Математический фокус с числами: Математические фокусы с числами для детей. Магия чисел в буднях — Цветы жизни

Фокусы с отгадыванием числа – НАУМЁНОК

Фокусы развивают креативность, артистические способности, способствуют концентрации внимания. Математические фокусы не исключение.

Математические фокусы можно сравнить с гимнастикой для ума, которая полезна в любом возрасте. Действия с числами тренируют память, навыки счёта, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять.

Фокусов очень много, но особого внимания заслуживает искусство отгадывать числа.

Математические фокусы с числами и их секреты

 


  •   Загадайте любое число.
  •   Прибавьте к этому числу следующее по порядку число.
  •   Увеличьте результат на 9..
  •   Уменьшите результат в 2 раза.
  •   Отнимите загаданное число.

Ответ:

число 5


  • Задумайте число от 1 до 9
  • К результату прибавьте 1.
  • Полученное число увеличьте в 5 раз.
  • Отбросьте все цифры, кроме последней.
  • Оставшееся число умножьте само на себя.
  • Сложите цифры результата.

Ответ:

число 7


  • Задумайте любое число.
  • Увеличьте его в 2 раза. 
  • Добавьте шесть. 
  • Уменьшите в 2 раза. 
  • Отнимите число, которое задумали.

Ответ:

число 3


  • Задумайте любое число.
  • Увеличьте его на 3.
  • Умножьте результат на 2.
  • Уменьшите получившийся результат на 5.
  • Отнимите задуманное число.
  • И еще раз отнимите задуманное число.

Ответ:

число 1


  • Задумайте число от 1 до 9.
  • Увеличьте его на 3.
  • К результату прибавьте 2.
  • Умножьте результат на 3.
  • Прибавьте задуманное число.
  • Отбросьте первую цифру полученного числа.
  • К оставшемуся числу прибавьте 2.
  • Полученное число уменьшите в 4 раза.
  • К результату прибавьте 19.

Ответ:

число 21


  • Загадайте число менее 10.
  • Загаданное число умножьте на 2.
  • Увеличьте результат на 6.
  • Уменьшите в 2 раза.
  • Отнимите задуманное число.

Ответ:

число 3


  • Загадайте число от 1 до 9.
  • Увеличьте его в 5 раз.
  • Результат удвойте.
  • К полученному числу прибавьте 14.
  • Сумму уменьшите на 8.
  • Первую цифру результата отбросьте.
  • Оставшееся число уменьшите в 3 раза.
  • К результату прибавьте 10.

Ответ:

число 12


  • Загадайте любое число.
  • Вычтите из загаданного числа 1.
  • Увеличьте в 3 раза.
  • Прибавьте 12.
  • Разделите результат на 3.
  • Увеличьте на 5.
  • Отнимите загаданное число.

Ответ:

число 8


  • Задумайте число меньше 100.
  • Прибавьте к нему 20.
  • Полученный результат отнимите от 170.
  • Остаток уменьшите на 6.
  • Прибавьте задуманное число.
  • В полученном числе сложите цифры.
  • Сумму цифр умножьте на это же число.
  • Результат уменьшите на 1.
  • Полученное число разделите пополам.
  • Прибавьте 8.

Ответ:

число 48


  • Загадайте трёхзначное число.
  • Припишите к нему справа такое же число.
  • Полученное число уменьшите в 7 раз.
  • Результат разделите на задуманное число.
  • Полученное число разделите на 11.
  • Удвойте результат.
  • В полученном числе сложите все цифры.

Ответ:

число 8


  • Загадайте любое число.
  • Умножьте число, которое вы загадали на 3.
  • Увеличьте на 45.
  • Удвойте то, что получилось.
  • Уменьшите в 6 раз.
  • Отнимите задуманное число.

Ответ:

число 15


  • Загадайте любое трехзначное число, цифры в котором должны быть одинаковыми (например: 555).
  • Сложите между собой цифры, из которых состоит загаданное число.
  • Разделите загаданное число на результат предыдущего шага.

Ответ:

число 37


  • Загадайте трехзначное число, цифры которого идут в порядке уменьшения (например, 754 или 931).
  • Запишите число в обратном порядке.
  • Вычтите полученное число из исходного.
  •  К полученному ответу добавьте его же, только в обратном порядке.

Ответ:

число 1089


Фокус с отгадыванием дня недели
  • Загадайте свой любимый день недели.
  • Дни недели имеют свои порядковые номера. Понедельник – первый, вторник – второй и т.д.
  • Умножьте номер дня недели  на 2.
  • Прибавьте к результату 5.
  • Умножьте результат на 5.
  • Умножьте результат на 10.
  • Скажите свой результат.

Ответ:

из результата вычесть 250 и число сотен будет номером дня недели.

Разгадка фокуса: допустим, задуман четверг, то есть 4 день. Выполним действия: ((4×2+5)х5)х10=650, 650 – 250=400.


Фокус с отгадыванием даты дня рождения
  • День своего рождения умножьте на 2. 
  • К результату прибавьте 5. 
  • Полученный результат умножьте на 50. 
  • Прибавьте порядковый номер месяца, в котором вы родились.
  • Скажите полученное число.

Ответ:

отнимите от названного числа 250. Первые две цифры будут указывать на день, а две последние — на месяц рождения.

Разгадка фокуса: допустим, задуман 16.02. Выполним действия:

((16×2+5)х50+2=1852, 1852 – 250=1602


Фокус с угадыванием возраста
  • Умножьте свой возраст на пять.
  • К полученному числу прибавьте 8.
  • Результат умножьте на 2.
  • Из этого числа нужно вычесть 6.
  • Полученный результат умножить на 10.
  • Скажите полученное число.

Ответ:

из названного числа нужно вычесть 100, а затем то, что получилось, разделить на 100.

Разгадка фокуса: допустим, задуман возраст 10 лет. Выполним действия:

((10×5+8)х2-6)х10=1100, 1100 – 100=1000, 1000:100=10


Математические фокусы – прекрасный способ заинтересовать детей такой интереснейшей наукой, как математика. Математические фокусы способствуют развитию концентрации внимания, прекрасно тренируют навыки устного счета, что очень поможет при написании математических диктантов и решении задач.

Любой фокус с отгадыванием чисел можно легко разгадать. Ребятам постарше очень полезно будет это сделать самим, опираясь на образец уже разгаданных фокусов.

Искусство отгадывать числа может пригодиться на любом празднике, дне рождения или просто на прогулке или перемене. Позвольте своему ребёнку побыть немного волшебником.

Если ваш ребёнок уже увлечён математикой, то вам будет интересна статья математические игры для детей.

С уважением, Ольга Наумова

 

МАТЕМАТИЧЕСКИЕ НЕЙРОТРЕНАЖЕРЫ

Авторская методика!

Ольга Наумова НЕЙРОСЧЕТ Сложение и вычитание до 10

Уникальный прогрессивный нейротренажер, в котором отработка навыков устного счета объединена с упражнениями для мозга в единую гармоничную систему. Результат не заставит себя ждать!

Эффективный фитнес для мозга и тела не только для дошкольников и младших школьников, но и для взрослых.
Дети с удовольствием включаются в эту подвижную, но непростую игру!

Кому необходим этот тренажер?

  • Любому ребенку, испытывающему какие-либо затруднения в учебе;
  • Ребенку, у которого проблемы с устным счетом;
  • Ребенку, который отстает в развитии;
  • Ребенку, который не хочет учиться;
  • Человеку, который хочет улучшить внимание и память;
  • Любому ребенку, который хочет развить свои способности;
  • Любому взрослому, который хочет стать более энергичным и успешным.

В тренажере вы найдете:

  • 60 различных таблиц устных вычислений для занятий;
  • 9 уровней сложности + усложнения внутри каждого уровня;
  • Четкие и удобные инструкции;
  • Авторскую методику, разработанную и усовершенствованную во время практических занятий с детьми.

Регулярные занятия позволят:

  • научиться быстро и правильно считать в пределах 10;
  • улучшить навыки устного счета;
  • развить мышление и память;
  • сделать работу полушарий более слаженной;
  • развить внимание;
  • развить математические способности;
  • развить скорость реакции;
  • облегчить процесс чтения и письма;
  • повысить работоспособность;
  • выработать устойчивость к отвлекающим факторам;
  • улучшить показания в учебе.

Регулярные занятия очень быстро дадут видимый результат!
Рекомендуемый возраст от 4 лет.
Максимальная польза для тела и интеллекта!

Скачать


Ольга Наумова НЕЙРОСЧЕТ Сложение и вычитание до 20

В тренажере вы найдете:

  • 60 различных таблиц устных вычислений для занятий;
  • 9 уровней сложности + усложнения внутри каждого уровня;
  • Четкие и удобные инструкции;
  • Авторскую методику, разработанную и усовершенствованную во время практических занятий с детьми.

Регулярные занятия позволят:

  • научиться быстро и правильно считать в пределах 20;
  • улучшить навыки устного счета;
  • развить мышление и память;
  • сделать работу полушарий более слаженной;
  • развить внимание;
  • развить математические способности;
  • развить скорость реакции;
  • облегчить процесс чтения и письма;
  • повысить работоспособность;
  • выработать устойчивость к отвлекающим факторам;
  • улучшить показания в учебе.

Регулярные занятия очень быстро дадут видимый результат!
Рекомендуемый возраст от 6 лет.

 

Скачать


Ольга Наумова НЕЙРОСЧЕТ Табличное умножение и деление

Это непросто, но дети с удовольствием включаются в эту подвижную игру!

Кому необходим этот тренажер?

  • Любому ребенку, испытывающему какие-либо затруднения в учебе;
  • Ребенку, у которого проблемы с устным счетом;
  • Ребенку, который не может или не хочет запоминать таблицу умножения;
  • Ребенку, который не хочет учиться;
  • Человеку, который хочет улучшить внимание и память;
  • Любому ребенку, который хочет развить свои способности;
  • Любому взрослому, который хочет стать более энергичным и успешным.

В тренажере вы найдете:

  • 60 различных таблиц устных вычислений для занятий;
  • 9 уровней сложности + усложнения внутри каждого уровня;
  • Четкие и удобные инструкции;
  • Авторскую методику, разработанную и усовершенствованную во время практических занятий с детьми.

Регулярные занятия позволят:

  • быстро запомнить таблицу умножения;
  • улучшить навыки устного счета;
  • развить мышление и память;
  • сделать работу полушарий более слаженной;
  • развить внимание;
  • развить математические способности;
  • развить скорость реакции;
  • облегчить процесс чтения и письма;
  • повысить работоспособность;
  • выработать устойчивость к отвлекающим факторам;
  • улучшить показания в учебе.

Регулярные занятия очень быстро дадут видимый результат!
Рекомендуемый возраст от 8 лет.
Максимальная польза для тела и интеллекта!

 

Скачать


Ольга Наумова НЕЙРОСЧЕТ Сложение и вычитание до 100

В тренажере вы найдете:

  • 60 различных таблиц устных вычислений для занятий;
  • 9 уровней сложности + усложнения внутри каждого уровня;
  • Четкие и удобные инструкции;
  • Авторскую методику, разработанную и усовершенствованную во время практических занятий с детьми.

Регулярные занятия позволят:

  • научиться быстро и правильно считать в пределах 100;
  • улучшить навыки устного счета;
  • развить мышление и память;
  • сделать работу полушарий более слаженной;
  • развить внимание;
  • развить математические способности;
  • развить скорость реакции;
  • облегчить процесс чтения и письма;
  • повысить работоспособность;
  • выработать устойчивость к отвлекающим факторам;
  • улучшить показания в учебе.

 

Скачать

Методика прекрасно зарекомендовала себя во время практических занятий с детьми!

О. Наумова НЕЙРОТРЕНИНГ Безударные гласные

Большой полноценный ТРЕНИНГ с выстроенной системой упражнений.
НЕЙРОТРЕНИНГ позволит продуктивно отработать самую распространенную и трудную орфограмму в русском языке — безударные гласные в корне слова, проверяемые ударением.

Что даст прохождение ТРЕНИНГА:

  • повышение уровня грамотности;
  • развитие внимания;
  • активацию работы мозга;
  • умение применять полученные знания на практике;
  • увеличение скорости обработки информации;
  • развитие речи;
  • развитие памяти;
  • улучшение успеваемости в школе и т.д.

Кому нужен этот ТРЕНИНГ?

  • Ребенку, который делает ошибки на письме;
  • Родителям, которые хотят разобраться в теме и помочь своему ребенку;
  • Учителю, который использует нестандартные и действенные приёмы в обучении;
  • Репетитору желающему в разы увеличить результативность своих занятий.

Что найдете в ТРЕНИНГЕ:

  • Продуманную и проверенную на практике систему упражнений;
  • 200 страниц результативных заданий;
  • 9 уровней сложности нейроупражнений;
  • Нестандартные и наиболее эффективные задания по основной теме;
  • Упражнения для развития речи;
  • Дополнительные задания к упражнениям на отработку знаний частей речи, состава слова, деления на слоги, умения составлять предложения и др.

В результате прохождения ТРЕНИНГА ребенок получит:

  • умение видеть в текстах и слышать слова с безударными гласными;
  • умение быстро и без ошибок подбирать проверочные слова;
  • повышение грамотности в целом;
  • развитие «орфографического чутья»;
  • уменьшение количества ошибок;
  • активацию работы мозга;
  • развитие мышления;
  • увеличение скорости мысли;
  • улучшение показателей в учёбе.

ПОДХОДИТ ДЛЯ ИНДИВИДУАЛЬНОЙ И ГРУППОВОЙ РАБОТЫ.

Скачать


Заходите также в

Книжную лавку  за полезными книгами!

 

Благодарю, что поделились статьей в социальных сетях!

Разработка урока внеурочной деятельности “Математические фокусы, их составление и разгадывание”

Урок № 16-18

Логика 3 класс

Тема: «Математические фокусы, их составление и разгадывание»

Цель:

  • познакомить ребят с историей появления математических фокусов;

  • научить их разгадывать фокусы;

  • способствовать развитию умений анализировать, сравнивать, обобщать, выделять главное; развивать осознанную математическую речь; развитие познавательного интереса учащихся;

  • содействовать воспитанию таких качеств как: самостоятельность, целеустремленность, настойчивость, целенаправленность, трудолюбие, аккуратность, ответственность

Задачи:

Продолжить формирование навыков контроля результатов деятельности.

– Способствовать развитию коммуникативных навыков. Развивать умение анализировать, обобщать материал, выступать перед аудиторией, развивать интеллектуальные, творческие и исследовательские способности, активизировать интерес к учебным предметам.

– Формирование логического, абстрактного, эвристического, системного мышления.

Оборудование: проектор, экран, компьютер, презентации

План.

  1. Организационные моменты

  2. История возникновения математических фокусов.

Что такое фокус?

Фокус или иллюзионное искусство – один из видов деятельности человека. В основном – это выступления артистов в виде концертных номеров, аттракционов, спектаклей и шоу.

 Фокус – искусный трюк, основанный на обмане зрения, внимания при помощи ловкого и быстрого приема, движения (словарь Ожегова)

Иллюзионное искусство привлекает зрителей своей фантастичностью происходящего на сцене. Зритель сам может убедиться в том, что на сцене происходит невероятное, невозможное действие. Показывая и наблюдая фокусы, люди развлекаются. Но не только. Один человек создал фокус, другие удивляются ему, пытаются разобраться в фокусе, понять его и добраться до истины. Действия фокусника, на самом деле, не представляют собой чего-то необыкновенного, сверхъестественного. Они просты, естественны и логичны, но зрителю они представляются невероятными потому, что фокусник применил приём, в результате чего зритель сам сделал ошибочный вывод и поверил в него. Не всё, что летает — самолёт. Так и в фокусах. Не всё, что непонятно — обязательно фокус.

Когда появились фокусы?

С глубокой древности людей интересовали мистические и загадочные вещи, иллюзионизм и магические искусства. Великие Тайны этих искусств известны лишь избранным. Иллюзионисты и фокусники ревниво охраняют их, хорошо зная, что, чем не доступнее ключ к их таинствам, тем эти таинства более ценны.

Первый документ, в котором упоминается об иллюзионном искусстве, – древнеегипетский папирус. В нём содержатся предания относящиеся к 2900 году до н.э., эпохе царствования фараона Хуфу (Хеопса). В одном из преданий упоминается о выступлении фокусника и дрессировщика ДЖЕДИ, который умеет приставить на место и прирастить отрезанную голову гуся и может заставить льва следовать за собой без пут.

Изначально фокусы использовали колдуны и  знахари. Жрецы Вавилона и Египта создавали огромное количество уникальных трюков с помощью прекрасных знаний математики, физики, астрономии и химии. В перечень чудес исполняемых жрецами можно включить, например такие: раскаты грома, сверкание молний, сами собой раскрывающиеся двери храмов, появляющиеся вдруг из-под земли статуи богов, сами звучащие музыкальные инструменты, голос, раздававшийся ниоткуда, предвещающий будущее и т. д.

Фокусники того времени заставляли исчезать и появляться драгоценности, в толпе у народа пропадало множество вещей и оказывалось в наличии у фокусника, при этом он все время был на виду.

Но ремесло фокусника могло караться смертью – в средневековой Европе фокусы считались колдовством и за это фокусники расплачивались своей жизнью.

В Россию иллюзионное искусство пришло из Византии. При пышном византийском дворе оно было одним из любимых развлечений. После окончания придворной службы русские певцы и музыканты возвращались в родные места и там показывали, чему научились. Они называли себя скоморохами (от греческого слова «скоммархос» — потешники). Это название надолго закрепилось за народными артистами Древней Руси. Скоморохи исполняли былины и песни, акробатические номера, демонстрировали фокусы, которые в древних русских документах назывались «шутками», а скоморохи-фокусники — «шуткарями» и «морочниками». О них чаще говорится как о колдунах: «…скоморошничают и совершают разные чары». Царская грамота 1648 г. запретила скоморохам проводить «чародеяния, гадания, а также всякие игры, музыку, песни, пляски, переряживание, игры…». «Чародеяниями» именовались фокусы и непонятные явления.

История возникновения математических фокусов.

Математические игры и фокусы появились вместе с возникновением математики, как науки. Первое упоминание о математических фокусах мы встречаем в книге русского математика Леонтия Филипповича Магницкого, опубликованной в 1703 году. Одна глава книги содержала математические игры и фокусы. Сам Магницкий пишет, что поместил эту главу в книгу для “утехи и особенно для изощрения ума учащихся”. Все мы знаем великого русского поэта М.Ю. Лермонтова, но не каждому известно, что он был большим любителем математики, особенно его привлекали математические фокусы, которых он знал великое множество, причем некоторые из них он придумывал сам.

Математические фокусы интересны именно тем, что каждый фокус основан на математических законах. Смысл их состоит в отгадывании чисел, задуманных зрителями, или в каких-нибудь операциях над ними. Главное — это то, что фокусник знает секрет: особые свойства чисел. Миллионы людей во всех частях света увлекаются математическими фокусами. И это не удивительно. “Гимнастика ума” полезна в любом возрасте. А фокусы тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять. Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, ребусы и загадки.

Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их.

  1. Математические фокусы и их виды

  1. Числовые фокусы

Угаданный день рождения

Содержание этого математического фокуса.

  • Объявите зрителям, что вы сможете угадать день рождения любого незнакомого человека, сидящего в зале.

  • Вызовите любого желающего и предложите ему умножить на 2 число дня своего рождения

  • Затем пусть зритель сложит получившееся произведение и число 5,

  • теперь пусть умножит на 50 полученную сумму.

  • К этому результату необходимо прибавить номер месяца рождения (июль — 7, январь — 1)

  • вслух назвать полученное число.

  • Через секунду вы называете день и месяц рождения зрителя.

Фокус «Угадай возраст».

  • Возраст умножить на 10.

  • Взять любое число от 1 до 9 и умножить на 9.

  • Из первого результата вычесть второй.

Фокус с Отгадыванием числа

Содержание фокуса.

  • Предложите зрителям задумать трехзначное число и записать его на бумаге. При загадывании числа должно быть выполнено одно условие: цифра сотен не должна быть равна цифре единиц и не должна быть на единицу меньше или больше ее. Если вы еще путаетесь в сотнях и единицах, то на первом месте в трехзначных числах стоят сотни, на втором десятки, на третьем единицы (например, подойдет число 531).

  • Теперь зрители должны перевернуть задуманное число, т. е. написать цифры в обратном порядке (135).

  • Затем зрители должны взять эти два числа и из большего вычесть меньшее (531 – 135).

  • Получившуюся разницу снова нужно перевернуть (396; 693) и сложить эти два числа (396 + 693).

  • Потом один из зрителей должен прибавить к полученной сумме 100, второй — 200, третий — 300 и т. д.

  • Теперь вы можете отгадать, что получилось у каждого зрителя, но при том условии, что они к своему последнему числу прибавят цифру 1 089. У первого зрителя, прибавлявшего 100, получится 1 189, у второго — 1 289, у третьего — 1 389.

Фокус «Сколько братьев и сестер…»

Содержание фокуса:

Вы сможете угадать, сколько братьев, сестер, дедушек и бабушек у вашего приятеля, после того как он выполнит несколько арифметических действий на калькуляторе!

Пример:
Допустим, у вашего приятеля: братьев — 4; сестер — 3; бабушек и дедушек —
Предложите приятелю:
Набрать на калькуляторе цифру, соответствующую количеству братьев– 4
1. Умножить это число на 2: 4.х2=8

Прибавить к произведению 3: 8 + 3=11

Умножить полученную сумму на 5: 11 х5=55

4.Прибавить к результату сестер. 55 + 3 = 58
5. Умножить полученную сумму на 10: 58 х10=580
6. Прибавить бабушек и дедушек. 580 + 2 = 582
7. И, наконец, прибавить 125. 582 + 125 = 707 

Затем возьмите калькулятор произведите некоторые действия и на табло появиться количество братьев, сестер и бабушек с дедушками!

Фокус « Зачеркнутая цифра»

Содержание фокуса:

Ведущий предлагает на листе бумаги записать какое-то 4-значное число. Затем предлагается поменять местами цифры в этом числе в любом порядке. Далее от большего числа отнять меньшее. В полученном результате зачеркнуть любую цифру, кроме нуля. Оставшиеся цифры необходимо озвучить ведущему. После чего ведущий отгадывает, какая цифра была зачеркнута.

  1. Фокус с предопределенным выбором.

Содержание фокуса:

Записывается число 159654. Предлагается под этим числом записать любое 6-значное число, при чем желательно, чтобы числа в нем были различными. Под этим числом ведущий записывает другое 6-значное число. Затем под ним предлагается записать еще одно 6-значное число. Затем ведущий записывает другое 6-значное число. Предлагается сложить данных 5 чисел, получается какой, то 7-значный ответ, но ведущий предугадал его и записал на бумаге, которую предварительно отдал.

Фокусы с часами

Содержание фокуса:

Вариант 1

Задумайте какой-нибудь час (от 1 до 12). Задуманный вами час запомните. Теперь я буду указкой постукивать по часам. Каждый раз, когда постучу, прибавляйте к задуманному вами числу по одному. Когда вы досчитаете до двадцати, остановите меня. Получившееся число озвучивается ведущему, а в ответ он называет задуманное число.

Вариант 2

Также начнется с того, что зритель задумывает какое-нибудь число от 1 до 12. Фокусник берет указку и начинает притрагиваться ее кончиком к числам на циферблате часов, причем делает это, по-видиму, в совершенно произвольном порядке. Зритель считает про себя прикосновения фокусника к часам и, дойдя до 20, произносит слово «стоп». И странное совпадение: в этот момент указка оказывается как раз на задуманном числе.

  1. Фокусы с уравнениями

В книге Я.И. Перельмана в главе «язык алгебры» есть глава «искусство отгадывать числа». Здесь автор раскрывает секрет фокуса, который очень прост, и в основе его лежат все те же уравнения. Пусть фокусник предлагает вам выполнить программу действий. Затем он просит вас сообщить оконча- тельный результат и, получив его, моментально называет задуманное число. Как он это делает? Чтобы понять это, достаточно все команды перевести на язык алгебры.

Фокусник мысленно решает простое уравнение, поэтому заранее знает, что надо сделать с результатом, чтобы получить задуманное число. В работе рассмотрены несколько вариантов этих фокусов.

Фокус «Задуманное число»

Задумайте число. Прибавьте 1. Умножьте на 3. Прибавьте снова 1. Прибавьте задуманное число. Скажите, что у вас получилось. Когда вы называете фокуснику конечный результат всех этих выкладок, он отнимает 4, остаток делит на 4 и получает то, что было задумано. Например, вы задумали число 12. Прибавили 1 -получили 13. Умножили на 3 -получи ли 39.Прибавили 1 – у вас 40. Прибавили задуманное число: 40 + 12 = 52. Когда вы называете число 52, он отнимает от него 4, а оставшееся 48 делит на 4. Получает 12 -число, которое было вами задумано.

Фокус «Числа Фибоначчи»

Числа Фибоначчи — элементы числовой последовательности

в которой каждое последующее число равно сумме двух предыдущих чисел.

Содержание фокуса:

Ведущий предлагает записать цифры в столбик: меньшую вверху, а большую внизу. Далее необходимо записать результат сложение этих чисел ниже (под ними). Далее складываются два последних числа (2 и 3 числа), а результат записывается ниже. И так далее пока не будет записано 10 чисел. Далее записи показываются ведущему, а он тут же пишет результат сложения этих 10 чисел.

  1. Секреты математических фокусов

  1. Угаданный день рождения

Секрет фокуса:

Например, мой день рожденья 8 января.

8 * 2 = 16

16 + 5= 21

21 * 50 = 1050

1050 + 1 = 1051

А теперь надо вычесть 250:

1051 – 250 = 801

8 – это число, а 01- месяц рождения.

  1. Фокус «Угадай возраст».

Секрет фокуса:

Например, мне 12 лет.

12 * 10 = 120

Я возьму число 7:

7 * 9 = 63

120 – 63 = 57

А теперь надо сложить 5 и 7:

5 + 7 = 12

  1. Фокус с Отгадыванием числа

Вариант 1:

Секрет фокуса:

Например, я загадал 321:

321 в перевёрнутом виде выглядит, как 123:

321 – 123 = 198

198 в перевёрнутом виде выглядит, как 891:

891 + 198 = 1089

А фокусник давно знает, что при правильных вычислениях получится 1089.

А потом сколько бы меня не попросили прибавить, 100, 200 или 300, фокусник смело назовёт ответ.

Вариант 2:

Секрет фокуса:

Например, загадал 85

8 * 2 = 16

16 + 5 = 21

21 * 5 = 105

105 + 10 + 5 = 120

А теперь надо вычесть 35:

120 – 35 = 85

  1. Фокус «Сколько братьев и сестер…»

Секрет фокуса:

Закончив вычисления, попросите у приятеля калькулятор с результатом на табло. Вычтите из него 275, и на табло чудесным образом появится количество братьев, сестер и бабушек с дедушками!

Исключения:

1. Если после вычитания числа 275 на табло появится двузначное число, значит, у вашего приятеля нет братьев.

Пример 12 = 012; следовательно, число братьев равно 0.

2.Если после вычитания числа 275 на табло явится, лишь одна цифра, значит, у вашего приятеля нет ни братьев, ни сестер.

Пример 2 = 002;

Следовательно, число братьев равно нулю и число сестер также равно нулю.

  1. Фокус « Зачеркнутая цифра»

Секрет фокуса:

Известно, что сумма цифр числа при делении на 9 имеет тот же остаток, что и само это число при делении на 9. Соответственно, если поменять в числе цифры местами то сумма их цифр останется прежней и при делении на 9 это число будет давать тот же остаток, что и исходное число. Поэтому, если мы производим вычитание одного числа от другого, то остатки от деления числа сократятся и в ответе получится число, которое при делении на 9 не дает остатка. То есть если в ответе зачеркнуть какое-то число, то сумма оставшихся цифр делиться на 9 без остатка не будет (если не зачеркнута цифра 9). Поэтому к сумме цифр необходимо добавить такое число, чтобы сумма делилась на 9 без остатка. Это число и будет искомой – зачеркнутой цифрой.

  1. Фокус с предопределенным выбором.

Секрет фокуса:

Ведущий заранее определяет число, которое получится в итоге, и из него вычитает 1999998, результат разности ведущий записывает первым числом фокуса. Далее третье число записывается так, чтобы сумма второго и третьего чисел давало 999999

  1. Фокусы с часами

Секрет фокуса:

Вначале нужно ударять указкой по циферблату по любым делениям до семи ударов. Восьмым ударом показывается число 12, а потом с каждым ударом перемещаемся влево (11, 10, 9 и т.д.) Когда вы скажете: “Довольно”, — указка будет стоять на том часе, который вы задумали. Расчет очень простой. Всего будет ударов (20-х). Когда будет сделано восемь ударов, указка покажет число 12. С этого момента мы делаем еще столько ударов, сколько не достает вам до двадцати, так как, двигаясь влево, будут показываться числа, последовательно уменьшенные на единицу.

  1. Фокус «Задуманное число»

Секрет фокуса:

Почему же всегда так получается? Фокусник заранее знает, что после всех выкладок получается уравнение 4 х + 4.

Необходимо заранее составить уравнение:

(Х+1) · 3 + 1+ Х = 4х + 4

  1. Фокус «Числа Фибоначчи»

Весь секрет заключается в этом уравнении:

а1 + а2 + а3 + а4 + а5 + а6 + а7 + а8 + а9 + а10 = 88а2 + 55а1 = 11 ( 8а2 + 5а1 ) = 11а7

Другими словами, чтобы быстро узнать сумму, нужно найти седьмое число и умножить его на 11

  1. Решение математических фокусов.

Использование презентаций 1-17

  1. Итоги урока

Математические фокусы разнообразны. Во многих математических фо- кусах числа завуалированы предметами, имеющими отношение к числам. Они развивают навыки в быстром устном счете, навыки вычислений т.к. можно загадывать малые и большие числа.

Наука и развлечения неотделимы от математики. Она нашла самое раз- ное применение в различных областях науки: Физике, Химии, Биологии, Экономике, в искусстве, так же математика нашла огромное практическое применение в медицине, инженерии, судостроении, информационных технологиях и даже в проектах освоения Солнечной системы. В информацион-ных технологий так же невозможно представить без математики и индуст- рию развлечений: кинотеатры с трехмерным изображением и новые возможности для сети-Интернет, а так же многое другое.

Математика плотно связана со всей нашей жизнью. Математика везде окружает нас: на улице, дома, на работе, в гостях.

  1. Домашнее задание.

Придумать математический фокус.

Математические фокусы

Математические фокусы от простого к сложному: погружаемся в заманчивый мир цифр.

Фокус 1: «Знакомые цифры»

Выпишите на листке бумаги последовательно цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Попросите кого-нибудь из учеников сложить в уме любые три цифры, следующие одна за другой. А результат — назвать. К примеру, он выберет 5, 6 и 7. В таком случае сумма будет 18. После этого учителем сразу называются задуманные цифры.

Секрет фокуса:

Чтобы проделать этот фокус нужно лишь немного сообразительности.
Когда назовут сумму, в уме разделите ее на 3. В нашем случае получится 6. Это искомая средняя цифра. Цифра, стоящая перед ней — 5, а после неё – 7. Весь эффект этого фокуса в молниеносном ответе.

Фокус 2: «Как четыре может быть равно трем»

Выложите на стол четыре спички, одну за другой. Теперь предложите ученикам сделать из 4 спичек 3, не убирая ни одной.

Секрет фокуса:

Если ученикам ничего не удастся (а, скорее всего, это будет именно так), то покажите, как это сделать, сложив из четырех спичек цифру “3”.

Фокус 3: «Сумма нечетных чисел»

Попросите учеников  за 1 минуту посчитать сумму всех нечетных чисел от 0 до 20 (без калькулятора). Скорее всего они не успеют. Предложите после этого посчитать сумму нечетных чисел от 0 до 49. Скорее всего ученики почувствуют подвох и считать откажутся. Вы же легко считаете сумму всех нечетных, даже многозначных чисел.

Секрет фокуса:

Нужно к последнему (заданному) нечетному числу прибавить 1, поделить на 2 и возвести в квадрат. Пример: от 1 до 49 включительно 49+1=50, 50/2 = 25, 25*25 =625. Если вас попросят сосчитать уж очень большое число, то вам придется для возведения в квадрат воспользоваться калькулятором, но эти вычисления  можно сделать за пару секунд.

Фокус 4: «Сложение чисел Фибоначчи»

Числами Фибоначчи называют ряд чисел 0,1,1,2,3,5,8,13,21,34,55 и т.д., в котором каждое число представляет собой сумму двух предшествующих.

Секрет  и описание фокуса:

Этот фокус демонстрируют так: показывающий просит кого-нибудь записать друг под другом два любых числа из последовательности Фибоначчи, какие он пожелает. Допустим для примера, что были выбраны 5 и 8. Затем ученики должны сложить эти числа, найденное таким образом третье число складывается со вторым и т.д. Этот процесс повторяют до тех пор, пока в вертикальном столбце не окажется десять чисел: 8, 5, 13, 21, 34, 55, 89, 144, 233, 377. Когда все числа будут записаны, учитель проводит под колонкой цифр черту и, не задумываясь, подписывает сумму этих чисел. Чтобы получить эту сумму, ему нужно просто взять четвертое число снизу и умножить его на 11 — операция, которую нетрудно проделать в уме. В нашем случае четвертым числом будет 89, поэтому в ответе получится число 89, взятое 11 раз, т. е. 979.

Фокус 5: «Все дороги ведут к нулю»

Ученик загадывает двузначное число, выполняет определённые действия, последовательно указываемые учителем и в итоге у него получается ноль.
Секрет фокуса:

Ученик загадывает любое двузначное число, к примеру, 25. Затем он должен поменять цифры местами, получится 52. Полученный результат записывается 4 раза подряд: 52525252. Ученик убирает 1-ю и последнюю цифры этого числа 252525. Полученное число умножается на 3. В нашем случае ответ 757575. Полученное число делим на 7 (получается 108225). Это число делим на 9 (получается 12025). Делим число на 13 (получается 923). Полученное число делим на первоначально задуманное (25) ответ 37. Число 37 получается всегда при любых первоначально загаданных числах. Итак для получения  нуля остается вычесть пару раз из числа 37 любые подходящие числа.

Фокус может удивить даже сильных математиков!  

Фокус 6: «Тайна девятки”

Существует множество других фокусов с числами, в которых используются некоторые любопытные особенности числа 9. Например, написав в обратном порядке любое трехзначное число (при условии, что первая и последняя цифры различны, пусть будут числа 328-823) и вычтя из большего числа меньшее, мы всегда получим в середине девятку и сумму крайних цифр, тоже равную 9 ( в нашем примере 495). Это означает, что вы сразу можете назвать результат вычитания, зная только его первую или только последнюю цифру. Если теперь написать разность в обратном порядке (594) и эти два числа сложить (495+594), то получится 1089.

Для большего эффекта:

Число 1089 пишется заранее на листе бумаги, который затем переворачивается лицевой стороной вниз. После того, как ученики окончат серию операций, описанных выше, и объявят свой окончательный результат — 1089, покажите записанное вами предсказание, держа при этом лист вверх ногами. Написанное на нем число будет прочитано как 6801, что, конечно, не будет правильным ответом. Переверните лист на 180 градусов и покажите верное число. Это небольшое представление внесёт развлекательный характер в демонстрацию фокуса.

Числовой трюк

Выбрать трехзначное число, в котором первая и последняя цифры отличаются на минимум два. Построить второе число, изменив порядок цифр во-первых. Составьте третье число, взяв разность первого два. Поменяйте порядок цифр в третьем числе на обратный, чтобы составить четвертое, и добавить третье и четвертое число. В результате получается число 1089.

Пример : Выберите число 732. Примечание: 7 – 2 = 5 > 2, что делает это число допустимым. выбор. Затем составьте число 237, поменяв порядок цифр на обратный. Возьми разницу:

732 – 237 = 495

От 495, построить число 594 и добавить:

495 + 594 = 1089.

Доказательство : Пусть первоначально выбранное число представлено

100а + 10б + в

1.

где a, b, c — целые числа от 0 до 9включительно, и занимают сотни, разряды десятков и единиц соответственно. Мы можем считать, не ограничивая общности, что а > с. Теперь создайте новое число, поменяв порядок цифр на

.

100с + 10б + а

2.

Взять разница

100(а – в) + (в – а)

3.

и упростить до

99(а – в) = 99

4.

где = а – с. Мы хотели бы представить это число алгебраически как число по основанию десять; т. е. с формой, аналогичной показанной на 1. Начнем с перезаписи 99 как

99 = (10 . 9) + (1 . 9)

5.

С 2 9 по условию, мы знаем, что 18 9 81 так что мы можем написать

9 = 10 + в

6.

где и v являются целыми числами от 0 до 9 включительно и занимают десятки и ед.

мест соответственно. Таким образом, правая часть уравнения. 5 можно переписать как

(10 . 9) + (1 . 9) = [10 . (10 + v)] + [1 . (10 + v)]

= 100 + 10( +в) +в

7.

Если целое число + v не превышает одной цифры, тогда число

100 + 10( +в) +в

это номер разыскивается. Найдем все возможные значения + v для 2 9:

9
+ в
2
18
9
3
27
9
4
36
9
5
45
9
6
54
9
7
63
9
8
72
9
9
81
9

Таким образом, + v не превышает 9(на самом деле во всех случаях оно равно 9). Мы заключаем что число, 100 + 10( + v) + v, это тот, который мы искали, и правильно представляет разницу, 99, как число по основанию десять, с занимая место сотни; ( + v) разряд десятков; и v, место единиц. Число, полученное в результате обращения порядок его цифр тогда

100В + 10( +в) +

8.

и сумма этих последних двух чисел равна

100( + г) + 20( + в) + ( + v) = 121( +в)

9.

Но, для всех значений рассматриваемого, ( + v)= 9, так что 121( + г) = 1089.

Math Magic – Math Tricks

  • Математика – это магия, согласно новому видео на YouTube, изображающему графа Крускала.
  • Головоломки и фокусы помогают приблизить математику к реальной жизни даже тем, кто боится математики.
  • Подсчет Крускала — это вероятность для колоды карт и достоверность для циферблата на английском языке.

Ютубер Кевин Либер (ведущий популярного сериала Vsauce2) вернул классический математический фокус времен его расцвета 90-х. В видео Либер показывает зрителям магический трюк, когда они выбирают число на циферблате, а затем обводят часы, произнося их числа.

Пальцем, начиная с 12, вы пишете «пять», «восемь» или «двенадцать» (или любое другое число, которое вы выбрали!) и делаете по одному шагу для каждой буквы, заканчивая 4, 5 или 6, соответственно. Теперь вы произносите «четыре», «пять» или «шесть» и продолжаете круглые сутки. Либер говорит сделать это несколько раз, а затем угадывает последнее число, на которое вы попали.

Посмотреть полный пост на Youtube

Круто, правда? В видео Либер говорит, что математика, лежащая в основе этого трюка, является частью идеи под названием счет Крускала , названной в честь математика Мартина Крускала. Он открыл этот особый случай поглощающей цепи Маркова , где вероятности выстраиваются до тех пор, пока результаты людей не станут одинаковыми.

Вариаций этого фокуса очень много, хотя называть его “трюком” вообще не совсем корректно. Самое известное приложение, вероятно, принадлежит телевизионному фокуснику Дэвиду Копперфильду, который взял перерыв в 9 лет.0007 заставляет Статую Свободы исчезнуть проделывать различные версии трюка крупным планом, предсказывая числа, выбранные зрителями:

Посмотреть полный пост на Youtube

Что здесь происходит? Кроме того, почему ни в одном из объяснений не говорится о том, насколько важен язык для работы этого трюка? По сути, секрет заключается в том, как набор числовых слов от «один» до «двенадцать» в английском языке в конечном итоге указывает друг на друга на циферблате, пока все они не укажут на одно и то же значение. (В видео Либер убирает числа повсюду, поэтому последний шаг приводит к шести.)

Все результаты фокуса с часами.

Кэролайн Делберт

Чтобы показать, насколько хрупким является равновесие, вот пример, где «шесть» заменено семибуквенным «шестнадцать»:

Результаты с одним семибуквенным числовым значением.

Кэролайн Делберт

В этом случае 11 из 12 человек все равно получат одно и то же числовое значение, и «фокус» почти всегда будет успешным! То же самое можно сказать, если мы делаем трюк на испанском языке:

The Clock Trick en español.

Кэролайн Делберт

Здесь 10 из 12 получают одно и то же числовое значение. Для других языков, использующих систему букв, некоторые из них будут работать лучше, чем другие. Для языков, в которых используются фонемы, пиктограммы или символы, все ставки сняты.

Больше математической магии!
  • Русский способ умножать числа

Столкнувшись с вероятностью вместо уверенности, вы также можете начать думать о том, что игра представляет собой очень упрощенную форму той же математики «вероятных исходов», которую используют игроки в покер. и счетчики карт казино. И, на самом деле, есть версия счета Крускала, которая работает на колоде карт. Либер тоже проходит через это в видео.

Идея состоит в том, что вы можете перетасовать колоду карт и в итоге получить колоду, в которой вы можете повторять любую начальную карту и в итоге получить ту же карту в удивительном количестве — примерно в 85 процентах случаев, говорит Либер. Он тасует колоду и выдает пример, в котором сходятся лишь 70% карт, что, по его словам, очень мало в общей совокупности вариантов.

Другие математические задачи
  • Сможете ли вы решить эту вирусную головоломку с треугольниками?
  • Как решить раздражающую вирусную математическую задачу
  • 9-летний ребенок написал эту невероятно сложную математическую задачу

Существует похожий математический фокус, когда вы проводите людей через некоторые простые арифметические действия, прежде чем угадать их число. Начните с любого числа.

Оставить комментарий