Нахождение сложной производной: Производная сложной функции (u(v(x))’

Содержание

Краткий курс высшей математики

Краткий курс высшей математики
  

Шнейдер В. Е. и др. Краткий курс высшей математики. Учеб. пособие для втузов. М., «Высш. школа», 1972. 640 с.

Данное учебное пособие предназначено для студентов вечерних факультетов втузов и заводов-втузов. Оно в основном охватывает весь материал, предусмотренный обязательной программой. Достаточное количество решенных примеров и задач способствует лучшему усвоению теоретического материала.



Оглавление

ПРЕДИСЛОВИЕ
ГЛАВА I. МЕТОД КООРДИНАТ. ПОНЯТИЕ ФУНКЦИИ
§ 1. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА. КООРДИНАТЫ ТОЧКИ НА ПРЯМОЙ
2. Геометрическое изображение действительных чисел. Координаты точки на прямой
3. Абсолютная величина действительного числа
4. Расстояние между двумя точками на прямой
§ 2. КООРДИНАТЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ
2. Расстояние между двумя точками на плоскости
3. Деление отрезка в данном отношении
4. Координаты точки в пространстве
5. Расстояние между двумя точками в пространстве
§ 3. УГОЛ МЕЖДУ ДВУМЯ ОСЯМИ. ПОЛЯРНЫЕ КООРДИНАТЫ
2. Полярные координаты
3. Зависимость между декартовыми и полярными координатами
§ 4. ФУНКЦИОНАЛЬНАЯ ЗАВИСИМОСТЬ
2. Понятие функции
3. График функции
4. Способы задания функций
5. Основные элементарные функции и их графики
6. Сложные функции. Элементарные функции
7. Целые и дробно-рациональные функции
8. Функции четные и нечетные. Периодические функции
§ 5. УРАВНЕНИЕ ЛИНИИ
2. Нахождение уравнения линии по ее геометрическим свойствам
§ 6 ПРЕОБРАЗОВАНИЕ КООРДИНАТ
2. Поворот осей координат
ГЛАВА II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ
§ 1. ПРЯМАЯ
2. Уравнение прямой с угловым коэффициентом
3. Уравнение прямой, параллельной оси ординат
4. Общее уравнение прямой и его частные случаи
5. Точка пересечения прямых. Построение прямой по ее уравнению
6. Вычисление угла между двумя прямыми. Условия параллельности и перпендикулярности двух прямых
7. Уравнение прямой, проходящей через данную точку в заданном направлении
8. Пучок прямых
9. Уравнение прямой, проходящей через две данные точки
10. Расстояние от точки до прямой
§ 2. КРИВЫЕ ВТОРОГО ПОРЯДКА
2. Окружность
3. Эллипс
4. Гипербола
5. Парабола
6. Окружность, эллипс, гипербола и парабола как конические сечения
7. Упрощение уравнения кривой второго порядка. График квадратного трехчлена
8. Уравнение равносторонней гиперболы, асимптоты которой приняты за оси координат
9. График дробно-линейной функции
10. Преобразование уравнения кривой второго порядка, не содержащего члена с произведением координат
ГЛАВА III. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ И ВЕКТОРНОЙ АЛГЕБРЫ
§ 1. ЭЛЕМЕНТЫ ТЕОРИИ ОПРЕДЕЛИТЕЛЕЙ
2. Определитель третьего порядка
3. Понятие об определителях высших порядков
§ 2. СИСТЕМЫ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ
2. Однородная система двух уравнений первой степени с тремя неизвестными
3. Система трех уравнений первой степени с тремя неизвестными
4. Однородная система трех уравнений первой степени с тремя неизвестными
§ 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ
2. Линейные операции над векторами
4. Проекция вектора на ось и составляются вектора по оси
5. Разложение вектора на составляющие по осям координат
6. Направляющие косинусы вектора
7. Условие коллинеарности двух векторов
8. Скалярное произведение
9. Выражение скалярного произведения через проекции перемножаемых векторов
10. Косинус угла между двумя векторами
11. Векторное произведение
12. Выражение векторного произведения через проекции перемножаемых векторов
13. Смешанное произведение трех векторов
14. Геометрический смысл смешанного произведения
15. Условие компланарности трех векторов
§ 4. МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ
2. Равенство матриц. Действия над матрицами
3. Обратная матрица
4. Матричная запись и матричное решение системы уравнений первой степени
§ 5. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
2. Преобразование координат
3. Приведение квадратичной формы к каноническому виду
4. Упрощение общего уравнения кривой второго порядка
ГЛАВА IV. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
§ 1. ПЛОСКОСТЬ
2. Нормальный вектор плоскости. Уравнение плоскости, проходящей через данную точку
3. Общее уравнение плоскости и его частные случаи
4. Построение плоскости по ее уравнению
5. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей
6. Точка пересечения трех плоскостей
§ 2. ПРЯМАЯ В ПРОСТРАНСТВЕ
2. Общие уравнения прямой
3. Векторное уравнение прямой. Параметрические уравнения прямой
4. Канонические уравнения прямой
5. Уравнения прямой, проходящей через две точки
6. Угол между двумя прямыми. Условия параллельности и перпендикулярности прямых
§ 3. Прямая и плоскость в пространстве
2. Точка пересечения прямой с плоскостью
3. Расстояние от точки до плоскости
4. Пучок плоскостей
§ 4. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА
2. Цилиндрические поверхности
3. Конические поверхности
4. Поверхность вращения
6. Гиперболоиды
7. Параболоиды
ГЛАВА V. ТЕОРИЯ ПРЕДЕЛОВ
§ 1. ПРЕДЕЛ ФУНКЦИИ
2. Предел функции при х -> -оо
3. Предел функции при х->х0
4. Бесконечно малые функции. Ограниченные функции
5. Бесконечно большие функции и их связь с бесконечно малыми функциями
6. Основные теоремы о пределах
7. Предел функции при x -> 0
8. Последовательность. Число e
9. Натуральные логарифмы
10. Сравнение бесконечно малых функций
§ 2. НЕПРЕРЫВНЫЕ ФУНКЦИИ
2. Операции над непрерывными функциями. Непрерывность элементарных функций
3. Свойства функций, непрерывных на сегменте
4. Понятие об обратной функции
5. Обратные тригонометрические функции
6. Показательная и логарифмическая функции
7. Понятие о гиперболических функциях
ГЛАВА VI. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
1. Приращение аргумента и приращение функции
2. Определение непрерывности функции с помощью понятии приращения аргумента и приращения функции
3. Задачи, приводящие к понятию производной
4. Определение производной и ее механический смысл
5. Дифференцируемость функции
6. Геометрический смысл производной
7. Производные некоторых основных элементарных функций
8. Основные правила дифференцирования
9. Производная обратной функции
10. Производные обратных тригонометрических функций
11. Производная сложной функции
§ 12. Производные гиперболических функций
13. Производная степенной функции с любым показателем
14. Сводная таблица формул дифференцирования
15. Неявные функции и их дифференцирование
16. Уравнения касательной а нормали к кривой
17. Графическое дифференцирование
§ 2. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ
1. Нахождение производных высших порядков
2. Механический смысл второй производной
§ 3. ДИФФЕРЕНЦИАЛ ФУНКЦИИ
2. Производная как отношение дифференциалов
3. Дифференциал суммы, произведения и частного функций
4. Дифференциал сложной функции. Инвариантность формы дифференциала
5. Применение дифференциала к приближенным вычислениям
6. Дифференциалы высших порядков
§ 4. ФУНКЦИИ, ЗАДАННЫЕ ПАРАМЕТРИЧЕСКИ, И ИХ ДИФФЕРЕНЦИРОВАНИЕ
2. Дифференцирование функций, заданных параметрически
§ 5. ВЕКТОРНАЯ ФУНКЦИЯ СКАЛЯРНОГО АРГУМЕНТА
2. Векторная функция скалярного аргумента и ее производная
3. Уравнения касательной прямой и нормальной плоскости к пространственной кривой
4. Механический смысл первой и второй производных векторной функции скалярного аргумента
§ 6. НЕКОТОРЫЕ ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ
2. Теорема Ролля
3. Теорема Лагранжа
4. Правило Лопиталя
§ 7. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ
2. Максимум и минимум функции
3. Достаточный признак существования экстремума, основанный на знаке второй производной
4.
Отыскание наибольшего и наименьшего значений функции
5. Применение теории максимума и минимума к решению задач
6. Выпуклость и вогнутость графика функции. Точки перегиба
7. Асимптоты графика функции
8. Общая схема исследования функции и построение ее графика
§ 8. ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ
2. Уточнение найденных значений корней методом хорд и касательных
§ 9. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА ЛАГРАНЖА
ГЛАВА VII. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО СВОЙСТВА
2. Геометрический смысл неопределенного интеграла
3. Таблица основных интегралов
4. Основные свойства неопределенного интеграла
§ 2. ОСНОВНЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ
2. Интегрирование методом замены переменной
3. Интегрирование по частям
§ 3. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Рациональные дроби. Выделение правильной рациональной дроби
3. Интегрирование простейших рациональных дробей
4. Разложение правильной рациональной дроби на простейшие дроби
5. Метод неопределенных коэффициентов
6. Интегрирование рациональных дробей
§ 4. Интегрирование тригонометрических функций
2. Рациональные функции двух переменных
3. Интегралы вида
§ 5. ИНТЕГРИРОВАНИЕ НЕКОТОРЫХ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Интеграл вида
3. Интегралы видов
4. Интегралы вида
§ 6. ОБЩИЕ ЗАМЕЧАНИЯ О МЕТОДАХ ИНТЕГРИРОВАНИЯ. ИНТЕГРАЛЫ, НЕ БЕРУЩИЕСЯ В ЭЛЕМЕНТАРНЫХ ФУНКЦИЯХ
2. Понятие об интегралах, не берущихся в элементарных функциях
ГЛАВА VIII. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕННОМУ ИНТЕГРАЛУ
2. Задача о работе переменной силы
§ 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
2. Свойства определенного интеграла
3. Производная интеграла по переменной верхней границе
4. Формула Ньютона—Лейбница
5. Замена переменной в определенном интеграле
6. Интегрирование по частям в определенном интеграле
§ 3. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
2. Вычисление площади в полярных координатах
3. Вычисление объема тела по известным поперечным сечениям
4. Объем тела вращения
5. Длина дуги кривой
6. Дифференциал дуги
7. Площадь поверхности вращения
8. Общие замечания о решении задач методом интегральных сумм
§ 4. КРИВИЗНА ПЛОСКОЙ КРИВОЙ
2. Вычисление кривизны
3. Радиус кривизны. Круг кривизны. Центр кривизны
4. Эволюта и эвольвента
§ 5. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
2. Интегралы от разрывных функций
3. Признаки сходимости несобственных интегралов
§ 6. ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ
2. Метод трапеций
3. Метод параболических трапеций (метод Симпсона)
ГЛАВА IX. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. График функции двух переменных
3. Функции трех и большего числа переменных
§ 2. Предел функции нескольких переменных. Непрерывность функции. Точки разрыва
2. Непрерывность функции нескольких переменных
3. Понятие области
4. Точки разрыва
5. Свойства функций, непрерывных в ограниченной замкнутой области
§ 3. ЧАСТНЫЕ ПРОИЗВОДНЫЕ
2. Геометрический смысл частных производных функции двух переменных
3. Частные производные высших порядков
§ 4. ПОЛНЫЙ ДИФФЕРЕНЦИАЛ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. Полный дифференциал функции
3. Приложение полного дифференциала к приближенным вычислениям
§ 5. Дифференцирование сложных и неявных функций
2. Инвариантность формы полного дифференциала
3. Дифференцирование неявных функций
§ 6. СКАЛЯРНОЕ ПОЛЕ
2. Производная по направлению
3. Градиент
4. Касательная плоскость а нормаль к поверхности
5. Геометрический смысл полного дифференциала функции двух переменных
§ 7. ЭКСТРЕМУМ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ
2. Наибольшее и наименьшее значения функции двух переменных
ГЛАВА X. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
§ 1. ДВОЙНОЙ ИНТЕГРАЛ
2. Двойной интеграл. Теорема существования
3. Свойства двойного интеграла
4. Вычисление двойного интеграла в декартовых координатах
5. Вычисление двойного интеграла в полярных координатах
6. Приложения двойного интеграла
§ 2. ТРОЙНОЙ ИНТЕГРАЛ
2. Тройной интеграл и его свойства
3. Вычисление тройного интеграла в декартовых координатах
4. Вычисление тройного интеграла в цилиндрических координатах
5. Приложения тройного интеграла
§ 3. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ
2. Задача о работе. Криволинейный интеграл
3. Вычисление криволинейного интеграла
4. Формула Остроградского — Грина
5. Независимость криволинейного интеграла от пути интегрирования
6. Отыскание первообразной по полному дифференциалу
7. Криволинейный интеграл по длине дуги
ГЛАВА XI. РЯДЫ
§ 1. ЧИСЛОВЫЕ РЯДЫ
2. Геометрическая прогрессия
3. Простейшие свойства числовых рядов
4. Необходимый признак сходимости ряда
5. Достаточные признаки сходимости знакоположительных рядов
6. Знакопеременные ряды
7. Остаток ряда и его оценка
§ 2. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
2. Правильно сходящиеся функциональные ряды и их свойства
§ 3. СТЕПЕННЫЕ РЯДЫ
2. Свойства степенных рядов
3. Ряды по степеням разности х-а
4. Разложение функций в степенные ряды. Ряд Тейлора
5. Разложение некоторых элементарных функций в ряды Тейлора и Маклорена
§ 4. ПРИЛОЖЕНИЕ РЯДОВ К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
2. Приближенное вычисление интегралов
§ 5. ПОНЯТИЕ О ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ. СТЕПЕННЫЕ РЯДЫ В КОМПЛЕКСНОЙ ОБЛАСТИ
2. Числовые ряды с комплексными членами
3. Степенные ряды в комплексной области
§ 6. РЯДЫ ФУРЬЕ
2. Ряд Фурье
3. Сходимость ряда Фурье
4. Ряды Фурье для четных и нечетных функций
5. Разложение в ряд Фурье функций с периодом 2l
ГЛАВА XII. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА
2. Дифференциальные уравнения первого порядка
3. Уравнения с разделяющимися переменными
4. Однородные уравнения
5. Линейные уравнения
6. Уравнение в полных дифференциалах
7. Особые решения
8. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Простейшие уравнения второго порядка, допускающие понижение порядка
3. Понятие о дифференциальных уравнениях высших порядков
§ 3. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Линейные однородные дифференциальные уравнения второго порядка
3. Линейные неоднородные дифференциальные уравнения второго порядка
4. Метод вариации произвольных постоянных
§ 4. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ
2. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
3. Приложение линейных дифференциальных уравнений второго порядка к изучению механических и электрических колебаний
§ 5. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ
2. Линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами
§ 6. ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ РЯДОВ
§ 7. ПОНЯТИЕ О СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
ПРИЛОЖЕНИЕ 1. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА
ПРИЛОЖЕНИЕ 2. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

Интел и АМД — крупнейшие и наиболее известные производители центральных процессоров (ЦП) в мире. Обе компании имеют долгую историю в отрасли: Intel была основана в 1968 году, а AMD — в 1969 году. Несмотря на то, что они были основаны с разницей всего в год, эти две компании использовали очень разные подходы к проектированию и производству процессоров, что привело к разделению рынка компьютерных комплектующих на два основных направления.

Одним из наиболее очевидных различий между процессорами Интел и АМД является их архитектура. Именно она во многом влияет на то, какой будет на процессор цена, а также сложность его производства. Процессоры Intel традиционно используют архитектуру сложных вычислений с набором команд (CISC), ориентированную на повышение мощности процессоры при уменьшении потребляемой электроэнергии.

С другой стороны процессоры АМД обычно используют архитектуру вычислений с сокращенным набором команд (RISC), которая больше ориентирована на стоимость и простоту производства. Покупатели выбирают себе процессор исходя из конкретных задач, которые будут перед ним поставлены. 

  

Главное отличие между двумя производителями

Ключевое различие между продуктами Intel и AMD заключается в их производственном процессе. Intel традиционно использует более продвинутый производственный процесс с меньшими транзисторами и более высокими тактовыми частотами. Это позволило ЦП Intel быть более энергоэффективными и быстрыми, чем варианты от AMD. Однако в последние годы AMD удалось сократить разрыв, используя более совершенный производственный процесс. 

С точки зрения ценообразования товары АМД обычно считаются более доступными, чем варианты от Интел. Это связано с тем, что AMD традиционно сосредоточилась на производстве комплектующих, цена которых более доступная для среднего потребителя, в то время как Intel сосредоточилась на производстве оптимальных решений для разработчиков, графических дизайнеров.

  

Технические особенности

Когда дело доходит до производительности, ЦП Intel обычно считаются более быстрыми. Среди качественных отличительных особенностей: 

  • Более высокие тактовые частоты;
  • Более совершенная архитектура; 
  • Большая энергоэффективность.

Такие CPU способны выполнять задачи, требующие высокого уровня вычислительной мощности, такие как игры и редактирование видео. Однако обычно считается, что процессоры AMD лучше купить для задач, требующих многозадачности и многопоточности таких, как рендеринг и научное моделирование. Среди главных преимуществ, которые можно отметить относительно ЦП AMD:

  • Отличные показатели при рендеринге;
  • Наличие высокопроизводительных, но доступных CPU;
  • Подключение через стандартизированный сокет AM4.

Продукты обеих компаний обладают своими достоинствами. Процессоры Intel обычно считаются более быстрыми и энергоэффективными, в то время как процессоры AMD обычно считаются более доступными с точки зрения цены и лучшими для многозадачности. 

Об одном понятии производной комплексного порядка с приложениями к специальным функциям | Журнал прикладной математики IMA

Фильтр поиска панели навигации IMA Journal of Applied MathematicsЭтот выпускIMA JournalsApplied MathematicsBooksJournalsOxford Academic Термин поиска мобильного микросайта

Закрыть

Фильтр поиска панели навигации IMA Journal of Applied MathematicsЭтот выпускIMA JournalsApplied MathematicsBooksJournalsOxford Academic Термин поиска на микросайте

Расширенный поиск

Журнальная статья

Получить доступ

Л. М. Б. К. КАМПОС

Л. М. Б. К. КАМПОС

Ищите другие работы этого автора на:

Оксфордский академический

Google Scholar

Журнал прикладной математики IMA , том 33, выпуск 2, сентябрь 1984 г., страницы 109–133, https://doi.org/10.1093/imamat/33.2.109

Опубликовано:

1 сентября 1984 г.

История статьи

Получено:

25 апреля 1983 г.

Пересмотр получено:

13 марта 1984 г.

Опубликовано:

01 сентября 1984 г.

  • 7
    • Содержание статьи
    • Рисунки и таблицы
    • видео
    • Аудио
    • Дополнительные данные
  • Цитировать

    Cite

    LMBC CAMPOS, О понятии производной комплексного порядка с приложениями к специальным функциям, IMA Journal of Applied Mathematics , Volume 33, Issue 2, 19 сентября84, страницы 109–133, https://doi. org/10.1093/imamat/33.2.109

    Выберите формат Выберите format.ris (Mendeley, Papers, Zotero).enw (EndNote).bibtex (BibTex).txt (Medlars, RefWorks)

    Закрыть

  • Разрешения

    • Электронная почта
    • Твиттер
    • Фейсбук
    • Подробнее

Фильтр поиска панели навигации IMA Journal of Applied MathematicsЭтот выпускIMA JournalsApplied MathematicsBooksJournalsOxford Academic Термин поиска мобильного микросайта

Закрыть

Фильтр поиска панели навигации IMA Journal of Applied MathematicsЭтот выпускIMA JournalsApplied MathematicsBooksJournalsOxford Academic Термин поиска на микросайте

Advanced Search

Abstract

Введем понятие производной D ν комплексного порядка ν функции f ( z ), обобщающей как интегралы Коши, так и интегралы Вейля соответственно, ν = + n /− n , положительное/отрицательное целое число, соответствующее обычному выводу/интегрированию порядка n . Доказаны теоремы существования, аналитичности и интегрируемости для производной общего комплексного порядка ν, включающей нецелые значения, функций f ( z ) либо аналитический, либо с одной или несколькими точками ветвления. Среди тринадцати общих свойств (от P1 до P13), доказанных для производной комплексного порядка, есть нуль-теоремы для нулевых и ненулевых констант и теоремы нетривиальности для непостоянных функций. Правила ассоциации D μ D ν = D μ + ν и коммутация D μ D ν ν

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 =

0 DA D .0026 ν D µ , для производных комплексных порядков µ, ν, таких, что µ, ν, µ + ν не являются целыми отрицательными числами; В случае µ = −ν введен оператор, обратный производной комплексного порядка ν, а именно, первообразная P ν комплексного порядка, совпадающая с D −ν , производной комплексного порядка порядок −ν. В качестве приложения даны тринадцать представлений (от R 1 до R 13) полезных специальных функций в виде производных комплексного порядка от элементарных функций; эти 25 формул обобщают формулы типа Родригеса для классических ортогональных многочленов на специальные функции и применяются с неограниченными комплексными значениями всех параметров. Результаты касаются гипергеометрических и конфлюэнтных гипергеометрических функций, функций Лежандра, Лагерра и связанных с ними функций, функций Бесселя и модифицированных функций, а также функций Эрмита, Чебышева, Гегенбауэра и Якоби.

Этот контент доступен только в формате PDF.

© 1984 Academic Press Inc. (London) Limited

Раздел выпуска:

Статьи

В настоящее время у вас нет доступа к этой статье.

Скачать все слайды

Войти

Получить помощь с доступом

Получить помощь с доступом

Доступ для учреждений

Доступ к контенту в Oxford Academic часто предоставляется посредством институциональных подписок и покупок. Если вы являетесь членом учреждения с активной учетной записью, вы можете получить доступ к контенту одним из следующих способов:

Доступ на основе IP

Как правило, доступ предоставляется через институциональную сеть к диапазону IP-адресов. Эта аутентификация происходит автоматически, и невозможно выйти из учетной записи с IP-аутентификацией.

Войдите через свое учреждение

Выберите этот вариант, чтобы получить удаленный доступ за пределами вашего учреждения. Технология Shibboleth/Open Athens используется для обеспечения единого входа между веб-сайтом вашего учебного заведения и Oxford Academic.

  1. Щелкните Войти через свое учреждение.
  2. Выберите свое учреждение из предоставленного списка, после чего вы перейдете на веб-сайт вашего учреждения для входа.
  3. Находясь на сайте учреждения, используйте учетные данные, предоставленные вашим учреждением. Не используйте личную учетную запись Oxford Academic.
  4. После успешного входа вы вернетесь в Oxford Academic.

Если вашего учреждения нет в списке или вы не можете войти на веб-сайт своего учреждения, обратитесь к своему библиотекарю или администратору.

Войти с помощью читательского билета

Введите номер своего читательского билета, чтобы войти в систему. Если вы не можете войти в систему, обратитесь к своему библиотекарю.

Члены общества

Доступ члена общества к журналу достигается одним из следующих способов:

Войти через сайт сообщества

Многие общества предлагают единый вход между веб-сайтом общества и Oxford Academic. Если вы видите «Войти через сайт сообщества» на панели входа в журнале:

  1. Щелкните Войти через сайт сообщества.
  2. При посещении сайта общества используйте учетные данные, предоставленные этим обществом. Не используйте личную учетную запись Oxford Academic.
  3. После успешного входа вы вернетесь в Oxford Academic.

Если у вас нет учетной записи сообщества или вы забыли свое имя пользователя или пароль, обратитесь в свое общество.

Войти через личный кабинет

Некоторые общества используют личные аккаунты Oxford Academic для предоставления доступа своим членам. См. ниже.

Личный кабинет

Личную учетную запись можно использовать для получения оповещений по электронной почте, сохранения результатов поиска, покупки контента и активации подписок.

Некоторые общества используют личные аккаунты Oxford Academic для предоставления доступа своим членам.

Просмотр учетных записей, вошедших в систему

Щелкните значок учетной записи в правом верхнем углу, чтобы:

  • Просмотр вашей личной учетной записи и доступ к функциям управления учетной записью.
  • Просмотр институциональных учетных записей, предоставляющих доступ.

Выполнен вход, но нет доступа к содержимому

Oxford Academic предлагает широкий ассортимент продукции. Подписка учреждения может не распространяться на контент, к которому вы пытаетесь получить доступ. Если вы считаете, что у вас должен быть доступ к этому контенту, обратитесь к своему библиотекарю.

Ведение счетов организаций

Для библиотекарей и администраторов ваша личная учетная запись также предоставляет доступ к управлению институциональной учетной записью. Здесь вы найдете параметры для просмотра и активации подписок, управления институциональными настройками и параметрами доступа, доступа к статистике использования и т. д.

Покупка

Стоимость подписки и заказ этого журнала

Варианты покупки книг и журналов в Oxford Academic

Краткосрочный доступ

Чтобы приобрести краткосрочный доступ, пожалуйста, войдите в свой личный аккаунт выше.

У вас еще нет личного кабинета? регистр

Об одном понятии производной комплексного порядка с приложениями к специальным функциям – круглосуточный доступ

ЕВРО €36,00

32 фунта стерлингов

39 долларов США.

Реклама

Цитаты

Альтметрика

Дополнительная информация о метриках

Оповещения по электронной почте

Оповещение об активности статьи

Предварительные уведомления о статьях

Оповещение о новой проблеме

Получайте эксклюзивные предложения и обновления от Oxford Academic

Ссылки на статьи по телефону

  • Последний

  • Самые читаемые

  • Самые цитируемые

Рассеяние в частично открытом волноводе: прямая задача

Об использовании асимптотически мотивированных калибровочных функций для получения сходящихся рядов решений нелинейных ОДУ

Результаты усреднения генератора многомасштабной динамики Ланжевена в весовых пространствах Соболева

Вычисление спектральных свойств топологических изоляторов без искусственного усечения или приближения суперячейки

Вырождающаяся конвекционно-диффузионная система, моделирующая пенную флотацию с дренажом

Реклама

Краткая заметка о комплексном сопряжении для производных

серия: достижения в области физических исследований

Авторы

Абдул Манан 1 , *

1 Отдел геофизической инженерии, Universitas Halu Oleo, Kampus Hijau Buma Tridharma, Antiantas Halu Oleo, Kampus hijau Buma Bumama, 9,0 -го 2000 -й. * Автор корреспонденции. Электронная почта: [email protected]

Автор, ответственный за корреспонденцию

Абдул Манан

Доступен в Интернете 25 мая 2022 г.

DOI
10.2991/апр.к.220503.015Как пользоваться DOI?
Ключевые слова
Комплексно-сопряженные; Серия Тейлора; производные; Краткое примечание
Аннотация

Комплексно-сопряженный подход может быть легко использован для аналитического решения производных для некоторых простых случаев в исчислении. Эти случаи являются общими темами в исчислении, которые являются функциями тригонометрии, гиперболы, экспоненты и логарифма. В общем случае производная, полученная от компоненты v , переставляется из результата разложения в ряд Тейлора комплексно-сопряженной функции аргумента ξ * . Результат разложения в ряд Тейлора дает вид u -i v , где v — мнимая составляющая. Окончательный результат производной с использованием этого подхода всегда увеличивает коэффициент −1/ α . Параметр α представляет собой интервал, из которого функция ξ аппроксимируется к точке функции или положению аппроксимируемой точки. Если α стремится к 1 или α → 1, то результат производной будет таким же, как и аналитическое завершение. Кроме того, если это наблюдается из всех завершенных дел, компонент u , полученное в результате разложения в ряд Тейлора, является исходной функцией или функцией, производная которой ищется.

Copyright
© 2022 Авторы. Опубликовано Atlantis Press International B.V.
Открытый доступ
Это статья с открытым доступом, распространяемая по лицензии CC BY-NC 4.0.

Скачать статью (PDF)

Название тома
Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021)
Series
Advances in Physics Research
Publication Date
25 May 2022
ISBN
10.

Оставить комментарий