Метан номер в таблице менделеева: Метан, структурная формула, химические, физические свойства

Метан, структурная формула, химические, физические свойства

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип

=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d

10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s

2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ГольмийГольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИридийИридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Химические свойства метана, формула, плотность, горение газа, молярная масса, применение в промышленности, термическое разложение, бромирование метана, строение молекулы

Химия

12.11.21

9 мин.

Химические свойства метана ничем не отличаются от свойств, присущих всем веществам класса алканов. В школьном курсе химии метан изучают одним из первых веществ органики, так как он является одним из простейших представителей алканов.

Оглавление:

  • Формула метана и способы его получения
  • Физические свойства метана
  • Химические свойства метана
  • Применение метана

В его составе один атом углерода и четыре атома водорода.

Формула метана и способы его получения

Молекулярная формула метанаСтруктурная формула метана
 

СH4

 

Н

|

Н — С — Н

|

Н

 

Метан в больших количествах содержится в атмосфере. Мы не обращаем внимания на нахождение этого газа в воздухе, ведь на нашем организме это никак не отражается, а вот канарейки очень чувствительны к метану.

Когда-то они даже помогали шахтерам спускаться под землю. Когда процентное содержание метана изменялась, птицы переставали петь. Это служило сигналом для человека, что он спустился слишком глубоко и нужно подниматься наверх.

Образуется метан в результате распада остатков живых организмов. Не случайно с английского methane переводится, как болотный газ, ведь он может быть обнаружен в заболоченных водоемах и каменноугольных шахтах.

Основным источником газа в агропромышленном комплексе является рогатый скот. Да, метан они выводят из организма вместе с остальными продуктами жизнедеятельности. Кстати, увеличение числа рогатого скота на планете может привести к разрушению озонового слоя, ведь метан с кислородом образуют взрывоопасную смесь.

Метан в промышленности можно получить с помощью нагревания углерода и водорода или синтеза водяного газа, все реакции протекают в присутствии катализатора, чаще всего никеля.

В США разработана целая система по добыче метана, она способна извлечь до 80% газа из природного угля. На сегодняшний день мировые запасы метана оцениваются экспертами в 260 триллионов метров кубических! Даже запасы природного газа значительно меньше.

В лаборатории метан получают путем взаимодействия карбида алюминия (неорганическое соединение алюминия с углеродом) и воды. Также с помощью гидроксида натрия, вступающего в реакцию с ацетатом натрия, более известного как пищевая добавка Е262.

Физические свойства метана

Характеристика:

  1. Бесцветный газ, без запаха.
  2. Взрывоопасен.
  3. Нерастворим в воде.
  4. Температура кипения: -162oC, замерзания: -183°C.
  5. Молярная масса: 16,044 г/моль.
  6. Плотность: 0,656 кг/м³.

Химические свойства метана

Говоря о химических свойствах, выделяют те реакции, в которые вступает метан. Ниже они приведены вместе с формулами.

Горение метана

Как все органические вещества, метан горит. Можно заметить, что при горении образуется голубоватое пламя.

СН4 + 2O2 → СO2↑ + 2Н2O

Называется такая реакция – реакцией горения или полного окисления.

Замещение

Метан также реагирует с галогенами. Это химические элементы 17 группы в периодической таблице Менделеева. К ним относятся: фтор, хлор, бром, йод и астат. Реакция с галогенами называется – реакцией замещения или галогенирования. Такая реакция проходит только в присутствии света.

Хлорирование и бромирование

Если в качестве галогена используется хлор, то реакция будет называться – реакцией хлорирования. Если в качестве галогена выступает бром, то – бромирование, и так далее.

CH4 + Cl2 → CH3Cl + НСl

CH4 + Br2 → CH3Br + НBr

Хлорирование. Низшие алканы могут прохлорировать полностью.

CH4 + Cl2 → CH3Cl + НСl

CH3Cl + Cl2 → CH2Сl2 + НСl

CH2Сl2+ Cl2 → CHCl3 + НСl

CHCl3 + Cl2 → CСl4 + НСl

Точно так же метан может полностью вступать в реакцию бромирования.

CH4 + Br2 → CH3Br + Н Br

CH3Br + Br2 → CH2Br2 + НBr

CH2Br2 + Br2 → CHBr3 + НBr

CHBr3 + Br2 → CBr4 + НBr

С йодом такой реакции уже нет, а с фтором наоборот сопровождается быстрым взрывом.

Разложение

Так же этому углеводороду свойственна реакция разложения. Полное разложение:

СН4 → С + 2H₂

И неполное разложение:

2СН4 → С2Н2 + 3Н2

Реакция с кислотами

Метан реагирует с концентрированной серной кислотой. Реакция носит название сульфирования и происходит при небольшом нагревании.

2СН4 + Н24 → СН33Н + Н2О

Окисление

Как уже было сказано, СH4 может полностью окисляться, но при недостатке кислорода возможно неполное окисление.

2СН4 + 3O2 → 2CO + 4Н2O

СН4 + О2 → С + 2Н2O

Помимо прочего для этого газа характерно каталитическое окисление. Оно происходит в присутствии катализатора. При разном соотношении моль вещества получаются разные конечные продукты реакции. В основном это:

  • спирты: 2СН4 + O2 → 2СO3
  • альдегиды: СН4 + O2 → НСОН + Н2O
  • карбоновые кислоты: 2СН4 + 3O2 → 2НСОOН + 2Н2O

Реакция протекает при температуре 1500°C. Данная реакция также носит название – крекинг – термическое разложение.

Нитрование метана

Существует также реакция нитрования или реакция Коновалова, названная в честь ученого, который доказал, что с предельными углеводородами действует разбавленная азотная кислота. Продукты реакции получили название – нитросоединения.

CH4 + НNО3 → СН3NO2 + H2O

Реакция проводится при температуре 140-150°C.

Дегидрирование метана

Кроме того, для метана характерна реакция дегидрирования (разложения) – отцепление атомов водорода и получения ацетилена, в данном случае.

2CН4 → C2H2 + 3Н2

Применение метана

Метан, как и остальные предельные углеводороды, широко используется в повседневной жизни. Его применяют в производстве бензина, авиационного и дизельного топлива.

Используют в качестве базы для получения различного органического сырья на предприятиях. Также метан широко используется в медицине и косметологии.

Метан применяют для получения синтетического каучука, красок и шин.

Атлеты используют так называемый жидкий метан для быстрого набора массы за короткий промежуток времени.

А при хлорировании метана образуется вещество, которое в дальнейшем используется для обезжиривания поверхностей или как компонент в средствах для снятия лака. Некоторое время продукт взаимодействия метана и хлора использовали в качестве наркоза.

метан | Определение, свойства, использование и факты

метановый цикл

Смотреть все СМИ

Ключевые люди:
Алессандро Вольта
Похожие темы:
природный газ парниковый газ биогаз воздуха трифенилметан

См. все связанные материалы →

метан , бесцветный газ без запаха, широко распространенный в природе и являющийся продуктом определенных видов деятельности человека. Метан является простейшим представителем парафинового ряда углеводородов и одним из самых мощных парниковых газов. Его химическая формула CH 4 .

Химические свойства метана

Метан легче воздуха и имеет удельный вес 0,554. Он мало растворим в воде. Легко горит на воздухе с образованием углекислого газа и водяного пара; пламя бледное, слегка светящееся и очень горячее. Температура кипения метана составляет -162 ° C (-259,6 ° F), а температура плавления составляет -182,5 ° C (-296,5 ° F). Метан в целом очень стабилен, но смеси метана с воздухом при содержании метана от 5 до 14% по объему взрывоопасны. Взрывы таких смесей часто происходили на угольных шахтах и ​​угольных шахтах и ​​были причиной многих аварий на шахтах.

Дополнительная информация по этой теме

глобальное потепление: метан

Метан (Ch5) является вторым по значимости парниковым газом. Ch5 более эффективен, чем CO2, потому что радиационная…

Источники метана

Понять процессы образования и выделения метанового газа в заболоченных местах

Посмотреть все видео к этой статье

В природе метан образуется в результате анаэробного бактериального разложения растительного вещества под водой (где его иногда называют болотным газом или болотный газ). Водно-болотные угодья являются основным естественным источником метана, производимого таким образом. Другими важными природными источниками метана являются термиты (в результате процессов пищеварения), вулканы, жерла на дне океана и залежи гидрата метана, которые встречаются вдоль континентальных окраин, подо льдом Антарктиды и вечной мерзлотой Арктики. Метан также является основным компонентом природного газа, который содержит от 50 до 90 процентов метана (в зависимости от источника) и встречается как компонент рудничного газа (горючего газа) вдоль угольных пластов.

Производство и сжигание природного газа и угля являются основными антропогенными (антропогенными) источниками метана. Такие виды деятельности, как добыча и переработка природного газа и деструктивная перегонка битуминозного угля при производстве угольного и коксового газа, приводят к выбросу значительного количества метана в атмосферу. Другие виды деятельности человека, связанные с производством метана, включают сжигание биомассы, животноводство и управление отходами (где бактерии производят метан, разлагая осадок на очистных сооружениях и разлагающиеся вещества на свалках).

Использование метана

Метан является важным источником водорода и некоторых органических химических веществ. Метан реагирует с паром при высоких температурах с образованием монооксида углерода и водорода; последний используется в производстве аммиака для удобрений и взрывчатых веществ. Другие ценные химические вещества, полученные из метана, включают метанол, хлороформ, четыреххлористый углерод и нитрометан. При неполном сгорании метана образуется сажа, которая широко используется в качестве армирующего агента в резине для автомобильных шин.

Роль парникового газа

Метан, который производится и выбрасывается в атмосферу, поглощается поглотителями метана, которые включают почву и процесс окисления метана в тропосфере (самая нижняя область атмосферы). Большая часть природного метана компенсируется его поглощением в естественные поглотители. Однако антропогенное производство метана может привести к более быстрому увеличению концентрации метана, чем его поглотители. С 2007 года концентрация метана в атмосфере Земли увеличивалась на 6,8–10 частей на миллиард (ppb) в год. К 2020 году содержание метана в атмосфере достигло 1873,5 частей на миллиард, что примерно в два-три раза превышает доиндустриальные уровни, которые колебались на уровне 600–700 частей на миллиард.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Увеличение концентрации метана в атмосфере способствует возникновению парникового эффекта, при котором парниковые газы (в частности, двуокись углерода, метан и водяной пар) поглощают инфракрасное излучение (чистую тепловую энергию) и повторно излучают его обратно на поверхность Земли, потенциально улавливая тепло и вызывая существенные изменения климата. Повышенное содержание метана в атмосфере также косвенно способствует парниковому эффекту. Например, при окислении метана гидроксильные радикалы (ОН ) удаляют метан, реагируя с ним с образованием двуокиси углерода и водяного пара, а по мере увеличения концентрации атмосферного метана концентрации гидроксильных радикалов уменьшаются, эффективно продлевая время жизни метана в атмосфере.

Редакторы Британской энциклопедии

Эта статья была недавно отредактирована и обновлена ​​Адамом Августином.

Молекула метана

Простейший углеводород, метан представляет собой газ с химической формулой Ch5.

Для просмотра молекулы метана в 3D —>>в 3D с помощью Jmol

Атом углерода, находящийся в центре молекулы метана, имеет 4 валентных электрона, и поэтому для завершения его октета требуется еще 4 электрона от четырех атомов водорода. Атомы водорода имеют валентный угол 109 градусов, что придает молекуле тетраэдрическую геометрию.

Основным компонентом природного газа является метан. При сгорании одной молекулы метана в присутствии кислорода выделяется одна молекула CO2[двуокись углерода] и две молекулы h3O (вода):

Ch5 + 2O2 —> CO2 + 2h3O
Прочность ковалентной связи углерод-водород в молекуле метана одна из самых прочных среди всех углеводородов, поэтому его использование в качестве химического сырья ограничено. Поиск того, что может способствовать активации связи С-Н в метане и других низших алканах, является областью исследований, имеющей большое промышленное значение.

Чистый метан не имеет запаха, но при использовании в качестве топлива его обычно смешивают с небольшими количествами сильно пахнущих соединений серы, таких как этилмеркаптан, для обнаружения утечек. Метан является парниковым газом с потенциалом глобального потепления 22 (это означает, что его способность нагревать в 22 раза больше, чем у углекислого газа). Метан образуется в результате разложения некоторых органических веществ в отсутствие кислорода. Поэтому он также классифицируется как биогаз.

Геологическая служба США подсчитала, что в Соединенных Штатах имеется 320 000 триллионов кубических футов газогидратов, что примерно в 200 раз превышает обычные ресурсы и запасы природного газа в стране. Если бы только 1 процент ресурсов гидрата метана мог быть восстановлен, Соединенные Штаты могли бы более чем удвоить свою внутреннюю базу ресурсов природного газа. Основными источниками метара являются: разложение органических отходов; природные источники (болота): 23 % добыча ископаемого топлива: 20 % добыча метана из угольных пластов процессы пищеварения животных (крупного рогатого скота): 17 % бактерии, обнаруженные на рисовых плантациях: 12 % биомасса, анаэробное нагревание или сжигание 80 % мировых выбросов имеют человеческий источник. Они поступают в основном в результате сельскохозяйственной и другой деятельности человека. За последние 200 лет концентрация этого газа в атмосфере увеличилась вдвое, с 0,8 до 1,7 промилле.

Метан как топливо

Метан важен для выработки электроэнергии, поскольку он сжигается в качестве топлива в газовой турбине или парогенераторе. По сравнению с другими углеводородными видами топлива при сжигании метана образуется меньше углекислого газа на каждую единицу выделяемого тепла. Приблизительно 891 кДж/моль теплота сгорания метана ниже, чем у любого другого углеводорода, но отношение теплоты сгорания (891 кДж/моль) к молекулярной массе (16,0 г/моль, из которых 12,0 г/моль приходится на углерод) показывает, что метан, будучи простейшим углеводородом, производит больше тепла на единицу массы (55,7 кДж/г), чем другие сложные углеводороды. Во многих городах метан подается в дома для отопления и приготовления пищи. В этом контексте он обычно известен как природный газ, который, как считается, имеет энергосодержание 39мегаджоулей на кубический метр или 1000 БТЕ на стандартный кубический фут.

Метан в виде сжатого природного газа используется в качестве автомобильного топлива и считается более безопасным для окружающей среды, чем другие ископаемые виды топлива, такие как бензин/бензин и дизельное топливо. Проведены исследования адсорбционных методов хранения метана для использования в качестве автомобильного топлива.
Сжиженный природный газ (СПГ) — это природный газ (преимущественно метан, раздел 5), который был преобразован в жидкую форму для облегчения хранения или транспортировки.

Сжиженный природный газ занимает около 1/600 объема природного газа в газообразном состоянии. Он не имеет запаха, бесцветен, нетоксичен и не вызывает коррозии. Опасности включают воспламеняемость после испарения в газообразное состояние, замерзание и удушье.

Процесс сжижения включает удаление определенных компонентов, таких как пыль, кислые газы, гелий, вода и тяжелые углеводороды, которые могут вызвать затруднения на последующих этапах. Затем природный газ конденсируется в жидкость при давлении, близком к атмосферному (максимальное транспортное давление составляет около 25 кПа или 3,6 фунта на квадратный дюйм), путем охлаждения его примерно до -162 ° C (-260 ° F).

СПГ обеспечивает более высокое уменьшение объема, чем сжатый природный газ (СПГ), так что удельная энергия СПГ в 2,4 раза выше, чем у СПГ, или на 60% по сравнению с дизельным топливом. Это делает экономичной транспортировку СПГ на большие расстояния, где нет трубопроводов. Для его транспортировки используются специально сконструированные криогенные морские суда (газовозы) или криогенные автоцистерны.

СПГ, если он не подвергается глубокой переработке для специального использования, в основном используется для транспортировки природного газа на рынки, где он регазифицируется и распределяется как природный газ по трубопроводам. Его также начинают использовать в дорожных транспортных средствах, работающих на СПГ. Например, грузовые автомобили, находящиеся в коммерческой эксплуатации, достигают периода окупаемости примерно в четыре года за счет более высоких первоначальных инвестиций, необходимых для оборудования СПГ на грузовиках и инфраструктуры СПГ для поддержки заправки. Тем не менее, по-прежнему более распространена конструкция транспортных средств, работающих на сжатом природном газе. По состоянию на 2002 год относительно более высокая стоимость производства СПГ и необходимость хранить СПГ в более дорогих криогенных резервуарах замедлили его широкое коммерческое использование.

Power to gas

Power to gas — это технология преобразования электроэнергии в газовое топливо. Этот метод используется для преобразования углекислого газа и воды в метан (см. природный газ) с использованием электролиза и реакции Сабатье. [Требуется уточнение] Избыточная мощность или непиковая мощность, генерируемая ветряными генераторами или солнечными батареями, теоретически может использоваться для балансировки нагрузки. в энергосистеме. [требуется ссылка]

Жидкий метан для ракетного топлива

Жидкий метан в высокоочищенной форме используется в качестве ракетного топлива.

Хотя исследования использования метана ведутся уже несколько десятилетий, в орбитальных космических полетах еще не использовались промышленные метановые двигатели. Это меняется, и недавно жидкий метан был выбран для активной разработки различных двухкомпонентных ракетных двигателей.

С 1990-х годов в ряде российских ракет предлагалось использовать жидкий метан. Одним из российских двигателей, предложенных в 1990-х годах, был РД-192, вариант РД-191, работающий на метане и жидком кислороде.

В 2005 г. американские компании Orbitech и XCOR Aerospace разработали демонстрационный ракетный двигатель на жидком кислороде/жидком метане, а в 2007 г. более крупный двигатель с тягой 7500 фунтов силы (33 кН) для потенциального использования в качестве возвращаемого на Луну двигателя CEV, прежде позже программа CEV была отменена.

Совсем недавно американская частная космическая компания SpaceX объявила в 2012 году об инициативе по разработке ракетных двигателей на жидком метане, в том числе, первоначально, очень большого ракетного двигателя Raptor. Raptor проектируется для создания тяги в 4,4 меганьютона (1 000 000 фунтов силы) с удельным импульсом вакуума (Isp) 363 секунды и Isp на уровне моря 321 секундой, и ожидается, что испытания на уровне компонентов начнутся в 2014 году. В феврале 2014 года. Выяснилось, что конструкция двигателя Raptor относится к высокоэффективному и теоретически более надежному полнопоточному ступенчатому циклу сгорания, в котором оба потока топлива – окислитель и топливо – будут полностью находиться в газовой фазе, прежде чем они попадут в камеру сгорания. До 2014 года только два полнопоточных ракетных двигателя когда-либо были достаточно развиты для испытаний на испытательных стендах, но ни один из двигателей не завершил разработку и не летал на летательных аппаратах.

В октябре 2013 года Китайская корпорация аэрокосмической науки и техники, государственный подрядчик китайской космической программы, объявила о завершении первого испытания воспламенения нового метанового ракетного двигателя LOX. Объем двигателя не указан.

В сентябре 2014 года другая американская частная космическая компания — Blue Origin — публично объявила о том, что они уже третий год работают над большим метановым ракетным двигателем. Новый двигатель Blue Engine 4 или BE-4 был разработан для создания тяги в 2400 килоньютонов (550 000 фунтов силы). Первоначально планировалось использовать его исключительно на собственной ракете-носителе Blue Origin, но теперь он будет использоваться на новом двигателе United Launch Alliance (ULA) на новой ракете-носителе, которая является преемником Atlas V. В 2014 году ULA указала, что они совершит первый полет новая ракета-носитель не ранее 2019 года.

его много во многих частях Солнечной системы, и потенциально его можно собирать на поверхности другого тела Солнечной системы (в частности, используя производство метана из местных материалов, найденных на Марсе или Титане), обеспечивая топливо для обратного пути. .

К 2013 году в рамках проекта НАСА «Морфеус» был разработан небольшой перезапускаемый метановый ракетный двигатель LOX с тягой 5000 фунтов силы (22 кН) и удельным импульсом 321 секунда, подходящий для применения в космосе, включая посадочные модули. Также были разработаны небольшие метановые двигатели LOX с усилием 5–15 фунтов (22–67 Н), подходящие для использования в системе управления реакцией (RCS).

Оставить комментарий