Найти частное решение уравнения: Частное решение дифференциального уравнения

Вариант № 21

Задача 1. Найти общее решение дифференциального уравнения

, (1) – дифференциальное уравнение с разделяющимися переменными

Интегрируя обе части уравнения, получим:

Общее решение уравнения (1):

Задача 2.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Найдем общее решение дифференциального уравнения с разделяющимися переменными

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 3. Решить дифференциальное уравнение (1)

Применим подстановку

Тогда:

Интегрируя, получим общий интеграл уравнения

В результате общий интеграл уравнения имеет вид:

Подставляя значение , получим общий интеграл уравнения (1):

Задача 4. Решить дифференциальное уравнение (1)

Составим определитель

Положим , гдеОпределяются из системы уравнений:

Положим в уравнении (1) ; Получим: ;

Применим подстановку ; Тогда:

Интегрируя обе части уравнения, получим:

Учитывая, что , получим общее решение уравнения (1):

Задача 5. Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка

(1)

Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка

Интегрируя обе части уравнения, получим:

Общее решение этого уравнения:

Применим метод вариации постоянных:

Дифференцируем Y По X:

Подставляем полученные значения в уравнение (1):

Следовательно, общее решение линейного неоднородного дифференциального уравнения 1-го порядка:

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 6.

Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение уравнения Бернулли: (1)

Применим подстановку

Подставляем в уравнение (1):

(2)

Требуем выполнения условия:

Подставляя полученное выражение в уравнение (2), получим:

Следовательно, общее решение уравнения Бернулли (1):

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 7. Найти общий интеграл Дифференциального уравнения.

(1)

Так как , значит, мы имеем уравнение в полных дифференциалах

Находим

Общий интеграл Дифференциального уравнения

Задача 8. Определить тип дифференциального уравнения, найти общее решение и построить интегральную кривую, проходящую через точку М.

Найдем общее решение однородного дифференциального уравнения 1-го порядка с разделяющимися переменными

Следовательно, общим решением является семейство парабол:

Из условий в точке М найдем:

Отсюда искомая интегральная кривая:

Задача 9. Решить дифференциальное уравнение (1) – явно не содержит

Полагая , имеем , тогда уравнение (1) принимает вид:

– уравнение с разделяющимися переменными относительно .

Общее решение этого уравнения:

Задача 10. Найти решение Дифференциального уравнения, удовлетворяющее заданным условиям.

Ищем общее решение дифференциального уравнения 2-го порядка:

Положим ,

Тогда уравнение преобразуется к виду:

Ищем общее решение уравнения Бернулли относительно р: (1)

Применим подстановку

Подставляем в уравнение (1):

(2)

Требуем выполнения условия:

Подставляя полученное выражение в уравнение (2), получим:

Следовательно, общее решение уравнения Бернулли (1):

Из условий и имеем:

Значит:

Из условия имеем

Значит, имеем частное решение Дифференциального уравнения, удовлетворяющее заданным условиям:

Задача 11. Найти общее решение дифференциального уравнения (1)

– линейное однородное уравнение 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение уравнения (1) имеет вид: .

Задача 12. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

(1)

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Продифференцируем:

.

Из указанных условий имеем:

Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:

Задача 13. Найти общее решение дифференциального уравнения (1)

– линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Структура общего решения неоднородного уравнения (1) имеет вид: ;

где – общее решение однородного уравнения, а функция – частное решение неоднородного уравнения, которое ищем в виде:

Подставляем частное решение в неоднор. уравнение и находим неопределенный коэффициент:

Следовательно, Общее решение неоднородного уравнения (1):

Задача 14. Найти общее решение дифференциального уравнения (1)

– линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Применим принцип наложения решений (суперпозиции).

Структура общего решения неоднородного уравнения (1) имеет вид: ;

где – общее решение однородного уравнения, а функции – частные решения следующих уравнений:

;

Причём частные решения ищем в виде: ;

Подставляем поочередно частные решения в соответствующие уравнения и находим неопределенные коэффициенты:

Следовательно, Общее решение неоднородного уравнения (1):

Задача 15.

Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Найдем решение линейного неоднородного уравнения 2 порядка с постоянными коэффициентами

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

(1)

Характеристическое уравнение: ; следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение однородного уравнения (1) имеет вид: .

РЕшение линейного неоднородного уравнения ищем методом вариации произвольных постоянных: , а неизвестные функции определяем из системы уравнений:

Следовательно, Общее решение неоднородного уравнения (1):

Продифференцируем полученное решение

Из условий И Имеем:

Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:

Задача 16. Найти общее решение дифференциального уравнения (1)

– линейное неоднородное уравнение 3-го порядка с постоянными коэффициентами и специальной правой частью (многочлен)

Ищем решение линейного однородного уравнения 3 порядка с постоянными коэффициентами

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение однородного уравнения имеет вид: .

Частное решение Ищем в виде: ;

Подставляем в неоднородное уравнение (1):

Следовательно, Общее решение неоднородного уравнения (1):

Задача 17. Найти с помощью степенных рядов общее решение уравнения при указанных начальных условиях

(1)

Положим (2)

Имеем ;

Дифференцируя обе части уравнения (1), получим:

Подставим в выражение (2) и получим частноЕ решение уравнения при указанных начальных условиях:

Задача 18. Решить систему дифференциальных уравнений

Дифференцируя первое уравнение по , получим:

Из первого уравнения выразим значение

Значит:

(1)

Получили линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью.

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами:

Характеристическое уравнение:

Следовательно, общее решение однородного уравнения имеет вид: .

Частное решение Ищем в виде:

Подставляем в неоднородное уравнение (1):

Следовательно, Общее решение неоднородного уравнения (1):

Значение Выразим из:

< Предыдущая   Следующая >

заказ решений на аукционе за минимальную цену с максимальным качеством

Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:

  • решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
  • написание лабораторных, рефератов и курсовых
  • выполнение заданий по литературе, русскому или иностранному языку.

Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.

Объединение сервисов в одну систему

Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:

  • Форум, где посетители обмениваются идеями и помогают друг другу
  • Система bugtracking, где обнаруженные проблемы проходят путь от публикации до принятия в исполнение и решения
  • Аукцион, где цена за товар или услугу определяется в результате торгов
  • Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос

Принцип работы

Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.

Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.

Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.

Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте). Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).

Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.

За счет чего будет развиваться сервис

Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.

Второе – удобный сервис для заказчиков и для желающих заработать на решениях.

Преимущества для заказчиков

Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.

Преимущества для решающих задания

Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.

Преимущества для владельца сервиса

Если вы не понимаете, какую выгоду получит делающий вам какое-нибудь предложение – будьте осторожны! 🙂 У меня уже есть большой опыт работы с сайтом, предоставляющим бесплатные решения по физике. И вариант с получением прибыли от размещения рекламы подходит и для нового сервиса. Кроме того, мне нравится помогать людям и довольно тяжело смотреть, как множество вопросов по задачам остаются на форуме без ответа. Предложенный аукцион решений сможет значительно сократить число вопросов без ответов.

В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.

Что необходимо для создания сервиса

  1. Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.

    Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.

  2. Выбрать платежную систему.
  3. Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
  4. Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.

Найти частное решение – Статистика Как сделать


Содержание:
Что такое частное решение?
Найти частное решение: Пример

частное решение требует, чтобы вы нашли единственное решение, отвечающее ограничениям вопроса. Задача, требующая найти последовательности функций , имеет в качестве ответа общее решение — решение, содержащее константу (+ C), которая может представлять одну из, возможно, бесконечного числа функций.

Например, задача с дифференциальным уравнением
dy dv x 3 + 8
требует общего решения с константой в качестве ответа, а дифференциальное уравнение 2 09 dy

9001 дв х 3 + 8; f(0) = 2
требует конкретного решения, которое соответствует ограничению f(0) = 2.

Посмотрите это 5-минутное видео, показывающее разницу между частным и общим, или прочитайте ниже, как найти конкретное решение дифференциальные уравнения.

Дифференциальные уравнения: общие решения и частные решения

Посмотрите это видео на YouTube.

Пример задачи №1: Найдите частное решение дифференциального уравнения dy dx = 5, где y(0) = 2. переместите dx вправо (этот шаг делает возможным интегрирование):

  • dy = 5 dx

Шаг 2: Проинтегрируйте обе части уравнения , чтобы получить общее решение дифференциального уравнения. Нужно освежить в памяти правила? См. Общие правила интеграции.

  • ∫ dy = ∫ 5 dx →
  • ∫ 1 дх = ∫ 5 дх →
  • у = 5х + С

Шаг 3: Перепишите общее уравнение , чтобы оно удовлетворяло начальному условию , которое утверждает, что при x = 0, y = 2:

  • 2 = 5(0) + C
  • С = 2

Частное решение дифференциального уравнения: y = 5x + 2

Частное решение дифференциального уравнения, Пример задачи №2:
Найдите частное решение дифференциального уравнения уравнение с использованием алгебры для перемещения dx вправо:

  • dy = 18x dx

Шаг 2: Интегрируем обе части уравнения :

  • ∫ dy = ∫ 18x dx →
  • ∫ 1 dy = ∫ 18x dx →
  • у = 9 х 2 + С

Шаг 3: Перепишите общее уравнение так, чтобы оно удовлетворяло начальному условию , которое утверждает, что при x = 5, y = 230:

  • 230 = 9(5) 2 + C
  • С = 5

Частное решение дифференциального уравнения y = 5x + 5

Вот и все!

Литература

4. 5 Еще раз о принципе суперпозиции и неопределенных коэффициентах.

УКАЗЫВАЙТЕ ЭТО КАК:
Стефани Глен . «Найти конкретное решение» от StatisticsHowTo.com : элементарная статистика для всех нас! https://www.statisticshowto.com/дифференциальные-уравнения/find-particular-solution/

————————————————– ————————-

     

Нужна помощь с домашним заданием или контрольным вопросом? С Chegg Study вы можете получить пошаговые ответы на свои вопросы от эксперта в данной области. Ваши первые 30 минут с репетитором Chegg бесплатны!

Комментарии? Нужно опубликовать исправление? Пожалуйста, Свяжитесь с нами .

исчисление – Найти частное решение дифференциального уравнения методом неопределенных коэффициентов.

Задавать вопрос

спросил

Изменено 10 лет, 2 месяца назад 9{4x}$

$\endgroup$

3

$\begingroup$

В случае двойного корня метод не работает, нужно начинать заново с другим предположением решения.

Оставить комментарий