Назначение трансформаторы напряжения – Для чего нужны ТНы

Содержание

Для чего нужны ТНы

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки – а, х. Вывод вторичной обмотки заземляются. В – это вольтметр, но это может быть и другое устройство. (2) – это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В – для однофазных, включаемых между фазами, трехфазных; 100√3 – однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В – однофазные в сети с заземленной нейтралью, 100√3 – однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните статью или поделитесь с друзьями


pomegerim.ru

устройство, классификация, принцип работы, видео

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

  1. силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу. Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем. Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже: Потери намагничивания обуславливают некоторую погрешность в классах точности. Погрешность определяется: конструкцией магнитопровода; проницаемостью стали; коэффициентом мощности, т.е. зависит от вторичной нагрузки. Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения Классификация трансформаторов напряжения Трансформаторы напряжения принято разделять по следующим признакам: По количеству фаз: однофазные; трехфазные. По числу обмоток: 2-х-обмоточные; 3-х-обмоточные. По способу действия системы охлаждения: электрические устройства с масляным охлаждением; электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие). По способу установки и размещения: для наружной установки; для внутренней; для комплектных РУ. По классу точности: по нормируемым величинам погрешностей. Виды трансформаторов напряжения Рассмотрим несколько трансфомраторов напряжения разных производителей: Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11 Производиель — Невский трансформаторный завод «Волхов». Назначение и область применение ЗНОЛ-НТЗ Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции. Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх. Рисунок — Габаритные размеры трансформатора Рисунок — схемы подключения обмоток трансформаторов Характеристики: Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27 Наибольшее рабочее напряжение, кВ — 30 40,5 40,5 Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5 Номинальное напряжение основной вторичной обмотки, В — 57,7 100 Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127 Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3 Ещё одно интересное видео о работе трансформаторов тока: Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И) Производитель «Свердловский завод трансформаторов тока» Назначение 3хЗНОЛПМ(И) Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью. Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150. Рабочее положение — любое. Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора. Трехфазная группа может комплектоваться в 4-ех вариантах: из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10; из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10; из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10; из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10. Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А. Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа. Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя. Срок службы — 30 лет. НАМИТ-10-2 Производитель ОАО «Самарский Трансформатор» Назначение и область применения Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий Технические параметры трансформатора напряжения НАМИТ-10-2 Номинальное напряжение первичной обмотки, кВ — 6 или 10 Наибольшее рабочее напряжение, кВ — 7,2 или 12 Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110) Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3 Класс точности основной вторичной обмотки — 0,2/0,5 Рисунок — Габаритные размеры и схема подключения
  2. Классификация трансформаторов напряжения
  3. Виды трансформаторов напряжения
  4. Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11
  5. Назначение и область применение ЗНОЛ-НТЗ
  6. Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)
  7. Назначение 3хЗНОЛПМ(И)
  8. НАМИТ-10-2
  9. Назначение и область применения
  10. Технические параметры трансформатора напряжения НАМИТ-10-2

силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

Погрешность определяется:

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

Трансформаторы напряжения принято разделять по следующим признакам:

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:


Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.


НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2
  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

pue8.ru

Что такое трансформатор напряжения / Описание

Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение.  Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.

Трансформаторы тока ЗНОЛ-СЭЩ

Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.

Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:

  • ТН — трансформатор напряжения
  • Т — трансформатор трехобмотачный
  • Д и Е — делитель имеющий определенную емкость
  • Т и О — буквы  обозначающие количество фаз
  • З — наличие в трансформаторе напряжения заземляющего вывода
  • Л — литая изоляция трансформатора
  • С — сухая изоляция трансформатора
  • У1 — климатическое исполнение и категория размещения
  • М — естественное охлаждение трансформатора
  • И — трансформатор содержит дополнительные подключенные к нему приборы
  • К — дополнительная обмотка

Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.

Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.

Виды трансформаторов напряжения:

  1. Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
  2. Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
  3. Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
  4. Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
  5. Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
  6. Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
  7. Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
  8. Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
  9. Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.

tr-ktp.ru

Трансформаторы напряжения. | ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Сегодня продолжим разговор о измерительных трансформаторах. Поговорим о трансформаторах напряжения.

В ходе работы мне чаще всего приходится сталкиваться с трансформаторами напряжения следующих типов: НТМИ, который сейчас вытесняется НАМИ и ЗНОЛ.

Назначение трансформаторов напряжения (ТН).

При напряжении свыше 1000 В, непосредственное включение приборов недопустимо как по условию изоляции, так и безопасности обслуживающего персонала. В связи с этим при высоких напряжениях измерительные приборы включаются через промежуточные измерительные трансформаторы, называемые трансформаторами напряжения (ТН).

ТН предназначены как для измерения напряжения, мощности, энергии, так и для питания автоматики, синхронизации и релейной защиты ЛЭП от замыканий на землю.

Обозначения некоторых ТН, наиболее используемых в электроустановках.

НОМ – ТН. Однофазный, масляный;

ЗНОМ – заземляемый ввод ВН, напряжения, однофазный, масляный;

НТМИ – напряжения, трехфазный, масляный, с обмоткой для контроля изоляции сети;

Рисунок 1. Внешний вид ТН НТМИ-6(10)кВ.

Рисунок 2. Схема соединения обмоток ТН НТМИ-6(10)кВ.

НАМИ – напряжения, антирезонансный, масляный, с обмоткой для контроля изоляции сети;

Рисунок 3. Внешний вид ТН НАМИ-6(10)кВ.

Рисунок 4. Схема соединения обмоток ТН НАМИ-6(10)кВ.

НКФ – напряжения, каскадный, в фарфоровой покрышке;

СР – серия трансформаторов напряжения: измерительный, однофазный, емкостной напряжением 110-500 кВ.

НОЛ.11-6.05; НОЛ.0.8; НОЛ.12; НОЛ – незаземляемые трансформаторы напряжения 3-6-10 кВ;

ЗНОЛ.06; ЗНОЛЭ-35; ЗНОЛ – заземляемые ТН;

ЗхЗНОЛ; ЗхЗНОЛП – трехфазные антирезонансные группы ТН;

Рисунок 5. Внешний вид ТН 3хЗНОЛ-6(10)кВ

Рисунок 6. Схема соединения обмоток ТН 3хЗНОЛ-6(10)кВ.

Хочу отметить, что в высоковольтных узлах учета, устанавливаемых на ВЛ-10кВ вместо резисторов R1; R2; R3 (2,4кОм) устанавливается один резистор R (0,8кОм). Часто возникающий дефект – прогорание изоляции в точке соединения вывода Х ТН и резистора R1(R2 илиR3), что приводит перегоранию предохранителя в фазе, в которой стоит поврежденный резистор

ЗНОЛП; НОЛП – заземляемые и незаземляемые ТН со встроенными защитными предохранительными устройствами. В трансформаторах этих серий высоковольтные выводы первичной обмотки выполнены со встроенными защитными предохранительными устройствами (ЗПУ), которые, также как и магнитопровод с обмотками залиты изоляционным компаундом, образуя монолитный блок. ЗПУ выполнено в виде разборной конструкции с плавкой вставкой, представляющей собой металлодиэлектрический резистор, подобранный для каждого типа трансформаторов. Это устройство срабатывает при токах менее 1 А, время отключения от 5 до 10 секунд. После срабатывания ЗПУ подлежит перезарядке, которая производится персоналом предприятия, эксплуатирующего трансформатор.

Рисунок 7. Расположение ТН в высоковольтной ячейке.

Какое напряжение принято во вторичной обмотки ТН .

Для основной вторичной обмотки ТН с номинальным напряжением, соответствующим линейному напряжению сети, установлено напряжение 100 В. Соответственно для ТН с фазным номинальным напряжением основной вторичной обмотки 100 /В при включении их по схеме звезда-звезда вторичное линейное напряжение, соответствующее номинальному, будет тоже 100 В.

Номинальное напряжение дополнительных вторичных обмоток устанавливается таким образом, чтобы максимальное значение напряжения 3Uо (на разомкнутом треугольнике) при однофазном замыкании на землю в сети, когда линейное напряжение соответствует номинальному напряжению ТН, было 100 В. Поэтому для дополнительных обмоток ТН, предназначенных для сети с заземленной нейтралью, установлено Uном = 100 В, а в сети с изолированной нейтралью Uном=100/3 В.

Трансформаторы напряжения производятся со следующим исполнением внутренней изоляции:

· Сухая (трансформаторы напряжения до 10кВ включительно типа НОСК-6, ЗНОЛТ-3, ЗНОЛТ-6, ЗНОЛТ-10 и др.).

· Бумажно-масляная (трансформаторы напряжением до 35кВ включительно типа НОМ-10, НОМ-35) с изоляцией выводов обмотки на полное номинальное напряжение.

· Литая эпоксидная (чешские однофазные трансформаторы напряжения и трансформаторы типа НОЛ).

Испытания ТН.

Объём испытаний трансформаторов напряжения:

1) измерение сопротивления изоляции обмоток первичной и вторичной (вторичных) (К, М)

2) испытание повышенным напряжением трансформаторов напряжения с литой изоляцией (К, М).

3) испытание трансформаторного масла (К, М). Сразу отмечу, что в ТН до 35кВ трансформаторное масло допускается не испытывать

Примечание: К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания

для трансформаторов напряжения 3-35кВ – при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.

Измеренные значения сопротивления изоляции при вводе в эксплуатацию и в эксплуатации должны быть не менее значений, приведённых в таблице 5.

Испытания повышенным напряжением следует проводить согласно таблицы 6 или требований заводов изготовителей.

На этом у меня на сегодня все. Если есть вопросы, задавайте, будем вместе искать ответы.

Успехов!

elektrolaboratoriy.ru

1.Назначение и основные элементы конструкции электромагнитных трансформаторов напряжения.

Кафедра

ЭС и ЭЭС

Электромагнитные трансформаторы напряжения

Работа №5

Цель работы:

1.Назначение и основные элементы конструкции

2.Погрешности трансформаторов напряжения.

3. Схемы соединения обмоток трансформаторов напряжения.

4. Конструкции трансформаторов напряжения

5. Графическое изображение и буквенное обозначение на схемах

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартного значения 100 или 100/√3 В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения.

Электромагнитный трансформатор напряжения (ТН) имеет замкнутый магнитопровод 2 (рис. 1) и две обмотки — первичную 1 (с выводами A и X и числом витков w1 ) и вторичную 3 (с выводами a и x и числом витков w2 ). Первичная обмотка включена на напряжение сети U1, а ко вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Такое взаимное присоединение приборов и реле обеспечивает на них одно и то же напряжение U2 .ТН может иметь и две вторичных обмотки расположенные на том же магнитопроводе.

Обязательным элементом конструкции ТН является изоляция: изоляция между витками обмоток, изоляция обмоток от магнитопровода и изоляция между обмотками. Для безопасности обслуживания один выход вторичной обмотки заземлен. Это заземление должно защитить вторичные цепи от высокого напряжения в случае пробоя изоляции между первичной и вторичной обмотками.

Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик. По этой причине для ТН не опасен разрыв вторичной цепи, но опасно короткое замыкание во вторичной цепи, так как в этом случае в обмотках ТН будут протекать большие токи. От длительного протекания этих токов защищает плавкий предохранитель F со стороны вторичной обмотки. От токов замыкания в обмотках самого ТН служат плавкие предохранители F со стороны первичной обмотки.

Рис. 1 Принципиальная конструкция однофазного трансформатора напряжения с одной вторичной обмоткой и подключение его к первичной и вторичной цепи.

Номинальный коэффициент трансформации ТН определяется следующим выражением:

где U1ном, U2ном — номинальные первичное и вторичное напряжение соответственно. Коэффициент трансформации примерно может быть выражен через отношение чисел витков обмоток: KU≈w1/w2. Чтобы ТН уменьшал первичное напряжение, необходимо выполнение условия: w1> w2.

2.Погрешности трансформаторов напряжения.

При работе ТН по его обмоткам протекают токи. В первичной обмотке протекает ток, обусловленный вторичной нагрузкой и током намагничивания, во вторичной обмотке протекает ток, обусловленный вторичной нагрузкой. Токи, протекающие в обмотках, вызывают в их активно-индуктивных сопротивлениях падения напряжения. Падения напряжения приводят к тому, что вторичное напряжение приведенное к первичной стороне KUU2 не будет равно первичному напряжению U1. Это приводит к погешности ТН по величине и фазе. Эта погрешность зависит от конструкции магнитопровода и магнитной проницаемости стали, а также и от cosφ и величины вторичной нагрузки. Погрешность по величине, выраженная в процентах, определяется формулой:

.

В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3. Суммарное потребление обмоток измерительных приборов и реле, подключенных ко вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.

studfiles.net

Трансформаторы напряжения: виды, назначения, принцип действия, применение

Трансформаторы напряжения имеют довольно развитую классификацию и отличаются друг от друга по назначению, а также принципу действия. Это устройства, меняющие характеристики тока, имеют важное значение для обеспечения энергией как отдельных точек, так и крупных территорий. Большинство из них объединено в одну систему энергоснабжения. Какими же бывают трансформаторы?

Содержание:

Общая классификация трансформаторов

Трансформаторные устройства по назначению делятся на:

  • Силовые. Обеспечивают бесперебойное питание. Принцип их работы построен на преобразовании тока переменного типа из одного напряжения в другое. Выделяют два диаметрально противоположных вида силовых трансформаторов – это как повышающие, так и понижающие. В России используются трехфазные двухобмоточные модели понижающего типа для преобразования высоких значений – 10 кВ до бытового значения в 0,4 кВ.
  • Измерительные. Так называемый, промежуточный вариант, благодаря которому возможно подключение различных измерительных устройств в условиях высокого напряжения. Так различные вольт-, ватт- и амперметры изолируются от сети электропередач, то есть могут применяться без каких-либо оговорок.
  • Автотрансформаторы, рассчитанные на уровень от 0,3 до 6 кВт. В структуре – одна обмотка, дополненная клеммами и терминалы, расположенные в промежутках, где размещаются катушки.
  • Трансформирующие устройства тока, которые имеют два вида обмотки – первичную и вторичную. Конструкция состоит из магнитного сердечника, а также нескольких резисторов и датчиков, помогающих регулировать уровень напряжения более точно. Используются для уравнивания сигналов первичной и вторичной цепей и создания линейной пропорции.
  • Антирезонансные. Очень похожи на устройства силового типа, правда, гораздо компактнее и менее требовательны к погоде. Применяются для использования в условиях повышенных нагрузок или передачи на многокилометровые расстояния.
  • Заземляемые. Имеют специализированную область использования, их еще называют догрузочными. Необычным в этой конструкции является способ соединения обмоток, это почти всегда звездочка или зигзаг. Их предназначение соединять многофазные системы с фазой и нейтралью нагрузок.
  • Пик-трансформаторы — еще один вид, который используется для того, чтобы сопоставлять источники импульсов и нагрузок. Цель — смена импульсной полярности для отделения разного типа токов. Встречаются преимущественно в различных по мощности компьютерных системах, а также узлах радиосвязи. Их базовая конструкция довольно проста. Есть сердечник, вокруг – обмотка с четко выверенным количеством витков. Такой трансформатор предохраняет чувствительные к перепадам напряжения устройства от замыкания. Нередко заменяется стабилизатором.
  • И, наконец, разделительный трансформатор. Это устройство обеспечивает передачу электроэнергии непосредственно от источника переменного тока до используемого в быту оборудования. Они не только помогают регулировать напряжение, но и предохраняют от удара током и эффективно подавляют возможные помехи на устройствах чувствительных к электроимпульсам. Такой прибор легко блокирует передачу постоянного тока, но прекрасно пропускает переменный.

В чем специфика трансформаторов напряжения? ↑

Сфера использования комментируемых нами устройств очень обширна. Применяются для измерения собственно напряжения, и контроля мощностных параметров. Питают они цепи автоматики, различные типы сигнализаций. Эффективны в качестве защиты ЛЭП.

В некоторых ситуациях возможно их применение в качестве силовых приборов  малой мощности понижающего типа или, напротив, как трансформаторов, повышающих предельные значения с целью провести испытания.

Принцип классификации трансформаторов напряжения ↑

Все трансформаторы напряжения делятся на несколько групп по различным параметрам:

  • Число фаз. Устройства производятся  одно- и трехфазные.
  • Количество имеющихся обмоток — две или три.
  • Класс точности — диапазон допустимых значений возможной погрешности.
  • Преимущественный способ охлаждения — масляные со специальным масляным составом и сухие, имеющие воздушное охлаждение.
  • По типу размещения могут быть внутренними или внешними.

Существуют и другие трансформаторы напряжения, назначение и принцип действия которых имеет свою специфику.

Немного подробнее о специфике некоторых видов ↑

Виды трансформаторного напряжения напрямую влияют на тип используемого устройства. Если речь идет о напряжении до 6 кВ, то используются трансформаторы сухого типа, в других случаях необходимо задействовать масляные модели.

Внутренние трансформирующие устройства могут работать в диапазоне от -40 до + 45 градусов при влажности воздуха не более 80 процентов. Однофазные внутренние трансформаторы имеют изоляцию литого типа и отличаются от масляных аналогов меньшей массой, более скромными размерами и неприхотливостью в эксплуатации.

Особенности и различия масляных и сухих трансформаторов ↑

Напомним, – масляные трансформаторы изолируются и охлаждаются с помощью масляного состава.

Структура масляного трансформатора – это магнитопровод в сочетании с обмотками, баком и крышкой.  Основной элемент — магнитопровод — собирается из отдельных стальных листов, хорошо заизолированных во избежание потерь.

Материал для обмоток – неизолированный провод, как правило, из меди или алюминия различного сечения. Чтобы регулировать напряжение, имеющаяся обмотка дополнена ответвлениями, соединенными с тумблером или переключателем.

В каждом трансформаторе такого типа есть два основных вида переключении: они могут регулироваться под нагрузкой, пока устройство подключено, а также без нагрузки, когда оно отключено. Самым популярным способом считается второй – он намного проще и безопаснее.

Масляные трансформаторы могут выпускаться и герметичными. В этом случае само масло никак не соприкасается с воздухом, а значит медленнее окисляется и набирается влагой. Приборы этого вида заполнены специальной масляной жидкостью полностью, а потому не имеют расширительной емкости. Что же касается компенсации при расширении от нагревания и сжатии при снижении температуры, то эту функцию выполняют гофры стенок самого бака. Еще один их плюс — в более совершенной изоляции, так как заполнение маслом происходит под вакуумом.

Второй тип — это сухие трансформаторы, в которых роль охлаждения выполняет воздух. Они также представляют собой соединение магнитопровода и двух или трех обмоток, которые помещены в защитный отсек. Так как воздух гораздо менее совершенная среда для охлаждения, чем вязкое масло, в таких устройствах изоляционные промежутки, а также каналы, предназначенные для вентиляции делаются больше.

Изоляцией в сухом варианте служит стекломатериал высокого класса термостойкости и кремнийорганические лаки, предотвращающие взаимодействие обмотки с влагой. Кстати, это делает их гораздо пожаробезопаснее, нежели масляный вариант. Эти установки можно без опасений применять в любых, в том числе и жилых помещениях.

В чем действительно проигрывают сухие трансформаторы, так это в размерах. Они более громоздкие, к тому же обладают меньшей способностью выдерживать перегрузки.

Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Многообразие и специализации ↑

Разумеется, приборы каждого вида и типа используются строго по назначению или в рамках существующих допусков. Любое использование трансформаторов в не предназначенных для их эксплуатации условиях, чревато не только поломкой самого устройства, но и весьма печальными последствиями для всей цепи. Для того, чтобы избежать возможных последствий неправильного и нецелевого использования трансформаторов, следует внимательно ознакомиться с паспортом или инструкцией изделия, а также с существующими ГОСТами.

energiatrend.ru

1 Измерительные трансформаторы напряжения

1.1 Назначение измерительных трансформаторов напряжения и их классификация

В релейной защите измерительные трансформаторы напряжения предназначены:

– для передачи информации о величине напряжения на защищаемом элементе электрической сети в измерительные органы РЗ;

– для понижения первичного напряжения сети до величин, приемлемых для нормального функционирования цепей напряжения измерительных органов устройств РЗ;

– для изолирования низковольтных цепей устройств РЗ от высоковольтных цепей защищаемых элементов.

Измерительные трансформаторы напряжения (ТН) имеют ряд исполнений, основными из которых являются:

– электромагнитные ТН;

– ёмкостные ТН;

– измерительные ТН каскадного типа.

Электромагнитные ТН по принципу действия и конструктивному выполнению аналогичны силовым трансформаторам. Трансформатор напряжения состоит из стального сердечника (магнитопровода) и двух обмоток – первичной W1 и вторичной W2, изолированных друг от друга и от магнитопровода. Сердечник ТН набирается из тонких пластин трансформаторной стали. Первичная обмотка W1 имеет большое число витков (несколько тысяч). Вторичная обмотка W2 имеет значительно меньшее число витков. К первичной обмотке ТН подводится измеряемое (контролируемое) фазное или междуфазное напряжение U1 от защищаемого элемента. Вторичное напряжение U2, пропорциональное первичному, подаётся в устройство РЗ или на измерительные приборы (вольтметры, ваттметры).

Первичная обмотка W1 включается непосредственно в сеть высокого напряжения. На станциях и подстанциях трансформатор напряжения своей первичной обмоткой (W1) подключается к шинам подстанции (станции) или к иным тоководам. Ко вторичной обмотке W2 трансформатора напряжения подключается сеть низкого переменного напряжения, с помощью которой вторичное напряжение U2 подаётся на входные зажимы различных реле.

Под действием напряжения сети U1 по первичной обмотке ТН проходит ток I1, создающий в сердечнике магнитный поток Ф1. Поток Ф1, пересекая витки вторичной обмотки, индуцирует в ней ЭДС Е2. При

Рисунок 1.1 Общее устройство и схема включения измерительного ТН. Маркировка вводов однофазного двухобмоточного ТН

разомкнутой вторичной цепи (режим работы ТН – холостой ход) значение напряжения на зажимах ах U2xx равно значению ЭДС Е2. В свою очередь, действующее значение ЭДС Е2 определяют по формуле

, (1.1)

где – магнитный поток намагничивания сердечника в случае холостого хода, когда I2 = 0, .

Врежиме ХХ значение первичного токаI1, а следовательно и Ф1, ограничивается полным сопротивлением первичной обмотки Z1. Поскольку число витков первичной обмотки велико, то активное и индуктивное сопротивления первичной обмотки ТН также велики. Полное сопротивление Z1 первичной обмотки определяется из треугольника сопротивлений.

(1.2)

Из сказанного выше можно сделать вывод: трансформатор напряжения, работающий в режиме ХХ, не оказывает на первичную цепь заметного шунтирующего действия.

В нагрузочном режиме, когда ко вторичной обмотке ТН подключены реле и протекает ток I2 , в сердечнике возникает магнитный поток Ф2 , пропорциональный току I2 и встречный потоку Ф1. В установившемся режиме (при наличии нагрузки) в результате геометрического сложения потоков Ф1 и Ф2 в сердечнике ТН устанавливается единый магнитный поток намагничивания Фнам . В нагрузочном режиме значение тока I1 несколько больше, чем в режиме ХХ. Однако, и в этом режиме (когда к ТН подключены реле) трансформатор напряжения не оказывает на первичную цепь заметного шунтирующего действия.

В режиме ХХ напряжение U2хх во столько раз меньше первичного, во сколько раз число витков первичной обмотки больше числа витков вторичной обмотки, т.е.

(1.3)

Отношение чисел витков первичной и вторичной обмоток называется витковым коэффициентом трансформации

(1.4)

Учитывая последнее выражение, можно записать:

(1.5)

Если ко вторичной обмотке ТН подключены реле и (или) измерительные приборы, то напряжение на её зажимах ах U2 будет меньше ЭДС на величину падения напряжения в сопротивлении вторичной обмотки. Это падение напряжения невелико, и в расчётах не учитывается. Поэтому принимают

(1.6)

studfiles.net

Оставить комментарий