Метод гаусса для чайников: Как решить методом Гаусса СЛАУ (систему линейных уравнений). Правила, примеры

Содержание

1 решить систему методом гаусса. Метод гаусса для чайников: решаем слау легко

Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса , состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются приэлементарных преобразованиях уравнений системы:

    умножение обеих частей уравнения на число отличное от нуля;

    прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

    перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому , илитреугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы
, в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент прибыл отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь
– новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом
, исклю­чим неизвестноеиз всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где ,
,…,– главные элементы системы
.

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида
, их отбрасывают, так как им удовлетворяют любые наборы чисел
. Если же при
появится уравнение вида, которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные
, которые называютсвободными . Затем выражение переменнойиз последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная
. Аналогичным образом последовательно определяются переменные

. Переменные
, выраженные через свободные переменные, называютсябазисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным
в общем решении придаются произвольные значения и вычисляются значения переменных
.

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса – универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных
не равно числу уравнений
.

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу

к ступенчатому виду, легко определить ранги матрицыи расширенной матрицы
и применитьтеорему Кронекера – Капелли .

Пример 2.1 Методом Гаусса решить систему

Решение . Число уравнений
и число неизвестных
.

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов.

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.




.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью – разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов – нули.

Так как , система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения
. Подставим во второе уравнение и получим
.

Подставим
и
в первое уравнение, найдём


.

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, на деньги попадают не только лохи, но еще и гении – портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА. Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и я постараюсь в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.
2) Иметь бесконечно много решений.
3) Не иметь решений (быть несовместной ).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья . Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений?
и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы :
. По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка : рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.

После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями .

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует

удалить . Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули .

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля . Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число , отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2 : .

Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ не изменилась . Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ .

На практике так подробно, конечно, не расписывают, а пишут короче:

Еще раз: ко второй строке прибавили первую строку, умноженную на –2 . Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ : рассмотренные манипуляции нельзя использовать , если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя!

Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду

:

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид .

В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса .

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения:

И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число:

Почти всегда здесь должна находиться единица . Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения . Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2 . Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2 :

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3 . Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3 :

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно . Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО и ВНИМАТЕЛЬНО :


А мысленный ход самих расчётов я уже рассмотрел выше.

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2 :


Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений:

Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат:

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:

Ответ :

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2


Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса . Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так:
(1) К первой строке прибавляем вторую строку, умноженную на –1 . То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:

Ответ : .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.

В последней части рассмотрим некоторые особенности алгоритма Гаусса.
Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например:

Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод . В расширенной матрице системы на месте отсутствующих переменных ставим нули:

Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном…. Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему четырёх линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением . Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.


Выполненные элементарные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем!
(2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание , что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее.
(3) К третьей строке прибавили вторую строку, умноженную на 5.
(4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход:

Ответ : .

Пример 4: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:
(1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке».
(2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже , «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы

(3) К третьей строке прибавили вторую, умноженную на –1.
(4) Ко второй строке прибавили третью, умноженную на –3.
(3) К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1.
(4) У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки.
(5) К четвертой строке прибавили третью строку, умноженную на –5.

Обратный ход:



Еще с начала XVI-XVIII веков математики усиленно начали изучать функции, благодаря которым так много в нашей жизни изменилось. Компьютерная техника без этих знаний просто не существовала бы. Для решения сложных задач, линейных уравнений и функций были созданы различные концепции, теоремы и методики решения. Одним из таких универсальных и рациональных способов и методик решения линейных уравнений и их систем стал и метод Гаусса. Матрицы, их ранг, детерминант – все можно посчитать, не используя сложных операций.

Что представляет собой СЛАУ

В математике существует понятие СЛАУ – система линейных алгебраических уравнений. Что же она собой представляет? Это набор из m уравнений с искомыми n неизвестными величинами, обычно обозначающимися как x, y, z, или x 1 , x 2 … x n, или другими символами. Решить методом Гаусса данную систему – означает найти все искомые неизвестные. Если система имеет одинаковое число неизвестных и уравнений, тогда она называется системой n-го порядка.

Наиболее популярные методы решения СЛАУ

В учебных заведениях среднего образования изучают различные методики решения таких систем. Чаще всего это простые уравнения, состоящие из двух неизвестных, поэтому любой существующий метод для поиска ответа на них не займет много времени. Это может быть как метод подстановки, когда из одного уравнения выводится другое и подставляется в изначальное. Или метод почленного вычитания и сложения. Но наиболее легким и универсальным считается метод Гаусса. Он дает возможность решать уравнения с любым количеством неизвестных. Почему именно эта методика считается рациональной? Все просто. Матричный способ хорош тем, что здесь не требуется по несколько раз переписывать ненужные символы в виде неизвестных, достаточно проделать арифметические операции над коэффициентами – и получится достоверный результат.

Где используются СЛАУ на практике

Решением СЛАУ являются точки пересечения прямых на графиках функций. В наш высокотехнологический компьютерный век людям, которые тесно связаны с разработкой игр и прочих программ, необходимо знать, как решать такие системы, что они представляют и как проверить правильность получившегося результата. Наиболее часто программисты разрабатывают специальные программы-вычислители линейной алгебры, сюда входит и система линейных уравнений. Метод Гаусса позволяет высчитать все существующие решения. Также используются и другие упрощенные формулы и методики.

Критерий совместимости СЛАУ

Такую систему можно решить только в том случае, если она совместима. Для понятности представим СЛАУ в виде Ax=b. Она имеет решение, если rang(A) равняется rang(A,b). В этом случае (A,b) – это матрица расширенного вида, которую можно получить из матрицы А, переписав ее со свободными членами. Выходит, что решить линейные уравнения методом Гаусса достаточно легко.

Возможно, некоторые обозначения не совсем понятны, поэтому необходимо рассмотреть все на примере. Допустим, есть система: x+y=1; 2x-3y=6. Она состоит всего из двух уравнений, в которых 2 неизвестные. Система будет иметь решение только в том случае, если ранг ее матрицы будет равняться рангу расширенной матрицы. Что такое ранг? Это число независимых строк системы. В нашем случае ранг матрицы 2. Матрица А будет состоять из коэффициентов, находящихся возле неизвестных, а в расширенную матрицу вписываются и коэффициенты, находящиеся за знаком «=».

Почему СЛАУ можно представить в матричном виде

Исходя из критерия совместимости по доказанной теореме Кронекера-Капелли, систему линейных алгебраических уравнений можно представить в матричном виде. Применяя каскадный метод Гаусса, можно решить матрицу и получить единственный достоверный ответ на всю систему. Если ранг обычной матрицы равняется рангу ее расширенной матрицы, но при этом меньше количества неизвестных, тогда система имеет бесконечное количество ответов.

Преобразования матриц

Прежде чем переходить к решению матриц, необходимо знать, какие действия можно проводить над их элементами. Существует несколько элементарных преобразований:

  • Переписывая систему в матричный вид и осуществляя ее решение, можно умножать все элементы ряда на один и тот же коэффициент.
  • Для того чтобы преобразовать матрицу в канонический вид, можно менять местами два параллельных ряда. Канонический вид подразумевает, что все элементы матрицы, которые расположены по главной диагонали, становятся единицами, а оставшиеся – нулями.
  • Соответствующие элементы параллельных рядов матрицы можно прибавлять один к другому.

Метод Жордана-Гаусса

Суть решения систем линейных однородных и неоднородных уравнений методом Гаусса в том, чтобы постепенно исключить неизвестные. Допустим, у нас есть система из двух уравнений, в которых две неизвестные. Чтобы их найти, необходимо проверить систему на совместимость. Уравнение методом Гаусса решается очень просто. Необходимо выписать коэффициенты, находящиеся возле каждого неизвестного в матричный вид. Для решения системы понадобится выписать расширенную матрицу. Если одно из уравнений содержит меньшее количество неизвестных, тогда на место пропущенного элемента необходимо поставить «0». К матрице применяются все известные методы преобразования: умножение, деление на число, прибавление соответствующих элементов рядов друг к другу и другие. Получается, что в каждом ряду необходимо оставить одну переменную со значением «1», остальные привести к нулевому виду. Для более точного понимания необходимо рассмотреть метод Гаусса на примерах.

Простой пример решения системы 2х2

Для начала возьмем простенькую систему алгебраических уравнений, в которой будет 2 неизвестных.

Перепишем ее в расширенную матрицу.

Чтобы решить данную систему линейных уравнений, требуется проделать всего две операции. Нам необходимо привести матрицу к каноническому виду, чтобы по главной диагонали стояли единицы. Так, переводя с матричного вида обратно в систему, мы получим уравнения: 1x+0y=b1 и 0x+1y=b2, где b1 и b2 – получившиеся ответы в процессе решения.

  1. Первое действие при решении расширенной матрицы будет таким: первый ряд необходимо умножить на -7 и прибавить соответственно отвечающие элементы ко второй строке, чтобы избавиться от одного неизвестного во втором уравнении.
  2. Так как решение уравнений методом Гаусса подразумевает приведение матрицы к каноническому виду, тогда необходимо и с первым уравнением проделать те же операции и убрать вторую переменную. Для этого вторую строку отнимаем от первой и получаем необходимый ответ – решение СЛАУ. Или, как показано на рисунке, вторую строку умножаем на коэффициент -1 и прибавляем к первой строке элементы второго ряда. Это одно и то же.

Как видим, наша система решена методом Жордана-Гаусса. Переписываем ее в необходимую форму: x=-5, y=7.

Пример решения СЛАУ 3х3

Предположим, что у нас есть более сложная система линейных уравнений. Метод Гаусса дает возможность высчитать ответ даже для самой, казалось бы, запутанной системы. Поэтому, чтобы более глубоко вникнуть в методику расчета, можно переходить к более сложному примеру с тремя неизвестными.

Как и в прежнем примере, переписываем систему в вид расширенной матрицы и начинаем приводить ее к каноническому виду.

Для решения этой системы понадобится произвести гораздо больше действий, чем в предыдущем примере.

  1. Сначала необходимо сделать в первом столбце один единичный элемент и остальные нули. Для этого умножаем первое уравнение на -1 и прибавляем к нему второе уравнение. Важно запомнить, что первую строку мы переписываем в изначальном виде, а вторую – уже в измененном.
  2. Далее убираем эту же первую неизвестную из третьего уравнения. Для этого элементы первой строки умножаем на -2 и прибавляем их к третьему ряду. Теперь первая и вторая строки переписываются в изначальном виде, а третья – уже с изменениями. Как видно по результату, мы получили первую единицу в начале главной диагонали матрицы и остальные нули. Еще несколько действий, и система уравнений методом Гаусса будет достоверно решена.
  3. Теперь необходимо проделать операции и над другими элементами рядов. Третье и четвертое действие можно объединить в одно. Нужно разделить вторую и третью строку на -1, чтобы избавиться от минусовых единиц по диагонали. Третью строку мы уже привели к необходимому виду.
  4. Дальше приведем к каноническому виду вторую строку. Для этого элементы третьего ряда умножаем на -3 и прибавляем их ко второй строчке матрицы. Из результата видно, что вторая строка тоже приведена к необходимой нам форме. Осталось проделать еще несколько операций и убрать коэффициенты неизвестных из первой строки.
  5. Чтобы из второго элемента строки сделать 0, необходимо умножить третью строку на -3 и прибавить ее к первому ряду.
  6. Следующим решающим этапом будет прибавление к первой строке необходимые элементы второго ряда. Так мы получаем канонический вид матрицы, а, соответственно, и ответ.

Как видно, решение уравнений методом Гаусса довольно простое.

Пример решения системы уравнений 4х4

Некоторые более сложные системы уравнений можно решить методом Гаусса посредством компьютерных программ. Необходимо вбить в существующие пустые ячейки коэффициенты при неизвестных, и программа сама пошагово рассчитает необходимый результат, подробно описывая каждое действие.

Ниже описана пошаговая инструкция решения такого примера.

В первом действии в пустые ячейки вписываются свободные коэффициенты и числа при неизвестных. Таким образом, получается такая же расширенная матрица, которую мы пишем вручную.

И производятся все необходимые арифметические операции, чтобы привести расширенную матрицу к каноническому виду. Необходимо понимать, что не всегда ответ на систему уравнений – это целые числа. Иногда решение может быть из дробных чисел.

Проверка правильности решения

Метод Жордана-Гаусса предусматривает проверку правильности результата. Для того чтобы узнать, правильно ли посчитаны коэффициенты, необходимо всего-навсего подставить результат в изначальную систему уравнений. Левая сторона уравнения должна соответствовать правой стороне, находящейся за знаком “равно”. Если ответы не совпадают, тогда необходимо пересчитывать заново систему или попробовать применить к ней другой известный вам метод решения СЛАУ, такой как подстановка или почленное вычитание и сложение. Ведь математика – это наука, которая имеет огромное количество различных методик решения. Но помните: результат должен быть всегда один и тот же, независимо от того, какой метод решения вы использовали.

Метод Гаусса: наиболее часто встречающиеся ошибки при решении СЛАУ

Во время решения линейных систем уравнений чаще всего возникают такие ошибки, как неправильный перенос коэффициентов в матричный вид. Бывают системы, в которых отсутствуют в одном из уравнений некоторые неизвестные, тогда, перенося данные в расширенную матрицу, их можно потерять. В результате при решении данной системы результат может не соответствовать действительному.

Еще одной из главных ошибок может быть неправильное выписывание конечного результата. Нужно четко понимать, что первый коэффициент будет соответствовать первому неизвестному из системы, второй – второму, и так далее.

Метод Гаусса подробно описывает решение линейных уравнений. Благодаря ему легко произвести необходимые операции и найти верный результат. Кроме того, это универсальное средство для поиска достоверного ответа на уравнения любой сложности. Может быть, поэтому его так часто используют при решении СЛАУ.

Метод Гаусса прекрасно подходит для решения систем линейных алгебраических уравнений (СЛАУ). Он обладает рядом преимуществ по сравнению с другими методами:

  • во-первых, нет необходимости предварительно исследовать систему уравнений на совместность;
  • во-вторых, методом Гаусса можно решать не только СЛАУ, в которых число уравнений совпадает с количеством неизвестных переменных и основная матрица системы невырожденная, но и системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равен нулю;
  • в-третьих, метод Гаусса приводит к результату при сравнительно небольшом количестве вычислительных операций.

Краткий обзор статьи.

Сначала дадим необходимые определения и введем обозначения.

Далее опишем алгоритм метода Гаусса для простейшего случая, то есть, для систем линейных алгебраических уравнений, количество уравнений в которых совпадает с количеством неизвестных переменных и определитель основной матрицы системы не равен нулю. При решении таких систем уравнений наиболее отчетливо видна суть метода Гаусса, которая заключается в последовательном исключении неизвестных переменных. Поэтому метод Гаусса также называют методом последовательного исключения неизвестных. Покажем подробные решения нескольких примеров.

В заключении рассмотрим решение методом Гаусса систем линейных алгебраических уравнений, основная матрица которых либо прямоугольная, либо вырожденная. Решение таких систем имеет некоторые особенности, которые мы подробно разберем на примерах.

Навигация по странице.

Основные определения и обозначения.

Рассмотрим систему из p линейных уравнений с n неизвестными (p может быть равно n ):

Где – неизвестные переменные, – числа (действительные или комплексные), – свободные члены.

Если , то система линейных алгебраических уравнений называется однородной , в противном случае – неоднородной .

Совокупность значения неизвестных переменных , при которых все уравнения системы обращаются в тождества, называется решением СЛАУ .

Если существует хотя бы одно решение системы линейных алгебраических уравнений, то она называется совместной , в противном случае – несовместной .

Если СЛАУ имеет единственное решение, то она называется определенной . Если решений больше одного, то система называется неопределенной .

Говорят, что система записана в координатной форме , если она имеет вид
.

Эта система в матричной форме записи имеет вид , где – основная матрица СЛАУ, – матрица столбец неизвестных переменных, – матрица свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Квадратная матрица А называется вырожденной , если ее определитель равен нулю. Если , то матрица А называется невырожденной .

Следует оговорить следующий момент.

Если с системой линейных алгебраических уравнений произвести следующие действия

  • поменять местами два уравнения,
  • умножить обе части какого-либо уравнения на произвольное и отличное от нуля действительное (или комплексное) число k ,
  • к обеим частям какого-либо уравнения прибавить соответствующие части другого уравнения, умноженные на произвольное число k ,

то получится эквивалентная система, которая имеет такие же решения (или также как и исходная не имеет решений).

Для расширенной матрицы системы линейных алгебраических уравнений эти действия будут означать проведение элементарных преобразований со строками:

  • перестановку двух строк местами,
  • умножение всех элементов какой-либо строки матрицы T на отличное от нуля число k ,
  • прибавление к элементам какой-либо строки матрицы соответствующих элементов другой строки, умноженных на произвольное число k .

Теперь можно переходить к описанию метода Гаусса.

Решение систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных и основная матрица системы невырожденная, методом Гаусса.

Как бы мы поступили в школе, если бы получили задание найти решение системы уравнений .

Некоторые сделали бы так.

Заметим, что прибавив к левой части второго уравнения левую часть первого, а к правой части – правую, можно избавиться от неизвестных переменных x 2 и x 3 и сразу найти x 1 :

Подставляем найденное значение x 1 =1 в первое и третье уравнение системы:

Если умножить обе части третьего уравнения системы на -1 и прибавить их к соответствующим частям первого уравнения, то мы избавимся от неизвестной переменной x 3 и сможем найти x 2 :

Подставляем полученное значение x 2 =2 в третье уравнение и находим оставшуюся неизвестную переменную x 3 :

Другие поступили бы иначе.

Разрешим первое уравнение системы относительно неизвестной переменной x 1 и подставим полученное выражение во второе и третье уравнение системы, чтобы исключить из них эту переменную:

Теперь разрешим второе уравнение системы относительно x 2 и подставим полученный результат в третье уравнение, чтобы исключить из него неизвестную переменную x 2 :

Из третьего уравнения системы видно, что x 3 =3 . Из второго уравнения находим , а из первого уравнения получаем .

Знакомые способы решения, не правда ли?

Самое интересное здесь то, что второй способ решения по сути и есть метод последовательного исключения неизвестных, то есть, метод Гаусса. Когда мы выражали неизвестные переменные (сначала x 1 , на следующем этапе x 2 ) и подставляли их в остальные уравнения системы, мы тем самым исключали их. Исключение мы проводили до того момента, пока в последнем уравнении не осталась одна единственная неизвестная переменная. Процесс последовательного исключения неизвестных называется прямым ходом метода Гаусса . После завершения прямого хода у нас появляется возможность вычислить неизвестную переменную, находящуюся в последнем уравнении. С ее помощью из предпоследнего уравнения находим следующую неизвестную переменную и так далее. Процесс последовательного нахождения неизвестных переменных при движении от последнего уравнения к первому называется обратным ходом метода Гаусса .

Следует заметить, что когда мы выражаем x 1 через x 2 и x 3 в первом уравнении, а затем подставляем полученное выражение во второе и третье уравнения, то к такому же результату приводят следующие действия:

Действительно, такая процедура также позволяет исключить неизвестную переменную x 1 из второго и третьего уравнений системы:

Нюансы с исключением неизвестных переменных по методу Гаусса возникают тогда, когда уравнения системы не содержат некоторых переменных.

Например, в СЛАУ в первом уравнении отсутствует неизвестная переменная x 1 (иными словами, коэффициент перед ней равен нулю). Поэтому мы не можем разрешить первое уравнение системы относительно x 1 , чтобы исключить эту неизвестную переменную из остальных уравнений. Выходом из этой ситуации является перестановка местами уравнений системы. Так как мы рассматриваем системы линейных уравнений, определители основных матриц которых отличны от нуля, то всегда существует уравнение, в котором присутствует нужная нам переменная, и мы это уравнение можем переставить на нужную нам позицию. Для нашего примера достаточно поменять местами первое и второе уравнения системы , дальше можно разрешить первое уравнение относительно x 1 и исключить ее из остальных уравнений системы (хотя во втором уравнении x 1 уже отсутствует).

Надеемся, что суть Вы уловили.

Опишем алгоритм метода Гаусса.

Пусть нам требуется решить систему из n линейных алгебраических уравнений с n неизвестными переменными вида , и пусть определитель ее основной матрицы отличен от нуля.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Разберем алгоритм на примере.

Пример.

методом Гаусса.

Решение.

Коэффициент a 11 отличен от нуля, так что приступим к прямому ходу метода Гаусса, то есть, к исключению неизвестной переменной x 1 из всех уравнений системы, кроме первого. Для этого к левой и правой частям второго, третьего и четвертого уравнения прибавим левую и правую части первого уравнения, умноженные соответственно на , и :

Неизвестную переменную x 1 исключили, переходим к исключению x 2 . К левым и правым частям третьего и четвертого уравнений системы прибавляем левую и правую части второго уравнения, умноженные соответственно на и :

Для завершения прямого хода метода Гаусса нам осталось исключить неизвестную переменную x 3 из последнего уравнения системы. Прибавим к левой и правой частям четвертого уравнения соответственно левую и правую часть третьего уравнения, умноженную на :

Можно начинать обратный ход метода Гаусса.

Из последнего уравнения имеем ,
из третьего уравнения получаем ,
из второго ,
из первого .

Для проверки можно подставить полученные значения неизвестных переменных в исходную систему уравнений. Все уравнения обращаются в тождества, что говорит о том, что решение по методу Гаусса найдено верно.

Ответ:

А сейчас приведем решение этого же примера методом Гаусса в матричной форме записи.

Пример.

Найдите решение системы уравнений методом Гаусса.

Решение.

Расширенная матрица системы имеет вид . Сверху над каждым столбцом записаны неизвестные переменные, которым соответствуют элементы матрицы.

Прямой ход метода Гаусса здесь предполагает приведение расширенной матрицы системы к трапецеидальному виду с помощью элементарных преобразований. Этот процесс схож с исключением неизвестных переменных, которое мы проводили с системой в координатной форме. Сейчас Вы в этом убедитесь.

Преобразуем матрицу так, чтобы все элементы в первом столбце, начиная со второго, стали нулевыми. Для этого к элементам второй, третьей и четвертой строк прибавим соответствующие элементы первой строки умноженные на , и на соответственно:

Далее полученную матрицу преобразуем так, чтобы во втором столбце все элементы, начиная с третьего стали нулевыми. Это будет соответствовать исключению неизвестной переменной x 2 . Для этого к элементам третьей и четвертой строк прибавим соответствующие элементы первой строки матрицы, умноженные соответственно на и :

Осталось исключить неизвестную переменную x 3 из последнего уравнения системы. Для этого к элементам последней строки полученной матрицы прибавим соответствующие элементы предпоследней строки, умноженные на :

Следует отметить, что эта матрица соответствует системе линейных уравнений

которая была получена ранее после прямого хода.

Пришло время обратного хода. В матричной форме записи обратный ход метода Гаусса предполагает такое преобразование полученной матрицы, чтобы матрица, отмеченная на рисунке

стала диагональной, то есть, приняла вид

где – некоторые числа.

Эти преобразования аналогичны преобразованиям прямого хода метода Гаусса, но выполняются не от первой строки к последней, а от последней к первой.

Прибавим к элементам третьей, второй и первой строк соответствующие элементы последней строки, умноженные на , на и на соответственно:

Теперь прибавим к элементам второй и первой строк соответствующие элементы третьей строки, умноженные на и на соответственно:

На последнем шаге обратного хода метода Гаусса к элементам первой строки прибавляем соответствующие элементы второй строки, умноженные на :

Полученная матрица соответствует системе уравнений , откуда находим неизвестные переменные.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ.

При использовании метода Гаусса для решения систем линейных алгебраических уравнений следует избегать приближенных вычислений, так как это может привести к абсолютно неверным результатам. Рекомендуем не округлять десятичные дроби. Лучше от десятичных дробей переходить к обыкновенным дробям.

Пример.

Решите систему из трех уравнений методом Гаусса .

Решение.

Отметим, что в этом примере неизвестные переменные имеют другое обозначение (не x 1 , x 2 , x 3 , а x, y, z ). Перейдем к обыкновенным дробям:

Исключим неизвестную x из второго и третьего уравнений системы:

В полученной системе во втором уравнении отсутствует неизвестная переменная y , а в третьем уравнении y присутствует, поэтому, переставим местами второе и третье уравнения:

На этом прямой ход метода Гаусса закончен (из третьего уравнения не нужно исключать y , так как этой неизвестной переменной уже нет).

Приступаем к обратному ходу.

Из последнего уравнения находим ,
из предпоследнего


из первого уравнения имеем

Ответ:

X = 10, y = 5, z = -20 .

Решение систем линейных алгебраических уравнений, в которых число уравнений не совпадает с числом неизвестных или основная матрица системы вырожденная, методом Гаусса.

Системы уравнений, основная матрица которых прямоугольная или квадратная вырожденная, могут не иметь решений, могут иметь единственное решение, а могут иметь бесконечное множество решений.

Сейчас мы разберемся, как метод Гаусса позволяет установить совместность или несовместность системы линейных уравнений, а в случае ее совместности определить все решения (или одно единственное решение).

В принципе процесс исключения неизвестных переменных в случае таких СЛАУ остается таким же. Однако следует подробно остановиться на некоторых ситуациях, которые могут возникнуть.

Переходим к самому важному этапу.

Итак, допустим, что система линейных алгебраических уравнений после завершения прямого хода метода Гаусса приняла вид и ни одно уравнение не свелось к (в этом случае мы бы сделали вывод о несовместности системы). Возникает логичный вопрос: «Что делать дальше»?

Выпишем неизвестные переменные, которые стоят на первом месте всех уравнений полученной системы:

В нашем примере это x 1 , x 4 и x 5 . В левых частях уравнений системы оставляем только те слагаемые, которые содержат выписанные неизвестные переменные x 1 , x 4 и x 5 , остальные слагаемые переносим в правую часть уравнений с противоположным знаком:

Придадим неизвестным переменным, которые находятся в правых частях уравнений, произвольные значения , где – произвольные числа:

После этого в правых частях всех уравнений нашей СЛАУ находятся числа и можно преступать к обратному ходу метода Гаусса.

Из последнего уравнений системы имеем , из предпоследнего уравнения находим , из первого уравнения получаем

Решением системы уравнений является совокупность значений неизвестных переменных

Придавая числам различные значения, мы будем получать различные решения системы уравнений. То есть, наша система уравнений имеет бесконечно много решений.

Ответ:

где – произвольные числа.

Для закрепления материала подробно разберем решения еще нескольких примеров.

Пример.

Решите однородную систему линейных алгебраических уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x из второго и третьего уравнений системы. Для этого к левой и правой части второго уравнения прибавим соответственно левую и правую части первого уравнения, умноженные на , а к левой и правой части третьего уравнения – левую и правую части первого уравнения, умноженные на :

Теперь исключим y из третьего уравнения полученной системы уравнений:

Полученная СЛАУ равносильна системе .

Оставляем в левой части уравнений системы только слагаемые, содержащие неизвестные переменные x и y , а слагаемые с неизвестной переменной z переносим в правую часть:

Пусть дана система , ∆≠0. (1)
Метод Гаусса – это метод последовательного исключения неизвестных.

Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
(2)
Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
.
Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
После n шагов вместо (1) получим равносильную систему
(3)
Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
Если ε=0, то найденное решение x 0 является верным.

Вычисления по методу Гаусса выполняются в два этапа:

  1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
  2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

Назначение метода Гаусса

Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

Виды метода Гаусса

  1. Классический метод Гаусса;
  2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
  3. Метод Жордано-Гаусса;
Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

Пример решения методом Гаусса
Решим систему:

Для удобства вычислений поменяем строки местами:

Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

Из 1-ой строки выражаем x 3:
Из 2-ой строки выражаем x 2:
Из 3-ой строки выражаем x 1:

Пример решения методом Жордано-Гаусса
Эту же СЛАУ решим методом Жордано-Гаусса.

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1).

НЭ = СЭ – (А*В)/РЭ
РЭ – разрешающий элемент (1), А и В – элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Разрешающий элемент равен (3).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1

Ответ : x 1 = 1, x 2 = 1, x 3 = 1

Реализация метода Гаусса

Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi, а также имеется реализация метода Гаусса в онлайн режиме .

Использование метода Гаусса

Применение метода Гаусса в теории игр

В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

Применение метода Гаусса при решении дифференциальных уравнений

Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

Применение метода Жордано-Гаусса в линейном программировании

В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.

Метод Гаусса. Как найти обратную матрицу с помощью элементарных преобразований?

Однажды некто Жордано (не путать с Джордано Бруно) сел решать очередную систему уравнений. Он любил этим заниматься и в свободное время совершенствовал свои навыки. Но вот настал момент, когда ему наскучили все методы решения и метод Гаусса в том числе. Предположим, дана система с тремя уравнениями, тремя неизвестными и записана её расширенная матрица . В наиболее распространенном случае получаются стандартные ступеньки , и так каждый день…. Одно и то же – как беспросветный ноябрьский дождь.

На некоторое время развевает тоску другой способ приведения матрицы к ступенчатому виду: , причём он совершенно равноценен и может быть не удобен только по причине субъективного восприятия. Но всё рано или поздно приедается…. И подумал тогда математик – а зачем вообще мучиться с обратным ходом гауссовского алгоритма? Не проще ли сразу получить ответ  с помощью дополнительных элементарных преобразований?

Для освоения данного урока «чайникам» придётся пойти путём Жордано и прокачать элементарные преобразования хотя бы среднего уровня, прорешав, минимум, 15-20 соответствующих заданий. Поэтому если вы смутно понимаете, о чём идёт разговор и/или у вас возникнет недопонимание чего-либо по ходу занятия, то рекомендую ознакомиться с темой в следующем порядке:

Метод Гаусса для чайников;

Несовместные системы и системы с общим решением;

Ранг матрицы;

Однородные системы.

Ну, и совсем замечательно, если отработаны элементарные преобразования определителя.

Как все поняли, метод Жордано-Гаусса представляет собой модификацию метода Гаусса и с реализацией основной, уже озвученной выше идеи, мы встретимся на ближайших экранах. Кроме того, в число немногочисленных примеров данной статьи вошло важнейшее приложение – нахождение обратной матрицы с помощью элементарных преобразований.

Не мудрствуя лукаво:

Пример 1

Решить систему методом Жордано-Гаусса

Решение: это первое задание урока Метод Гаусса для чайников, где мы 5 раз трансформировали расширенную матрицу системы и привели её к ступенчатому виду:

Теперь вместо обратного хода в игру вступают дополнительные элементарные преобразования. Сначала нам необходимо получить нули на этих местах: , 
а потом ещё один ноль здесь: .

Идеальный с точки зрения простоты случай:

(6) Ко второй строке прибавили третью строку. К первой строке прибавили третью строку.

(7) К первой строке прибавили вторую строку, умноженную на –2.

Не могу удержаться от иллюстрации итоговой системы:

Ответ

Предостерегаю читателей от шапкозакидательского настроения – это был простейший демонстрационный пример. Для метода Жордано-Гаусса характерны свои специфические приёмы и не самые удобные вычисления, поэтому, пожалуйста, настройтесь на серьёзную работу:

Пример 2

Решить систему линейных уравнений методом Жордано-Гаусса.

Решение: первая часть задания хорошо знакома:

(1) Ко второй строке прибавили первую строку, умноженную на –1. К третьей строке прибавили первую строку, умноженную на 3. К четвертой строке прибавили первую строку, умноженную на –5.

(2) Вторую строку разделили на 2, третью строку разделили на 11, четвёртую строку разделили на 3.

(3) Вторая и третья строки пропорциональны, 3-ю строку удалили. К четвёртой строке прибавили вторую строку, умноженную на –7

(4) Третью строку разделили на 2.

Очевидно, что система имеет бесконечно много решений, и наша задача – привести её расширенную матрицу к виду .

Как действовать дальше? Прежде всего, следует отметить, что мы лишились вкусного элементарного преобразования – перестановки строк. Точнее говоря, переставлять-то их можно, но в этом нет смысла. И далее целесообразно придерживаться следующего шаблона:

Находим наименьшее общее кратное чисел третьего столбца (1, –1 и 3), т.е. – наименьшее число, которое бы делилось без остатка и на 1, и на –1 и на 3. В данном случае, это, конечно же, «тройка». Теперь в третьем столбце нам нужно получить одинаковые по модулючисла, и этими соображениями обусловлено 5-ое преобразование матрицы:

(5) Первую строку умножаем на –3, вторую строку умножаем на 3. Вообще говоря, первую строку можно было умножить тоже на 3, но это было бы менее удобно для следующего действия. К хорошему привыкаешь быстро:


(6) Ко второй строке прибавили третью  строку. К первой строке прибавили третью строку.

(7) Во втором столбце два ненулевых значения (24 и 6) и нам снова нужно получитьодинаковые по модулю числа. В данном случае всё сложилось довольно удачно – наименьшее кратное 24, и эффективнее всего умножить вторую строку на –4.

(8) К первой строке прибавили вторую.

(9) Заключительный штрих: первую строку разделили на –3, вторую строку разделили на –24 и третью строку разделили на 3. Это действие выполняется В ПОСЛЕДНЮЮ ОЧЕРЕДЬ! Никаких преждевременных дробей!

В результате элементарных преобразований получена эквивалентная исходной система:

Элементарно выражаем базисные переменные через свободную:

и записываем:

Ответ: общее решение: 

В подобных примерах применение рассмотренного алгоритма чаще всего оправдано, поскольку обратный ход метода Гаусса обычно требует трудоёмких и неприятных вычислений с дробями.

И, разумеется, крайне желательна проверка, которая выполняется по обычной схеме, рассмотренной на уроке Несовместные системы и системы с общим решением.

Для самостоятельного решения:

Пример 3

Найти базисное решение с помощью элементарных преобразований

Такая формулировка задачи предполагает использование метода Жордано-Гаусса, и в образце решения матрица приводится к стандартному виду  с базисными переменными . Однако всегда держите на заметке, что в качестве базисных можно выбрать и другие переменные. Так, например, если в первом столбце громоздкие числа, то вполне допустимо привести матрицу к виду   (базисные переменные ), или к виду  (базисные переменные ), или даже к виду  с базисными переменными . Существуют и другие варианты.

Но всё-таки это крайние случаи – не стОит лишний раз шокировать преподавателей своими знаниями, техникой решения и уж тем более не надо выдавать экзотических жордановсих результатов вроде . Впрочем, бывает трудно удержаться от нетипового базиса, когда в исходной матрице, скажем, в 4-ом столбце есть два готовых нуля.

Примечание: термин «базис» имеет алгебраический смысл и понятиегеометрического базиса здесь не при чём!

Если в расширенной матрице данных размеров вдруг обнаруживается пара линейно зависимых строк, то её следует попытаться привести к привычному виду   с базисными переменными . Образец такого решения есть в Примере №7 статьи ободнородных системах линейных уравнений, причём там выбран другой базис.

Продолжаем совершенствовать свои навыки на следующей прикладной задаче:


Как найти обратную матрицу методом Гаусса?

Обычно условие формулируют сокращённо, но, по существу, здесь также работает алгоритм Жордано-Гаусса. Более простой метод нахождения обратной матрицы  для квадратной матрицы  мы давным-давно рассмотрели на соответствующем уроке, и суровой поздней осенью тёртые студенты осваивают мастерский способ решения.

Краткое содержание предстоящих действий таково: сначала следует записать квадратную матрицу  в тандеме с единичной матрицей: . Затем с помощью элементарных преобразований необходимо получить единичную матрицу слева, при этом (не вдаваясь в теоретические подробности) справа нарисуется обратная матрица. Схематически решение выглядит следующим образом:

(Понятно, что обратная матрица должна существовать)

Не хочу показаться категоричным или придирчивым, но в подавляющем большинстве источников информации, которые я видел, данная задача рассмотрена крайне плохо – нужно обладать семью пядями во лбу и потратить массу времени/нервов на тяжёлое неуклюжее решение. За годы практики мне удалось отшлифовать, не скажу, что самую лучшую, но рациональную и достаточно лёгкую методику, которая доступна всем, кто владеет арифметическими действиями!

Демо-пример: найдём обратную матрицу для матрицы  с помощью элементарных преобразований. Для этого запишем её в одной упряжке с единичной матрицей: .

А теперь об одном принципиальном моменте. По цитате известного юмориста, для русского человека есть несколько градаций запрета: «запрещено», «строго запрещено» и «категорически запрещено». Так вот, в рассматриваемой задаче КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНО переставлять строки. Если в ходе решения систем мы могли выполнять данное преобразование, то здесь его полное отсутствие заметно огранивает наши возможности.

Однако не всё так плохо:

(1) Ко второй строке прибавили первую строку, умноженную на –3.

(2) К первой строке прибавили вторую строку.

(3) Вторую строку разделили на –2.

Таким образом: . Желающие могут свериться с ответом первого примера урока Как найти обратную матрицу?

Но то была очередная заманивающая задачка – в действительности решение гораздо более длительно и кропотливо. Отработаем на реальных примерах алгоритм, который я считаю наиболее выгодным. Как правило, вам будет предложена матрица «три на три»:

Пример 4

Найти обратную матрицу с помощью элементарных преобразований

Решение: присоединяем единичную матрицу и думаем над первым действием. Чтобы получить слева вверху «единицу» хочется поменять местами первую и третью строки, однако беда в том, что ПЕРЕСТАВЛЯТЬ НИЧЕГО НЕЛЬЗЯ. Поэтому используем уже знакомый по предыдущему параграфу мотив: находим наименьшее общее кратное чисел первого столбца (3, 2 и 1): 6. В этой связи:

(1) Первую строку умножаем на –2, вторую строку умножаем на 3, третью строку – на 6:

(2) Ко 2-ой и 3-ей строкам прибавили первую строку.

(3) Первую строку разделили «обратно» на –2.  Третью строку разделили на 2.

(4) Что скажешь, тут немного повезло: к третьей строке прибавили вторую строку.

(5) У второй строки сменили знак, третью строку разделили на –3.

Первая половина пути пройдена.

Далее смотрим на числа третьего столбца (2, 13, 4) и находим их наименьшее общее кратное(НОК): 52. Существует строгий алгоритм нахождения НОК, но здесь обычно хватает подбора. Ничего страшного, если взять бОльшее число, которое делится и на 2, и на 13, и на 4, например, 104. Отличие будет в более громоздких вычислениях. 

Кстати, про вычисления. Для решения данной задачи совсем не зазорно вооружиться микрокалькулятором – числа фигурируют немалые, и будет очень обидно допустить вычислительную ошибку.

Итак, на нижнем этаже получаем –52, а на двух верхних 52. Для этого:

(6) Первую строку умножаем на 26, вторую строку умножаем на 4, третью строку – на –13:

(7) К первой и второй строкам прибавили третью строку.

(8) Первую строку разделили на 13. Третью строку разделили «обратно» на –13.

(9) Наименьшее общее кратное ненулевых чисел второго столбца (8 и 44) равно 88. Первую строку умножили на 11, вторую строку умножили на –2.

(10) К первой строке прибавили вторую строку.

(11) Первую строку разделили на 3, вторую строку разделили «обратно» на –2.

(12) Теперь на главной диагонали левой матрицы целесообразно получитьнаименьшее общее кратное чисел диагонали (22, 44 и 4-х). Это число 44. Первую строку умножили на 2, третью строку умножили на 11.

(13) Каждую строку матрицы делим на 44. Данное действие выполняется в последнюю очередь!

Таким образом, обратная матрица:

Внесение и вынесение -ой, в принципе, лишние действия, но того требует протокол оформления задачи.

Ответ

Проверка выполняется по обычной схеме, рассмотренной на уроке об обратной матрице.

Продвинутые люди могут сократить и несколько видоизменить решение, но должен предупредить, отклонение от курса чревато повышенным риском допустить ошибку. По моему мнению, предложенная схема если и не самая, то одна из самых надёжных.

Аналогичное задание для самостоятельного решения:

Пример 5

Найти обратную матрицу методом Жордано-Гаусса.

Примерный образец оформления внизу страницы.

Иногда бывает удобно более короткое «модернистское» решение, которое заключается в следующем: на первом шаге всё как обычно: .

На втором шаге накатанным приёмом (через НОК чисел 2-го столбца) организуются сразу два нуля во втором столбце: . Перед данным действием особенно трудно устоять, если во 2-ом столбце нарисовались одинаковые по модулю числа, например, «единицы».

И, наконец, на третьем шаге точно так же получаем нужные нули в третьем столбце: .

Живой пример авангарда можно посмотреть во втором задании урока о решении системы в различных базисах.

Что касается размерности, то в 98-99% случаев приходится разруливать матрицу «три на три». Пару раз в пятилетку попадается лайт-версия задачи с матрицей «два на два». Алгоритм, как вы догадываетесь, аналогичный. В самом тяжелом случае через НОК чисел 1-го столбца получаем ноль слева внизу, а затем с помощью НОК чисел 2-го столбца организуем ноль вверху данного столбца. Матрица «четыре на четыре» мне встречалась всего один раз – много-много лет назад в собственной вузовской контрольной. К слову, для неё использование метода Жордано-Гаусса куда менее трудозатратно, нежели обычное решение через алгебраические дополнения.

И заключительный совет – после таких примеров очень полезна гимнастика для глаз и какая-нибудь хорошая музыка для релаксации =)

Желаю успехов!

Решения и ответы:

Пример 3: Решение: запишем расширенную матрицу системы и с помощью элементарных преобразований получим базисное решение:
 
(1) Первую и вторую строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на 5.
(3) Третью строку разделили на 3.
(4) К третьей строке прибавили вторую строку, умноженную на 2.
(5) Третью строку разделили на 7.
(6) Наименьшее кратное чисел 3-го столбца (–3, 5, 1) равно 15-ти. Первую строку умножили на 5, вторую строку умножили на –3, третью строку умножили на 15.
(7) К первой строке прибавили 3-ю строку. Ко второй строке прибавили 3-ю строку.
(8) Первую строку разделили на 5, вторую строку разделили на –3, третью строку разделили на 15.
(9) Наименьшее кратное ненулевых чисел 2-го столбца (–2 и 1) равно: 2. Вторую строку умножили на 2
(10) К первой строке прибавили вторую строку.
(11) Вторую строку разделили на 2.
Выразим базисные переменные  через свободные переменные :

Ответ: общее решение: 

Пример 5: Решение: обратную матрицу найдём с помощью элементарных преобразований:

(1) Первую строку умножили на –15, вторую строку умножили на 3, третью строку умножили на 5.

(2) Ко 2-ой и 3-ей строкам прибавили первую строку.
(3) Первую строку разделили на –15, вторую строку разделили на –3, третью строку разделили на –5.
(4) Вторую строку умножили на 7, третью строку умножили на –9.
(5) К третьей строке прибавили вторую строку.

(6) Вторую строку разделили на 7.

(7) Первую строку умножили на 27, вторую строку умножили на 6, третью строку умножили на –4.
(8) К первой и второй строкам прибавили третью строку.
(9) Третью строку разделили на –4. К первой строке прибавили вторую строку, умноженную на –1.
(10) Вторую строку разделили на 2.
(11) Каждую строку разделили на 27.
В результате: 
Ответ

Решение методом жордана гаусса. Метод Гаусса-Жордана

Однажды немецкий математик Вильгельм Йордан (мы неверно транскрибируем с немецкого Jordan как Жордан) сел решать очередную систему уравнений. Он любил этим заниматься и в свободное время совершенствовал свои навыки. Но вот настал момент, когда ему наскучили все методы решения и метод Гаусса в том числе…

Предположим, дана система с тремя уравнениями, тремя неизвестными и записана её расширенная матрица . В наиболее распространенном случае получаются стандартные ступеньки , и так каждый день…. Одно и то же – как беспросветный ноябрьский дождь.

На некоторое время развевает тоску другой способ приведения матрицы к ступенчатому виду: , причём он совершенно равноценен и может быть неудобен только по причине субъективного восприятия. Но всё рано или поздно приедается…. И подумал тогда Жо рдан – а зачем вообще мучиться с обратным ходом гауссовского алгоритма? Не проще ли сразу получить ответ с помощью дополнительных элементарных преобразований?

…да, такое бывает только по любви =)

Для освоения данного урока «чайникам» придётся пойти путём Жо рдана и прокачать элементарные преобразования хотя бы среднего уровня, прорешав, минимум, 15-20 соответствующих заданий. Поэтому если вы смутно понимаете, о чём идёт разговор и/или у вас возникнет недопонимание чего-либо по ходу занятия, то рекомендую ознакомиться с темой в следующем порядке:

Ну, и совсем замечательно, если отработано понижение порядка определителя .

Как все поняли, метод Гаусса-Жордана представляет собой модификацию метода Гаусса и с реализацией основной, уже озвученной выше идеи, мы встретимся на ближайших экранах. Кроме того, в число немногочисленных примеров данной статьи вошло важнейшее приложение – нахождение обратной матрицы с помощью элементарных преобразований .

Не мудрствуя лукаво:

Пример 1

Решить систему методом Гаусса-Жордана

Решение : это первое задание урока Метод Гаусса для чайников , где мы 5 раз трансформировали расширенную матрицу системы и привели её к ступенчатому виду:

Теперь вместо обратного хода в игру вступают дополнительные элементарные преобразования. Сначала нам необходимо получить нули на этих местах: ,
а потом ещё один ноль вот здесь: .

Идеальный с точки зрения простоты случай:

(6) Ко второй строке прибавили третью строку. К первой строке прибавили третью строку.

(7) К первой строке прибавили вторую строку, умноженную на –2.

Не могу удержаться от иллюстрации итоговой системы:

Ответ :

Предостерегаю читателей от шапкозакидательского настроения – это был простейший демонстрационный пример. Для метода Гаусса-Жордана характерны свои специфические приёмы и не самые удобные вычисления, поэтому, пожалуйста, настройтесь на серьёзную работу.

Не хочу показаться категоричным или придирчивым, но в подавляющем большинстве источников информации, которые я видел, типовые задачи рассмотрены крайне плохо – нужно обладать семью пядями во лбу и потратить массу времени/нервов на тяжёлое неуклюжее решение с дробями. За годы практики мне удалось отшлифовать, не скажу, что самую лучшую, но рациональную и достаточно лёгкую методику, которая доступна всем, кто владеет арифметическими действиями:

Пример 2

Решить систему линейных уравнений методом Гаусса-Жордана.

Решение : первая часть задания хорошо знакома:

(1) Ко второй строке прибавили первую строку, умноженную на –1. К третьей строке прибавили первую строку, умноженную на 3. К четвертой строке прибавили первую строку, умноженную на –5.

(2) Вторую строку разделили на 2, третью строку разделили на 11, четвёртую строку разделили на 3.

(3) Вторая и третья строки пропорциональны, 3-ю строку удалили. К четвёртой строке прибавили вторую строку, умноженную на –7

(4) Третью строку разделили на 2.

Очевидно, что система имеет бесконечно много решений, и наша задача – привести её расширенную матрицу к виду .

Как действовать дальше? Прежде всего, следует отметить, что мы лишились вкусного элементарного преобразования – перестановки строк. Точнее говоря, переставить-то их можно, но в этом нет смысла (просто выполним лишние действия). И далее целесообразно придерживаться следующего шаблона:

Находим наименьшее общее кратное чисел третьего столбца (1, –1 и 3), т.е. – наименьшее число, которое бы делилось без остатка и на 1, и на –1 и на 3. В данном случае, это, конечно же, «тройка». Теперь в третьем столбце нам нужно получить одинаковые по модулю числа , и этими соображениями обусловлено 5-е преобразование матрицы:

(5) Первую строку умножаем на –3, вторую строку умножаем на 3. Вообще говоря, первую строку можно было умножить тоже на 3, но это было бы менее удобно для следующего действия. К хорошему привыкаешь быстро:


(6) Ко второй строке прибавили третью строку. К первой строке прибавили третью строку.

(7) Во втором столбце два ненулевых значения (24 и 6) и нам снова нужно получить одинаковые по модулю числа . В данном случае всё сложилось довольно удачно – наименьшее кратное 24, и эффективнее всего умножить вторую строку на –4.

(8) К первой строке прибавили вторую.

(9) Заключительный штрих: первую строку разделили на –3, вторую строку разделили на –24 и третью строку разделили на 3. Это действие выполняется В ПОСЛЕДНЮЮ ОЧЕРЕДЬ! Никаких преждевременных дробей!

В результате элементарных преобразований получена эквивалентная исходной система:

Элементарно выражаем базисные переменные через свободную:

и записываем:

Ответ : общее решение:

В подобных примерах применение рассмотренного алгоритма чаще всего оправдано, поскольку обратный ход метода Гаусса обычно требует трудоёмких и неприятных вычислений с дробями.

И, разумеется, крайне желательна проверка, которая выполняется по обычной схеме, рассмотренной на уроке Несовместные системы и системы с общим решением .

Для самостоятельного решения:

Пример 3

Найти базисное решение с помощью элементарных преобразований

Такая формулировка задачи предполагает использование метода Гаусса-Жордана, и в образце решения матрица приводится к стандартному виду с базисными переменными . Однако всегда держите на заметке, что в качестве базисных можно выбрать и другие переменные . Так, например, если в первом столбце громоздкие числа, то вполне допустимо привести матрицу к виду (базисные переменные ), или к виду (базисные переменные ), или даже к виду с базисными переменными . Существуют и другие варианты.

Но всё-таки это крайние случаи – не стОит лишний раз шокировать преподавателей своими знаниями, техникой решения и уж тем более не надо выдавать экзотических жордановсих результатов вроде . Впрочем, бывает трудно удержаться от нетипового базиса, когда в исходной матрице, скажем, в 4-м столбце есть два готовых нуля.

Примечание : термин «базис» имеет алгебраический смысл и понятие геометрического базиса здесь не при чём!

Если в расширенной матрице данных размеров вдруг обнаруживается пара линейно зависимых строк, то её следует попытаться привести к привычному виду с базисными переменными . Образец такого решения есть в Примере №7 статьи об однородных системах линейных уравнений , причём там выбран другой базис .

Продолжаем совершенствовать свои навыки на следующей прикладной задаче:

Как найти обратную матрицу методом Гаусса?

Обычно условие формулируют сокращённо, но, по существу, здесь также работает алгоритм Гаусса-Жордана. Более простой метод нахождения обратной матрицы для квадратной матрицы мы давным-давно рассмотрели на соответствующем уроке, и суровой поздней осенью тёртые студенты осваивают мастерский способ решения.

Краткое содержание предстоящих действий таково: сначала следует записать квадратную матрицу в тандеме с единичной матрицей: . Затем с помощью элементарных преобразований необходимо получить единичную матрицу слева, при этом (не вдаваясь в теоретические подробности) справа нарисуется обратная матрица. Схематически решение выглядит следующим образом:

(Понятно, что обратная матрица должна существовать)

Демо-пример 4

Найдём обратную матрицу для матрицы с помощью элементарных преобразований. Для этого запишем её в одной упряжке с единичной матрицей, и понеслась «двойка скакунов»:

(1) Ко второй строке прибавили первую строку, умноженную на –3.

(2) К первой строке прибавили вторую строку.

(3) Вторую строку разделили на –2.

Ответ :

Сверьтесь с ответом первого примера урока Как найти обратную матрицу?

Но то была очередная заманивающая задачка – в действительности решение гораздо более длительно и кропотливо. Как правило, вам будет предложена матрица «три на три»:

Пример 5


Решение : присоединяем единичную матрицу и начинаем выполнять преобразования, придерживаясь алгоритма «обычного» метода Гаусса :

(1) Первую и третью строки поменяли местами. На первый взгляд, перестановка строк кажется нелегальной, но на самом деле переставлять их можно – ведь по итогу слева нам нужно получить единичную матрицу, а справа же «принудительно» получится именно матрица (вне зависимости от того будем ли мы переставлять строки в ходе решения или нет) . Обратите внимание, что здесь вместо перестановки можно организовать «шестёрки» в 1-м столбце (наименьшее общее кратное (НОК) чисел 3, 2 и 1) . Решение через НОК особенно удобно, когда в первом столбце отсутствуют «единицы».

(2) Ко 2-й и 3-й строкам прибавили 1-ю строку, умноженную на –2 и –3 соответственно.

(3) К 3-й строке прибавили 2-ю строку, умноженную на –1

Вторая часть решения проводится по уже известной из предыдущего параграфа схеме: перестановки строк становятся бессмысленными, и мы находим наименьшее общее кратное чисел третьего столбца (1, –5, 4): 20. Существует строгий алгоритм нахождения НОК, но здесь обычно хватает подбора. Ничего страшного, если взять бОльшее число, которое делится и на 1, и на –5, и на 4, например, число 40. Отличие будет в более громоздких вычислениях.

К слову о вычислениях. Для решения задачи совсем не зазорно вооружиться микрокалькулятором – числа здесь фигурируют немалые, и будет очень обидно допустить вычислительную ошибку.

(4) Третью строку умножаем на 5, вторую строку на 4, первую строку на «минус двадцать»:

(5) К 1-й и 2-й строкам прибавили третью строку.

(6) Первую и третью строки разделили на 5, вторую строку умножили на –1.

(7) Наименьшее общее кратное ненулевых чисел второго столбца (–20 и 44) равно 220. Первую строку умножаем на 11, вторую строку – на 5.

(8) К первой строке прибавили вторую строку.

(9) Первую строку умножили на –1, вторую строку разделили «обратно» на 5.

(10) Теперь на главной диагонали левой матрицы целесообразно получить наименьшее общее кратное чисел диагонали (44, 44 и 4). Совершенно понятно, что это число 44. Третью строку умножаем на 11.

(11) Каждую строку делим на 44. Данное действие выполняется в последнюю очередь!

Таким образом, обратная матрица:

Внесение и вынесение -й, в принципе, лишние действия, но того требует протокол оформления задачи.

Ответ :

Проверка выполняется по обычной схеме, рассмотренной на уроке об обратной матрице .

Продвинутые люди могут несколько сократить решение, но должен предупредить, спешка тут чревата ПОВЫШЕННЫМ риском допустить ошибку.

Аналогичное задание для самостоятельного решения:

Пример 6

Найти обратную матрицу методом Гаусса-Жордана.

Примерный образец оформления задачи внизу страницы. И ради того, чтобы вы «не проехали мимо с песнями» я оформил решение в уже упомянутом стиле – исключительно через НОК столбцов без единой перестановки строк и дополнительных искусственных преобразований. По моему мнению, эта схема – если и не самая, то одна из самых надёжных .

Иногда бывает удобно более короткое «модернистское» решение, которое заключается в следующем: на первом шаге всё как обычно: .

На втором шаге накатанным приёмом (через НОК чисел 2-го столбца) организуются сразу два нуля во втором столбце: . Перед данным действием особенно трудно устоять, если во 2-м столбце нарисовались одинаковые по модулю числа, например, те же банальные «единицы».

И, наконец, на третьем шаге точно так же получаем нужные нули в третьем столбце: .

Что касается размерности, то в большинстве случаев приходится разруливать матрицу «три на три». Однако время от времени встречается лайт-версия задачи с матрицей «два на два» и хард… – специально для всех читателей сайт:

Пример 7

Найти обратную матрицу с помощью элементарных преобразований

Это задание из моей собственной физматовской контрольной работы по алгебре, …эх, где мой первый курс =) Пятнадцать лет назад (листочек на удивление ещё не пожелтел) , я уложился в 8 шагов, а сейчас – всего лишь в 6! Матрица, кстати, весьма творческая – на первом же шаге просматривается несколько заманчивых путей решения. Моя поздняя версия внизу страницы.

И заключительный совет – после таких примеров очень полезна гимнастика для глаз и какая-нибудь хорошая музыка для релаксации =)

Желаю успехов!

Решения и ответы:

Пример 3: Решение : запишем расширенную матрицу системы и с помощью элементарных преобразований получим базисное решение:


(1) Первую и вторую строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на 5.
(3) Третью строку разделили на 3.
(4) К третьей строке прибавили вторую строку, умноженную на 2.
(5) Третью строку разделили на 7.
(6) Наименьшее кратное чисел 3-го столбца (–3, 5, 1) равно 15. Первую строку умножили на 5, вторую строку умножили на –3, третью строку умножили на 15.
(7) К первой строке прибавили 3-ю строку. Ко второй строке прибавили 3-ю строку.
(8) Первую строку разделили на 5, вторую строку разделили на –3, третью строку разделили на 15.
(9) Наименьшее кратное ненулевых чисел 2-го столбца (–2 и 1) равно: 2. Вторую строку умножили на 2
(10) К первой строке прибавили вторую строку.
(11) Вторую строку разделили на 2.
Выразим базисные переменные через свободные переменные :

Ответ : общее решение:

Пример 6: Решение : обратную матрицу найдём с помощью элементарных преобразований:


(1) Первую строку умножили на –15, вторую строку умножили на 3, третью строку умножили на 5.

(2) Ко 2-й и 3-й строкам прибавили первую строку.
(3) Первую строку разделили на –15, вторую строку разделили на –3, третью строку разделили на –5.
(4) Вторую строку умножили на 7, третью строку умножили на –9.
(5) К третьей строке прибавили вторую строку.


(6) Вторую строку разделили на 7.

(7) Первую строку умножили на 27, вторую строку умножили на 6, третью строку умножили на –4.
(8) К первой и второй строкам прибавили третью строку.
(9) Третью строку разделили на –4. К первой строке прибавили вторую строку, умноженную на –1.
(10) Вторую строку разделили на 2.
(11) Каждую строку разделили на 27.
В результате:
Ответ :

Пример 7: Решение : найдём обратную матрицу методом Гаусса-Жордана:
(1) К 1-й и 4-й строкам прибавили 3-ю строку.
(2) Первую и четвёртую строки поменяли местами.
(3) Ко 2-й строке прибавили 1-ю строку. К 3-й строке прибавили 1-ю строку, умноженную на 2:


(4) К 3-й строке прибавили 2-ю строку, умноженную на –2. К 4-й строке прибавили 2-ю строку.
(5) К 1-й и 3-й строкам прибавили 4-ю строку, умноженную на –1.
(6) Вторую строку умножили на –1, третью строку разделили на –2.
Ответ :

Метод Гаусса-Жордана предназначен для решения систем линейных алгебраических уравнений (СЛАУ). Он является модификацией метода Гаусса . Если метод Гаусса осуществляется в два этапа (прямой ход и обратный) то метод Гаусса-Жордана позволяет решить систему в один этап. Подробности и непосредственная схема применения метода Гаусса-Жордана описаны в примерах.

Во всех примерах $A$ обозначает матрицу системы, $\widetilde{A}$ – расширенную матрицу системы. О матричной форме записи СЛАУ можно прочесть .

Пример №1

Решить СЛАУ $ \left\{ \begin{aligned} & 4x_1-7x_2+8x_3=-23;\\ & 2x_1-4x_2+5x_3=-13;\\ & -3x_1+11x_2+x_3=16. \end{aligned} \right.$ методом Гаусса-Жордана.

Давайте перейдём от последней полученной нами матрице к системе:

$$ \left\{ \begin{aligned} & 0\cdot x_1+1\cdot x_2+0\cdot x_3=1;\\ & 1\cdot x_1+0\cdot x_2+0\cdot x_3=-2;\\ & 0\cdot x_1+0\cdot x_2+1\cdot x_3=-1. \end{aligned} \right. $$

Упрощая полученную систему, имеем:

$$ \left\{ \begin{aligned} & x_2=1;\\ & x_1=-2;\\ & x_3=-1. \end{aligned} \right. $$

Полное решение без пояснений выглядит так:

Хоть этот способ выбора разрешающих элементов вполне допустим, но предпочтительнее выбирать в качестве разрешающих элементов диагональные элементы матрицы системы. Мы рассмотрим этот способ ниже.

Выбор разрешающих элементов на главной диагонали матрицы системы.

Так как этот способ решения полностью аналогичен предыдущему (за исключением выбора разрешающих элементов), то подробные пояснения пропустим. Принцип выбора разрешающих элементов прост: в первом столбце выбираем элемент первой строки, во втором столбце берём элемент второй строки, в третьем столбце – элемент третьей строки и так далее.

Первый шаг

В первом столбце выбираем элемент первой строки, т.е. в качестве разрешающего имеем элемент 4. Понимаю, что выбор числа 2 кажется более предпочтительным, так как это число всё-таки меньше, нежели 4. Для того, чтобы число 2 в первом столбце переместилось на первое место, поменяем местами первую и вторую строки:

$$ \left(\begin{array} {ccc|c} 4 & -7 & 8 & -23\\ 2 & -4& 5 & -13 \\ -3 & 11 & 1 & 16 \end{array} \right)\rightarrow \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) $$

Итак, разрешающий элемент представлен числом 2. Точно так же, как и ранее, разделим первую строку на 2, а затем обнулим элементы первого столбца:

$$ \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} I:2 \\\phantom{0} \\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2 \\4 & -7 & 8 & -23\\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-4\cdot I\\ III+3\cdot I \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right). $$

Второй шаг

На втором шаге требуется обнулить элементы второго столбца. В качестве разрешающего элемента выбираем элемент второй строки, т.е. 1. Разрешающий элемент уже равен единице, поэтому никаких строк менять местами не будем. Кстати сказать, если бы мы захотели поменять местами строки, то первую строку трогать не стали бы, так как она уже была использована на первом шаге. А вот вторую и третью строки запросто можно менять местами. Однако, повторюсь, в данной ситуации менять местами строки не нужно, ибо разрешающий элемент уже оптимален – он равен единице.

$$ \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-5\cdot II \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right). $$

Второй шаг окончен. Переходим к третьему шагу.

Третий шаг

На третьем шаге требуется обнулить элементы третьего столбца. В качестве разрешающего элемента выбираем элемент третьей строки, т.е. 37/2. Разделим элементы третьей строки на 37/2 (чтобы разрешающий элемент стал равен 1), а затем обнулим соответствующие элементы третьего столбца:

$$ \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\ III:\frac{37}{2} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 1 & -1 \end{array} \right) \begin{array} {l} I+2\cdot III\\II+3/2\cdot III\\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & -1 \end{array} \right). $$

Ответ получен: $x_1=-2$, $x_2=1$, $x_3=-1$. Полное решение без пояснений выглядит так:

Все остальные примеры на этой странице будут решены именно вторым способом: в качестве разрешающих будем выбирать диагональные элементы матрицы системы.

Ответ : $x_1=-2$, $x_2=1$, $x_3=-1$.

Пример №2

Решить СЛАУ $ \left\{ \begin{aligned} & 3x_1+x_2+2x_3+5x_4=-6;\\ & 3x_1+x_2+2x_4=-10;\\ & 6x_1+4x_2+11x_3+11x_4=-27;\\ & -3x_1-2x_2-2x_3-10x_4=1. \end{aligned} \right.$ методом Гаусса-Жордана.

Запишем расширенную матрицу данной системы : $\widetilde{A}=\left(\begin{array} {cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1& 0 & 2 & -10 \\ 6 & 4 & 11 & 11 & -27 \\ -3 & -2 & -2 & -10 & 1 \end{array} \right)$.

В качестве разрешающих элементов станем выбирать диагональные элементы матрицы системы: на первом шаге возьмём элемент первой строки, на втором шаге элемент второй строки и так далее.

Первый шаг

Нам нужно обнулить соответствующие элементы первого столбца. В качестве разрешающего элемента возьмём элемент первой строки, т.е. 3. Соответственно первую строку придётся разделить на 3, чтобы разрешающий элемент стал равен единице. А затем обнулить все элементы первого столбца, кроме разрешающего:

$$ \left(\begin{array}{cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} I:3\\ \phantom{0}\\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} \phantom{0}\\ II-3\cdot I\\III-6\cdot I\\IV+3\cdot I\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right). $$

Второй шаг

Переходим к обнулению соответствующих элементов второго столбца. В качестве разрешающего элемента мы уславливались взять элемент второй строки, но сделать этого мы не в силах, так как нужный элемент равен нулю. Вывод: будем менять местами строки. Первую строку трогать нельзя, так как она уже использовалась на первом шаге. Выбор небогат: или меняем местами вторую и третью строки, или же меняем местами четвёртую и вторую. Так как в четвёртой строке наличествует (-1), то пусть в “обмене” поучавствует именно четвёртая строка. Итак, меняем местами вторую и четвёртую строки:

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right)\rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) $$

Вот теперь всё в норме: разрешающий элемент равен (-1). Бывает, кстати, что смена мест строк невозможна, но это обговорим в следующем примере №3. А пока что делим вторую строку на (-1), а затем обнуляем элементы второго столбца. Обратите внимание, что во втором столбце элемент, расположенный в четвёртой строке, уже равен нулю, поэтому четвёртую строку трогать не будем.

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} \phantom{0}\\II:(-1) \\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 1 & 0 & 5 & 5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} I-1/3\cdot II\\ \phantom{0} \\III-2\cdot II\\\phantom{0}\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right). $$

Третий шаг

Приступаем к обработке третьего столбца. В качестве разрешающего элемента мы условились брать диагональные элементы матрицы системы. Для третьего шага это означает выбор элемента, расположенного в третьей строке. Однако если мы просто возьмём элемент 7 в качестве разрешающего, то всю третью строку придётся делить на 7. Мне кажется, что разделить на (-2) попроще. Поэтому поменяем местами третью и четвёртую строки, и тогда разрешающим элементом станет (-2):

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) $$

Разрешающий элемент – (-2). Делим третью строку на (-2) и обнуляем соответствующие элементы третьего столбца:

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\III:(-2)\\\phantom{0}\end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} I-2/3\cdot III\\ \phantom{0} \\ \phantom{0}\\IV-7\cdot III\end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right). $$

Четвёртый шаг

Переходим к обнулению четвёртого столбца. Разрешающий элемент расположен в четвёртой строке и равен числу $-\frac{39}{2}$.

$$ \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\ \phantom{0}\\IV:\left(-\frac{39}{2}\right) \end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & 1 & 2\end{array}\right) \begin{array} {l} I+IV\\ II-5\cdot IV \\ III-3/2\cdot IV \\ \phantom{0} \end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & -3\\ 0 & 1 & 0 & 0 & -5\\ 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 & 2\end{array}\right). $$

Решение окончено. Ответ таков: $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$. Полное решение без пояснений:

Ответ : $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$.

Пример №3

Решить СЛАУ $\left\{\begin{aligned} & x_1-2x_2+3x_3+4x_5=-5;\\ & 2x_1+x_2+5x_3+2x_4+9x_5=-3;\\ & 3x_1+4x_2+7x_3+4x_4+14x_5=-1;\\ & 2x_1-4x_2+6x_3+11x_5=2;\\ & -2x_1+14x_2-8x_3+4x_4-7x_5=20;\\ & -4x_1-7x_2-9x_3-6x_4-21x_5=-9. \end{aligned}\right.$ методом Гаусса-Жордана. Если система является неопределённой, указать базисное решение.

Подобные примеры разбираются в теме “Общее и базисное решения СЛАУ” . Во второй части упомянутой темы данный пример решён с помощью метод Гаусса . Мы же решим его с помощью метода Гаусса-Жордана. Пошагово разбивать решение не станем, так как это уже было сделано в предыдущих примерах.

$$ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 2 & 1 & 5 & 2 & 9 & -3\\ 3 & 4 & 7 & 4 & 14 & -1\\ 2 & -4 & 6 & 0 & 11 & 2\\ -2 & 14 & -8 & 4 & -7 & 20\\ -4 & -7 & -9 & -6 & -21 & -9 \end{array}\right) \begin{array} {l} \phantom{0} \\ II-2\cdot I\\ III-3\cdot I\\ IV-2\cdot I\\ V+2\cdot I\\VI+4\cdot I \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 5 & -1 & 2 & 1 & 7\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} \phantom{0} \\ II:5 \\ \phantom{0}\\ \phantom{0}\\ \phantom{0} \\ \phantom{0}\end{array} \rightarrow \\ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-10\cdot II\\ IV:3\\ V-10\cdot II\\VI+15\cdot II \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right). $$

Полагаю, что одно из сделанных преобразований всё-таки требует пояснения: $IV:3$. Все элементы четвёртой строки нацело делились на три, поэтому сугубо из соображений упрощения мы разделили все элементы этой строки на три. Третья строка в преобразованной матрице стала нулевой. Вычеркнем нулевую строку:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) $$

Нам пора переходить к третьему шагу, на котором должны быть обнулены элементы третьего столбца. Однако диагональный элемент (третья строка) равен нулю. И смена мест строк ничего не даст. Первую и вторую строки мы уже использовали, поэтому их трогать мы не можем. А четвёртую и пятую строки трогать нет смысла, ибо проблема равенства нулю разрешающего элемента никуда не денется.

В этой ситуации проблема решается крайне незамысловато. Мы не можем обработать третий столбец? Хорошо, перейдём к четвёртому. Может, в четвёртом столбце элемент третьей строки будет не равен нулю. Однако четвёртый столбец “болеет” той же проблемой, что и третий. Элемент третьей строки в четвёртом столбце равен нулю. И смена мест строк опять-таки ничего не даст. Четвёртый столбец тоже не можем обработать? Ладно, перейдём к пятому. А вот в пятом столбце элемент третьей строки очень даже не равен нулю. Он равен единице, что довольно-таки хорошо. Итак, разрешающий элемент в пятом столбце равен 1. Разрешающий элемент выбран, поэтому осуществим дальшейшие преобразования метода Гаусса-Жордана:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) \begin{array} {l} I-22/5\cdot III \\ II-1/5\cdot III \\ \phantom{0}\\ IV+III\\ V+2\cdot III \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \\ \rightarrow\left|\text{Удаляем нулевые строки}\right|\rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)$$

Мы привели матрицу системы и расширенную матрицу системы к ступенчатому виду. Ранги обеих матриц равны $r=3$, т.е. надо выбрать 3 базисных переменных. Количество неизвестных $n=5$, поэтому нужно выбрать $n-r=2$ свободных переменных. Так как $r

На “ступеньках” стоят элементы из столбцов №1, №2, №5. Следовательно, базисными будут переменные $x_1$, $x_2$, $x_5$. Свободными переменными, соответственно, будут $x_3$, $x_4$. Столбцы №3 и №4, соответствующие свободным переменным, перенесём за черту, при этом, конечно, не забыв сменить им знаки.

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -99/5 & -13/5 & -4/5\\ 0 & 1 & 0 & 3/5 & 1/5 & -2/5\\ 0 & 0 & 1 & 4 & 0 & 0\end{array}\right). $$

Из последней матрицы получим общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$. Базисное решение найдём, приняв свободные переменные равными нулю, т.е. $x_3=0$, $x_4=0$:

$$ \left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right. $$

Задача решена, осталось лишь записать ответ.

Ответ : Общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$, базисное решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right.$.

4. Метод Жордана – Гаусса.

Схема с выбором главного элемента состоит в том, что требование неравенства нулю диагональных элементов akk, на которые происходит деление в процессе исключения, заменятся более жестким: из всех элементов К-го столба выбрать наибольший по модулю и переставить уравнения так, чтобы этот элемент оказался на месте элемента акк. Выбор главного элемента и связанная с ним перестановка строк необходимы в тех случаях, когда на каком-либо i-ом шаге акк=0 либо же акк очень мало по остальными элементами i- го столбца: при делении на такое «малое» акк будут получаться большие числа с большими абсолютными погрешностями, в результате чего решение может сильно исказиться.

Ниже излагается алгоритм полного исключения неизвестных или метод Жордана – Гаусса. Суть метода состоит в том, что, рассмотрев первое уравнение, в нем неизвестное с коеффициэнтом, отличным от нуля (в дальнейшем разрешающий элемент), и разделив первое уравнение на этот коэффициент, с помощью первого уравнения исключают это неизвестное из всех уравнений, кроме первого. Выбрав во втором уравнении неизвестное с коэффициентом, отличным от нуля, и разделив на него второе уравнение, с помощью второго исключают другие неизвестные из всех уравнений, кроме второго и т.д., т.е. с помощью одного уравнения производят полное исключение одного неизвестного. Процесс продолжается до тех пор, пока не будут использованы все уравнения.

Как известно, системы линейных алгебраических уравнений могут имеет одно решение, множество решений или системы несовместны. При элементарных преобразованиях элементов матрицы системы эти случаи выявляются в следующем:

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 02+=bc0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

a11x1 + a12x2 + … + a1nxn = b1,n+1

a21x1 + a22x2 + … + a2nxn = b2,n+1

am1x1 + am2x2 + … + amnxn = bm.n+1

Здесь x1, x2, …, xn – неизвестные, которые надо определить. a11, a12, …, amn – коэффициенты системы – и b1, b2, … bm – свободные члены – предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе – неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) – совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

· К строке 2 добавим: -4 * Строку 1.

· К строке 3 добавим: -9 * Строку 1.

· К строке 3 добавим: -3 * Строку 2.

· Строку 2 делим на -2

· К строке 1 добавим: -1 * Строку 3.

· К строке 2 добавим: -3/2 * Строку 3.

· К строке 1 добавим: -1 * Строку 2.

В правом столбце получаем решение:

.

В методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики…

Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n – ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с…



Математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной…

… «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных…

метод Гаусса–Жордана – один из наиболее известных и широко применяемых методов решения систем линейных уравнений. Матричный метод и метод Крамера обладают тем недостатком, что они не дают ответа в том случае, когда detA = 0, а определяют лишь единственное решение при detA неравном 0. Еще одним недостатком является то, что объем математических вычислений в рамках этих методов резко возрастает с ростом числа уравнений. Метод Гаусса практически свободен от этих недостатков.

Алгоритм метода Гаусса

  1. На основании системы линейных уравнений составляем расширенную матрицу системы;
  2. Приводим матрицу к “треугольному” виду;
  3. Определяем ранги основной и расширенной матриц, и на основании этого делаем вывод о совместности системы и количестве допустимых решений;
  4. В случае, если система имеет единственное решение производим обратную подстановку и находим его, если система имеет множество решений: выражаем базисные переменные через переменные которые могут принимать произвольные значения;
Комментарий к шагу 2 Метода Гаусса. Треугольной называют матрицу, в которой все элементы расположенные ниже главной диагонали равны нулю.

Для приведения исходной расширенной матрицы к треугольному виду используем следующие два свойства определителей:

Свойство 1. Определитель не изменит свое значение, если ко всем элементам какой-либо строки (столбца) матрицы прибавить соответствующие элементы параллельной строки (столбца), умноженные на произвольное одно и то же число.

Свойство 2. При перестановке двух любых столбцов или строк матрицы ее определитель меняет знак на противоположный, а абсолютная величина определителя остается неизменной.

На основании этих свойств определителей составим алгоритм преобразования матрицы к треугольному виду:

  1. Рассматриваем строку i(начиная с первой). Если, элемент a i i равен нулю, меняем местами i-ю и i+1-ю строки матрицы. Знак определителя при этом изменится на противоположный. Если a 1 1 отличен от нуля – переходим к следующему шагу;
  2. Для каждой строки j, ниже i-й находим значение коэффициента K j =a j i /a i i ;
  3. Пересчитываем элементы всех строк j, расположенных ниже текущей строки i, с использованием соответствующих коэффициентов по формуле: a j k нов.=a j k -K j *a i k ; После чего, возвращаемся к первому шагу алгоритма и рассматриваем следующую строку, пока не доберемся до строки i=n-1, где n – размерность матрицы A
  4. В полученной треугольной матрице расчитываем произведение всех элементов главной диагонали Пa i i , которое и будет являтся определителем;

Другими словами, суть метода можно сформулировать следующим образом. Нам необходимо сделать нулевыми все элементы матрицы ниже главной диагонали. Сначала мы получаем нули в первом столбце. Для этого мы последовательно вычитаем первую строку, домноженную на нужное нам число (такое, чтоб при вычитании мы получили ноль в первом элементе строки), из всех ниже лежащих строк. Затем проделываем то же самое для второй строки, чтобы получить нули во втором столбце ниже главной диагонали матрицы. И так далее пока не доберемся до предпоследней строки.

Каждой системе линейных уравнений поставим в соответствие расширенную матрицу , полученную присоединением к матрице А столбца свободных членов:

Метод Жордана–Гаусса применяется для решения системы m линейных уравнений с n неизвестными вида:

Данный метод заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе уравнений с матрицей определенного вида.

Над строками расширенной матрицы осуществляем следующие элементарные преобразования:

1. перестановка двух строк ;

2. умножение строки на любое число, отличное от нуля ;

3. прибавление к одной строке другой строки, умноженной на некоторое число ;

4. отбрасывание нулевой строки (столбца) .

Пример 2.11. Решить методом Жордана–Гаусса системы линейных уравнений:

а ) Х 1 + Х 2 + 2Х 3 = -1

2Х 1 – Х 2 + 2Х 3 = -4

4Х 1 + Х 2 + 4Х 3 = -2

Решение: Составим расширенную матрицу:

Итерация 1

В качестве направляющего элемента выбираем элемент . Преобразуем первый столбец в единичный. Для этого ко второй и третьей строкам прибавляем первую строку, соответственно умноженную на (-2) и (-4). Получим матрицу:

На этом первая итерация закончена.

Итерация 2

Выбираем направляющий элемент . Так как , то делим вторую строку на -3. Затем умножаем вторую строку соответственно на (-1) и на 3 и складываем соответственно с первой и третьей строками. Получим матрицу

Итерация 3

Выбираем направляющий элемент . Так как , то делим третью строку на (-2). Преобразуем третий столбец в единичный. Для этого умножаем третью строку соответственно на (-4/3) и на (-2/3) и складываем соответственно с первой и второй строками. Получим матрицу

откуда Х 1 = 1, Х 2 = 2, Х 3 = -2.

Закончив решение, на этапе обучения необходимо выполнять проверку, подставив найденные значения в исходную систему, которая при этом должна обратиться в верные равенства.

б ) Х 1 – Х 2 + Х 3 – Х 4 = 4

Х 1 + Х 2 + 2Х 3 +3Х 4 = 8

2Х 1 +4Х 2 + 5Х 3 +10Х 4 = 20

2Х 1 – 4Х 2 + Х 3 – 6Х 4 = 4

Решение: Расширенная матрица имеет вид:

Применяя элементарные преобразования, получим:

Исходная система эквивалентна следующей системе уравнений:

Х 1 – 3Х 2 – 5Х 4 = 0

2Х 2 + Х 3 + 4Х 4 = 4

Последние две строки матрицы A (2) являются линейно зависимыми.

Определение. Строки матрицы e 1 , e 2 ,…, e m называются линейно зависимыми , если существуют такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

где 0 =(0, 0…0). Строки матрицы являются линейно независимыми , когда комбинация этих строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю.

В линейной алгебре очень важно понятие ранга матрицы , т.к. оно играет очень большое значение при решении систем линейных уравнений.

Теорема 2.3 (о ранге матрицы). Ранг матрицы равен максимальному числу её линейно независимых строк или столбцов, через которые линейно выражаются все остальные её строки (столбцы).

Ранг матрицы A (2) равен 2, т.к. в ней максимальное число линейно независимых строк равно 2 (это первые две строки матрицы).

Теорема 2.4 (Кронекера–Капели). Система линейных уравнений совместна и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система имеет единственное решение.

2. Если ранг матрицы системы меньше числа переменных, т.е. r

В данном случае система имеет 4 переменных, а её ранг равен 2, следовательно, она имеет бесконечное множество решений.

Определение. Пусть r n , r переменных x 1 , x 2 ,…, x r называются базисными , если определитель матрицы из коэффициентов при них (базисный минор ) отличен от нуля. Остальные n – r переменных называются свободными .

Определение. Решение системы, в котором все n – r свободных переменных равны нулю, называется базисным .

Совместная система m линейных уравнений с n переменными (m ) имеет бесконечное множество решений, среди которых базисных решений конечное число, не превосходящее , где .

В нашем случае , т.е. система имеет не более 6 базисных решений.

Общее решение имеет вид:

Х 1 = 3Х 2 +5Х 4

Х 3 = 4 – 2Х 2 – 4Х 4

Найдем базисные решения. Для этого полагаем Х 2 = 0, Х 4 = 0, тогда Х 1 =0, Х 3 = 4. Базисное решение имеет вид: (0, 0, 4, 0).

Получим другое базисное решение. Для этого в качестве свободных неизвестных примем Х 3 и Х 4 . Выразим неизвестные Х 1 и Х 2 через неизвестные Х 3 и Х 4:

Х 1 = 6 – 3/2Х 2 – Х 4

Х 2 = 2 – 1/2Х 3 – 2Х 4 .

Тогда базисное решение имеет вид: (6, 2, 0, 0).

Пример 2.12. Решить систему:

X 1 + 2X 2 – X 3 = 7

2X 1 – 3X 2 + X 3 = 3

4X 1 + X 2 – X 3 = 16

Решение.Преобразуем расширенную матрицу системы

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво – оно привелось к неверному равенству 0 = –1, следовательно, данная система несовместна. Данный вывод можно также получить, если заметить, что ранг матрицы системы равен 2, тогда как ранг расширенной матрицы системы равен 3.

Метод Жордана-Гаусса | Высшая математика | Студенту | Статьи и обсуждение вопросов образования в Казахстане | Образовательный сайт Казахстана

Суть метода Жордана-Гаусса состоит в приведении системы (1) к ступенчатому виду.
Допустим, что в системе (1) коэффициент при первом неизвестном a11≠0. Исключим сначала неизвестное x1 из всех уравнений системы (1), кроме первого Для этого прежде всего разделим обе части первого уравнения на коэффициент a11≠0, тогда получим новую систему, равносильную данной системе. Умножим теперь первое уравнение полученной системы на a21 и вычтем из второго уравнения. Затем умножим первое уравнение на a31 и вычтем из третьего уравнения и т.д. В результате получим новую систему, также равносильную данной системе.

Разделим теперь второе уравнение полученной системы на первый коэффициент, затем умножим второе уравнение полученной системы последовательно на коэффициенты остальных уравнений и вычтем поочередно из соответствующих уравнений системы, кроме первого и второго. Продолжая этот процесс, мы придем к системе – треугольной.

В случае треугольной системы из последнего уравнения находим xn=bn затем, подставляя значение xn в предыдущее уравнение, находим xn-1 и т.д.

На каком-то шаге исключения неизвестных может появиться уравнение вида 0•x1+0•x2+…+0•xn, которому удовлетворяет любая совокупность чисел (x1,x2,…,xn). Поэтому такое уравнение можно отбросить.

Может появиться такое уравнение вида  0•x1+0•x2+…+0•xn=b, где b≠0, которому не удовлетворяет ни одна из совокупностей чисел (x1,x2,…,xn). Это означает, что последнее уравнение, а вместе с ним и исходная система, решений не имеют, то есть система несовместна.

Если уравнение последнего вида не появляется ни на каком шаге и процесс исключения остановился, то число уравнений будет или равно, или меньше числа неизвестных. В случае, когда число уравнений равно числу неизвестных, система совместна и имеет единственное решение. Если же число уравнений меньше числа неизвестных, то система совместна и имеет бесконечно много решений. При этом выбираются базисные неизвестные, равные по количеству числу уравнений остальные неизвестные, называемые свободными, переносят в правые части всех уравнений. Придавая свободным переменным произвольные значения, находят значения базисных переменных через свободные.

Пример 3: Решить систему уравнений методом Жордана-Гаусса:

Разделив 1-ю строку на 2, получим

Исключим теперь члены с х1 из 2-го и 3-го уравнений, вычитая из 2-й строки 1-ю, умноженную на 4, а из 3-й – 1-ю, умноженную на 3. Это дает

Разделим 2-ю и 3-ю строки соответственно на –14 и –1:

Умножим 2-ю строку на 13 и вычтем из 3-й:

Разделим, наконец, 3-ю строку на –5:

Тогда решением является x3=4, x2=3, x3=-1,x1=10-4x2-3x3=2

Здесь имеет место случай, когда число уравнений равно числу неизвестных, и решение единственно.

Порядок вывода комментариев: По умолчаниюСначала новыеСначала старые

как методом крамера решить систему уравнений

Вы искали как методом крамера решить систему уравнений? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и как найти дискриминант матрицы по методу крамера, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели – у нас уже есть решение. Например, «как методом крамера решить систему уравнений».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как как методом крамера решить систему уравнений,как найти дискриминант матрицы по методу крамера,как решать линейные уравнения методом крамера,как решать матрицу методом крамера,как решать матрицы методом крамера,как решать метод крамера,как решать методом крамера,как решать методом крамера линейные уравнения,как решать методом крамера матрицы,как решать систему уравнений методом крамера,как решить матрицу методом крамера,как решить методом крамера систему,как решить методом крамера систему уравнений,как решить систему линейных уравнений методом крамера,как решить систему методом крамера,как решить систему уравнений методом крамера,крамер матрица,крамер метод,крамер формулы,крамера,крамера матрица,крамера метод пример,крамера метод это,линейные уравнения методом крамера,матрица крамер,матрица крамера,матрица метод крамера,матрица методом крамера,матрицу решить методом крамера,матрицы метод крамера,матрицы метод крамера примеры,матрицы примеры метод крамера,матрицы теорема крамера,метод гаусса и крамера,метод гаусса и метод крамера,метод гаусса крамера и,метод гаусса крамера и матричный метод,метод гаусса метод крамера матричный метод,метод крамер,метод крамера,метод крамера 4 на 4,метод крамера 4х4,метод крамера гаусса и,метод крамера для матрицы 4 порядка,метод крамера для решения систем линейных уравнений,метод крамера для чайников,метод крамера и гаусса,метод крамера и матричный метод,метод крамера и метод гаусса,метод крамера и метод гаусса решения систем линейных уравнений,метод крамера как решать,метод крамера матрица,метод крамера матрицы,метод крамера матрицы примеры,метод крамера метод гаусса,метод крамера метод гаусса и,метод крамера метод гаусса матричный метод,метод крамера пример,метод крамера примеры,метод крамера примеры с решением,метод крамера решение,метод крамера решение матриц,метод крамера решение систем линейных уравнений,метод крамера решения,метод крамера решения систем линейных уравнений,метод крамера система линейных уравнений,метод крамера системы линейных уравнений,метод крамера слау,метод крамера теория,метод крамера формула,метод крамера формулы,метод крамера это,метод обратной матрицы метод крамера,метод решение крамера,метод решения крамера,метод слау крамера,метода крамера,методом крамера,методом крамера как решать,методом крамера матрица,методом крамера решить,методом крамера решить матрицу,методом крамера решить системы уравнений,методом крамера решить уравнение,по крамеру решение,по формулам крамера,по формулам крамера решить систему,по формулам крамера решить систему линейных уравнений,по формулам крамера решить систему уравнений,по формуле крамера решить систему,по формуле крамера решить систему линейных уравнений,по формуле крамера решить систему уравнений,правила крамера,правило крамера,правило крамера решения систем,правило крамера решения систем линейных уравнений,пример метод крамера,примеры линейных уравнений решение методом крамера,примеры метод крамера,примеры решение линейных уравнений методом крамера,примеры формула крамера,решение линейных систем уравнений по формулам крамера,решение линейных уравнений методом крамера,решение линейных уравнений методом крамера примеры,решение матриц метод крамера,решение матриц методом крамера,решение матриц по методу крамера,решение матрицы методом крамера,решение метод крамера,решение методом крамера,решение по крамеру,решение по формуле крамера,решение систем линейных уравнений метод крамера,решение систем линейных уравнений методом крамера,решение систем линейных уравнений методом крамера методом гаусса,решение систем линейных уравнений по формулам крамера,решение систем методом крамера,решение систем по формулам крамера,решение систем уравнений методом крамера,решение систем уравнений методом крамера примеры с решением,решение систем уравнений по формулам крамера,решение системных уравнений методом крамера,решение системы линейных уравнений методом крамера,решение системы методом крамера,решение системы по формулам крамера,решение системы уравнений методом крамера,решение слау методом крамера,решение уравнений методом крамера,решение уравнений по формулам крамера,решение уравнения методом крамера,решения метод крамера,решите систему линейных уравнений методом крамера,решите систему уравнений методом крамера,решите систему уравнений по формулам крамера,решить матрицу методом крамера,решить методом крамера,решить методом крамера системы уравнений,решить методом крамера слау,решить методом крамера уравнение,решить по правилу крамера систему,решить по правилу крамера систему уравнений,решить по формулам крамера систему,решить по формулам крамера систему уравнений,решить по формуле крамера систему,решить по формуле крамера систему уравнений,решить систему алгебраических линейных уравнений методом крамера,решить систему линейных уравнений методом крамера,решить систему линейных уравнений по формулам крамера,решить систему линейных уравнений по формуле крамера,решить систему методом гаусса и методом крамера,решить систему методом крамера,решить систему методом крамера и методом гаусса,решить систему по правилу крамера,решить систему по формулам крамера,решить систему по формуле крамера,решить систему уравнений методом крамера,решить систему уравнений по правилу крамера,решить систему уравнений по формулам крамера,решить систему уравнений по формуле крамера,решить системы уравнений методом крамера,решить слау методом крамера,решить уравнение методом крамера,система крамера,система линейных уравнений метод крамера,система линейных уравнений методом крамера,система уравнений методом крамера,систему линейных уравнений решить по формулам крамера,систему уравнений решить по правилу крамера,системы линейных уравнений метод крамера,слау метод крамера,слау методом крамера,способ крамера,теорема крамера матрицы,теория крамера,теория метод крамера,уравнение крамера,уравнение методом крамера,формула крамера,формула крамера для решения,формула крамера для решения системы,формула крамера для решения системы линейных уравнений,формула крамера примеры,формула метод крамера,формулам крамера,формулы крамер,формулы крамера,формулы крамера для решения систем,формулы крамера для решения систем линейных уравнений,формулы метод крамера. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и как методом крамера решить систему уравнений. Просто введите задачу в окошко и нажмите «решить» здесь (например, как решать линейные уравнения методом крамера).

Где можно решить любую задачу по математике, а так же как методом крамера решить систему уравнений Онлайн?

Решить задачу как методом крамера решить систему уравнений вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать – это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Решение систем уравнений методом крамера для чайников. Правило Крамера

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.


Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.

В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце


2. Решение систем уравнений матричным методом (при помощи обратной матрицы).
3. Метод Гаусса решения систем уравнений.

Метод Крамера.

Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ ).

Формулы на примере системы из двух уравнений с двумя переменными.
Дано: Решить методом Крамера систему

Относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы Вычисление определителей. :



Применим формулы Крамера и найдем значения переменных:
и .
Пример 1:
Решить систему уравнений:

относительно переменных х и у .
Решение:


Заменим в этом определителе первый столбец столбцом коэффициентов из правой части системы и найдем его значение:

Сделаем аналогичное действие, заменив в первом определителе второй столбец:

Применим формулы Крамера и найдем значения переменных:
и .
Ответ:
Замечание: Этим методом можно решать системы и большей размерности.

Замечание: Если получается, что , а делить на ноль нельзя, то говорят, что система не имеет единственного решения. В этом случае система имеет или бесконечно много решений или не имеет решений вообще.

Пример 2 (бесконечное количество решений):

Решить систему уравнений:

относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Решение систем методом подстановки.

Первое из уравнений системы — равенство, верное при любых значениях переменных (потому что 4 всегда равно 4). Значит, остается только одно уравнение. Это уравнение связи между переменными .
Получили, решением системы являются любые пары значений переменных, связанных между собой равенством .
Общее решение запишется так:
Частные решения можно определять выбирая произвольное значение у и вычисляя х по этому равенству связи.

и т.д.
Таких решений бесконечно много.
Ответ: общее решение
Частные решения:

Пример 3 (решений нет, система несовместна):

Решить систему уравнений:

Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Применять формулы Крамера нельзя. Решим эту систему методом подстановки

Второе уравнение системы — равенство, неверное ни при каких значениях переменных (конечно же, так как -15 не равно 2). Если одно из уравнений системы не верно ни при каких значениях переменных, то и вся системы не имеет решений.
Ответ: решений нет

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = \frac{D_i}{D}$

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ – номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$…$D_n$, можно высчитать неизвестные переменные по формуле $x_i = \frac{D_i}{D}$.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей – со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$\begin{cases} a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \end{cases}$

Отобразим её в расширенной форме для удобства:

$A = \begin{array}{cc|c} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = \begin{array}{|cc|} a_1 & a_2 \\ a_3 & a_4 \\ \end{array} = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = \begin{array}{|cc|} b_1 & a_2 \\ b_2 & a_4 \\ \end{array} = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \begin{array}{|cc|} a_1 & b_1 \\ a_3 & b_2 \\ \end{array} = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = \frac {D_1}{D}$

$x_2 = \frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$\begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 – x_3 = 10 \\ \end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = \begin{array}{|ccc|} 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end{array} = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) – (-1) \cdot 2 \cdot 3 = – 12 – 8 -12 -32 – 6 + 6 = – 64$

А теперь три других детерминанта:

$D_1 = \begin{array}{|ccc|} 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end{array} = 21 \cdot 4 \cdot 1 + (-2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) – (-1) \cdot 2 \cdot 21 = – 84 – 40 – 36 – 160 – 18 + 42 = – 296$

$D_2 = \begin{array}{|ccc|} 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end{array} = 3 \cdot 9 \cdot (- 1) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = – 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = \begin{array}{|ccc|} 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end{array} = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 – (-2) \cdot 3 \cdot 10 – (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = – 60$

Найдём искомые величины:

$x_1 = \frac{D_1} {D} = \frac{- 296}{-64} = 4 \frac{5}{8}$

$x_2 = \frac{D_1} {D} = \frac{108} {-64} = – 1 \frac {11} {16}$

$x_3 = \frac{D_1} {D} = \frac{-60} {-64} = \frac {15} {16}$

Решение матриц методы решений и примеров для чайников, формулы вычислений и действий с матрицами

В высшей математике существует понятие матрицы системы чисел. С комбинацией элементов, заключённых в таблице, выполняют различные операции. Прежде чем переходить к решению матриц сложными методами, следует ознакомиться с понятием этого выражения и простейшими логическими операциями над ним.

Понятие выражения

Определение гласит, что матрица — это прямоугольная таблица с заключёнными в ней числами. Её название обозначается латинскими прописными буквами (А, В). Таблицы бывают разной размерности — прямоугольной, квадратной, а также в виде строк и столбцов.

От количества строк и столбцов будет зависеть величина таблицы. Матрица размера m*n означает, что в таблице содержится m строк и n столбцов. Допустим, первая строка включает элементы а11, а12, а13, вторая — а21, а22, а23. Тогда элементы, где i = j (а11, а22) образовывают диагональ и называются диагональными.

Различают комплексные матрицы, у которых хотя бы один элемент равен комплексному числу, и действительные, когда все её элементы являются действительными числами. В математике комплексные числа представлены в виде a+b*i, где:

  • a — действительная часть числа;
  • b — мнимая часть;
  • i — мнимая единица (квадратный корень из -1).

На приведенном примере показаны варианты.

Простейшие действия с матрицами могут быть разными. К их числу относятся:

  • умножение;
  • вычитание;
  • умножение на число;
  • перемножение между собой;
  • транспортирование матриц.

Сложение и вычитание

Действия по сложению возможны только тогда, когда матрицы одинакового порядка равны между собой. В итоге получится новое матричное выражение такой же размерности. Сложение и вычитание выполняются по общей схеме — над соответствующими элементами таблиц проводят необходимые операции. Например, нужно сложить две матрицы А и В размерности 2*2.

Каждый элемент первой строки складывается по порядку с показателями верхней строчки второй матрицы. По аналогии производится вычитание, только вместо плюса ставится минус.

Умножение на число

Любую таблицу чисел можно умножить на число. Тогда каждый её элемент перемножается с этим показателем. К примеру, умножим матричное выражение на 2:

Операция перемножения

Матрицы подлежат перемножению одна на другую, когда количество столбцов первой таблицы равно числу строк второй. Каждый элемент Aij будет равняться сумме произведений элементов i-строки первой таблицы, перемноженных на числа в j-столбце второй. Способ произведения наглядно представлен на примере.

Возведение в степень

Формулу возведения в степень применяют только для квадратных матричных выражений. При этом степень должна быть натуральной. Формула возведения следующая:

Иначе, чтобы выполнить операцию возведения таблицы чисел в степень n, требуется умножить её на себя саму n раз. Для операции возведения в степень удобно применять свойство в соответствии с формулой:

Решение представлено на примере. 1 этап: необходимо возвести в степень, где n = 2.

2 этап: сначала возводят в степень n =2. Согласно формуле перемножают таблицу чисел саму на себя n = 2 раз.

3 этап: в итоге получаем:

Расчёт определителя

В линейной алгебре существует понятие определителя или детерминанта. Это число, которое ставят в соответствие каждой квадратной матрице, вычисленное из её элементов по специальной формуле. Определитель или модуль используется для решения большинства задач. Детерминант самой простой матрицы определяется с помощью вычитания перемноженных элементов из побочной диагонали и главной.

Определителем матрицы А n-энного порядка называется число, которое получают из алгебраической суммы n! слагаемых, попадающих под определённые критерии. Эти слагаемые являются произведением n-элементов, взятых единично из всех столбов и строк.

Произведения могут отличаться друг от друга составом элементов. Со знаком плюс будут включаться в сумму числа, если их индексы составляют чётную подстановку, в противоположном случае их значение меняется на минус. Определитель обозначается символом det A. Круглые скобки матричной таблицы, обрамляющие её элементы, заменяются на квадратные. Формула определителя:

Определитель первого порядка, состоящий из одного элемента, равен самому этому элементу. Детерминант матричной таблицы размером 2*2 второго порядка вычисляется путём перемножения её элементов, расположенных на главной диагонали, и вычитания из них произведения элементов, находящихся в побочной диагонали. Наглядный пример:

Для матрицы также можно найти дискриминант многочлена, отвечающий формуле:

Когда у многочлена имеются кратные корни, тогда дискриминант равен нулю.

Обратная матрица

Прежде чем переходить к понятию обратного выражения матрицы, следует рассмотреть алгоритм её транспонирования. Во время операции строки и столбцы переставляются местами. На рисунке представлен метод решения:

По аналогии обратная матрица сходна с обратными числами. Например, противоположной цифре 5 будет дробь 1/5 = 5 (-1) степени. Произведение этих чисел равно 1, выглядит оно так: 5*5 (-1) = 1. Умножение обычной матричной таблицы на обратную даст в итоге единичную: А* А (-1) = Е. Это аналог числовой единицы.

Но для начала нужно понять алгоритм вычисления обратной матрицы. Для этого находят её определитель. Разработано два метода решения: с помощью элементарных преобразований или алгебраических дополнений.

Более простой способ решения — путём алгебраических дополнений. Рассмотрим матричную таблицу А, обратная ей А (-1) степени находится по формуле:

Матрица обратного вида возможна только для квадратного размера таблиц 2*2, 3*3 и т. д. Обозначается она надстроенным индексом (-1). Задачу легче рассмотреть на более простом примере, когда размер таблицы равен 2*2. На первом этапе выполняют действия:

Обратного выражения матрицы не может быть, если определитель равен нулю. В рассматриваемом случае он равен -2, поэтому всё в порядке.

2 этап: рассчитывают матрицу миноров, которая имеет те же значения, что и первоначальная. Под минором k-того порядка понимается определитель квадратной матрицы порядка k*k, составленный из её элементов, которые располагаются в выбранных k- столбцах и k-строках.

При этом расположение элементов таблицы не меняется. Чтобы найти минор верхнего левого числа, вычёркивают строчку и столбец, в которых прописан этот элемент. Оставшееся число и будет являться минором. На выходе должна получиться таблица:

3 этап: находят алгебраические дополнения.

4 этап: определяют транспонированную матрицу.

Итогом будет:

Проверка решения: чтобы удостовериться, что обратная таблица чисел найдена верно, следует выполнить проверочную операцию.

В рассматриваемом примере получается единичная матрица, когда на главной диагонали находятся единицы, при этом другие элементы равняются нулю. Это говорит о том, что решение было найдено правильно.

Нахождение собственных векторов

Определение собственного вектора и значений матричного выражения легче понять на примере. Для этого задают матричную таблицу чисел и ненулевой вектор Х, называемый собственным для А. Пример выражения:

Согласно теореме собственными числами матричного выражения будут корни характеристического уравнения:

Из однородной системы уравнений можно определить координаты собственного вектора Х, который соответствует значению лямбда.

Метод Гаусса

Методом Гаусса называют способ преобразования системы уравнений линейного вида к упрощённой форме для дальнейшего облегчённого решения. Операции упрощения уравнений выполняют с помощью эквивалентных преобразований. К таким относят:

  • действия, когда в системе переставляются местами два уравнения;
  • произведение одного из уравнений в системе на действительное ненулевое число;
  • сложение первого уравнения со вторым, при этом последнее умножено на произвольное число.

Чтобы понять механизм решения, следует рассмотреть линейную систему уравнений.

Следует переписать эту систему в матричный вид:

А будет являться таблицей коэффициентов системы, b — это правая часть ограничений, а Х — вектор переменных координат, который требуется найти. Для решения используют ранг матрицы. Под ним понимают наивысший порядок минора, который отличается от 0.

В этом примере rang (A) = p. Способ эквивалентных преобразований не изменяет ранг таблицы коэффициентов.

Метод Гаусса предназначен для приведения матричной таблицы коэффициентов А к ступенчатому или диагональному виду. Расширенная система выглядит так:

Допустим, а11 не равен 0. В противном случае, если это не так, то меняют эту строку с другой, где в первом столбце находится элемент, отличный от нуля. Когда подобные строчки отсутствуют, переходят к другому столбцу. Все нижние элементы столбца после а11 обнуляют. Для этих целей выполняют операции сложения строк 2,3…m с первой строчкой, умноженной на а21/а11, -а31/а11….- аm1/a11. В результате система примет вид:

На втором шаге повторяют все действия с элементами столбца 2, которые расположены ниже а22. Если показатель равен нулю, строку также меняют местами со строчкой, лежащей ниже с ненулевым элементом во втором столбце. Затем обнулению подлежат все показатели ниже а22. Для этого складывают строки 2,3 ..m, как описано выше. Выполняя процедуру со всеми элементами, приходят к матричной таблице ступенчатого или диагонального вида. Полученная расширенная таблица будет выглядеть:

Обращают внимание на последние строки.

В этом случае система уравнений имеет решение, но когда хотя бы одно из этих чисел отличается от нуля, она несовместима. Таким образом, система совместима, если ранг таблицы А равен расширенному рангу В (А|b).

Если rang А=rang (A|b), то существует множество решений, где n-p — многообразие. Из этого следует n-p неизвестных Хр+1,…Xn выбираются произвольно. Неизвестные X1, X2,…Xp вычисляют следующим образом: из последнего уравнения выражают Хр через остальные переменные, вставляя в предыдущие выражения. Затем из предпоследнего уравнения получают Хр-1 через прочие переменные и подставляют их в предыдущие выражения. Процедуру повторяют.

Найти быстро ответ и проверить себя позволяет онлайн-калькулятор. Решение матрицы методом Гаусса с помощью такого расчёта показывает подробные этапы операций. Для нахождения достаточно указать количество переменных и уравнений, отметить в полях значения чисел и нажать кнопку «Вычислить».

Способ Крамера

Метод Крамера используют для решения квадратной системы уравнений, представленной в линейном виде, где определитель основной матрицы не равен нулю. Считается, что система обладает единственным решением. Например, задана система линейных уравнений:

Её необходимо заменить равноценным матричным уравнением.

Второй столбец вычисляют, а первый уже задан. Есть предположение, что определитель матрицы отличен от нуля. Из этого можно сделать выводы, что существует обратная матрица. Перемножив эквивалентное матричное уравнение на обратного формата матрицу, получим выражение:

В итоге получают выражения:

Из представленных уравнений выделяют формулы Крамера:

Метод Крамера не представляет сложности. Он может быть описан следующим алгоритмом:

  • Высчитывают определитель дельта базовой матрицы.
  • В матричной таблице А замещают первый столбец на вектор свободных элементов b.
  • Выполняют расчёт определителя дельта1 выявленной матрицы А1.
  • Определяют переменную Х1 = дельта1/дельта.
  • Повторяют шаги со 2 по 4 пункт в матрице А для столбов 2,3…n.
  • Проверить решение матрицы методом Крамера онлайн позволяет калькулятор автоматического расчёта. Для получения быстрого ответа в представленные поля подставляют переменные числа и их количество. Дополнительно может потребоваться указание вычислительного метода разложения по строке или столбу. Другой вариант заключается в приведении к треугольному виду.

    Указывается также представление чисел в виде целого числа, обыкновенной или десятичной дроби. После введения всех предусмотренных параметров и нажатия кнопки «Вычислить» получают готовое решение.

    Предыдущая

    АлгебраЧетность и нечетность функции как определить, примеры решения задач на исследование функции на определение четности и нечетности, условие

    Следующая

    АлгебраФункция y=k/х свойства и график, область определения функции, коэффициент в графике функции, примеры решения задач

    Метод Гаусса

    – обзор

    5 Построение межслоевой модели

    На основе трехмерной геологической модели, объем данных сейсмической инверсии, данные каротажной интерпретации после оптимизации, петрофизические фации используются для создания межслоевой модели. Поскольку плотность скважин мала, традиционное стохастическое моделирование слишком неопределенно. Благодаря использованию и загрузке данных сейсмической инверсии с высоким разрешением детерминированность модели значительно повысилась, а результаты стали более надежными.Модель, созданная петрофизическими фациями, заменяющая моделирование и данные каротажных исследований осадочными фациями после оптимизации, может более точно моделировать распределение прослоя. Эффект намного лучше [7,8].

    Во-первых, разделение слоев с помощью стратиграфии последовательностей с высоким разрешением, определение скелета разлома, каркас строительной конструкции на основе скелета разлома;

    Во-вторых, выборка объема сейсмической инверсии после преобразования время-глубина в сетку, которая является выходной переменной совместного моделирования; Третий этап, разделение петрофизических фаций с данными по отдельной скважине и создание модели петрофизических фаций;

    Наконец, взяв известковое тело вероятности после отбора проб в качестве ковариатов и установив модель известкового прослоя с помощью последовательного метода Гаусса, взяв тело гамма-инверсии после отбора проб как ковариаты содержания сланца и установив модель сланцевого прослоя, установив модель физического прослойка.Принятие петрофизической фациальной модели в качестве ограниченных условий и создание окончательной межслоевой модели с помощью последовательного метода Гаусса (рис. 3).

    Рис. 3. Трехмерная межслоевая модель на исследуемой территории.

    С точки зрения распределения плоскостей традиционный метод кооперативного последовательного гауссового моделирования в сейсмических исследованиях является очень точным; однако тонкий слой часто плохо отражается по вертикали из-за эффекта вертикального разрешения сейсмических данных [9–12]. После ограниченной нормы L1-L2 инверсии разреженных импульсов вертикальное разрешение сейсмических данных значительно улучшается.При совместном моделировании вертикальные тонкие слои отображаются идеально, и не только точность, но и точность промежуточного слоя, очевидно, улучшается. Создание модели с петрофизическими фациями вместо осадочных фаций учитывает плоское распределение и вертикальный ход осадочных фаций, дополнительно разделяет резервуар и углубляет изучение неоднородности коллектора. Вместе с контролем скважинных данных высокого разрешения результаты моделирования лучше соответствуют подземным геологическим условиям [2].Совместная сейсмическая инверсия и управляемый петрофизическими фациями метод последовательного гауссового моделирования, который всесторонне использует данные каротажа скважин, петрофизических фаций и данные сейсмической инверсии, обеспечивает высокое разрешение модели по вертикали и горизонтали, наконец, реализует точное предсказание прослоя в трехмерном пространстве.

    Рис. 4 представляет собой межпластовой профиль скважины на практическом участке скважины D и скважины K, который детально демонстрирует распределение межпластового слоя. Очевидно, что модель, управляемая сейсмической инверсией и петрофизическими фациями, точна, а распределение прослоев ясное и естественное.Из-за неоднородности межслоевого распределения эффект разработки отдельной скважины имеет большое значение. По вертикали скважина D близка к контакту вода-нефть. И нет среднего набора блокировки кальция. Внизу тонкая известковая прослойка. Однако в скважине К развивается средний набор кальция, а нижний набор толстый, выше 3 м. По всей видимости, блокирующий эффект в районе скважины K лучше, чем в районе скважины D, из-за нижнего набора прослоек и среднего набора прослоев. Время прорыва воды медленнее.Добыча подтверждает ранний прорыв воды в скважину D; безводный период производства составляет всего 34 дня; вода быстро поднимается, и продуктивность быстро снижается. Добывается только нефть в прискважинном участке, много оригинальной и неиспользованной оставшейся нефти находится немного дальше, где находится основная зона отбора оставшейся нефти. Скважина К имеет длительный безводный период добычи, высокий дебит и высокую эффективность. Поскольку свойства промежуточного слоя разные, оставшееся масло рассеивается и в основном распределяется в промежуточном слое.

    Рис. 4. Межпластовой профиль скважины в исследуемой зоне скважины D и скважины K

    В сочетании с точной геологической моделью и другой соответствующей информацией точная модель межпластового слоя может эффективно направлять добычу на нефтяном месторождении, что является важной основой для анализ и добыча остаточной нефти.

    Игра исключения Гаусса: Введение в линейную алгебру | Бретт Берри | Math Hacks

    Точно так же, как начало карточной игры с перетасовки и раздачи, начало нашей игры на исключение Гаусса начинается с преобразования наших уравнений в матрицу.

    Вот система, которую мы собираемся решить:

    Первое, что вам нужно понять, это то, что в нашей системе много скрытой информации. Красным цветом я добавлю нули и единицы в местозаполнители.

    Далее мы отделим всю важную числовую информацию от посторонних символов. Выделенный красным цветом, вы найдете всю важную информацию, с которой мы будем работать:

    Нам нужно переписать числовые значения выше в виде матрицы.Мы отбросим буквы, знаки равенства и символы сложения (но не символы минус!) И просто напишем числа в точном порядке и в строках, которые они указаны выше.

    После этого мы добавим символы больших скобок, чтобы сгруппировать их вместе. Это наша матрица:

    Как и в любой игре, есть несколько правил, которым мы должны следовать:

    1. Любые две строки можно поменять местами
    2. Любую строку можно умножить или разделить на значение
    3. Вы можете складывать или вычитать любые две строки вместе

    * Примечание: вы можете комбинировать эти правила за один ход.

    Не волнуйтесь, если они еще не совсем понятны. Вы увидите, как они работают, когда мы рассмотрим наш пример.

    Вы выигрываете, когда ваша матрица выглядит так:

    Где символы # представляют любые числа, а остальная часть матрицы имеет нули в каждой позиции, кроме диагональных. Это называется формой сокращенного эшелона .

    Начните с матрицы, созданной на этапе настройки. Теперь мы собираемся использовать правила, чтобы довести эту матрицу до финишной черты!

    Стартовая матрица

    Движение 1: Поменять местами первую строку и строку 2

    Есть много разных способов привести эту матрицу в выигрышную форму, но я думаю, что самый простой способ начать – это поменять местами первую и вторую строку.Таким образом мы получаем 1 в первой позиции первой строки и 0 в первой позиции второй строки.

    Движение 2: сложить -2 раза из второй строки в третью

    Нам разрешено использовать несколько правил одновременно за один шаг. В этом шаге мы возьмем 2 раза во вторую строку и добавим эти продукты в третью строку. Это оставит строку два без изменений, но поможет нам получить ноль во второй позиции третьей строки.

    Движение 3: разделить третью строку на -3

    Затем мы просто разделим третью строку на -3, чтобы получить 1 в третьей позиции третьей строки.

    Движение 4: прибавить -2 раза из третьей строки к второй

    Теперь, когда у нас есть все нули в нижнем левом углу, окруженные диагональю 1, мы готовы начать работу над получением нулей в позициях над 1-е.

    👉 Но прежде чем мы это сделаем, я хочу сделать небольшое примечание: наша матрица в настоящее время находится в форме эшелона строк . В этой форме вы можете преобразовать вашу матрицу обратно в набор уравнений, если хотите, и легко сможете решить для x, y и z.Сегодня мы работаем над преобразованием нашего уравнения в уменьшенную форму ступени строк, что означает, что мы хотим получить нули в позициях над единицами. Часто в линейной алгебре вас просят полностью перейти к сокращенной форме эшелона строк, поскольку это самая легкая форма для чтения ответа.

    Хорошо, вернемся к нашей математике. На следующем ходу мы возьмем третью строку в 2 раза и добавим ее ко второй строке, чтобы получить 0 в третьей позиции строки 2.

    Движение 5: добавить третью строку в первую

    Далее , мы просто добавим третью строку к первой, поскольку -1 + 1 = 0, что поможет нам получить 0 в третьей позиции первой строки.

    Перемещение 6: прибавить -2 раза строку два к строке один

    Наконец, мы добавим строку два раза два к первой строке, чтобы получить ноль во второй позиции первой строки.

    Все, что нам осталось сделать, это прочитать ответ! Для этого просто переведите матрицу обратно в систему уравнений, и вы увидите, что нашли решения для x, y и z.

    Отбросив все нулевые члены, вы получите:

    Это означает, что точка пересечения в трехмерном пространстве, где пересекаются три плоскости, находится в (-1,2, -3).

    Помните, что вы всегда можете проверить свое решение, подставив значения обратно в исходные уравнения.

    Ничего страшного, вы также можете решать системы 3×3 с хорошей олеалгеброй 😉

    Спасибо, что присоединились ко мне!

    – Бретт

    За обновлениями и математическим вдохновением следите за Бреттом в социальных сетях:

    Instagram | Facebook | Twitter

    Метод Гаусса-Ньютона: Краткий обзор – Статистика How To

    Регрессионный анализ>

    Что такое метод Гаусса-Ньютона?

    Метод Гаусса-Ньютона – это итерационный алгоритм для решения нелинейных задач наименьших квадратов.«Итеративный» означает, что он использует серию вычислений (основанных на предположениях для значений x) для поиска решения. Это модификация метода Ньютона, который находит точки пересечения по оси x (минимумы) в расчетах. Гаусс-Ньютон обычно используется для поиска наиболее подходящей теоретической модели , хотя его также можно использовать для определения местоположения одной точки.


    Этот алгоритм, вероятно, является наиболее популярным методом нелинейных наименьших квадратов. Однако у него есть несколько ловушек :

    • Если вы не сделаете хорошее первоначальное предположение, решение будет очень медленным, а может и вовсе не найти.
    • Процедура не подходит для матриц дизайна, которые плохо обусловлены или имеют недостаточный ранг.
    • Если относительные остатки очень большие, процедура потеряет большой объем информации.

    Опции программного обеспечения для метода Гаусса-Ньютона

    Любую нелинейную процедуру наименьших квадратов будет «значительно труднее» (Хартли) найти вручную, чем ее линейный аналог (что достаточно сложно). Метод Гаусса-Ньютона не является исключением: он требует нахождения якобиевых матриц и множества частных производных.В некоторых случаях для поиска решения могут потребоваться сотни итераций (при условии, что оно существует). Таким образом, это почти всегда выполняется с помощью программного обеспечения. Основные шаги, которые выполняет программа (обратите внимание, что следующие шаги предназначены для одной итерации):

    1. Сделайте первоначальное предположение x 0 для x,
    2. Сделайте предположение для k = 1,
    3. Создайте вектор f k с элементами f i (x k ),
    4. Создайте матрицу Якоби для J k
    5. Решить (J T k J k p k = -J T k f k ).Это дает вам вероятности p для всех k.
    6. Найдите s. F (x k + sp k ) должен удовлетворять условиям Вульфа (они доказывают, что длина шага существует).
    7. Установить x k + 1 = x k + sp k .
    8. Повторяйте шаги с 1 по 7 до схождения.

    На момент написания (август 2017 г.) в SPSS нет процедуры. Другие варианты включают:

    • MATLAB : Вудро Херман из Стэнфордского центра компьютерных исследований в музыке и акустике предоставляет хороший код для шагов расчета (щелкните здесь, чтобы получить pdf-файл), а также некоторые (относительно) простые для выполнения инструкции.Обратите внимание, что вам действительно нужно знать основы исчисления и матричной алгебры, чтобы продолжить.
    • Minitab : алгоритм Гаусса-Ньютона используется по умолчанию для оценки методом наименьших квадратов.
    • R : нелинейный алгоритм наименьших квадратов по умолчанию – это Гаусс-Ньютон. Другие варианты: , плоскостная, для алгоритма Голуба-Перейры (для частичного LLS) или порт для алгоритма nl2sol из библиотеки портов.

    Варианты

    Существует множество вариаций Гаусса-Ньютона, в большинстве из которых используются разные способы вычисления подходящего размера шага или повышения точности приближенной матрицы Гессе.

    • Метод с затуханием Гаусса-Ньютона (иногда называемый методом Хартли или модифицированным GM) улучшает базовый метод с линейным поиском.
    • > Levenberg-Marquadt (LM) выполняет поиск «доверительной области» и указывает направление и расстояние до следующего шага. Он особенно хорошо работает при проблемах с плохой подготовкой (Jelali & Kroll, 2012).

    Дополнительные примеры некоторых различных вариаций можно найти в Gill & Murray (1978).

    Справочные материалы:
    ETH Zurich.Нелинейный метод наименьших квадратов. Получено 20.08.2017 из: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/nls.html
    Gill, P. & Murray, W. Алгоритмы решения нелинейная задача наименьших квадратов. SIAM J. Numer. Анальный. 15, № 5 (1978), 977-992.
    Хартли, Х. Модифицированный метод G-N для аппроксимации функций нелинейной регрессии методом наименьших квадратов. Технометрика 3, вып. 2 (1960). 269-280.
    Герман У. Применения метода Гаусса-Ньютона. Получено 20.08.2107 из: https: // ccrma.stanford.edu/~wherman/tulane/gauss_newton.pdf
    Энциклопедия оптимизации. Springer Science & Business Media, 2001.
    Джелали М. и Кролл А. (2012). Гидравлические сервосистемы: моделирование, идентификация и управление. Springer Science.

    ————————————————– —————————-

    Нужна помощь с домашним заданием или контрольным вопросом? С помощью Chegg Study вы можете получить пошаговые ответы на свои вопросы от эксперта в данной области.Ваши первые 30 минут с репетитором Chegg бесплатны!

    Комментарии? Нужно опубликовать исправление? Пожалуйста, оставьте комментарий на нашей странице в Facebook .


    Гауссовские процессы для манекенов ·

    9 авг.2016 · 10 минут чтения · Комментарии

    Источник: Поваренная книга ядра Дэвида Дювено

    Меня всегда удивляет, как я могу слышать заявление, произносимое за несколько секунд о каком-то аспекте машинного обучения, на понимание которого у меня уходит бесчисленное количество часов.Я впервые услышал о гауссовских процессах в эпизоде ​​подкаста Talking Machines и подумал, что это звучит как действительно отличная идея. Я быстро раздобыл себе копию классического текста по этой теме «Гауссовские процессы для машинного обучения» Расмуссена и Вильямса, но мое слабое понимание байесовского подхода к машинному обучению означало, что я довольно быстро запутался. Именно тогда я начал путь, описанный в моем последнем посте, Теперь с обеих сторон: математика линейной регрессии.

    гауссовских процессов (GP) – естественный следующий шаг на этом пути, поскольку они обеспечивают альтернативный подход к проблемам регрессии.Этот пост направлен на то, чтобы представить основы терапевтов, не заходя слишком далеко в различные кроличьи норы, в которые они могут вас завести (например, понимание того, как получить квадратный корень из матрицы).

    Напомним, что в настройке простой линейной регрессии у нас есть зависимая переменная y, которую, как мы предполагаем, можно смоделировать как функцию независимой переменной x, то есть $ y = f (x) + \ epsilon $ (где $ \ epsilon $ – неприводимая ошибка), но мы предполагаем, что функция $ f $ определяет линейную зависимость, и поэтому мы пытаемся найти параметры $ \ theta_0 $ и $ \ theta_1 $, которые определяют точку пересечения и наклон линии соответственно, i.е. $ y = \ theta_0 + \ theta_1x + \ epsilon $. Байесовская линейная регрессия обеспечивает вероятностный подход к этому, находя распределение по параметрам, которое обновляется всякий раз, когда наблюдаются новые точки данных. Подход GP, напротив, представляет собой непараметрический подход , в котором он находит распределение по возможным функциям $ f (x) $, которые согласуются с наблюдаемыми данными. Как и все байесовские методы, он начинается с предварительного распределения и обновляет его по мере наблюдения точек данных, создавая апостериорное распределение по функциям.2 $. Теперь нам нужно узнать 3 параметра. Но что, если мы не хотим заранее указывать, сколько параметров задействовано? Мы хотели бы рассмотреть каждую возможную функцию, которая соответствует нашим данным, независимо от количества задействованных параметров. Вот что значит непараметрический: дело не в том, что параметров нет, а в том, что параметров бесконечно много.

    Но, конечно, нам нужна предварительная информация, прежде чем мы увидим какие-либо данные. Как это может выглядеть? Что ж, нам не нужны ВСЕ ФУНКЦИИ, это было бы чушь.Так что давайте наложим на него некоторые ограничения. Прежде всего, нас интересует только конкретный домен – допустим, наши значения x изменяются только от -5 до 5. Теперь мы можем сказать, что в этом домене мы хотели бы выполнить выборку функций, которые производят результат со средним значением, скажем, 0, и это , не слишком шаткий . Вот пример очень сложной функции:

    А вот и более плавная функция:

    Есть способ указать эту гладкость: мы используем ковариационную матрицу , чтобы гарантировать, что близкие друг к другу значения во входном пространстве будут давать близкие друг к другу выходные значения.Эта ковариационная матрица вместе со средней функцией для вывода ожидаемого значения $ f (x) $ определяет гауссовский процесс.

    Вот как Кевин Мерфи объясняет это в отличном учебнике Машинное обучение: вероятностная перспектива:

    GP определяет апостериорные функции, которые могут быть преобразованы в апостериорные функции после просмотра некоторых данных. Хотя может показаться сложным изобразить распределение по функции, оказывается, что нам нужно только иметь возможность определить распределение по значениям функции в конечном, но произвольном наборе точек, скажем, \ (x_1, \ dots , x_N \) .GP предполагает, что \ (p (f (x_1), \ dots, f (x_N)) \) является совместно гауссовым, с некоторым средним значением $ \ mu (x) $ и ковариацией $ \ sum (x) $, заданными формулой $ \ sum_ {ij} = k (x_i, x_j) $, где k – положительно определенная функция ядра. Ключевая идея заключается в том, что если \ (x_i \) и \ (x_j \) считаются ядром похожими, то мы ожидаем, что выходные данные функции в этих точках также будут аналогичными.

    Математическая суть GP – многомерное распределение Гаусса.

    Источник: Википедия

    Проще всего представить двумерный случай, изображенный здесь. Форма колокола определяется ковариационной матрицей. Если мы представим, что смотрим на колокол сверху и видим идеальный круг, это означает, что это две независимые нормально распределенные переменные – их ковариация равна 0. Если мы предположим, что дисперсия равна 1 для каждой из независимых переменных, то мы получим ковариацию. матрица $ \ Sigma = \ begin {bmatrix} 1 & 0 \\ 0 & 1 \ end {bmatrix} $.Диагональ просто будет содержать дисперсию каждой переменной отдельно, в данном случае обе единицы. Все, кроме 0 в правом верхнем углу, будет отображаться в левом нижнем углу и указывать на корреляцию между переменными. Это придаст колокольчику более овальную форму, если смотреть на него сверху.

    Если у нас есть совместная вероятность переменных $ x_1 $ и $ x_2 $ следующим образом:

    $$ \ begin {pmatrix} x_1 \\ x_2 \ end {pmatrix} \ sim \ mathcal {N} {\ left ( \ begin {pmatrix} \ mu_1 \\ \ mu_2 \ end {pmatrix} , \ begin {pmatrix} \ sigma_ {11} & \ sigma_ {12} \\ \ sigma_ {21} & \ sigma_ {22} \\ \ end {pmatrix} \Правильно)}

    $

    можно получить условную вероятность одной из переменных с учетом другой, а – это то, как в GP мы можем получить апостериорную вероятность из априорных и наших наблюдений . T & K _ {**} \\ \ end {pmatrix} \Правильно)}

    $

    Здесь $ K $ – это матрица, которую мы получаем, применяя функцию ядра к нашим наблюдаемым значениям $ x $ , т.е.е. Сходство каждого наблюдаемого $ x $ друг другу наблюдаемого $ x $. $ K _ {*} $ дает нам сходство обучающих значений с тестовыми значениями, выходные значения которых мы пытаемся оценить. $ K _ {**} $ показывает сходство тестовых значений друг с другом.

    Я прекрасно понимаю, что на данном этапе может быть трудно уследить за вещами, поэтому стоит повторить то, что мы на самом деле пытаемся здесь сделать. Есть некоторые точки $ x , для которых мы наблюдали результат $ f (x) $ (обозначенный выше просто $ f $ ).Есть некоторые точки $ x _ {*} $, для которых мы хотели бы оценить $ f (x _ {*}) $ (обозначено выше как $ f _ {*} $ ). Итак, мы пытаемся получить распределение вероятностей $ p (f _ {*} | x _ {*}, x, f) $ и предполагаем, что $ f $ и $ f _ {*} $ вместе составляют совместно по Гауссу, как определено выше. T = \ Sigma _ {*} $ , т.е.е. квадратный корень нашей ковариационной матрицы. Чтобы найти это, мы можем использовать так называемое разложение Холецкого.

    Хорошо, хватит математики – время для кода. Представленный здесь код во многом заимствован из двух основных источников: лекций Нандо де Фрейтаса по машинному обучению UBC (код для врачей общей практики можно найти здесь) и инструментария PMTK3, который является сопутствующим кодом к учебнику Кевина Мерфи «Машинное обучение: вероятностная перспектива».

    Ниже мы определяем точки, в которых будут оцениваться наши функции, 50 точек, равномерно распределенных между -5 и 5.Мы также определяем функцию ядра, которая использует квадрат экспоненты, он же гауссовский, он же ядро ​​радиальной базисной функции. Он вычисляет квадрат расстояния между точками и преобразует его в меру сходства, контролируемую параметром настройки. Обратите внимание, что мы предполагаем среднее значение 0 для нашего априорного значения.

      импортировать numpy как np
    импортировать matplotlib.pyplot как pl
    
    # Тестовые данные
    n = 50
    Xtest = np.linspace (-5, 5, n) .reshape (-1,1)
    
    # Определить функцию ядра
    def ядро ​​(a, b, param):
        sqdist = np.сумма (a ** 2,1) .reshape (-1,1) + np.sum (b ** 2,1) - 2 * np.dot (a, b.T)
        вернуть np.exp (-. 5 * (1 / параметр) * sqdist)
    
    param = 0,1
    K_ss = ядро ​​(Xtest, Xtest, param)
    
    # Получите разложение Холецкого (квадратный корень) из
    # ковариационная матрица
    L = np.linalg.cholesky (K_ss + 1e-15 * np.eye (n))
    # Пример 3 набора стандартных нормалей для наших тестовых точек,
    # умножаем их на квадратный корень из ковариационной матрицы
    f_prior = np.dot (L, np.random.normal (размер = (n, 3)))
    
    # Теперь давайте построим 3 функции выборки.
    pl.plot (Xtest, f_prior)
    пл.ось ([- 5, 5, -3, 3])
    pl.title ('Три образца из приора ГП')
    pl.show ()
      

    Обратите внимание, что переменная K_ss здесь соответствует $ K _ {**} $ в приведенном выше уравнении для совместной вероятности. Он будет снова использован ниже вместе с K $ и K $ _ {*} $

    Теперь посмотрим на некоторые данные. Фактическая функция, генерирующая значения $ y $ из наших значений $ x $ , без ведома нашей модели, является функцией $ sin $ . Мы генерируем результат в наших 5 точках обучения, выполняем эквивалент вышеупомянутых 4 страниц матричной алгебры в нескольких строках кода Python, делаем выборку из апостериорного и строим его.

      # Данные бесшумного обучения
    Xtrain = np.array ([- 4, -3, -2, -1, 1]). Reshape (5,1)
    ytrain = np.sin (Xtrain)
    
    # Применяем функцию ядра к нашим точкам обучения
    K = ядро ​​(Xtrain, Xtrain, param)
    L = np.linalg.cholesky (K + 0,00005 * np.eye (len (Xtrain)))
    
    # Вычислить среднее значение в наших тестовых точках.
    K_s = ядро ​​(Xtrain, Xtest, param)
    Lk = np.linalg.solve (L, K_s)
    mu = np.dot (Lk.T, np.linalg.solve (L, ytrain)). reshape ((n,))
    
    # Вычислить стандартное отклонение, чтобы мы могли построить его
    s2 = np.diag (K_ss) - np.сумма (Lk ** 2, ось = 0)
    stdv = np.sqrt (s2)
    # Нарисуйте образцы от апостола в наших тестовых точках.
    L = np.linalg.cholesky (K_ss + 1e-6 * np.eye (n) - np.dot (Lk.T, Lk))
    f_post = mu.reshape (-1,1) + np.dot (L, np.random.normal (размер = (n, 3)))
    
    pl.plot (Xtrain, ytrain, 'bs', ms = 8)
    pl.plot (Xtest, f_post)
    pl.gca (). fill_between (Xtest.flat, mu-2 * stdv, mu + 2 * stdv, color = "# dddddd")
    pl.plot (Xtest, mu, 'r--', lw = 2)
    pl.axis ([- 5, 5, -3, 3])
    pl.title ('Три образца из задней части GP')
    pl.show ()
      

    Посмотрите, как обучающие точки (синие квадраты) «сдерживают» набор возможных функций: все те, которые мы выбрали из апостериорного анализа, проходят через эти точки.Пунктирная красная линия показывает средний результат, а серая область показывает 2 стандартных отклонения от среднего. Обратите внимание, что это 0 в наших точках обучения (потому что мы не добавляли шума к нашим данным). Также обратите внимание на то, как все снова начинает идти немного безумно справа от нашей последней тренировочной точки $ x = 1 $ – это не будет сдерживаться, пока мы не увидим некоторые данные там.

    Это было очень простое введение в гауссовские процессы – оно было направлено на то, чтобы сделать вещи как можно более простыми, чтобы проиллюстрировать основную идею и, надеюсь, подогреть аппетит к более обширному рассмотрению этой темы, как это можно найти в книге Расмуссена и Уильямса. .

    Итерационные методы решения Ax = b – метод Гаусса-Зейделя

    Давайте продвинемся на шаг вперед по методу Якоби. Где истинное решение: x = ( x 1 , x 2 ,…, x n ), если x 1 ( k +1) является лучшим приближением к истинному значению x 1 , чем x 1 ( k ) , тогда будет иметь смысл, что как только мы найдем новое значение x 1 ( k +1) , чтобы использовать его (вместо старого значения x 1 ( k ) ) при поиске x 2 ( k +1) ,…, x n ( k +1) .Таким образом, x 1 ( k +1) находится как в методе Якоби, но при нахождении x 2 ( k +1) вместо использования старого значения x 1 ( k ) и старые значения x 3 ( k ) ,…, x n ( k ) , мы сейчас используйте новое значение x 1 ( k +1) и старые значения x 3 ( k ) ,…, x n ( k ) , и аналогично для поиска x 3 ( k +1) ,…, x n ( k +1) .Этот метод называется методом Гаусса-Зейделя, хотя, как отмечал Гил Странг в его Введении в прикладную математику , Гаусс не знал о нем, а Зайдель не рекомендовал его. Это описывается

    Это тоже можно записать

    То есть

    , так что
    Пример 2

    Применим метод Гаусса-Зейделя к системе из примера 1:

    .

    На каждом шаге при текущих значениях x 1 ( k ) , x 2 ( k ) , x 3 ( k ) , решаем для x 1 ( k +1) , x 2 ( k +1) , x 3 ( k +1) в

    .

    Чтобы сравнить наши результаты с помощью двух методов, мы снова выбираем x (0) = (0, 0, 0). Затем находим x (1) = ( x 1 (1) , x 2 (1) , x 3 (1) ) путем решения

    .

    Давайте проясним, как мы решаем эту систему. Сначала мы решаем относительно x 1 (1) в первом уравнении и находим, что

    x 1 (1) = 3/4 = 0.750.

    Затем мы решаем относительно x 2 (1) во втором уравнении, используя новое значение x 1 (1) = 0,750, и находим, что

    x 2 (1) = [9 + 2 (0,750)] / 6 = 1,750.

    Наконец, мы решаем x 3 (1) в третьем уравнении, используя новые значения x 1 (1) = 0,750 и x 2 (1 ) = 1.750, и обнаруживаем, что

    x 3 (1) = [-6 + 0,750 – 1,750] / 7 = – 1.000.

    Результат этой первой итерации метода Гаусса-Зейделя равен

    .

    x (1) = ( x 1 (1) , x 2 (1) , x 3 (1) ) = (0,750, 1,750, – 1,000).

    Мы повторяем этот процесс для создания последовательности все более точных приближений x (0) , x (1) , x (2) ,… и находим результаты аналогично тем, что мы нашли для примера 1.

    к x ( k ) x ( k ) x ( k -1) e ( k ) = x x ( k ) || e ( k ) ||
    0 -0.000 -0,000 -0,000 -0,000 -0,000 -1,000 2.449
    1 0,750 1,750 -1,000 -0,000 -0,000 -1,000 0,250 0,250 0,000 0,354
    2 0,938 1,979 -1,006 0.188 0,229 -0,006 0,063 0,021 0,006 0,066
    3 0,993 1,999 -1,001 0,056 0,020 0,005 0,007 0,001 0,001 0,007
    4 0,999 2.000 -1,000 0,006 0,001 0.001 0,001 0,000 0,000 0,001
    5 1.000 2.000 -1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

    Как и в примере 1, мы прекращаем итерацию после x ( k ) x ( k -1) , e ( k ) , и || e ( k ) || все от 0 до трех десятичных знаков.Обратите внимание, что эта последовательность итераций сходится к истинному решению (1, -2, 1) намного быстрее, чем мы нашли в примере 1 с использованием метода Якоби. Обычно это ожидается, поскольку метод Гаусса-Зейделя использует новые значения по мере их нахождения, а не ждет следующей итерации, как это делается в методе Якоби.

    Определение и использование метода наименьших квадратов

    Что такое метод наименьших квадратов?

    Метод «наименьших квадратов» – это форма математического регрессионного анализа, используемая для определения линии наилучшего соответствия для набора данных, обеспечивающей визуальную демонстрацию взаимосвязи между точками данных.Каждая точка данных представляет собой отношение между известной независимой переменной и неизвестной зависимой переменной.

    Что вам говорит метод наименьших квадратов?

    Метод наименьших квадратов дает общее обоснование для размещения линии наилучшего соответствия среди изучаемых точек данных. Наиболее распространенное применение этого метода, который иногда называют «линейным» или «обычным», направлено на создание прямой линии, которая минимизирует сумму квадратов ошибок, которые генерируются результатами связанных уравнений, таких как в виде квадратов остатков, возникающих в результате различий в наблюдаемом значении, и ожидаемом значении, основанном на этой модели.

    Этот метод регрессионного анализа начинается с набора точек данных, которые должны быть нанесены на график по осям x и y. Аналитик, использующий метод наименьших квадратов, сгенерирует линию наилучшего соответствия, которая объясняет потенциальную взаимосвязь между независимыми и зависимыми переменными.

    В регрессионном анализе зависимые переменные показаны на вертикальной оси y, а независимые переменные – на горизонтальной оси x. Эти обозначения образуют уравнение для линии наилучшего соответствия, которая определяется методом наименьших квадратов.

    В отличие от линейной задачи, нелинейная задача наименьших квадратов не имеет замкнутого решения и обычно решается путем итераций. Открытие метода наименьших квадратов приписывают Карлу Фридриху Гауссу, который открыл этот метод в 1795 году.

    Ключевые выводы

    • Метод наименьших квадратов – это статистическая процедура для поиска наилучшего соответствия для набора точек данных путем минимизации суммы смещений или остатков точек от построенной кривой.
    • Регрессия наименьших квадратов используется для прогнозирования поведения зависимых переменных.

    Пример метода наименьших квадратов

    Примером метода наименьших квадратов является аналитик, который хочет проверить взаимосвязь между доходностью акций компании и доходностью индекса, составляющим которого является данная акция. В этом примере аналитик пытается проверить зависимость доходности акций от доходности индекса. Для этого все доходы наносятся на график.Затем доходность индекса обозначается как независимая переменная, а доходность акций – зависимая переменная. Линия наилучшего соответствия предоставляет аналитику коэффициенты, объясняющие уровень зависимости.

    Линия наилучшего соответствия

    Линия наилучшего соответствия, определенная методом наименьших квадратов, имеет уравнение, которое описывает взаимосвязь между точками данных. Линия наиболее подходящих уравнений может быть определена с помощью компьютерных программных моделей, которые включают сводку выходных данных для анализа, где коэффициенты и сводные выходные данные объясняют зависимость проверяемых переменных.

    Линия регрессии методом наименьших квадратов

    Если данные показывают более компактную взаимосвязь между двумя переменными, линия, которая лучше всего соответствует этой линейной взаимосвязи, называется линией регрессии наименьших квадратов, которая минимизирует вертикальное расстояние от точек данных до линии регрессии. Термин «наименьшие квадраты» используется потому, что это наименьшая сумма квадратов ошибок, которую также называют «дисперсией».

    Часто задаваемые вопросы

    Что такое метод наименьших квадратов?

    Метод наименьших квадратов – это математический метод, который позволяет аналитику определить наилучший способ подбора кривой поверх диаграммы точек данных.Он широко используется для облегчения интерпретации диаграмм рассеяния и связан с регрессионным анализом. Этот метод был впервые разработан немецким математиком Карлом Фридрихом Гауссом, который жил между 1777 и 1855 годами. В наши дни метод наименьших квадратов можно использовать автоматически с помощью большинства статистических программ.

    Как в финансах используется метод наименьших квадратов?

    Метод наименьших квадратов используется в самых разных областях, включая финансы и инвестирование.Для финансовых аналитиков метод наименьших квадратов может помочь количественно оценить взаимосвязь между двумя или более переменными: такими как цена акции и ее прибыль на акцию (EPS). Выполняя этот тип анализа, инвесторы могут попытаться спрогнозировать будущее поведение цен на акции или другие факторы.

    Какой пример метода наименьших квадратов?

    Чтобы проиллюстрировать это, рассмотрим случай инвестиций, когда решается, стоит ли инвестировать в золотодобывающую компанию. Инвестор может пожелать узнать, насколько чувствительна цена акций компании к изменениям рыночной цены золота.Чтобы изучить это, инвестор может использовать метод наименьших квадратов, чтобы проследить взаимосвязь между этими двумя переменными с течением времени на диаграмме рассеяния. Этот анализ может помочь инвестору предсказать, в какой степени цена акций может вырасти или упасть при любом увеличении или уменьшении цены на золото.

    Алгоритм метода исключения Гаусса и блок-схема

    Метод исключения Гаусса может быть использован для решения линейных одновременных уравнений, возникающих в инженерных задачах.В методе уравнения решаются последовательной процедурой исключения неизвестных.

    В целом метод сводит систему линейных одновременных уравнений к верхнетреугольной матрице. Затем используется обратная подстановка для получения неизвестных. Это ключевая концепция при написании алгоритма или программы или рисовании блок-схемы для исключения Гаусса.

    Частичное или полное вращение может быть принято в методе исключения Гаусса. Таким образом, этот метод считается более совершенным по сравнению с методом Гаусса Джордана.

    В алгоритме метода исключения Гаусса и блок-схеме, приведенной ниже, процесс исключения выполняется до тех пор, пока в последнем уравнении не останется только одно неизвестное. Его легко запрограммировать, и для контроля ошибок округления можно использовать частичное вращение.

    Алгоритм исключения Гаусса:

    1. Начало
    2. Объявите переменные и прочтите порядок матрицы n.
    3. Возьмите коэффициенты линейного уравнения как:
      Do для k = от 1 до n
      Do для j = от 1 до n + 1
      Прочтите a [k] [j]
      Конец для j
      Конец для k
    4. Сделать для k = от 1 до n-1
      Сделать для i = от k + 1 до n
      Сделать для j = k + 1 до n + 1
      a [i] [j] = a [i] [j] – a [i] [k] / a [k] [k] * a [k] [j]
      Конец для j
      Конец для i
      Конец для k
    5. Вычислить x [n] = a [n] [n + 1] / a [n] [n]
    6. Do для k = n-1 до 1
      sum = 0
      Do for j = k + 1 to n
      sum = sum + a [k] [j] * x [j]
      End for j
      x [k] = 1 / a [k] [k] * (a [k] [n + 1] – sum)
      Конец для k
    7. Отобразить результат x [k]
    8. Остановка

    Блок-схема исключения Гаусса:

    Вот базовая схема блок-схемы исключения Гаусса, которая включает ввод, прямое исключение, обратную замену и вывод.

    Ниже показана процедура поворота и исключения.


    Вот приложение, показывающее, как происходит прямое исключение и обратная замена.


    См. Также:
    Программа исключения Гаусса C
    Программа исключения Гаусса MATLAB

    При решении одновременных линейных уравнений аналитические методы часто терпят неудачу в сложных задачах. Эти алгоритм и блок-схема могут использоваться для написания исходного кода для метода исключения Гаусса на любом языке программирования высокого уровня.

    Он завершен, и хотя он несколько длинен для кодирования, он четко разграничен для фазы исключения и фазы обратной замены. Если возникнут вопросы, обсудите их в комментариях.

    .

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *