемого данным распределением зарядов, всегда можно вычислить с помощью закона Кулона. Полное электрическое поле в любой точке является векторной суммой (интегральным) вкладом всех зарядов, т.е.

Однако, за исключением самых простых случаев, вычислить эту сумму или интеграл крайне сложно.

Здесь приходит на помощь теорема Остроградского-Гаусса, с помощью которой гораздо проще удается рассчитать напряженность электрического поля, создаваемая данным распределением зарядов.

Основная ценность теоремы Остроградского-Гаусса состоит в том, что она позволяет глубже понять природу электростатического поля и устанавливает более общую связь между зарядом и полем .

Но прежде, чем переходить к теореме Остроградского-Гаусса необходимо ввести понятия: силовые линии электростатического поля и поток вектора напряженности электростатического поля .

Для того чтобы описать электрическое поле, нужно задать вектор напряженности в каждой точке поля. Это можно сделать аналитически или графически. Для этого пользуются силовыми линиями – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности (рис. 2.1).


Рис. 2.1

Силовой линии приписывают определенное направление – от положительного заряда к отрицательному, или в бесконечность.

Рассмотрим случай однородного электрического поля .

Однородным называется электростатическое поле, во всех точках которого напряженность одинакова по величине и направлению , т.е. Однородное электростатическое поле изображается параллельными силовыми линиями на равном расстоянии друг от друга (такое поле существует, например, между пластинами конденсатора) (рис. 2.2).

В случае точечного заряда, линии напряженности исходят из положительного заряда и уходят в бесконечность; и из бесконечности входят в отрицательный заряд. Т.к. то и густота силовых линий обратно пропорциональна квадрату расстояния от заряда. Т.к. площадь поверхности сферы, через которую проходят эти линии сама возрастает пропорционально квадрату расстояния, то общее число линий остается постоянным на любом расстоянии от заряда.

Для системы зарядов, как видим, силовые линии направлены от положительного заряда к отрицательному (рис. 2.2).



Рис. 2.2

Из рисунка 2.3 видно, так же, что густота силовых линий может служить показателем величины .

Густота силовых линий должна быть такой, чтобы единичную площадку, нормальную к вектору напряженности пересекало такое их число, которое равно модулю вектора напряженности , т.е.

Теорема Остроградского–Гаусса, которую мы докажем и обсудим позже, устанавливает связь между электрическими зарядами и электрическим полем. Она представляет собой более общую и более изящную формулировку закона Кулона.

В принципе, напряженность электростатического поля, создаваемого данным распределением зарядов, всегда можно вычислить с помощью закона Кулона. Полное электрическое поле в любой точке является векторной суммой (интегральным) вкладом всех зарядов, т.е.

Однако, за исключением самых простых случаев, вычислить эту сумму или интеграл крайне сложно.

Здесь приходит на помощь теорема Остроградского-Гаусса, с помощью которой гораздо проще удается рассчитать напряженность электрического поля, создаваемая данным распределением зарядов.

Основная ценность теоремы Остроградского-Гаусса состоит в том, что она позволяет глубже понять природу электростатического поля и устанавливает более общую связь между зарядом и полем .

Но прежде, чем переходить к теореме Остроградского-Гаусса необходимо ввести понятия: силовые линии электростатического поля и поток вектора напряженности электростатического поля .

Для того чтобы описать электрическое поле, нужно задать вектор напряженности в каждой точке поля. Это можно сделать аналитически или графически. Для этого пользуются силовыми линиями – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности (рис. 2.1).


Рис. 2.1

Силовой линии приписывают определенное направление – от положительного заряда к отрицательному, или в бесконечность.

Рассмотрим случай однородного электрического поля .

Однородным называется электростатическое поле, во всех точках которого напряженность одинакова по величине и направлению , т.е. Однородное электростатическое поле изображается параллельными силовыми линиями на равном расстоянии друг от друга (такое поле существует, например, между пластинами конденсатора) (рис. 2.2).

В случае точечного заряда, линии напряженности исходят из положительного заряда и уходят в бесконечность; и из бесконечности входят в отрицательный заряд. Т.к. то и густота силовых линий обратно пропорциональна квадрату расстояния от заряда. Т.к. площадь поверхности сферы, через которую проходят эти линии сама возрастает пропорционально квадрату расстояния, то общее число линий остается постоянным на любом расстоянии от заряда.

Для системы зарядов, как видим, силовые линии направлены от положительного заряда к отрицательному (рис. 2.2).



Рис. 2.2

Из рисунка 2.3 видно, так же, что густота силовых линий может служить показателем величины .

Густота силовых линий должна быть такой, чтобы единичную площадку, нормальную к вектору напряженности пересекало такое их число, которое равно модулю вектора напряженности , т.е.

Г РАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПОЛЕЙ

Электрическое поле можно описать, указав для каждой точки величину и направление вектора . Совокупность этих векторов полностью определит электрическое поле. Но если нарисовать вектора во многих точках поля, то они будут накладываться и пересекаться. Принято электрическое поле наглядно изображать с помощью сети линий, которые позволяют определить величину и направление напряженности поля в каждой точке (Рис.13).


Направление этих линий в каждой точке совпадает с направлением поля, т.е. касательная к таким линиям в каждой точке поля совпадает по направлению с вектором напряженности электрического поля в этой точке. Такие линии называются линиями напряженности электростатического поля или силовыми линиями электростатического поля .

Силовые линии электростатического поля начинаются на положительных электрических зарядах и кончаются на отрицательных электрических зарядах. Они могут уходить в бесконечность от положительного заряда или приходить из бесконечности к отрицательному заряду (линии 1 и 2 см. рис.13).

Силовые линии полезны не только тем, что наглядно демонстрируют направление поля, но и тем, что посредством их можно охарактеризовать величину поля в любой области пространства. Для этого плотность силовых линий численно должна быть равна величине напряженности электростатического поля.

Если поле изображено параллельными силовыми линиями, расположенными на одинаковых расстояниях друг от друга, то это значит, что вектор напряженности поля во всех точках имеет одинаковое направление. Модуль вектора напряженности поля во всех точках имеет одинаковые значения. Такое поле называют однородным электрическим полем. Выберем площадку перпендикулярную линиям напряженности столь малую, чтобы в области этой площадки поле было однородным (Рис.14).

Вектор – по определению перпендикулярен площадке, т.е. параллелен силовым линиям, а, следовательно, и . Длина вектора численно равна площади . Число силовых линий, пересекающих эту площадку, должно удовлетворять условию

Число силовых линий, проходящих через единицу площади поверхности, перпендикулярной силовым линиям, должно равняться модулю вектора напряженности.

Рассмотрим площадку , не перпендикулярную силовым линиям (на рис.14 показана штриховыми линиями). Чтобы ее пересекало такое же число силовых линий как и площадку , должно выполняться условие:, тогда . (4.2).

Силовые линии силовы́е ли́нии

электрического и магнитного полей, линии, касательные к которым в каждой точке поля совпадают с направлением напряжённости электрического или соответственно магнитного поля; качественно характеризуют распределение электромагнитного поля в пространстве. Силовые линии – только наглядный способ изображения силовых полей.

СИЛОВЫЕ ЛИНИИ

СИЛОВЫ́Е ЛИ́НИИ, линии, проведенные в каком-либо силовом поле (см. СИЛОВОЕ ПОЛЕ) (электрическом, магнитном, гравитационном), касательные к которым в каждой точке поля совпадают по направлению с вектором, характеризующим данное поле (вектор напряженности (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электрического или гравитационного полей, вектор магнитной индукции (см. МАГНИТНАЯ ИНДУКЦИЯ) ). Силовые линии – только наглядный способ изображения силовых полей. Впервые понятие «силовые линии» для электрических и магнитных полей ввел М.Фарадей (см. ФАРАДЕЙ Майкл) .
Так как напряженности полей и магнитная индукция – однозначные функции точки, то через каждую точку пространства может проходить только одна силовая линия. Густота силовых линий обычно выбирается так, чтобы число силовых линий, пересекающих единичную площадку, перпендикулярную к силовым линиям, было пропорционально напряженности поля (или магнитной индукции) на этой площадке. Т. о., силовые линии дают наглядную картину распределения поля в пространстве, характеризуя величину и направление напряженности поля.
Силовые линии электростатического поля (см. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ) всегда незамкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность). Силовые линии нигде не пересекаются, так как в каждой точке поля его напряженность имеет одно единственное значение и определенное направление. Густота силовых линий больше вблизи заряженных тел, где напряженность поля больше.
Силовые линии электрического поля в пространстве между двумя положительными зарядами расходятся; можно указать нейтральную точку, в которой поля сил отталкивания обоих зарядов гасят друг друга.
Силовые линии одиночного заряда представляют собой радиальные прямые, которые расходятся от заряда лучами, подобно силовым линиям гравитационного поля точечной массы или шара. Чем дальше от заряда, тем меньше густота линий – это иллюстрирует ослабление поля с увеличение расстояния.
Силовые линии, исходящие от заряженного проводника неправильной формы, сгущаются вблизи любого выступа или острия, вблизи вогнутостей или полостей густота силовых линий уменьшается.
Если силовые линии исходят от положительно заряженного острия, находящегося вблизи отрицательно заряженного плоского проводника, то они сгущаются вокруг острия, где поле очень сильное, и расходятся в большую область вблизи плоскости, на которой оканчиваются, входя в плоскость перпендикулярно.
Электрическое поле в пространстве между параллельными заряженными пластинами однородно. Линии напряженности в однородном электрическом поле параллельны друг другу.
Если в силовое поле попадает частица, например электрон, то он под действием силового поля приобретает ускорение, и направление его движения не может точно следовать по направлению силовых линий, он будет двигаться в направлении вектора количества движения.
Магнитное поле (см. МАГНИТНОЕ ПОЛЕ) характеризуют линии магнитной индукции, в любой точке которых вектор магнитной индукции направлен по касательной.
Линии магнитной индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружности находятся на оси проводника. Силовые линии вектора магнитной индукции всегда замкнуты, т. е. магнитное поле является вихревым. Железные опилки, помещенные в магнитное поле, выстраиваются вдоль силовых линий; благодаря этому можно экспериментально определять вид силовых линий магнитной индукции. Вихревое электрическое поле, порождаемое изменяющимся магнитным полем, также имеет замкнутые силовые линии.

Энциклопедический словарь . 2009 .

Смотреть что такое “силовые линии” в других словарях:

    Линии, мысленно проведённые в к. л. силовом поле (электрич.. магнитном, тяготения) так, что в каждой точке поля направление касательной к линии совпадает с направлением напряжённости поля (магнитной индукции в случае магнитного поля). Через… … Большой энциклопедический политехнический словарь

    Электрических и магнитных полей линии, касательные к которым в каждой точке поля совпадают с направлением напряженности электрического или соответствующего магнитного поля; качественно характеризуют распределенние электромагнитного поля в… … Большой Энциклопедический словарь

    СИЛОВЫЕ ЛИНИИ, линии в ЭЛЕКТРИЧЕСКОМ или МАГНИТНОМ ПОЛЕ, чье направление в любой точке направлено внутрь поля … Научно-технический энциклопедический словарь

    Воображаемые линии, к рые проводят для изображения к. л. силового поля (электрич., магн., гравитац.). С. л. располагаются т. о., что касательные к ним в каждой точке пр ва совпадают по направлению с вектором, характеризующим данное поле… … Физическая энциклопедия

    силовые линии – — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN lines of force …

    Электрич. и магн. полей, линии, касательные к к рым в каждой точке поля совпадают с направлением напряжённости электрич. или соотв. магн. поля; качественно характеризуют распределение эл. магн. поля в пространстве. С. л. только наглядный способ… … Естествознание. Энциклопедический словарь

    Линии, проведённые в каком либо силовом поле (электрическом, магнитном, гравитационном), касательные к которым в каждой точке пространства совпадают по направлению с вектором, характеризующим данное поле (напряжённостью электрического или … Большая советская энциклопедия

    Силовые линии интегральные кривые для векторного поля (сил). Силовые линии электрического поля перпендикулярны к эквипотенциальным поверхностям, а, значит, и к линиям равного потенциала. Их направление от «+» к « ». Метод силовых линий в… … Википедия

    силовые линии магнитного поля – — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN magnetic flux … Справочник технического переводчика

20.1 Магнитные поля, силовые линии и сила – Физика

Задачи обучения разделу

К концу этого раздела вы сможете делать следующее:

  • Обобщите свойства магнитов и опишите, как некоторые немагнитные материалы могут намагничиваться
  • Описывать и интерпретировать рисунки магнитных полей вокруг постоянных магнитов и токоведущих проводов
  • Вычислить величину и направление магнитной силы в магнитном поле и силы, действующей на токоведущий провод в магнитном поле

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (5) Студент знает природу сил в физическом мире.Ожидается, что студент:
    • (G) исследует и описывает взаимосвязь между электрическими и магнитными полями в таких приложениях, как генераторы, двигатели и трансформаторы.

Кроме того, лабораторное руководство по физике в средней школе рассматривает содержание этого раздела лаборатории под названием «Магнетизм», а также следующие стандарты:

  • (5) Научные концепции. Студент знает природу сил в физическом мире. Ожидается, что студент:
    • (ГРАММ) исследовать и описывать взаимосвязь между электрическими и магнитными полями в таких приложениях, как генераторы, двигатели и трансформаторы.

Раздел Ключевые термины

Магниты и намагничивание

Люди знали о магнитах и ​​магнетизме тысячи лет.Самые ранние записи относятся к древним временам, особенно в области Малой Азии под названием Магнезия – название этого региона является источником таких слов, как магнит . Магнитные породы, найденные в Магнезии, которая сейчас является частью западной Турции, вызвали интерес в древние времена. Когда люди впервые обнаружили магнитные породы, они, вероятно, обнаружили, что некоторые части этих камней притягивают куски железа или других магнитных пород сильнее, чем другие части. Эти области называются полюсами и магнита.Магнитный полюс – это часть магнита, которая оказывает наибольшую силу на другие магниты или магнитный материал, например, железо. Например, полюса стержневого магнита, показанного на рисунке 20.2, являются местом сосредоточения скрепок.

Рис. 20.2 Стержневой магнит со скрепками, притянутыми к двум полюсам.

Если стержневой магнит подвешен так, что он свободно вращается, один полюс магнита всегда будет поворачиваться на север, а противоположный полюс – на юг. Это открытие привело к созданию компаса, который представляет собой просто небольшой удлиненный магнит, установленный так, чтобы он мог свободно вращаться.Пример компаса показан на рисунке 20.3. Полюс магнита, направленный на север, называется северным полюсом, а противоположный полюс магнита – южным.

Рис. 20.3 Компас – это удлиненный магнит, установленный в устройстве, которое позволяет магниту свободно вращаться.

Открытие того, что один полюс магнита ориентирован на север, а другой – на юг, позволило людям идентифицировать северный и южный полюса любого магнита. Затем было замечено, что северные полюса двух разных магнитов отталкиваются друг от друга, как и южные полюса.И наоборот, северный полюс одного магнита притягивает южный полюс других магнитов. Эта ситуация аналогична ситуации с электрическим зарядом, когда одинаковые заряды отталкиваются, а разные – притягиваются. В магнитах мы просто заменяем заряд на полюс : полюса отталкиваются, а полюса – притягиваются. Это показано на рисунке 20.4, на котором показано, как сила между магнитами зависит от их взаимной ориентации.

Рис. 20.4 В зависимости от их взаимной ориентации полюса магнита будут притягиваться друг к другу или отталкиваться.

Еще раз рассмотрим тот факт, что полюс магнита, направленный на север, называется северным полюсом магнита. Если противоположные полюса притягиваются, то магнитный полюс Земли, который находится близко к географическому Северному полюсу, должен быть магнитным южным полюсом! Точно так же магнитный полюс Земли, который находится близко к географическому Южному полюсу, должен быть магнитным северным полюсом. Эта ситуация изображена на рис. 20.5, на котором Земля представлена ​​как содержащая гигантский внутренний стержневой магнит с южным магнитным полюсом на географическом Северном полюсе и наоборот.Если бы мы каким-то образом подвесили гигантский стержневой магнит в космосе около Земли, то северный полюс космического магнита был бы притянут к южному полюсу внутреннего магнита Земли. По сути, это то, что происходит со стрелкой компаса: ее северный магнитный полюс притягивается к южному полюсу внутреннего магнита Земли.

Рис. 20.5. Землю можно представить как содержащую гигантский магнит, проходящий через ее ядро. Южный магнитный полюс магнита Земли находится на географическом Северном полюсе, поэтому северный полюс магнитов притягивается к Северному полюсу, так северный полюс магнитов получил свое название.Точно так же южный полюс магнитов притягивается к географическому Южному полюсу Земли.

Что произойдет, если разрезать стержневой магнит пополам? Вы получаете один магнит с двумя южными полюсами и один магнит с двумя северными полюсами? Ответ отрицательный: каждая половина стержневого магнита имеет северный и южный полюсы. Вы даже можете продолжить разрезать каждую часть стержневого магнита пополам, и вы всегда получите новый, меньший магнит с двумя противоположными полюсами. Как показано на рисунке 20.6, вы можете продолжить этот процесс вплоть до атомного масштаба, и вы обнаружите, что даже самые маленькие частицы, которые ведут себя как магниты, имеют два противоположных полюса.Фактически, ни в одном эксперименте не было обнаружено никаких объектов с одним магнитным полюсом, от мельчайших субатомных частиц, таких как электроны, до самых больших объектов во Вселенной, таких как звезды. Поскольку магниты всегда имеют два полюса, их называют магнитными диполями: di означает два . Ниже мы увидим, что магнитные диполи обладают свойствами, аналогичными электрическим диполям.

Рис. 20.6. Все магниты имеют два противоположных полюса, от самых маленьких, таких как субатомные частицы, до самых больших, таких как звезды.

Смотреть Physics

Введение в магнетизм

Это видео представляет интересное введение в магнетизм и обсуждает, в частности, как электроны вокруг своих атомов вносят вклад в наблюдаемые нами магнитные эффекты.

Проверка захвата

К какому магнитному полюсу Земли притягивается северный полюс стрелки компаса?

  1. Северный полюс стрелки компаса притягивается к северному магнитному полюсу Земли, который расположен недалеко от географического Северного полюса Земли.
  2. Северный полюс стрелки компаса притягивается к южному магнитному полюсу Земли, который расположен недалеко от географического Северного полюса Земли.
  3. Северный полюс стрелки компаса притягивается к северному магнитному полюсу Земли, который расположен недалеко от географического Южного полюса Земли.
  4. Северный полюс стрелки компаса притягивается к южному магнитному полюсу Земли, который расположен недалеко от географического Южного полюса Земли.

Только некоторые материалы, такие как железо, кобальт, никель и гадолиний, обладают сильными магнитными эффектами.Такие материалы называются ферромагнетиками, после латинского слова ferrum , обозначающего железо. Другие материалы обладают слабыми магнитными эффектами, которые можно обнаружить только с помощью чувствительных инструментов. Ферромагнитные материалы не только сильно реагируют на магниты – так, как железо притягивается к магнитам, – но они также могут намагничиваться сами, то есть их можно вызвать намагничиванием или превратить в постоянные магниты (рис. 20.7). Постоянный магнит – это просто материал, который сохраняет свои магнитные свойства в течение длительного времени даже при воздействии размагничивающих воздействий.

Рис. 20.7 Немагниченный кусок железа помещается между двумя магнитами, нагревается, а затем охлаждается или просто постукивается в холодном состоянии. Утюг становится постоянным магнитом с выровненными полюсами, как показано: его южный полюс примыкает к северному полюсу исходного магнита, а его северный полюс примыкает к южному полюсу исходного магнита. Обратите внимание, что силы притяжения создаются между центральным магнитом и внешними магнитами.

Когда магнит приближается к ранее немагниченному ферромагнитному материалу, он вызывает локальное намагничивание материала с противоположными полюсами, расположенными ближе всего, как показано на правой стороне рисунка 20.7. Это вызывает силу притяжения, поэтому немагнитное железо притягивается к магниту.

То, что происходит в микроскопическом масштабе, показано на Рисунке 7 (а). Области внутри материала, называемые доменами, действуют как маленькие стержневые магниты. Внутри доменов выровнены магнитные полюса отдельных атомов. Каждый атом действует как крошечный стержневой магнит. В немагнитном ферромагнитном объекте домены имеют небольшие размеры и ориентированы случайным образом. В ответ на внешнее магнитное поле домены могут вырасти до миллиметра, выравниваясь, как показано на рисунке 7 (b).Это индуцированное намагничивание можно сделать постоянным, если материал нагреть, а затем охладить, или просто постучать в присутствии других магнитов.

Рис. 20.8 (a) Немагнитный кусок железа или другого ферромагнитного материала имеет произвольно ориентированные домены. (б) При намагничивании внешним магнитом домены демонстрируют большее выравнивание, и некоторые из них растут за счет других. Отдельные атомы выровнены внутри доменов; каждый атом действует как крошечный стержневой магнит.

И наоборот, постоянный магнит можно размагнитить сильными ударами или нагреванием в отсутствие другого магнита.Повышенное тепловое движение при более высокой температуре может нарушить и изменить ориентацию и размер доменов. Для ферромагнитных материалов существует четко определенная температура, называемая температурой Кюри, выше которой они не могут намагничиваться. Температура Кюри для железа составляет 1043 К (770 ° C ° C), что намного выше комнатной температуры. Есть несколько элементов и сплавов, которые имеют температуру Кюри намного ниже комнатной температуры и являются ферромагнитными только ниже этих температур.

Snap Lab

Магниты на холодильник

Мы знаем, что подобные магнитные полюса отталкиваются, а разные полюса притягиваются. Посмотрим, сможете ли вы показать это на примере двух магнитов на холодильник. Прилипнут ли магниты, если их перевернуть? Почему они вообще прилепляются к дверце холодильника? Что вы можете сказать о магнитных свойствах дверцы холодильника возле магнита? Магниты на холодильник прилипают к металлическим или пластиковым ложкам? Прилипают ли они ко всем типам металла?

Поддержка учителя
Поддержка учителя

Если держать магнит рядом с немагнитным ферромагнитным материалом, он поляризует ферромагнитный материал магнитным полем, заставляя атомные магнитные диполи ориентироваться к внешнему магниту.Это похоже на электрическую поляризацию. Таким образом, ферромагнитный материал намагничивается в присутствии внешнего магнита, и два магнита притягиваются друг к другу. Чтобы магнит прилипал к дверце холодильника, дверца должна содержать какой-то ферромагнитный материал. Магниты будут прилипать к ложкам из железа, например к ложкам с железом, но не к ложкам из цветных металлов, таким как ложки из алюминия или серебра, и не будут прилипать к магниту. Магниты также не будут прилипать к пластиковым ложкам.

Проверка захвата

У вас есть один магнит с обозначенными северным и южным полюсами.Как вы можете использовать этот магнит для определения северного и южного полюсов других магнитов?

  1. Если северный полюс известного магнита отталкивается полюсом неизвестного магнита при приближении их, этот полюс неизвестного магнита является его северным полюсом; в противном случае это его южный полюс.
  2. Если северный полюс известного магнита притягивается к полюсу неизвестного магнита при приближении их, этот полюс неизвестного магнита является его северным полюсом; в противном случае это его южный полюс.

Магнитные поля

Таким образом, мы увидели, что силы могут применяться между магнитами, а также между магнитами и ферромагнитными материалами без какого-либо контакта между объектами.Это напоминает электрические силы, которые действуют на расстоянии. Электрические силы описываются с использованием концепции электрического поля, которое представляет собой силовое поле вокруг электрических зарядов, которое описывает силу, действующую на любой другой заряд, помещенный в это поле. Точно так же магнит создает вокруг себя магнитное поле, которое описывает силу, действующую на другие магниты, помещенные в это поле. Как и в случае с электрическими полями, графическое представление силовых линий магнитного поля очень полезно для визуализации силы и направления магнитного поля.

Как показано на рисунке 20.9, направление силовых линий магнитного поля определяется как направление, в котором указывает северный полюс стрелки компаса. Если вы поместите компас рядом с северным полюсом магнита, северный полюс стрелки компаса будет отталкиваться и указывать в сторону от магнита. Таким образом, силовые линии магнитного поля направлены от северного полюса магнита к его южному полюсу.

Рисунок 20.9 Черные линии представляют силовые линии магнитного поля стержневого магнита.Линии поля указывают в направлении, в котором будет указывать северный полюс небольшого компаса, как показано слева. Силовые линии магнитного поля никогда не останавливаются, поэтому силовые линии фактически проникают в магнит, образуя полные петли, как показано справа.

Силовые линии магнитного поля можно нанести на карту с помощью небольшого компаса. Компас перемещается от точки к точке вокруг магнита, и в каждой точке проводится короткая линия в направлении стрелки, как показано на рисунке 20.10. Соединение линий вместе показывает путь линии магнитного поля.Другой способ визуализировать силовые линии магнитного поля – это рассыпать железные опилки вокруг магнита. Опилки будут ориентироваться вдоль силовых линий магнитного поля, образуя узор, подобный изображенному справа на рис. 20.10.

Виртуальная физика

Использование компаса для построения карты магнитного поля

Эта симуляция представляет вам стержневой магнит и небольшой компас. Начните с перетаскивания компаса вокруг стержневого магнита, чтобы увидеть, в каком направлении направлено магнитное поле.Обратите внимание, что сила магнитного поля представлена ​​яркостью значков магнитного поля в сетке вокруг магнита. Используйте измеритель магнитного поля, чтобы проверить напряженность поля в нескольких точках вокруг стержневого магнита. Вы также можете изменить полярность магнита или поместить Землю на изображение, чтобы увидеть, как компас ориентируется.

Проверка захвата

С помощью ползунка в правом верхнем углу окна моделирования установите напряженность магнитного поля на 100 процентов.Теперь используйте измеритель магнитного поля, чтобы ответить на следующий вопрос: где магнитное поле самое сильное, а где самое слабое возле магнита? Не забудьте проверить стержневой магнит изнутри.

  1. Магнитное поле самое сильное в центре и самое слабое между двумя полюсами сразу за стержневым магнитом. Силовые линии магнитного поля наиболее плотные в центре и наименее плотные между двумя полюсами сразу за стержневым магнитом.
  2. Магнитное поле самое сильное в центре и самое слабое между двумя полюсами сразу за стержневым магнитом.Линии магнитного поля наименее плотны в центре и наиболее плотны между двумя полюсами сразу за стержневым магнитом.
  3. Магнитное поле самое слабое в центре и самое сильное между двумя полюсами сразу за стержневым магнитом. Силовые линии магнитного поля наиболее плотные в центре и наименее плотные между двумя полюсами сразу за стержневым магнитом.
  4. Магнитное поле самое слабое в центре и самое сильное между двумя полюсами сразу за стержневым магнитом, а силовые линии магнитного поля наименее плотные в центре и самые плотные между двумя полюсами сразу за стержневым магнитом.

Рисунок 20.10 Силовые линии магнитного поля можно нарисовать, перемещая небольшой компас от точки к точке вокруг магнита. В каждой точке проведите короткую линию в направлении стрелки компаса. Соединение точек вместе показывает путь линий магнитного поля. Другой способ визуализировать силовые линии магнитного поля – это рассыпать железные опилки вокруг магнита, как показано справа.

Когда два магнита сближаются, силовые линии магнитного поля возмущаются, как это происходит с силовыми линиями электрического поля, когда два электрических заряда сближаются.Соединение двух северных полюсов или двух южных полюсов вызовет отталкивание, и силовые линии магнитного поля будут отклоняться друг от друга. Это показано на рисунке 20.11, где показаны силовые линии магнитного поля, созданные двумя близко расположенными северными полюсами стержневого магнита. Когда противоположные полюса двух магнитов сводятся вместе, силовые линии магнитного поля соединяются и становятся более плотными между полюсами. Эта ситуация показана на рисунке 20.11.

Рис. 20.11 (a) Когда два северных полюса сближаются, силовые линии магнитного поля отталкиваются друг от друга, и два магнита испытывают силу отталкивания.То же самое происходит, если два южных полюса сближаются. (b) Если противоположные полюса сближаются, силовые линии магнитного поля между полюсами становятся более плотными, и магниты испытывают силу притяжения.

Как и электрическое поле, магнитное поле сильнее там, где линии более плотные. Таким образом, между двумя северными полюсами на рисунке 20.11 магнитное поле очень слабое, потому что плотность магнитного поля почти равна нулю. Компас, помещенный в эту точку, по сути, будет свободно вращаться, если мы не будем учитывать магнитное поле Земли.Напротив, силовые линии магнитного поля между северным и южным полюсами на рисунке 20.11 очень плотные, что указывает на то, что магнитное поле в этой области очень сильное. Компас, размещенный здесь, быстро выровнялся бы с магнитным полем и указывал бы на южный полюс справа.

Поддержка учителей

Поддержка учителей
Предупреждение о неправильном представлении

Плотность силовых линий магнитного поля на рисунке 20.11 указывает величину силы, которая будет приложена к небольшому испытательному магниту, помещенному в это поле.Плотность не указывает силу между двумя магнитами, создающими поле. Величина силы между двумя магнитами одинакова в обоих случаях на рисунке 20.11. Это можно понять, представив, что вы помещаете один из магнитов в поле другого магнита. Эта ситуация симметрична: магнитные поля выглядят одинаково – за исключением направления – для обеих ситуаций, показанных на рисунке 20.11. Поскольку магниты имеют одинаковую силу, они возмущают магнитное поле противоположного магнита, поэтому магнитное поле необходимо исследовать с помощью небольшого магнитного поля, такого как компас.

Обратите внимание, что магниты – не единственное, что создает магнитные поля. В начале девятнадцатого века люди обнаружили, что электрические токи вызывают магнитные эффекты. Первое важное наблюдение было сделано датским ученым Гансом Кристианом Эрстедом (1777–1851), который обнаружил, что стрелка компаса отклоняется проводом с током. Это было первое существенное свидетельство того, что движение электрических зарядов имеет какую-либо связь с магнитами. Электромагнит – это устройство, которое использует электрический ток для создания магнитного поля.Эти временно индуцированные магниты называются электромагнитами. Электромагниты используются во всем: от крана для разборки металлолома, который поднимает сломанные автомобили, до управления пучком ускорителя частиц с окружностью 90 км и магнитов в машинах для медицинской визуализации (см. Рис. 20.12).

Рисунок 20.12 Прибор для магнитно-резонансной томографии (МРТ). В устройстве используется электромагнит с цилиндрической катушкой для создания основного магнитного поля. Пациент идет в тоннель на каталке.(предоставлено Биллом МакЧесни, Flickr)

Магнитное поле, создаваемое электрическим током в длинном прямом проводе, показано на рисунке 20.13. Силовые линии магнитного поля образуют концентрические круги вокруг провода. Направление магнитного поля можно определить с помощью правила правой руки . Это правило проявляется в нескольких местах при изучении электричества и магнетизма. Применительно к прямому токонесущему проводу правило правой руки гласит, что когда большой палец правой руки направлен в направлении тока, магнитное поле будет в том направлении, в котором изгибаются ваши пальцы правой руки, как показано на рисунке 20.13. Если провод очень длинный по сравнению с расстоянием × от провода, сила магнитного поля B будет равна

. B прямой = μ0I2πrB прямой = μ0I2πr

20,1

, где I – ток в проводе в амперах. Единицей измерения магнитного поля в системе СИ является тесла (Тл). Символ μ0μ0 – читается как «мю-ноль» – это константа, называемая «проницаемостью свободного пространства», и задается как

. μ0 = 4π × 10−7T⋅m / A. μ0 = 4π × 10−7T⋅m / A.

20,2

Рисунок 20.13 На этом изображении показано, как использовать правило правой руки для определения направления магнитного поля, создаваемого током, протекающим по прямому проводу. Направьте большой палец правой руки в направлении тока, и магнитное поле будет в том направлении, в котором изгибаются ваши пальцы.

Watch Physics

Магнитное поле, создаваемое электрическим током

В этом видео описывается магнитное поле, создаваемое прямым проводом с током. Он переходит к правилу правой руки для определения направления магнитного поля, а также представляет и обсуждает формулу для силы магнитного поля, создаваемого прямым проводом с током.

Проверка захвата

Длинный прямой провод кладут на столешницу, и электрический ток течет по нему справа налево. Если вы посмотрите на конец провода с левого конца, магнитное поле движется по часовой стрелке или против часовой стрелки?

  1. Если направить большой палец правой руки в направлении, противоположном току, пальцы правой руки будут изгибаться против часовой стрелки, поэтому магнитное поле будет направлено против часовой стрелки.
  2. Если направить большой палец правой руки в направлении, противоположном току, пальцы правой руки будут изгибаться по часовой стрелке, поэтому магнитное поле будет в направлении по часовой стрелке.
  3. Если направить большой палец правой руки в направлении тока, пальцы правой руки будут сгибаться против часовой стрелки, поэтому магнитное поле будет направлено против часовой стрелки.
  4. Если направить большой палец правой руки в направлении тока, пальцы правой руки будут изгибаться по часовой стрелке, поэтому магнитное поле будет направлено по часовой стрелке.

А теперь представьте, что наматывается проволока на цилиндр, после чего цилиндр снят. В результате получается катушка с проволокой, как показано на рисунке 20.14. Это называется соленоидом. Чтобы найти направление магнитного поля, создаваемого соленоидом, примените правило правой руки к нескольким точкам катушки. Вы должны убедиться, что внутри катушки магнитное поле направлено слева направо. Фактически, еще одно применение правила правой руки – сгибать пальцы правой руки вокруг катушки в направлении, в котором течет ток. Затем ваш большой палец правой руки указывает в направлении магнитного поля внутри катушки: в данном случае слева направо.

Рисунок 20.14 Катушка с проводом, через которую проходит ток, как показано, создает магнитное поле в направлении красной стрелки.

Каждая петля из проволоки создает магнитное поле внутри соленоида. Поскольку силовые линии магнитного поля должны образовывать замкнутые петли, силовые линии замыкают петлю за пределами соленоида. Силовые линии магнитного поля внутри соленоида намного плотнее, чем вне соленоида. Результирующее магнитное поле очень похоже на магнитное поле стержневого магнита, как показано на рисунке 20.15. Напряженность магнитного поля внутри соленоида

. Bsolenoid = μ0NIℓ, Bsolenoid = μ0NIℓ,

20,3

, где N – количество витков в соленоиде, а ℓℓ – длина соленоида.

Рис. 20.15. Железные опилки показывают картину магнитного поля вокруг (а) соленоида и (б) стержневого магнита. Картины полей очень похожи, особенно возле концов соленоида и стержневого магнита.

Виртуальная физика

Электромагниты

Используйте это моделирование для визуализации магнитного поля, созданного соленоидом.Обязательно щелкните вкладку с надписью «Электромагнит». Вы можете пропустить через соленоид переменный или постоянный ток, выбрав соответствующий источник тока. Используйте измеритель поля для измерения силы магнитного поля, а затем измените количество витков в соленоиде, чтобы увидеть, как это влияет на напряженность магнитного поля.

Проверка захвата

Выберите аккумулятор в качестве источника тока и установите количество витков на четыре. С ненулевым током, протекающим через соленоид, измерьте напряженность магнитного поля в точке.Теперь уменьшите количество проволочных петель до двух. Как изменится напряженность магнитного поля в выбранной вами точке?

  1. При уменьшении количества витков с четырех до двух напряженность магнитного поля не изменится.
  2. Напряженность магнитного поля уменьшается до половины от исходного значения, когда количество витков уменьшается с четырех до двух.
  3. Напряженность магнитного поля увеличивается вдвое по сравнению с исходным значением, когда количество витков уменьшается с четырех до двух.
  4. Напряженность магнитного поля увеличивается в четыре раза от исходного значения при уменьшении количества витков с четырех до двух.

Магнитная сила

Если движущийся электрический заряд, то есть электрический ток, создает магнитное поле, которое может воздействовать на другой магнит, то по третьему закону Ньютона должно быть верно обратное. Другими словами, заряд, движущийся через магнитное поле, создаваемое другим объектом, должен испытывать силу – и это именно то, что мы находим.В качестве конкретного примера рассмотрим рисунок 20.16, на котором показан заряд q , движущийся со скоростью v → v → через магнитное поле B → B → между полюсами постоянного магнита. Величина F силы, испытываемой этим зарядом, равна

. F = qvBsinθ, F = qvBsinθ,

20,4

где θθ – угол между скоростью заряда и магнитным полем.

Направление силы можно найти с помощью другой версии правила правой руки: сначала мы соединяем хвосты вектора скорости и вектора магнитного поля, как показано на шаге 1 рисунка 20.16. Затем мы сгибаем пальцы правой руки от v → v → к B → B →, как показано на шаге (2) рисунка 20.16. Направление, в котором указывает большой палец правой руки, – это направление силы. Для заряда на рис. 20.16 мы обнаруживаем, что сила направлена ​​внутрь страницы.

Обратите внимание, что множитель sinθsinθ в уравнении F = qvBsinθF = qvBsinθ означает, что к заряду, движущемуся параллельно магнитному полю, приложена нулевая сила, поскольку θ = 0θ = 0 и sin0 = 0sin0 = 0. Максимальная сила, которую может испытывать заряд, – это когда он движется перпендикулярно магнитному полю, потому что θ = 90 ° θ = 90 °. и sin90 ° = 1.sin90 ° = 1.

Рис. 20.16 (а) Протон движется в однородном магнитном поле. (б) Используя правило правой руки, обнаруживается, что сила, действующая на протон, направлена ​​внутрь страницы.

Ссылки на физику

Магнитогидродинамический привод

В романе Тома Клэнси о холодной войне «Охота за Красный Октябрь» Советский Союз построил подводную лодку (см. Рис. надводные корабли. Единственная возможная цель создания такой подводной лодки заключалась в том, чтобы дать Советскому Союзу возможность первого удара, потому что эта подводная лодка могла подкрасться к побережью Соединенных Штатов и запустить баллистические ракеты, уничтожая ключевые военные и правительственные объекты, чтобы предотвратить американскую контратаку. .

Рисунок 20.17 Российская подводная лодка с баллистическими ракетами типа «Тайфун», на которой базировалась вымышленная подводная лодка «Красный Октябрь».

Магнитогидродинамический привод должен быть бесшумным, поскольку в нем нет движущихся частей. Вместо этого он использует силу, испытываемую заряженными частицами, движущимися в магнитном поле. Основная идея такого привода изображена на рис. 20.18. Соленая вода течет по каналу, идущему от носа к корме подводной лодки. Магнитное поле прикладывается горизонтально к каналу, а напряжение прикладывается к электродам в верхней и нижней части канала, чтобы протолкнуть вниз электрический ток через воду.Носителями заряда являются положительные ионы натрия и отрицательные ионы хлора соли. Используя правило правой руки, обнаруживается, что сила, действующая на носители заряда, направлена ​​к задней части судна. Ускоренные заряды сталкиваются с молекулами воды и передают свой импульс, создавая струю воды, которая вылетает из задней части канала. По третьему закону Ньютона на сосуд действует сила равной величины, но в противоположном направлении.

Рис. 20.18 Схематический чертеж магнитогидродинамического привода, показывающий водный канал, направление тока, направление магнитного поля и результирующую силу.

К счастью для всех, оказалось, что такая силовая установка не очень практична. Некоторые предварительные расчеты показывают, что для питания подводной лодки потребуются либо чрезвычайно высокие магнитные поля, либо чрезвычайно высокие электрические токи для получения разумной тяги. Кроме того, прототипы магнитогидродинамических приводов показывают, что они совсем не бесшумны. Электролиз, вызванный пропусканием тока через соленую воду, создает пузырьки водорода и кислорода, что делает эту двигательную установку довольно шумной.Система также оставляет след из хлорид-ионов и хлоридов металлов, который можно легко обнаружить, чтобы определить местонахождение подводной лодки. Наконец, ионы хлора чрезвычайно реактивны и очень быстро разъедают металлические детали, такие как электрод или сам водяной канал. Таким образом, Красный Октябрь остается в сфере фантастики, но его физика вполне реальна.

Проверка захвата

Представьте себе лодку, приводимую в движение силой заряженных частиц, движущихся в магнитном поле. Если магнитное поле направлено вниз, в каком направлении должен течь ток заряженных частиц, чтобы получить силу, направленную назад?

  1. Течение должно течь вертикально сверху вниз, если смотреть сзади лодки.
  2. Течение должно течь вертикально снизу вверх, если смотреть сзади лодки.
  3. Течение должно течь горизонтально слева направо, если смотреть сзади лодки.
  4. Течение должно течь горизонтально справа налево, если смотреть сзади лодки.

Вместо одиночного заряда, движущегося в магнитном поле, рассмотрим теперь постоянный ток I , движущийся по прямому проводу.Если мы поместим этот провод в однородное магнитное поле, как показано на рисунке 20.19, какова сила, действующая на провод или, точнее, на электроны в проводе? Электрический ток включает в себя движущиеся заряды. Если заряды q перемещаются на расстояние ℓℓ за время t , то их скорость будет v = ℓ / t.v = / t. Подставляя это в уравнение F = qvBsinθF = qvBsinθ, получаем

F = q (ℓt) Bsinθ = (qt) ℓBsinθ.F = q (ℓt) Bsinθ = (qt) ℓBsinθ.

20,5

Коэффициент q / t в этом уравнении – не что иное, как ток в проводе.Таким образом, используя I = q / tI = q / t, получаем

F = IℓBsinθ (1.4). F = IℓBsinθ (1.4).

20,6

Это уравнение дает силу, действующую на прямой провод с током длиной в магнитном поле с напряженностью B . Угол θθ – это угол между вектором тока и вектором магнитного поля. Обратите внимание, что ℓℓ – это длина провода, находящегося в магнитном поле, для которого θ ≠ 0, θ ≠ 0, как показано на рисунке 20.19.

Направление силы определяется так же, как и для одиночного заряда.Согните пальцы правой руки от вектора I к вектору B , а большой палец правой руки будет указывать в направлении силы, действующей на провод. Для провода, показанного на рис. 20.19, сила направлена ​​внутрь страницы.

Рисунок 20.19 Прямой провод, по которому течет ток I в магнитном поле B . Сила, приложенная к проволоке, направлена ​​внутрь страницы. Длина ℓℓ – это длина провода, равная в магнитном поле.

В этом разделе вы могли заметить симметрию между магнитными и электрическими эффектами.Все эти эффекты подпадают под понятие электромагнетизма, которое является исследованием электрических и магнитных явлений. Мы видели, что электрические заряды создают электрические поля, а движущиеся электрические заряды создают магнитные поля. Магнитный диполь создает магнитное поле, и, как мы увидим в следующем разделе, движущиеся магнитные диполи создают электрическое поле. Таким образом, электричество и магнетизм – два тесно связанных и симметричных явления.

Рабочий пример

Траектория электрона в магнитном поле

Протон входит в область постоянного магнитного поля, как показано на рисунке 20.20. Магнитное поле выходит из страницы. Если электрон движется со скоростью 3,0 × 106 м / с3,0 × 106 м / с, а напряженность магнитного поля составляет 2,0 Тл, каковы величина и направление силы, действующей на протон?

Рис. 20.20. Протон попадает в область однородного магнитного поля. Магнитное поле исходит из страницы – кружки с точками представляют наконечники векторных стрелок, выходящих из страницы.

Стратегия

Используйте уравнение F = qvBsinθF = qvBsinθ, чтобы найти величину силы, действующей на протон.Угол между векторами магнитного поля и вектором скорости протона составляет 90 ° .90 °. Направление силы можно найти с помощью правила правой руки.

Решение

Заряд протона q = 1,60 · 10−19Cq = 1,60 · 10−19C. Ввод этого значения, заданной скорости и напряженности магнитного поля в уравнение F = qvBsinθF = qvBsinθ дает

F = qvBsinθ = (1,60 × 10−19C) (3,0 × 106 м / с) (2,0T) sin (90 °) = 9,6 × 10−13N. F = qvBsinθ = (1,60 × 10−19C) (3,0 × 106 м / с) (2..

Обсуждение

Это похоже на очень маленькую силу. Однако масса протона составляет 1,67 × 10–27 кг, 1,67 × 10–27 кг, поэтому его ускорение равно a = Fm = 9,6 × 10–13N1,67 × 10–27 кг = 5,7 × 1014 м / с2a = Fm = 9,6. × 10–13N1,67 × 10–27 кг = 5,7 × 1014 м / с2, или примерно в десять тысяч миллиардов раз больше ускорения свободного падения!

Мы обнаружили, что начальное ускорение протона, когда он входит в магнитное поле, направлено вниз в плоскости страницы. Обратите внимание, что по мере ускорения протона его скорость остается перпендикулярной магнитному полю, поэтому величина силы не меняется.Кроме того, из-за правила правой руки направление силы остается перпендикулярным скорости. Эта сила – не что иное, как центростремительная сила: она имеет постоянную величину и всегда перпендикулярна скорости. Таким образом, величина скорости не меняется, и протон совершает круговое движение. Радиус этого круга может быть найден с помощью кинематического соотношения.

F = ma = mv2ra = v2rr = v2a = (3,0 × 106 м / с) 25,7 × 1014 м / с2 = 1,6 см F = ma = mv2ra = v2rr = v2a = (3,0 × 106 м / с) 25.7 × 1014 м / с2 = 1,6 см

20,8

Путь протона в магнитном поле показан на рисунке 20.22.

Рис. 20.22 При перемещении перпендикулярно постоянному магнитному полю заряженная частица будет совершать круговое движение, как показано здесь для протона.

Рабочий пример

Проволока с током в магнитном поле

Теперь предположим, что мы пропустили провод через однородное магнитное поле из предыдущего примера, как показано. Если по проводу проходит ток 1.-направлении, а длина области с магнитным полем 4,0 см, какова сила на проводе?

Стратегия

Используйте уравнение F = IℓBsinθF = IℓBsinθ, чтобы найти величину силы, действующей на провод..-направление. Сила, действующая на провод с током в магнитном поле, является основой всех электродвигателей, как мы увидим в следующих разделах.

Практические задачи

1.

Какова величина силы, действующей на электрон, движущийся со скоростью 1,0 × 106 м / с перпендикулярно магнитному полю 1,0 Тл?

  1. 0,8 × 10 –13 N
  2. 1,6 × 10 –14 N
  3. 0,8 × 10 –14 N
  4. 1,6 × 10 –13 N
2.

Прямой 10-сантиметровый провод имеет ток 0,40 А и ориентирован перпендикулярно магнитному полю. Если сила на проводе составляет 0,022 Н, какова величина магнитного поля?

  1. 1,10 × 10 –2 T
  2. 0,55 × 10 –2 T
  3. 1,10 т
  4. 0,55 т

Проверьте свое понимание

3.

Если два магнита отталкиваются друг от друга, какой можно сделать вывод об их взаимной ориентации?

  1. Либо южный полюс магнита 1 ближе к северному полюсу магнита 2, либо северный полюс магнита 1 ближе к южному полюсу магнита 2.
  2. Либо южные полюса магнита 1 и магнита 2 ближе друг к другу, либо северные полюса магнита 1 и магнита 2 расположены ближе друг к другу.
4.

Опишите методы размагничивания ферромагнетика.

  1. путем охлаждения, нагрева или погружения в воду
  2. путем нагревания, удара и вращения во внешнем магнитном поле
  3. молотком, нагреванием и протиранием тканью
  4. путем охлаждения, погружения в воду или протирания тканью
5.

Что такое магнитное поле?

  1. Направляющие линии внутри и снаружи магнитного материала, указывающие величину и направление магнитной силы.
  2. Направляющие линии внутри и снаружи магнитного материала, указывающие величину магнитной силы.
  3. Направляющие линии внутри магнитного материала, указывающие величину и направление магнитной силы.
  4. Направляющие линии вне магнитного материала указывают величину и направление магнитной силы.
6.

Какой из следующих рисунков правильный?

Магнитные поля и линии магнитного поля

Цель обучения

К концу этого раздела вы сможете:

  • Определение магнитного поля и описание силовых линий различных магнитных полей.

Говорят, что в детстве Эйнштейн был очарован компасом, возможно, размышляя о том, как стрелка ощущала силу без прямого физического контакта. Его способность глубоко и ясно мыслить о действиях на расстоянии, особенно о гравитационных, электрических и магнитных силах, позже позволила ему создать свою революционную теорию относительности. Поскольку магнитные силы действуют на расстоянии, мы определяем магнитное поле для представления магнитных сил. Графическое изображение линий магнитного поля очень полезно для визуализации силы и направления магнитного поля.Как показано на Фиг.1, направление линий магнитного поля определяется как направление, в котором указывает северный конец стрелки компаса. Магнитное поле традиционно называют B -field .

Рис. 1. Линии магнитного поля определяются так, чтобы они имели направление, которое указывает маленький компас при размещении в определенном месте. (a) Если для отображения магнитного поля вокруг стержневого магнита используются небольшие компасы, они будут указывать в показанных направлениях: от северного полюса магнита к южному полюсу магнита.(Напомним, что северный магнитный полюс Земли на самом деле является южным полюсом с точки зрения определения полюсов стержневого магнита.) (B) Соединение стрелок дает непрерывные линии магнитного поля. Сила поля пропорциональна близости (или плотности) линий. (c) Если бы можно было исследовать внутреннюю часть магнита, было бы обнаружено, что силовые линии образуют непрерывные замкнутые контуры.

Маленькие компасы, используемые для проверки магнитного поля, его не побеспокоят. (Это аналогично тому, как мы проверяли электрические поля с небольшим пробным зарядом.В обоих случаях поля представляют только объект, создающий их, а не зонд, проверяющий их.) На рисунке 2 показано, как магнитное поле появляется для токовой петли и длинного прямого провода, что можно было бы исследовать с помощью небольших компасов. Небольшой компас, помещенный в эти поля, выровняется параллельно линии поля в своем местоположении, а его северный полюс будет указывать в направлении B . Обратите внимание на символы, используемые для ввода и вывода из бумаги.

Рис. 2. Маленькие компасы можно использовать для картирования полей, показанных здесь.(а) Магнитное поле круговой токовой петли похоже на магнитное поле стержневого магнита. (б) Длинный и прямой провод создает поле с силовыми линиями магнитного поля, образующими кольцевые петли. (c) Когда проволока находится в плоскости бумаги, поле перпендикулярно бумаге. Обратите внимание, что символы, используемые для поля, указывающего внутрь (например, хвоста стрелки), и поля, указывающего наружу (например, наконечника стрелки).

Установление соединений: концепция поля

Поле – это способ отображения сил, окружающих любой объект, которые могут воздействовать на другой объект на расстоянии без видимой физической связи.Поле представляет объект, его генерирующий. Гравитационные поля отображают гравитационные силы, электрические поля отображают электрические силы, а магнитные поля отображают магнитные силы.

Обширные исследования магнитных полей выявили ряд жестких правил. Мы используем линии магнитного поля для представления поля (линии – это графический инструмент, а не физическая сущность сами по себе). Свойства силовых линий магнитного поля можно описать следующими правилами:

  1. Направление магнитного поля касается силовой линии в любой точке пространства.Маленький компас укажет направление линии поля.
  2. Сила поля пропорциональна близости линий. Он точно пропорционален количеству линий на единицу площади, перпендикулярной линиям (так называемая поверхностная плотность).
  3. Силовые линии магнитного поля никогда не могут пересекаться, а это означает, что поле уникально в любой точке пространства.
  4. Линии магнитного поля непрерывны, образуют замкнутые контуры без начала и конца. Они идут от северного полюса к южному.

Последнее свойство связано с тем, что северный и южный полюса не могут быть разделены. Это явное отличие от силовых линий электрического поля, которые начинаются и заканчиваются на положительных и отрицательных зарядах. Если бы магнитные монополи существовали, то силовые линии магнитного поля начинались бы и заканчивались на них.

Сводка раздела

  • Магнитные поля могут быть графически представлены силовыми линиями магнитного поля, свойства которых следующие:
    • Поле касается линии магнитного поля.
    • Напряженность поля пропорциональна линейной плотности.
    • Линии поля не могут пересекаться.
    • Полевые линии представляют собой непрерывные петли.

Концептуальные вопросы

  1. Объясните, почему магнитное поле не может быть уникальным (то есть не иметь единственного значения) в точке пространства, где силовые линии магнитного поля могут пересекаться. (Учитывайте направление поля в такой точке.)
  2. Перечислите сходства силовых линий магнитного и электрического поля.Например, направление поля касается линии в любой точке пространства. Также укажите, чем они отличаются. Например, электрическая сила параллельна силовым линиям электрического поля, тогда как магнитная сила, действующая на движущиеся заряды, перпендикулярна силовым линиям магнитного поля.
  3. Заметив, что силовые линии магнитного стержня похожи на силовые линии пары равных и противоположных зарядов, ожидаете ли вы, что магнитное поле будет быстро уменьшаться в силе по мере удаления от магнита? Это согласуется с вашим опытом работы с магнитами?
  4. Магнитное поле Земли параллельно земле во всех местах? Если нет, то где она параллельна поверхности? Его сила одинакова во всех местах? Если нет, то где оно больше всего?

Глоссарий

магнитное поле:
представление магнитных сил
B -поле:
другой термин для обозначения магнитного поля
линий магнитного поля:
графическое изображение силы и направления магнитного поля
направление силовых линий магнитного поля:
направление, на которое указывает северный конец стрелки компаса

линий магнитного поля | Блестящая вики по математике и науке

Земля :

Возможно, вы читали об разрушительных солнечных вспышках, вызванных солнечными бурями, или о прекрасных образцах ионизации, которые формируют северное сияние (Северное сияние).\ text {th} В 17 веке китайские путешественники заметили, что с компасами в море шутят. Исследователи предположили, что вращение Земли и присутствие железа в мантии Земли могли вызвать этот аномальный магнетизм. Эти теории вскоре были опровергнуты и заменены теорией геодинамо, которая утверждает, что многие ионы движутся в мантии под поверхностью нашей Земли, тем самым создавая ток, который создает магнитное поле.

Обратите внимание: как и у любого стержневого магнита, наша Земля также имеет два полюса, с той разницей, что эти полюса не совпадают с нашими географическими северным и южным полюсами, и поэтому известны как магнитные полюса.Из свойств стержневых магнитов мы знаем, что силовые линии магнитного поля, ответственные за поле, берут начало на севере и заканчиваются на южном полюсе и, таким образом, представляют собой замкнутые контуры. Хотя иногда считают, что в ядре Земли находится огромный магнит, это совсем не так, но дает хорошую картину для тематического исследования.

Как упоминалось ранее, магнитное поле Земли отклоняет вредные солнечные вспышки, унося ионизированные частицы. Рассмотрим заряженную частицу, падающую от Солнца.Направляясь прямо к Земле, он встречает магнитное поле, перпендикулярное его движению, и отклоняется. Это создает своего рода защитный щит вокруг Земли и может выдерживать типичные солнечные вспышки. Эффект магнитного экранирования проиллюстрирован ниже:

Ускорители частиц :

Ускорители элементарных частиц используются для ускорения элементарных частиц и атомов до огромных скоростей, приближающихся к скорости света.Затем частицы сталкиваются, и продукты этих столкновений тщательно анализируются на предмет признаков гипотетических или полностью новых частиц. Ускорители также используются для генерации излучения, используемого при лечении рака, например, при протонной терапии.

Ускорители

бывают нескольких типов, основными из которых являются циклотрон и синхотрон.

Циклотрон :

Механизм циклотрона сочетает в себе постоянное магнитное поле с переключающимся электрическим полем, чтобы удерживать частицы на спиральных траекториях все увеличивающегося радиуса.2} {r} .qvB = mrv2.

Это означает, что qB / m = v / rqB / m = v / rqB / m = v / r. Поскольку частота траектории определяется выражением 2πr / v2 \ pi r / v2πr / v, это предполагает, что частота орбиты составляет всего 1 / T = 2πm / qB1 / T = 2 \ pi m / qB1 / T = 2πm / qB. Мы замечаем, что это не зависит от энергии или радиуса. Таким образом, частица любой энергии будет поддерживать частоту 1 / T1 / T1 / T, даже если ее энергия меняется! Мы можем использовать эту невероятную регулярность траектории (даже если она спиралевидная) для создания простого ускорителя.

Рассмотрим область, в которой мы поддерживаем постоянное магнитное поле с напряженностью BBB. Далее рассмотрим разделительную линию (граница между красным и синим на диаграмме ниже). Когда частицы находятся справа от этой линии, электрическое поле указывает влево, ускоряя их влево через зазор, а когда частицы находятся слева, поле указывает вправо, и они ускоряются вправо. Поскольку магнитное поле удерживает частицы на траекториях с постоянной частотой, частицы регулярно ускоряются до более высокой энергии каждый раз, когда они пересекают зазор и движутся по траекториям с увеличивающимся радиусом.

Рассматривая это во временной области, мы видим, что мы можем запитать этот ускоритель электрическим полем, которое меняет ориентацию каждые T = qB / 2πmT = qB / 2 \ pi mT = qB / 2πm секунд. Черная линия соответствует красно-синему интерфейсу выше.

Таким образом, используя переключающееся EEE-поле (направленное прямо через зазор) и однородное BBB-поле (ориентированное вертикально) в тандеме, мы можем ускорять заряженные частицы по спиральным траекториям, которые затем могут быть выпущены из ускорителя и использованы для последующего использования. цели (т.е. столкновения, терапия и др.)

Синхотрон :

Синхротрон – это усовершенствованная форма циклотрона; это тип кругового ускорителя, в котором дипольные магниты используются для направления движения частицы, а квадрупольные магниты используются для сохранения фокусировки пучка заряженных частиц.

Большой адронный коллайдер

Высокочастотное радиочастотное поле используется для передачи энергии частицам, и путь остается постоянным независимо от энергии.Различие между циклотроном и синхротроном видно из-за генерации синхротронного излучения.

Синхротронное излучение возникает, когда электрон высокой энергии (скорость приближается к скорости света) проходит через дипольный магнит и испытывает боковую силу, вызывающую центростремительное ускорение. На этой стадии электрон испускает интенсивное излучение, касательное к его траектории, известное как синхротронное излучение.

Фотон :

Фотоны, конечно же, являются фундаментальными квантами света; на данной частоте интенсивность светового потока может изменяться только с шагом одного фотона.. Это поле изменяется в пространстве и времени, что означает, что оно создает магнитное поле в соответствии с законом индукции Фарадея. Магнитное поле сдвигается на полпериода и колеблется перпендикулярно электрическому полю. Очевидно, аргумент применим в обратном порядке (распространяющееся магнитное поле порождает перпендикулярно колеблющееся электрическое поле), так что они неразделимы.

Визуализируя этот результат, мы видим, что электромагнитная волна, распространяющаяся в пространстве, состоит из связанных полей EEE и BBB, колеблющихся поперек общей оси, которая является направлением волны.

Линии поля представляют собой стрелки, указывающие от оси распространения до амплитуды каждой волны.

Магнитные силовые линии: Физика и наука о магнетизме

Каждый атом в куске железа представляет собой магнит с северным и южным полюсами. Большинство кусков железа немагнитны, потому что все атомные магниты направлены в разные стороны.

Когда вы подносите магнит к куску железа, магниты из атомов железа совпадают с приложенным магнитным полем: все северные полюса атомов железа направлены в одном направлении.Поскольку атомы железа выстраиваются в линию, кусок железа становится магнитом и притягивается к исходному магниту.

В куске железа в форме стержня атомы будут стремиться выровняться так, чтобы все северные полюса были обращены к одному концу стержня, а все южные полюса были обращены к другому концу. Поскольку железные опилки имеют форму стержня, атомы выстраиваются в линию, указывая по длине стержня, а стержни выстраиваются параллельно направлению приложенного магнитного поля. Поле цилиндрического магнита выходит из конца магнита и затем обтекает его сбоку.Железные опилки торчат, как ежик, на концах магнита, но лежат ровно по бокам (щелкните, чтобы увеличить диаграмму ниже).

Поскольку железные опилки сами становятся магнитами, их присутствие немного изменяет форму магнитного поля. Тем не менее, эта закуска дает представление о форме магнитного поля в трех измерениях.

Обратите внимание: если вы очень хорошо запечатали пластиковую бутылку, вставив пробирку в ее рот, через несколько часов стенки бутылки начнут сжиматься внутрь, особенно если внутренняя часть бутылки влажная.Это происходит потому, что железные опилки начинают ржаветь. По мере того как железо ржавеет, оно соединяется с воздухом, находящимся в бутылке, и удаляет из него кислород. Чтобы бутылка не схлопнулась, просто сделайте маленькую дырочку в пластике с помощью канцелярской кнопки. Черный песок с пляжа, который сделан из магнетита и не ржавеет, также можно использовать в качестве заменителя железных опилок.

КОНВЕКЦИОННАЯ ЗОНА

КОНВЕКЦИОННАЯ ЗОНА
Что такое магнитные поля?

Проще говоря, магнитное поле – это область вокруг магнита.Магниты сделаны из минерала, называемого магнетидом (или магнитом), который обладает свойством притягивать утюг. Ученые используют линий магнитного поля , чтобы представить эти магнитные поля. Силовые линии магнитного поля простого магнита показаны на рисунке ниже. от северного полюса до южного полюса. Однако силовые линии магнитного поля не заканчиваются только на кончике магнита. Они проходят насквозь, так что внутри магнита магнитное поле направлено от южного полюса к северному полюсу.Таким образом, силовые линии магнитного поля образуют замкнутую петлю и не имеют концов. Поэтому магнитный поле в этом случае тоже не имеет концов.
Это правда всегда. Магнитные поля, какими бы сложными они ни были, не имеют конца.

Эти магнитные поля очень важны, поскольку они оказывают влияние на другие объекты. Как мы уже говорили, магниты всегда притягивают предметы, сделанные из железа. Чтобы увидеть это, поднести магнит к гвоздю (сделанному из железа) и посмотреть, как магнит притягивает гвоздь к себе? Обратите внимание, что по мере того, как вы приближаете магнит к гвоздю, притяжение между гвоздь и магнит становится сильнее.Если вы отодвинете магнит дальше от гвоздя, притяжение станет слабее до того момента, когда гвоздь перестанет притягиваться. все вместе. Это потому, что в какой-то момент гвоздь вошел в магнитное поле магнита и был притянут к магниту магнитной силой . Мы говорим, что магнитное поле оказывает на гвоздь магнитную силу. Сила этой силы зависит от расстояния между магнитом и гвоздем.

Линии магнитного поля. В отличие от полюсов, полюса притягивают друг друга. Как поляки отталкивают друг друга. >

Однако магнитные поля одного магнита также оказывают магнитное воздействие на другие магниты. Возьмите два магнита и поместите их рядом друг с другом. Когда в отличие от полюсов, то есть на севере а южные полюса двух магнитов расположены близко друг к другу, силовые линии магнитного поля соединяются, заставляя магниты притягиваться друг к другу. Если, с другой стороны, подобное полюса, то есть северный и северный полюсы (или южный и южный полюсы) расположены близко друг к другу, магниты не соединяются, а магниты отталкиваются друг от друга.
Вот почему стрелка компаса всегда указывает север / юг. Северный магнитный полюс Земли притягивает южный магнитный полюс стрелки компаса. Следовательно Южный магнитный полюс стрелки компаса указывает на северный полюс Земли. Если вы поместите сильный магнит рядом со стрелкой компаса, стрелка повернется и укажет к северному полюсу магнита. Если вы удалите магнит, игла вернется в исходное положение.

Однако вам не обязательно нужен магнит для создания магнитного поля.Магнитные поля также могут создаваться движущимися зарядами (электронами или положительно / отрицательно заряженными атомов). Таким образом, электрические токи, которые в основном представляют собой просто движущиеся электроны, протекающие по проводу, создают магнитное поле. Это открыл французский физик. Андре Мари Ампер (1775-1836). Этот эффект можно проиллюстрировать на очень простом примере.

Электрический ток создает магнитное поле

Все, что вам нужно для проведения этого эксперимента, – это два куска провода, батарея, катушка с проводом и компас.Подключите провод и катушку к батарее, как показано выше. Как только при этом через провод и катушку начинает течь электрический ток. Этот электрический ток создает магнитное поле в катушке, как показано на рисунке. В магнитное поле заставляет стрелку компаса поворачиваться к катушке. Как только вы отсоедините один из проводов от аккумулятора, стрелка компаса вернется на свое место. исходное положение.

Наука о линиях магнитного поля

Магнитное поле окружает любой движущийся электрический заряд.Магнитное поле непрерывно и невидимо, но его сила и ориентация могут быть представлены линиями магнитного поля. В идеале силовые линии магнитного поля или силовые линии магнитного потока показывают силу и ориентацию магнитного поля. Представление полезно, потому что оно дает людям способ увидеть невидимую силу и потому, что математические законы физики легко учитывают «количество» или плотность силовых линий.

  • Силовые линии магнитного поля – это визуальное представление невидимых силовых линий в магнитном поле.
  • По соглашению, линии показывают силу от северного до южного полюса магнита.
  • Расстояние между линиями указывает относительную силу магнитного поля. Чем ближе линии, тем сильнее магнитное поле.
  • Железные опилки и компас можно использовать для отслеживания формы, силы и направления силовых линий магнитного поля.

Магнитное поле – это вектор, а это значит, что у него есть величина и направление. Если электрический ток течет по прямой линии, правило правой руки показывает направление, в котором линии невидимого магнитного поля обтекают провод.Если вы вообразите, что сжимаете провод правой рукой, а большой палец указывает в направлении тока, магнитное поле распространяется в направлении пальцев вокруг провода. Но что, если вы не знаете направление тока или просто хотите визуализировать магнитное поле?

Как увидеть магнитное поле

Подобно воздуху, магнитное поле невидимо. Вы можете наблюдать за ветром косвенно, подбрасывая в воздух небольшие кусочки бумаги. Точно так же размещение кусочков магнитного материала в магнитном поле позволяет проследить его путь.Простые методы включают:

Используйте компас

Группа компасов может показывать направления силовых линий магнитного поля. Мацей Фролов / Getty Images

Размахивая компасом вокруг магнитного поля, можно увидеть направление силовых линий. Чтобы нанести на карту магнитное поле, поместите несколько компасов, чтобы указать направление магнитного поля в любой точке. Чтобы нарисовать силовые линии магнитного поля, соедините «точки» компаса. Преимущество этого метода в том, что он показывает направление силовых линий магнитного поля.Недостаток в том, что на нем не указывается напряженность магнитного поля.

Используйте железную опилку или магнетитовый песок

Железо ферромагнитно. Это означает, что он выравнивается вдоль силовых линий магнитного поля, образуя крошечные магниты с северным и южным полюсами. Крошечные кусочки железа, такие как железные опилки, выравниваются, образуя подробную карту линий поля, потому что северный полюс одной части ориентируется так, чтобы оттолкнуть северный полюс другой части и привлечь ее южный полюс. Но вы не можете просто насыпать опилки на магнит, потому что они притягиваются к нему и будут прилипать к нему, а не отслеживать магнитное поле.

Чтобы решить эту проблему, железные опилки насыпают на бумагу или пластик в магнитном поле. Один из методов, используемых для рассыпания опилок, – это посыпать их на поверхность с высоты нескольких дюймов. Можно добавить больше опилок, чтобы сделать линии полей более четкими, но только до определенного предела.

Альтернативой железной опилке являются стальные гранулы BB, луженые железные опилки (которые не ржавеют), небольшие канцелярские скрепки, скобы или магнетитовый песок. Преимущество использования частиц железа, стали или магнетита состоит в том, что частицы образуют подробную карту силовых линий магнитного поля.Карта также дает приблизительное представление о напряженности магнитного поля. Плотные линии, расположенные близко друг к другу, появляются там, где поле наиболее сильное, а разреженные линии, расположенные на большом расстоянии, показывают, где поле слабее. Недостатком использования железных опилок является отсутствие указателя ориентации магнитного поля. Самый простой способ преодолеть это – использовать компас вместе с железными опилками для определения ориентации и направления.

Попробуйте магнитную пленку для просмотра

Магнитная пленка для просмотра представляет собой гибкий пластик, содержащий пузырьки жидкости, пронизанные крошечными магнитными стержнями.Пленки выглядят темнее или светлее в зависимости от ориентации стержней в магнитном поле. Магнитная пленка лучше всего подходит для отображения сложной магнитной геометрии, например, создаваемой плоским магнитом холодильника.

Линии естественного магнитного поля

Линии полярного сияния повторяют линии магнитного поля Земли. Оскар Бьярнасон / Getty Images

Силовые линии магнитного поля также появляются в природе. Во время полного солнечного затмения линии короны отражают магнитное поле Солнца.Вернувшись на Землю, линии полярного сияния указывают путь магнитного поля планеты. В обоих случаях видимые линии представляют собой светящиеся потоки заряженных частиц.

Правила линий магнитного поля

Используя силовые линии магнитного поля для построения карты, становятся очевидными некоторые правила:

  1. Силовые линии магнитного поля никогда не пересекаются.
  2. Силовые линии магнитного поля непрерывны. Они образуют замкнутые петли, которые проходят через магнитный материал.
  3. Силовые линии магнитного поля сгруппированы в местах наибольшего магнитного поля.Другими словами, плотность силовых линий указывает на напряженность магнитного поля. Если нанести на карту силовые линии вокруг магнита, его самое сильное магнитное поле будет на любом из полюсов.
  4. Если магнитное поле не отображается с помощью компаса, направление магнитного поля может быть неизвестным. Обычно направление указывается стрелками вдоль линий магнитного поля. В любом магнитном поле линии всегда текут от северного полюса к южному. Названия «север» и «юг» являются историческими и могут не иметь никакого отношения к географической ориентации магнитного поля

Источник

  • Дерни, Карл Х.и Кертис К. Джонсон (1969). Введение в современную электромагнетизм . Макгроу-Хилл. ISBN 978-0-07-018388-9.
  • Гриффитс, Дэвид Дж. (2017). Введение в электродинамику (4-е изд.). Издательство Кембриджского университета. ISBN 9781108357142.
  • Ньютон, Генри Блэк и Харви Н. Дэвис (1913). Практическая физика . MacMillan Co., США.
  • Типлер, Пол (2004). Физика для ученых и инженеров: электричество, магнетизм, свет и элементарная современная физика (5-е изд.). В. Х. Фриман. ISBN 978-0-7167-0810-0.

Лекция 9

Лекция 9 Сводка
  • Электроэнергия
  • Последовательные и параллельные цепи
  • Правила Кирхгофа и замкнутые схемы
  • Цепи конденсаторные


    Глава 22

  • Магниты
    • два полюса, как столбы отталкиваются
    • Земля – ​​гигантский магнит

    • Пример # 1
    • Магниты состоят из магнитов

  • Магнитные поля
    • силовые линии
    • демонстрация накладных расходов
      апплет
    • магнитное поле видео
  • Результаты обучения
    Студент, освоивший темы этой лекции, сможет:
    • описывает основные характеристики магнита и его взаимодействие с другими магнитами в непосредственной близости
    • начертите магнитные силовые линии, чтобы представить магнитное поле вокруг стержневого магнита, включая стрелки, чтобы указать направление магнитного поля.
  • Практика:
    Попробуйте эти дополнительные примеры
  • Пример # 2

    Пример # 3
  • Подготовьте:
    Прочтите разделы 22-6 учебника перед следующей лекцией (мы пропустим немного в главе 22)
  • POP4 22.Q14
    Какой полюс магнитного поля Земли находится под северной Канадой?
    А. север (N)
    Б. юг (S)
    Ответ

    Walker5e EYU 22.1
    Является ли полюс 1 стержневого магнита северным магнитным полюсом (N) или южным магнитным полюсом (S)?

    А. север (N)
    Б. юг (Ю)
    C. Невозможно сказать
    Ответ

    Walker5e CnEx 22-1
    Могут ли силовые линии магнитного поля пересекать друг друга?

    А.да
    B. no
    Ответ

    Б. юг (Ю)


    A. север (N)

    Северный полюс стрелки компаса – это конец стрелки, и он притягивается к южному полюсу стержневого магнита, который отмечен как полюс 2. Это означает, что полюс 1 является северным полюсом стержня.

    Оставить комментарий