Момент инерции простых фигур: MYsopromat.ru: Моменты инерции простейших фигур

Содержание

MYsopromat.ru: Моменты инерции простейших фигур


В расчетной практике часто встречаются сечения в виде простейших фигур (прямоугольников, кругов, треугольников и т. п.) или их комбинаций. При вычислении моментов инерции таких фигур обычно пользуются заранее выведенными расчетными формулами. Рассмотрим некоторые из фигур.

Прямоугольник и параллелограмм (рис. 6.4). Выделим элементарную полоску площадью dF=bdy и подставим это значение dF под знак интеграла (6.5):

Рис. 6.4

Рис. 6.5

.

Следовательно, момент инерции прямоугольника и параллелограмма с основанием b и высотой h относительно центральной оси, параллельной основанию,

.

(6.16)

Моменты инерции этих фигур относительно осей, проходящих через основание, находим по формуле (6.13):

.

(6.17)

Моменты инерции прямоугольника относительно осей yc и y вычисляются по формулам (6.16) и (6.17), где b заменяется на h, а h на b:

.

(6.18)

.

(6.19)

Треугольник с основанием b и высотой h (рис. 6.5).

Разобьем треугольник на элементарные полоски, параллельные его основанию. Площадь такой полоски

.

Тогда момент инерции треугольника относительно оси, проходящей через основание,

.

(6.20)

Подсчитывая по формулам переноса момент инерции треугольника относительно центральной оси, параллельной основанию, получаем

.

(6.21)

Круг и полукруг диаметра d (рис. 6.6). Подсчитываем сначала полярный момент инерции круга. Для этого выделим в сечении окружностями радиуса ρ и ρ+dρ элементарное кольцо площадью dF=2πρdρ и вычислим Iy по формуле (6.7):

.

(6.22)

Рис. 6.6.

Обычно размеры круглого сечения выражают через диаметр d и подсчитывают Ip по формуле

.

(6.23)

Осевые моменты инерции круга найдем с помощью соотношения (6.8). Замечая, что в силу симметрии круга Iz=Iy, получаем для осевых моментов инерции круга выражение

.

(6.24)

Центральные оси y и z делят круг на четыре совершенно одинаковые части с равными моментами инерции относительно этих осей. Следовательно, моменты инерции круга и полукруга относительно осей y и z должны быть равны соответственно учетверенным и удвоенным моментам инерции относительно тех же осей одной четверти круга. Из сказанного следует, что моменты инерции полукруга относительно оси симметрии y и оси z, проходящей через его основание (рис. 6.2), будут одинаковы и равны половине момента инерции круга,

,

(6. 25)

а моменты инерции четверти круга

.

(6.26)

    

4.3. Моменты инерции простых фигур

Как уже отмечалось выше, к числу простых плоских фигур относятся три фигуры: прямоугольник, треугольник и круг. Простыми эти фигуры считаются потому, что положение центра тяжести этих фигур заранее известно. Все остальные фигуры могут быть составлены из этих простых фигур и считаются сложными. Вычислим осевые моменты инерции простых фигур относительно их центральных осей.

1. Прямоугольник.Рассмотрим сечение прямоугольного профиля размерами(Рис.4.6). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси.

Рис.4.6

Вычислим момент инерции прямоугольного сечения относительно оси :

. (4.10)

Момент инерции прямоугольного сечения относительно оси найдем аналогично. Здесь вывод не приводится.

. (4.11)

Центробежный момент инерции относительно осей иравен нулю, так как осииявляются осями симметрии, а, следовательно, главными осями.

2. Равнобедренный треугольник.Рассмотрим сечение треугольного профиля размерами(Рис.4.7). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси. Центр тяжести треугольника находится на расстояниот основания. Треугольник принимается равнобедренным, так что осьсечения является осью симметрии.

Рис.4.7

Вычислим момент инерции сечения относительно оси :

. (4.12)

Величину определим из подобия треугольников:

; откуда .

Подставляя выражения для в (4.12) и интегрируя, получим:

. (4.13)

Момент инерции для равнобедренного треугольника относительно оси находится аналогичным образом и равен:

(4.14)

Центробежный момент инерции относительно осей иравен нулю, так как осьявляется осью симметрии сечения.

3. Круг. Рассмотрим сечение круглого профиля диаметром(Рис.4.8). Выделим элемент сечения двумя бесконечно близко расположенными концентрическими окружностями, расположенными на расстоянииот центра тяжести круга.

Рис.4.8

Вычислим полярный момент инерции круга, воспользовавшись выражением (4.5):

. (4.15)

Используя условие инвариантности для суммы осевых моментов инерции относительно двух взаимно перпендикулярных осей (4.6) и учитывая, что для круга в силу симметрии , определяем величину осевых моментов инерции:

. (4.16)

Откуда:

. (4.17)

Центробежный момент инерции относительно осей иравен нулю, так как осииявляются осями симметрии сечения.

4.4. Зависимости между моментами инерции относительно параллельных осей

При вычислении моментов инерции для сложных фигур следует запомнить одно правило: значения для моментов инерции можно складывать, если они вычислены относительно одной и той же оси.

Для сложных фигур чаще всего центры тяжести отдельных простых фигур и всей фигуры не совпадают. Не совпадают, соответственно, и центральные оси для отдельных простых фигур и всей фигуры. В связи с этим существуют приемы приведения моментов инерции к одной оси, например, центральной оси всей фигуры. Это может быть связано с параллельным переносом осей инерции и дополнительными вычислениями.

Рассмотрим определение моментов инерции относительно параллельных осей инерции, изображенных на рис.4.9.

Рис.4.9

Пусть осевые и центробежный моменты инерции изображенной на рис.4.9. фигуры относительно произвольно выбранных осей ис началом координат в точкеизвестны. Требуется вычислить осевые и центробежный моменты инерции фигуры относительно произвольных параллельных осейис началом координат в точке. Осиипроведены на расстоянияхисоответственно от осейи.

Воспользуемся выражениями для осевых моментов инерции (4.4) и для центробежного момента инерции (4.7). Подставим в эти выражения вместо текущих координат иэлемента с бесконечно малой площадью координатыив новой системе координат. Получим:

. (4.18)

. (4.19)

.

(4.20)

Анализируя полученные выражения, приходим к выводу, что при вычислении моментов инерции относительно параллельных осей к моментам инерции, вычисленных относительно исходных осей инерции, следует призводить добавки в виде дополнительных членов, которые могут оказаться намного больше значений для моментов инерции относительно исходных осей. Поэтому пренебрегать этими дополнительными членами ни в коем случае нельзя.

Рассмотренный случай представляет собой самый общий случай параллельного переноса осей, когда в качестве исходных были взяты произвольные оси инерции. В большинстве расчетов встречаются частные случаи определения моментов инерции.

Первый частный случай. Исходные оси являются центральными осями инерции фигуры. Тогда, используя основное свойство для статического момента площади, можно исключить из уравнений (4.18)(4.20) члены уравнений, в которые входит статический момент площади фигуры. В результате получим:

. (4.21)

. (4.22)

. (4.23)

Здесь оси ицентральные оси инерции.

Второй частный случай. Исходные оси являются главными осями инерции. Тогда, учитывая, что относительно главных осей инерции центробежный момент инерции равен нулю, получим:

. (4.24)

. (4.25)

. (4.26)

Здесь оси иглавные оси инерции.

Воспользуемся полученными выражениями и рассмотрим несколько примеров вычисления моментов инерции для плоских фигур.

Пример 4.2.Определить осевые моменты инерции фигуры, приведенной на рис. 4.10, относительно центральных осейи.

Рис.4.10

Решение:

В предыдущем примере 4.1 для изображенной на рис.4.10 фигуры было определено положение центра тяжести С. Координата центра тяжести откладывалась от оси и составила. Вычислим расстоянияимежду осямиии осямии. Эти расстояния составили соответственнои. Так как исходные осииявляются центральными осями для простых фигур в виде прямоугольников, для определения момента инерции фигуры относительно осивоспользуемся выводами для первого частного случая, в частности, формулой (4. 21).

см4.

Момент инерции относительно оси получим путем сложения моментов инерции простых фигур относительно этой же оси, так как осьявляется общей центральной осью для простых фигур и для всей фигуры.

см4.

Центробежный момент инерции относительно осей иравен нулю, так как ось инерцииявляется главной осью (осью симметрии фигуры).

Пример 4.3. Чему равен размер b (в см) фигуры, изображенной на рис. 4.11, если момент инерции фигуры относительно оси равен 1000 см4?

Рис.4.11

Решение:

Выразим момент инерции относительно оси через неизвестный размер сечения, воспользовавшись формулой (4.21), учитывая, что расстояние между осямииравно 7см:

см4. (а)

Решая выражение (а) относительно размера сечения , получим:

см.

Пример.4.4. Какая из фигур, изображенных на рис.4.12 , имеет больший момент инерции относительно оси , если обе фигуры имеют одинаковую площадьсм2?

Рис.4.12

Решение:

1. Выразим площади фигур через их размеры и определим:

а) диаметр сечения для круглого сечения:

см2; Откудасм.

б) размер стороны квадрата:

; Откудасм.

2. Вычисляем момент инерции для круглого сечения:

см4.

3. Вычисляем момент инерции для сечения квадратной формы:

см4.

Сравнивая полученные результаты, приходим к выводу, что наибольшим моментом инерции будет обладать сечение квадратной формы по сравнению с сечение круглой формы при одинаковой у них площади.

Пример 4.5.Определить полярный момент инерции (в см4) сечения прямоугольной формы относительно его центра тяжести, если ширина сечения см, высота сечениясм.

Решение:

1. Найдем моменты инерции сечения относительно горизонтальной и вертикальнойцентральных осей инерции:

см4;см4.

2. Определяем полярный момент инерции сечения как сумму осевых моментов инерции:

см4.

Пример 4.6. Определить момент инерции фигуры треугольной формы изображенной на рис.4.13, относительно центральной оси , если момент инерции фигуры относительно осиравен 2400 см4.

Рис.4.13

Решение:

Момент инерции сечения треугольной формы относительно главной оси инерции будет меньше по сравнению с моментом инерции относительно осина величину. Поэтому присм момент инерции сечения относительно осинайдем следующим образом:

см4.

Моменты инерции простейших фигур

Содержание:

Моменты инерции простейших фигур

  • Простейшее количество моментов инерции Вычисление момента инерции некоторых основных фигур можно выполнить путем интегрирования в соответствии с общим выражением, приведенным

в § 47. dF = J-y yibdyt = F- F Broadcast T R e y g o l l n I K. Рассчитайте момент инерции относительно центральной оси Oz. Ширина основной области на рисунке заштрихована. 154, определяется по сходству

  • треугольников: Подставляя это уравнение в интеграл, y2dF = (‘z / 2F_A три три Относительная ось Ot Zi для момента инерции равна Y * (h-yjd y * = описание bh4unit в списках двенадцать Теперь мы находим моменты инерции относительно оси симметрии Огайо. Ширина основной полосы определяется по сходству треугольника: Таким

образом, Для K R u g кругов наиболее удобно сначала вычислить полярный момент инерции, а затем через него определить момент инерции относительно центральной оси. Для риса. 155 показывает основную область, разрезанную двумя радиусами и двумя параллельными окружностями, dF = pdtpt / p. Целое квадратное интегрирование заменяется двойной интеграцией:

Двуосный момент л /? 4 4 Учитывая, что полюс инерции g равен сумме моментов, Людмила Фирмаль

получаем j-J — — — К о л л к о. Момент инерции числа (рис. 156) можно найти как разность моментов инерции двух окружностей: внешнего и внутреннего. Момент инерции полярности y == 2D1_D. = D (I * _g4). P2 2 2 Осевой момент инерции

Смотрите также:

Момент инерции и момент сопротивления

05-12-2012: Адольф Сталин

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно


05-12-2012: Доктор Лом

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье “Основы сопромата, расчетные формулы”, здесь лишь повторюсь: “W – это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы”. Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.


05-12-2012: Гиви

В принципе все предельно ясно, но здесь проще www.kataltim.ru


20-04-2013: Petr

Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. “Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм” для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам – должно быть больше 20!!! (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести. М.1961.стр.390)


21-04-2013: Доктор Лом

Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант – рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.


25-06-2013: Саня

требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву “Ш”. не получается найти какую либо информацию. буду признателен за какую нибудь информацию


25-06-2013: Доктор Лом

Посмотрите статью “Расчет прочности потолочного профиля для гипсокартона” (http://doctorlom. 3)*3,14/32.
Объясните, пожалуйста, правильность этой формулы (или неправильность).


04-11-2014: Доктор Лом

Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.


04-11-2014: Радик

Спасибо, док!


11-11-2014: Ильгам

Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.


11-11-2014: Доктор Лом

Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).


04-01-2015: Valerij

Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).


05-01-2015: Доктор Лом

Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье “Моменты инерции поперечных сечений”.
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 – это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.


09-10-2015: Борис

Неравноплечий уголок.При вычислении Wy не y,а H-y


09-10-2015: Доктор Лом

Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.


09-10-2015: Борс

Для треугольников при вычислении Wzп h в квадрате.


09-10-2015: Борис

Пардон,Wz


09-10-2015: Доктор Лом

Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.


28-04-2016: Jama

Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста!


28-04-2016: Доктор Лом

Что именно вам не понятно (вычитывать весь документ у меня нет времени). Если речь о балке, лежащей на упругом основании, то скорее всего балка эта имеет прямоугольное сечение (см. таблицу 1).


29-08-2016: Максим

Здравствуйте ! Имеется швеллер № 12. В верхний пояс будут вкручиваться саморезы и винты для крепления кровли. Как учесть ослабление швеллера, т.е как определить W ослабленного сечения.


29-08-2016: Доктор Лом

Если максимально упростить, то:
Сначала определяете момент инерции отверстия (для упрощения расчетов его можно принимать прямоугольным). Затем из момента инерции швеллера вычитаете момент инерции отверстия, затем делите полученный момент инерции на половину высоты швеллера и получаете момент сопротивления.


21-03-2017: игорь

здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.


21-03-2017: Доктор Лом

Игорь, я отправил вам письмо.


30-08-2017: Али

Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.


31-08-2017: Доктор Лом

Посмотрите статью “Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял


Моменты инерции простых, геометрических фигур

МОМЕНТЫ ИНЕРЦИИ ПРОСТЕЙШИХ ГЕОМЕТРИЧЕСКИХ ФИГУР  [c.24]

Моменты инерции простейших геометрических фигур приведены в табл. 1.  [c.28]

МОМЕНТЫ ИНЕРЦИИ ПРОСТЫХ ГЕОМЕТРИЧЕСКИХ ФИГУР  [c.218]

Для расчета момента инерции маховика необходимо знать момент инерции простейших геометрических фигур. Момент инерции сплошного диска или цилиндра, вращающегося относительно центральной оси (рис. 4.42, а).  [c.249]


При вычислении главных моментов инерции сечений, составленных из простейших геометрических фигур или стандартных прокатных профилей, широко применяются формулы перехода от централь-  [c.82]

Пример 21. Определить моменты инерции сечения, составленного из простых геометрических фигур, относительно главных центральных осей по условию примера 17 (см. рис. 30).  [c.112]

Конфигурацию каждой пластинки, расположенной между двумя секущими плоскостями, принимают совпадающей с конфигурацией ее среднего сечения. Таким способом весь груз заменяют набором пластинок определенной толщины и формы. Эти пластинки, в свою очередь, разбивают на ряд простых геометрических фигур (фиг. 197, б), причем для такой фигуры можно подсчитать момент инерции JI относительно центра тяжести груза по формуле  [c.257]

Приведение массы рычага ОС (см. фиг. 196, а) следует производить подсчетом его момента инерции относительно оси подвеса (точки О). Если рычаг имеет сложную конструктивную форму, его можно разбить на простые геометрические фигуры, как это было сделано с грузом. Если известен момент инерции рычага то по формуле  [c.259]

Грузы регулятора имеют сложную конструктивную форму (фиг. 197), поэтому весь груз параллельными плоскостями разбивается на пластинки толщиной 4 мм, а каждая пластинка — на простые геометрические фигуры. Затем определяются моменты инерции каждой фигурки относительно центра тяжести подковы груза, суммирование которых дает = 49,65 10 кГ-ж  [c.600]

Для определения приведенной массы рычага 14 (фиг. 137) необходимо предварительно определить его момент инерции относительно оси подвеса. С этой целью рычаг разбивается на простые геометрические фигуры (фиг. 318), после чего момент инерции рычага определяется в виде суммы моментов инерции фигур /р=63,6х х10 кГ-м-сек . Тогда приведенная масса рычага  [c.601]

Однако чаще всего грузы механического чувствительного элемента имеют сложную конструктивную форму, при которой их массу нельзя сосредоточивать в центре тяжести. В этих случаях груз разбивают на ряд простых геометрических фигур плоскостями, отстоящими одна от другой на небольшом расстоянии (3—5 мм) (фиг. 135, а). Конфигурацию каждой пластинки, расположенной между двумя секущими плоскостями, принимают совпадающей с конфигурацией ее среднего сечения. Таким способом весь груз заменяют набором пластинок определенной толщины и формы. Эти пластинки, в свою очередь, разбивают на ряд простых геометрических фигур (фиг. 135, б), причем для каждой такой фигуры можно подсчитать момент инерции J относительно центра тяжести груза по формуле  [c.170]


При расчете инерции маховика его разбивают на простейшие геометрические фигуры, находят их моменты инерции и складывают. Например, для нахождения момента инерции маховика, показанного на рис. 4.40, а, его удобно разбить на три элемента — обод, диск и ступицу. Тогда общий момент инерции маховика I будет равен сумме моментов инерции обода Jl, диска Уа и ступицы /3  [c.249]

Выполнив эскиз детали, условно расчленим ее на отдельные простейшие геометрические фигуры кольца, цилиндры, призмы и т.п. Вычислим моменты инерции фигур, составляющих исследуемое звено, относительно заданной оси г и, сложив их, получим суммарный момент инерции.  [c.44]

Для определения момента инерции ротора его разбивают на простые геометрические фигуры, подсчитывают, а затем суммируют моменты инерции этих фигур. Формулы моментов инерции простейших фигур даны в работах [16, 18].  [c.195]

В подавляющем большинстве случаев конечной целью вычисления геометрических характеристик сечения является определение его главных центральных моментов инерции и положения главных центральных осей инерции. Поэтому следующим этапом вычисления является определение координат центра тяжести заданного сечения [по формулам (5.5) и (5.6)] в некоторой произвольной (случайной) системе координат Через этот центр тяжести сечения проводятся вспомогательные (не главные) центральные оси и Zg, параллельные осям системы координат простых фигур.  [c.156]

Способ вычисления моментов инерции сложных сечений основан на том, что любой интеграл можно рассматривать как сумму интегралов и, следовательно, момент инерции любого сечения вычислять как сумму моментов инерции отдельных его частей. Поэтому для вычисления моментов инерции сложное сечение разбивается на ряд простых частей (фигур) с таким расчетом, чтобы их геометрические характеристики можно было вычислить по известным формулам или найти по специальным справочным табли- цам.  [c.175]

В случае сложных геометрических фигур, которые могут быть разбиты на простейшие части, как то прямоугольники, треугольники, части круга и т. д., находят момент инерции как сумму моментов инерции частей, пользуясь приведёнными выше формулами, связывающими моменты инерции для различных осей.  [c.51]

Выбор задач достаточно велик, и большинство из них практически равноценно. Ясно, что в части задач надо рассмотреть сечения, составленные из простейших геометрических фигур, а в части— прокатные профили. Необходимо решить задачу, в которой используется положение о равенстве между собой всех центральных моментов инерции в случае равенства двух из них (скажем, задачу 4.7 [15] или 5.21 [38]). Желательно также решить какую-либо задачу, в которой одна из составляющих фигур — полукруг, например задачу 3.5.д [15]. К сожалению, в остальных сборниках задач для техникумов аналогичн).1е задачи отсутствуют.  [c.116]

В дальнейшем будут встречаться фигуры, имеющие только простую геометрическую форму. При определеиин моментов инерции таких фигур пользуются обычно методом интегрирования. Если форма фигуры сложна и не поддается разбивке на простые фигуры, то моменты инерции таких фигур определяют графическими методами, приближенным интегрированием, или применяют особые приборы.  [c.166]


Таблица. Изгиб. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления и радиусы инерции плоских фигур.

Легенда:
  • π – математическая константа (3,14)
  • d, D – диаметр
  • r – радиус
  • с – отношение 2х диаметров друг к другу
  • s – толщина
Легенда:
  • h – высота
  • α – диаметр
  • b – ширина, длина
  • О – центр

Форма поперечного сечения

Осевой момент инерции, J, см4

Момент сопротивления W, см3

Радиус инерции i, см

Круг
Кольцо

c=d1/d
Тонкостенное кольцо

s≤(D/10)
Полукруг

Vo=2d/3π=0,2122d=0,4244r
Круговой сегмент

Круговой сектор

Круговое полукольцо

Сектор кругового кольца

Профиль с симметричными закруглениями

Эллипс

Квадрат

Полый квадрат

 

Полый тонкостенный квадрат

s<(B/15)
Квадрат, поставленный на ребро

Срез верхнего и нижнего углов увеличивает Wx;

при срезе углов на С=1/18 диагонали с каждой стороны

момент сопротивления увеличивается до Wx=0,124b3

Полый квадрат, поставленный на ребро

Прямоугольник

 

Прямоугольник повернутый

Полый прямоугольник

Полый тонкостенный прямоугольник

Сечение из двух равных прямоугольников

Треугольник 

При вычислении напряжения в вершине треугольника

при вычислении напряжения в точке основания

Поставленный на ребро треугольник

Трапеция

При вычислении напряжений в точках

верхнего основания

в точках нижнего основания

Трапеция

Тавр

Для нижних волокон

Для верхних волокон

Корытное сечение 

Крестообразное сечение

Правильный шестиугольник

Правильный восьмиугольник

Таблица. Изгиб. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления и радиусы инерции плоских фигур.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Материалы / / Сопротивление материалов. Сопромат. Таблицы строительных конструкций.  / / Таблица. Изгиб. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления и радиусы инерции плоских фигур.

Поделиться:   

Таблица. Изгиб. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления и радиусы инерции плоских фигур.   Версия для печати.

(Моменты инерции сечений = статические моменты сечений J даны для главных центральных осей. Радиус инерции i=(J/F)1/2, где F – площадь сечения).

Легенда:
  • π – математическая константа (3,14)
  • d, D – диаметр
  • r – радиус
  • с – отношение 2х диаметров друг к другу
  • s – толщина
Легенда:
  • h – высота
  • α – диаметр
  • b – ширина, длина
  • О – центр

Форма поперечного сечения

Осевой момент инерции, J, см4

Момент сопротивления W, см3

Радиус инерции i, см

Круг
Кольцо

c=d1/d
Тонкостенное кольцо

s≤(D/10)
Полукруг

Vo=2d/3π=0,2122d=0,4244r
Круговой сегмент

Круговой сектор

Круговое полукольцо

Сектор кругового кольца

Профиль с симметричными закруглениями

Эллипс

Квадрат

Полый квадрат

 

Полый тонкостенный квадрат

s<(B/15)
Квадрат, поставленный на ребро

Срез верхнего и нижнего углов увеличивает Wx;

при срезе углов на С=1/18 диагонали с каждой стороны

момент сопротивления увеличивается до Wx=0,124b3

Полый квадрат, поставленный на ребро

Прямоугольник

 

Прямоугольник повернутый

Полый прямоугольник

Полый тонкостенный прямоугольник

Сечение из двух равных прямоугольников

Треугольник 

При вычислении напряжения в вершине треугольника

при вычислении напряжения в точке основания

Поставленный на ребро треугольник

Трапеция

При вычислении напряжений в точках

верхнего основания

в точках нижнего основания

Трапеция

Тавр

Для нижних волокон

Для верхних волокон

Корытное сечение 

Крестообразное сечение

Правильный шестиугольник

Правильный восьмиугольник

Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator
2 dA

, где A – площадь формы, а y – расстояние любой точки внутри области A от заданной оси вращения. Из определения очевидно, что момент инерции всегда должен иметь положительное значение, поскольку внутри интеграла есть только квадратный член.

Концептуально второй момент площади связан с распределением площади формы. В частности, более высокий момент указывает на то, что площадь формы распределена далеко от оси. Напротив, более низкий момент указывает на более компактную форму, площадь которой расположена ближе к оси.Например, на следующем рисунке обе формы имеют равные площади, тогда как правая форма имеет более высокий второй момент площади вокруг красной оси, поскольку, по сравнению с левой, ее площадь распределена значительно дальше от оси. .

Терминология

Чаще всего термин момент инерции используется для второго момента площади, особенно в инженерных дисциплинах. Однако в физике момент инерции связан с распределением массы вокруг оси и, как таковой, является свойством объемных объектов, в отличие от второго момента площади, который является свойством плоских областей.На практике для описания второго момента площади можно использовать следующие термины:

  • момент инерции
  • момент инерции площади
  • момент инерции площади
  • момент инерции поперечного сечения
  • момент инерции балка

Второй момент площади (момент инерции) имеет значение только тогда, когда определена ось вращения. Тем не менее, часто можно использовать термин «момент инерции окружности», отсутствующий для обозначения оси.В таких случаях, вероятно, подразумевается ось, проходящая через центр тяжести формы.

Произведение инерции

Произведение инерции плоской замкнутой области определяется как интеграл по площади произведения расстояний от пары осей x и y:

I_ {xy} = \ iint_A xy dA

, где A – площадь формы, а x, y – расстояния любой точки внутри области A от соответствующих осей.

Если одна из двух осей также является осью симметрии, то I_ {xy} = 0.

Также обратите внимание, что в отличие от второго момента площади, произведение инерции может принимать отрицательные значения.

Дополнительная информация

Понравилась страница? Поделись с друзьями!

Список формул момента инерции для различных форм

формулы момента инерции

В этом посте вы узнаете список формул момента инерции для различных форм с примерами.
Состав:

  • Моменты инерции Определение
  • Формула момента инерции
  • Уравнение
  • Блок
  • Намного больше

Продолжайте читать…

Что такое момент инерции?

Момент инерции ( I ) определяется как сумма произведений массы каждой частицы тела и квадрата ее перпендикулярного расстояния от оси.Это также известно как инерция вращения. Момент инерции отражает распределение массы тела или системы вращающихся частиц относительно оси вращения. Момент инерции зависит только от геометрии тела и положения оси вращения, но не зависит от сил, задействованных в движении.

Момент инерции отражает распределение массы тела или системы вращающихся частиц относительно оси вращения. Момент инерции зависит только от геометрии тела и положения оси вращения, но не зависит от сил, задействованных в движении.
Момент инерции играет роль, аналогичную роли инерционной массы в случае прямолинейного и равномерного движения. Это скалярное значение продольного углового момента твердого тела.

I = mr²

Для твердого тела, движущегося вокруг фиксированной оси, законы движения имеют ту же форму, что и законы прямолинейного движения, с моментом инерции, заменяющим массу, угловым, заменяющим линейную скорость, угловым моментом, заменяющим линейный момент, и т. Д. Следовательно, кинетическая энергия тела, вращающегося вокруг фиксированной оси с угловой скоростью ω, составляет ½ω², что соответствует ½mv² для кинетической энергии тела массы m, перемещаемой со скоростью v.См. Также правило Рауса; Теорема о параллельных осях.

Уравнение момента инерции

Рассмотрим массу m, прикрепленную к концу безмассового стержня. Предположим, что подшипник в точке поворота O не имеет трения. Пусть система находится в горизонтальной плоскости. Сила F действует на массу, перпендикулярную стержню, и, следовательно, это ускоряет массу в соответствии с:

F = ma

При этом сила заставит массу вращаться вокруг оси O. Так как тангенциальное ускорение связано с угловым ускорением
α уравнением.

угловое ускорение = rα

Поскольку вращающий эффект создается крутящим моментом τ, поэтому было бы лучше записать уравнение для вращения в терминах крутящего момента. Это можно сделать, умножив обе части приведенного выше уравнения на r. Таким образом,

rF = τ = крутящий момент = mr²α

Какой вращательный аналог второго закона движения Ньютона?
Здесь F заменяется на τ, a на α и m на mr². Величина mr² известна как момент инерции и обозначается I.

Важность момента инерции

Момент инерции играет ту же роль при угловом движении, что и масса при линейном движении. Можно отметить, что момент инерции зависит не только от массы m, но и от r².

Формулы момента инерции

Вот список формул момента инерции различной формы:

  • Момент инерции обруча

момент инерции гильзы цилиндра
  • Момент инерции диска

Момент инерции диска
  • Момент инерции твердого шара

момент инерции сплошного цилиндра
  • Момент инерции полого цилиндра

момент инерции полого цилиндра
  • Момент инерции тонкого стержня

момент инерции длинного тонкого стержня

  • Момент инерции прямоугольника

момент инерции прямоугольника

  • Момент инерции длинного тонкого стержня

момент инерции тонкого стержня
  • Момент инерции сферической оболочки

Момент инерции тонкой сферической оболочки
Момент инерции (видео)

Связанные темы:

Формула момента инерции (общие формы)

Момент инерции – это величина, которая измеряет, насколько сложно изменить состояние вращения объекта.Момент инерции зависит от массы и формы объекта, а также от оси, вокруг которой он вращается. Моменты инерции для некоторых распространенных форм можно найти с помощью следующих формул. Момент инерции объекта, состоящего из ряда этих общих форм, является суммой моментов инерции его компонентов. Единицей измерения момента инерции является квадратный килограмм-метр.

I = момент инерции ()

M = общая масса вращающегося объекта (кг)

L = общая длина стержня (м)

a = длина двух сторон пластины (м)

b = длина двух других сторон пластины (м)

R 1 = внутренний радиус цилиндра (м)

R 2 = внешний радиус цилиндра (м)

R = радиус цилиндра или сферы (м)

Момент инерции Формула Вопросы:

1) Каков момент инерции твердого шара массой 55?0 кг, а радиус 0,120 м?

Ответ: Первый шаг – определить правильную формулу момента инерции. Момент инерции твердой сферы указан в таблице как:

.

Момент инерции твердого шара.

2) Пустая банка для супа с обеими снятыми крышками имеет массу 0,0580 кг, внутренний радиус 0,0320 м и внешний радиус 0,0330 м. Каков момент инерции банки?

Ответ: Первый шаг – определить правильную формулу момента инерции.Бидон для супа со снятыми крышками представляет собой цилиндр. Поскольку заданы внутренний и внешний радиус, используемая формула представляет собой момент инерции для полого цилиндра с толщиной стенки:

Масса банки M = 0,0580 кг, внутренний радиус R 1 = 0,0320 м, внешний радиус R 2 = 0,0330 м. Момент инерции банки:

Момент инерции пустой суповой банки примерно.

Калькулятор момента инерции

Если у вас возникли проблемы с определением второго момента площади любой общей формы (например, круга или шестиугольника), этот калькулятор момента инерции должен вам помочь. Здесь вы также найдете формулы момента инерции – прочтите описание ниже, чтобы убедиться, что вы используете их правильно! Мы объясним, как работают эти формулы, чтобы вам больше не приходилось задаваться вопросом, как вычислить момент инерции прямоугольника.

Второй момент площади

Что такое момент инерции площади (также называемый вторым моментом площади)? Это геометрическое свойство любой площади.Он описывает, как площадь распределена относительно произвольной оси. Момент инерции площади измеряется в метрах в четвертой степени (м⁴).

Мы можем различать момент инерции относительно горизонтальной оси x (обозначенный Ix ) и момент инерции относительно вертикальной оси y (обозначенный Iy ). Обычно мы предполагаем, что «ширина» любой формы – это длина стороны по оси x, а высота – по оси y.

Формулы момента инерции

Обычно для нахождения второго момента площади произвольной формы требуется интегрирование.Однако вы можете использовать следующие уравнения для наиболее распространенных форм. Помните, что эти формулы действительны только в том случае, если начало координат совпадает с центром тяжести области. Другими словами, если и ось x, и ось y пересекают центроид анализируемой формы, то эти уравнения остаются в силе.

  1. Треугольник:

    Ix = ширина * высота³ / 36

    Iy = (высота * ширина³ - высота * a * ширина² + ширина * высота * a²) / 36 , где a – смещение верхней вершины

  2. Прямоугольник:

    Ix = ширина * высота³ / 12

    Iy = высота * ширина³ / 12

  3. Круг:

    Ix = Iy = π / 4 * радиус

  4. Полукруг

    Ix = [π / 8 - 8 / (9 * π)] * радиус

    Iy = = π / 8 * радиус

  5. Эллипс:

    Ix = π / 4 * радиус_x * радиус_y³

    Iy = π / 4 * радиус_y * радиус_x³

  6. Стандартный шестигранник:

    Ix = Iy = 5 * √ (3) / 16 * side_length⁴

Как рассчитать момент инерции относительно любой оси

Что делать, если начало системы координат не совпадает с центром тяжести? Не беспокойтесь – еще можно найти второй момент области! Вам нужно использовать теорему о параллельных осях.Допустим, вы хотите найти момент площади вокруг оси, параллельной оси x, которая находится на расстоянии a от нее. Вам нужно использовать следующую формулу:

I = Ix + Aa²

где:

  • I – момент инерции относительно оси, параллельной оси x,
  • Ix – момент инерции относительно оси x,
  • A – площадь, а
  • a – расстояние между двумя параллельными осями.

Чтобы найти площадь круга (а также другие его свойства), используйте калькулятор длины окружности.

Пример: момент инерции прямоугольника

Предположим, прямоугольник шириной 12 см и высотой 8 см. Его центроид лежит в начале системы координат. Тогда:

Ix = 12 * 8³ / 12 = 512 см⁴

Iy = 8 * 12³ / 12 = 1152 см⁴

Характеристики поперечного сечения | MechaniCalc

ПРИМЕЧАНИЕ. Эта страница использует JavaScript для форматирования уравнений для правильного отображения.Пожалуйста, включите JavaScript.


Поведение элемента конструкции определяется его материалом и геометрией. Поперечное сечение и длина конструктивного элемента влияют на то, насколько этот элемент прогибается под нагрузкой, а поперечное сечение определяет напряжения, которые существуют в элементе при данной нагрузке.

Недвижимость участков

Центроид

Центроид формы представляет собой точку, вокруг которой равномерно распределена площадь сечения.Если область дважды симметрична относительно двух ортогональных осей, центр тяжести лежит на пересечении этих осей. Если область симметрична только относительно одной оси, то центроид лежит где-то вдоль этой оси (необходимо вычислить другую координату). Если точное местоположение центроида не может быть определено путем осмотра, его можно рассчитать следующим образом:

где dA представляет собой площадь бесконечно малого элемента, A – общая площадь поперечного сечения, а x и y – координаты элемента dA относительно интересующей оси.

Центроидальные положения общих поперечных сечений хорошо задокументированы, поэтому обычно нет необходимости рассчитывать местоположение с помощью приведенных выше уравнений.

Если поперечное сечение состоит из набора основных форм, центроидальное положение которых известно относительно некоторой контрольной точки, то центральное положение составного поперечного сечения можно рассчитать как:

где x c, i и y c, i – прямоугольные координаты центроидного положения секции i th относительно опорной точки, а A i – площадь i th раздел.

Центроидное расстояние

Центроидное расстояние , c – это расстояние от центра тяжести поперечного сечения до крайнего волокна. Центроидное расстояние в направлении y для прямоугольного поперечного сечения показано на рисунке ниже:

Обычно центроидное расстояние используется:



Первый момент области

Первый момент области относительно интересующей оси рассчитывается как:

Q x = ∫ y dA Q y = ∫ x dA

где Q x – это первый момент вокруг оси x, а Q y – это первый момент вокруг оси y.Если область состоит из набора основных форм, чьи центроидные положения известны относительно интересующей оси, то первый момент составной области можно рассчитать как:

Обратите внимание, что первый момент площади используется при вычислении центра тяжести поперечного сечения относительно некоторого начала координат (как обсуждалось ранее). Первый момент также используется при расчете значения напряжения сдвига в определенной точке поперечного сечения.В этом случае первый момент вычисляется для области, которая составляет меньшую часть поперечного сечения, где область ограничена интересующей точкой и крайним волокном (верхним или нижним) поперечного сечения. Первый момент рассчитывается относительно оси, проходящей через центр тяжести поперечного сечения.

На рисунке выше заштрихованная синяя область представляет собой интересующую область в пределах всего поперечного сечения. Первый момент этой области относительно оси x (которая проходит через центр тяжести поперечного сечения, точку O на рисунке выше) рассчитывается как:

Если центральное положение интересующей области известно, то первый момент области относительно оси может быть вычислен как (см. Рисунок выше):

Q cx = y c1 A 1

Следует отметить, что первый момент области будет положительным или отрицательным в зависимости от положения положения области относительно оси интереса.Следовательно, первый момент всей площади поперечного сечения относительно его собственного центроида будет равен нулю.

Момент инерции площади

Второй момент площади, более известный как момент инерции , I, поперечного сечения, является показателем способности конструктивного элемента сопротивляться изгибу. (Примечание 1) I x и I y – моменты инерции относительно осей x и y, соответственно, и рассчитываются по формуле:

I x = ∫ y 2 dA I y = ∫ x 2 dA

где x и y – координаты элемента dA относительно интересующей оси.

Чаще всего моменты инерции рассчитываются относительно центра тяжести сечения. В этом случае они называются центроидными моментами инерции и обозначаются как I cx для инерции относительно оси x и I cy для инерции относительно оси y.

Моменты инерции общих поперечных сечений хорошо задокументированы, поэтому обычно нет необходимости рассчитывать их с помощью приведенных выше уравнений. Свойства нескольких общих сечений приведены в конце этой страницы.

Если поперечное сечение состоит из набора основных форм, все центроиды которых совпадают, то момент инерции составного сечения является просто суммой отдельных моментов инерции. Примером этого является балка коробчатого сечения, состоящая из двух прямоугольных секций, как показано ниже. В этом случае внешняя часть имеет «положительную площадь», а внутренняя часть имеет «отрицательную площадь», поэтому составной момент инерции представляет собой вычитание момента инерции внутренней части из внешней части.

В случае более сложного составного поперечного сечения, в котором центральные положения не совпадают, момент инерции может быть вычислен с помощью теоремы о параллельных осях .

Важно не путать момент инерции площади с массой и моментом инерции твердого тела. Момент инерции площади указывает на сопротивление поперечного сечения изгибу, тогда как момент инерции массы указывает на сопротивление тела вращению.

Теорема о параллельной оси

Если известен момент инерции поперечного сечения относительно центральной оси, то для вычисления момента инерции относительно любой параллельной оси можно использовать теорему о параллельных осях :

I параллельная ось = I c & plus; А д 2

где I c – момент инерции относительно центральной оси, d – расстояние между центральной осью и параллельной осью, а A – площадь поперечного сечения.

Если поперечное сечение состоит из набора основных форм, центроидные моменты инерции которых известны вместе с расстояниями центроидов до некоторой контрольной точки, то теорема о параллельных осях может использоваться для вычисления момента инерции составного поперечного сечения.

Например, двутавровая балка может быть аппроксимирована 3 прямоугольниками, как показано ниже. Поскольку это составное сечение симметрично относительно осей x и y, центр тяжести сечения можно определить путем осмотра на пересечении этих осей.Центроид расположен в начале координат O на рисунке.

Момент инерции составной секции можно рассчитать с помощью теоремы о параллельности осей. Центроидный момент инерции секции относительно оси x, I cx , рассчитывается как:

I cx.IBeam = I cx.W & plus; (I cx.F1 & plus; A F1 d 1 2 ) & plus; (I cx.F2 & plus; A F2 d 2 2 )

где члены I cx представляют собой моменты инерции отдельных секций относительно их собственных центроидов в ориентации оси x, члены d представляют собой расстояния от центроидов отдельных секций до центроида составной секции, а Термины – это площади отдельных разделов.Поскольку центроид сечения W и центроид составного сечения совпадают, d для этого сечения равно нулю, поэтому член Ad 2 отсутствует.

Важно отметить, что из теоремы о параллельных осях следует, что по мере того, как отдельная секция перемещается дальше от центра тяжести составной секции, вклад этой секции в момент инерции составной секции увеличивается в d 2 раз. Следовательно, если намерение состоит в том, чтобы увеличить момент инерции секции относительно определенной оси, наиболее эффективно расположить область как можно дальше от этой оси.Это объясняет форму двутавровой балки. Фланцы вносят основной вклад в момент инерции, а перегородка служит для отделения фланцев от оси изгиба. Однако полотно должно сохранять некоторую толщину, чтобы избежать коробления, а также потому, что полотно принимает на себя значительную часть напряжения сдвига в сечении.

Полярный момент инерции

Полярный момент инерции , I, поперечного сечения является показателем способности конструктивного элемента противостоять скручиванию вокруг оси, перпендикулярной сечению.Полярный момент инерции для сечения относительно оси можно рассчитать следующим образом:

J = ∫ r 2 dA = ∫ (x 2 & plus; y 2 ) dA

где x и y – координаты элемента dA относительно интересующей оси, а r – расстояние между элементом dA и интересующей осью.

Хотя полярный момент инерции можно рассчитать с помощью приведенного выше уравнения, обычно удобнее рассчитывать его с помощью теоремы о перпендикулярной оси , которая утверждает, что полярный момент инерции области является суммой моментов инерции относительно любые две ортогональные оси, проходящие через интересующую ось:

J = I x & плюс; Я y

Чаще всего интересующая ось проходит через центр тяжести поперечного сечения.

Модуль упругости сечения

Максимальное изгибающее напряжение в балке рассчитывается как σ b = Mc / I c , где c – расстояние от нейтральной оси до крайнего волокна, I c – центроидный момент инерции, а M – изгибающий момент. Модуль упругости сечения объединяет члены c и I c в уравнении напряжения изгиба:

S = I с / с

Используя модуль упругости сечения, напряжение изгиба рассчитывается как σ b = M / S.Полезность модуля сечения заключается в том, что он характеризует сопротивление сечения изгибу одним термином. Это позволяет оптимизировать поперечное сечение балки, чтобы противостоять изгибу, за счет максимального увеличения одного параметра.

Радиус вращения

Радиус вращения представляет собой расстояние от центра тяжести секции, на котором вся площадь может быть сосредоточена без какого-либо влияния на момент инерции. Радиус вращения формы относительно каждой оси определяется как:

Полярный радиус вращения также может быть вычислен для задач, связанных с кручением вокруг центральной оси:

Прямоугольные радиусы вращения также можно использовать для вычисления полярного радиуса вращения:

r p 2 = r x 2 и плюс; г г 2



Свойства общих сечений

В таблице ниже приведены свойства обычных поперечных сечений.Более подробные таблицы можно найти в перечисленных ссылках.

Свойства, вычисленные в таблице, включают площадь, центроидный момент инерции, модуль упругости сечения и радиус вращения.




Банкноты


Примечание 1: Прогиб балки

Прогиб балки при изгибе определяется моментом инерции поперечного сечения, длиной балки и модулем упругости материала.Более подробная информация представлена ​​в этом обсуждении отклонения балки.


Список литературы

  1. Гир, Джеймс М., “Механика материалов”, 6-е изд.
  2. Линдебург, Майкл Р., “Справочное руководство по машиностроению для экзамена на физическую форму”, 13-е изд.

Как рассчитать момент инерции балки?

размер шрифта: 15 пикселей;
}
]]>

Как рассчитать момент инерции секции балки
(второй момент площади)

Прежде чем мы найдем момент инерции (или второй момент площади) сечения балки, необходимо знать ее центроид (или центр масс).Например, если требуется момент инерции секции относительно ее горизонтальной (XX) оси, тогда сначала потребуется вертикальный (y) центроид (пожалуйста, просмотрите наше Учебное пособие о том, как рассчитать центроид секции балки).

Прежде чем мы начнем, если вы искали наш калькулятор свободного момента инерции, щелкните ссылку, чтобы узнать больше. Это вычислит центроид, moi и другие результаты и даже покажет вам пошаговые вычисления! А пока давайте посмотрим на пошаговое руководство и пример того, как рассчитать момент инерции:

Шаг 1. Разделите секцию балки на части

При вычислении момента инерции площади мы должны вычислить момент инерции меньших сегментов.Попробуйте разбить их на простые прямоугольные секции. Например, рассмотрим секцию двутавровой балки ниже, которая также была представлена ​​в нашем руководстве по Centroid. Мы решили разделить эту секцию на 3 прямоугольных сегмента:

Шаг 2: Расчет нейтральной оси (NA)

Нейтральная ось (NA) или горизонтальная ось XX расположена в центре тяжести или центре масс. В нашем руководстве по центроидам центр тяжести этой секции ранее находился на расстоянии 216,29 мм от нижней части секции.

Шаг 3: Расчет момента инерции

Для расчета полного момента инерции секции нам необходимо использовать «Теорему о параллельности оси»:

Поскольку мы разделили его на три прямоугольные части, мы должны вычислить момент инерции каждой из этих частей. Широко известно, что уравнение момента инерции прямоугольника относительно его центральной оси имеет простой вид:

Момент инерции других форм часто указывается на лицевой / оборотной стороне учебников или в этом руководстве по формам момента инерции.Однако прямоугольная форма очень характерна для сечений балок, поэтому, наверное, стоит запомнить.

Теперь у нас есть вся информация, необходимая для использования «теоремы о параллельной оси» и определения полного момента инерции двутавровой балки. В нашем примере момента инерции:

Итак, у вас есть руководство по расчету площади момента для секций балки. Этот результат имеет решающее значение при проектировании конструкций и является важным фактором отклонения балки.Мы надеемся, что вам понравилось это руководство, и с нетерпением ждем ваших комментариев.

БОНУС: Использование нашего калькулятора момента инерции Учетная запись

SkyCiv показывает полные расчеты момента инерции. Этот интерактивный модуль покажет вам пошаговые расчеты того, как найти момент инерции:

Вы также можете посмотреть результаты нашего калькулятора свободного момента инерции, чтобы проверить свою работу. Это позволит рассчитать все свойства вашего поперечного сечения и является полезным справочным материалом для расчета центроида, площади и момента инерции сечений вашей балки!

Калькулятор свободного момента инерции

(момент инерции – TotalConstructionHelp)


Центроиды и момент инерции

Центроид двумерной поверхности (например, поперечное сечение структурной формы) – это точка, которая соответствует центру тяжести очень тонкой однородной пластины той же площади и формы.Плоская поверхность (или рисунок) может представлять фактическую площадь (например, площадь перекрытия притока или поперечное сечение балки) или образную диаграмму (например, диаграмму нагрузки или изгибающего момента). В любом случае часто бывает полезно определить центр тяжести области.

Симметрия может быть очень полезной для определения местоположения центра тяжести области. Если область (или сечение, или тело) имеет одну линию симметрии, центр тяжести будет лежать где-то вдоль линии симметрии. Это означает, что если бы требовалось уравновесить область (или тело, или секцию) в горизонтальном положении, подложив под нее карандаш или край, то карандаш лучше всего положить прямо под линией симметрии.

Если тело (или область, или сечение) имеет две (или более) линии симметрии, центр тяжести должен лежать где-то вдоль каждой из этих линий. Таким образом, центр тяжести находится в точке пересечения линий. Это означает, что если бы требовалось уравновесить область (или тело, или секцию) в горизонтальном положении, поместив под нее гвоздь, острие гвоздя лучше всего расположить непосредственно под точкой, где встречаются линии симметрии. Это может показаться очевидным, но понятие центроида очень важно понимать как графически, так и численно.Положение центра тяжести некоторых простых форм легко определяется при осмотре. Известно, что центр тяжести круга находится в его центре, а центр тяжести квадрата находится на пересечении двух линий, соединяющих середины параллельных сторон. У круга бесконечное количество линий симметрии, а у квадрата – четыре.

Центроид сечения не всегда находится в пределах площади или материала сечения. Полые трубы, L-образные и некоторые секции неправильной формы имеют центроид, расположенный вне материала секции.Это не проблема, поскольку центроид на самом деле используется только как точка отсчета, от которой измеряются расстояния. Точное положение центроида можно определить, как описано выше, с помощью графической статики или численно.

Центроид любой области можно найти, взяв моменты идентифицируемых областей (например, прямоугольников или треугольников) вокруг любой оси. Это делается так же, как центр тяжести можно найти, взяв моменты веса. Момент большой площади относительно любой оси равен алгебраической сумме моментов составляющих ее площадей.Это выражается следующим уравнением:

Сумма MAtotal = MA1 + MA2 + MA3 + …

Момент любой области определяется как произведение площади и перпендикулярного расстояния от центра тяжести площади до оси момента. С помощью этого принципа мы можем найти центр тяжести любой простой или составной области.

Центр тяжести:

Дано: пластина, показанная на схеме, имеет вес 1 # / дюйм 2 (1 фунт на квадратный дюйм) горизонтальной поверхности.

Определить:
центр тяжести пластины, зная, что она симметрична относительно оси X-X.

Решение: Принцип моментов гласит, что общий вес вокруг оси равен сумме моментов весов компонентов относительно этой же оси. Таким образом, первое, что нужно сделать, – это разделить тарелку на несколько простых частей. Затем определите площадь и центр тяжести (или центроид) для каждой из составных частей. После этого измерьте моменты каждой из частей вокруг удобной оси (в этом случае выберите ось Z-Z, вокруг которой будут измеряться эти моменты).Ось Z-Z здесь обозначена как Ref Axis.


Сумма MAtotal = MA1 + MA2 + MA3

Это простое уравнение можно переписать следующим образом, в котором описана каждая из составных частей:

(Atotal) (расстояние от исходной оси до центральной оси) = (A1) (расстояние от центра тяжести A1 до исходной оси) + (A2) (расстояние от центра тяжести A2 до исходной оси) + (A3) (расстояние от центроида от A3 до оси отсчета)

, а затем решить относительно y…. центральная ось находится на расстоянии 7,3 дюйма от исходной оси.

Фактический центр тяжести находится на полпути по глубине пластины в точке, рассчитанной выше. При уменьшении толщины пластины линия действия центра тяжести останется, в то время как центр тяжести перемещается пропорционально этой линии действия, всегда действующей в средней точке глубины пластины. Если толщина пластины уменьшается до нуля, она не имеет веса, и прежнее положение центра тяжести теперь называется центроидом площади.

Момент инерции (I) – это термин, используемый для описания способности поперечного сечения сопротивляться изгибу. Он всегда учитывается относительно базовой оси, такой как X-X или Y-Y. Это математическое свойство сечения, связанное с площадью поверхности и тем, как эта площадь распределена относительно базовой оси. Базовой осью обычно является центральная ось.

Момент инерции также известен как Второй момент области и математически выражается как:

Ixx = Сумма (A) (y 2 )

В котором:

Ixx = момент инерции вокруг оси x
A = площадь плоскости объекта
y = расстояние между центром тяжести объекта и осью x

Момент инерции – это важное значение, которое используется для определения напряженного состояния в сечении, расчета сопротивления продольному изгибу и определения величины прогиба балки.
Например, если проектировщику дается определенный набор ограничений для структурной проблемы (т.е. нагрузки, пролеты и конечные условия), может быть определено «требуемое» значение момента инерции. Тогда любой структурный элемент, который имеет хотя бы этот конкретный момент инерции, можно будет использовать в конструкции. Другой пример может быть, если верно обратное; конкретный элемент дается в дизайне. Затем можно было определить несущую способность элемента.

Давайте посмотрим на две доски, чтобы интуитивно определить, какая из них будет отклоняться больше и почему.Если две доски с фактическими размерами 2 дюйма на 10 дюймов были уложены рядом – одна со стороны двух дюймов, а другая – со стороны восьми дюймов, плата, которая опирается на ее 2-дюймовый край, будет значительно жестче, чем та, которая поддерживается вдоль. его 10-дюймовый край. Обе платы имеют одинаковую площадь поперечного сечения, но по-разному распределены относительно горизонтальной центральной оси.


Ixx = (1/12) (b) (h 3 ) = (1/12) x (b) x (h x h x h)

В котором значение b всегда принимается равным стороне, параллельной базовой оси, а h – высотой секции.Это очень важно отметить! Если принять неправильное значение для значения b, вычисления будут совершенно неверными.

Момент инерции

Дано: поперечное сечение.
Определите: моменты инерции, Ixx и Iyy этого раздела.

Решение:


Момент инерции прямоугольной формы, такой как эта, легко вычисляется с помощью уравнения I = 1/12 bh4. Однако очень важно, чтобы b и h были присвоены правильные значения.

Вы можете просто повернуть элемент на 90 градусов и произвести пересчет, всегда запоминая исходное положение элемента.

Ixx = 1/12 (4 дюйма) (10 дюймов) 3 = 333,2 дюйма 4
Iyy = 1/12 (10 дюймов) (4 дюйма) 3 = 53,312 дюйм 4

В этом случае наблюдение подтвердит выбор для b и h. Логично, что Ixx больше, чем Iyy, потому что большая часть прямоугольной области находится дальше от оси x-x, чем ось y-y. Это приводит к тому, что форма имеет большее сопротивление вращению вокруг оси x-x и, следовательно, больший момент инерции вокруг этой оси.

Важность распределения площади вокруг его центральной оси становится очевидной при сравнении значений момента инерции ряда типичных конфигураций балки. Все элементы, показанные ниже, имеют размер 2 x 10 дюймов; в поперечном сечении, равной длины и одинаковой нагрузки.

НАСТРОЕННЫЕ РАЗДЕЛЫ Часто бывает выгодно объединить несколько элементов меньшего размера, чтобы создать балку или колонну большей прочности. Момент инерции такой сборной секции определяется сложением моментов инерции составных частей.Это может быть сделано тогда и только тогда, когда моменты инерции каждой составляющей области взяты относительно общей оси, и тогда и только тогда, когда результирующее сечение действует как единое целое.

Застроенные секции

Дано:
следующие сечения
Определить:
Ix каждого раздела с учетом его составных частей.

Решение:
В этом примере Box разбит на 4 отдельных элемента, и показана процедура вычисления Ixx.

Расчет вручную с помощью компьютерного расчета, приведенного ниже.

Пример результатов компьютерной программы, доступной в нашем разделе бесплатного программного обеспечения




ФОРМУЛА ПЕРЕДАЧИ

Есть много составных секций, в которых составные части не распределены симметрично относительно центральной оси. Самый простой способ определить момент инерции такого участка – найти момент инерции составных частей относительно их собственной центральной оси, а затем применить формулу переноса.Формула переноса переносит момент инерции сечения или площади с его собственной центральной оси на другую параллельную ось. Из математического анализа известно, что это:

Ix = Ic + Ad 2

Где:

Ix = момент инерции относительно оси x-x (в 4 )
Ic = момент инерции относительно центральной оси c-c, параллельной x-x (в 4 )
A = площадь сечения (в 2 )
d = расстояние по перпендикуляру между параллельными осями x-x и c-c (дюймы)

Формула передачи

Дано:
приклеенный асимметричный нарост внизу.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *