Назначение транзистора: Эта страница ещё не существует

Содержание

Что такое транзистор и для чего нужен транзистор


Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.


Транзисторы

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же


Биполярный транзистор

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.


Транзисторы

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

xTechx.ru

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор) подаётся сильный ток, а на другой (база) подаётся слабый (управляющий ток). При определённой силе управляющего тока, как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер).

То есть транзистор – это своеобразный клапан, который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер). Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами. Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний, арсенид галлия и германий. Также существуют транзисторы на углеродных нанотрубках, прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера, так и в сторону коллектора. Для управления потоком применяются определённые токи управления.

Полевые транзисторы – распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзистор с управляемым p—n—переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году. Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм, на основе графена.

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах, лампах, электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вклвыкл. Транзистор умеет ограничивать силу тока либо плавно, либо методом импульспауза. Второй чаще используется для ШИМ-управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе ЦАП. Часто им требуется дополнительное охлаждение. В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания, как цифровых, так и аналоговых (материнские платы, видеокарты, блоки питания & etc).

Центральные процессоры, микроконтроллёры и SOC тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений.

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды ОЗУ и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.


Транзистор закрыт

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.


Транзистор открыт

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2. 2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

:::Лабораторная работе 2:::

электронные усилители

 

Методическое указания

к лабораторной работе № 2

по курсу “Электротехника и электроника”

Введение

Знание принципов использования электронных приборов для усиления, генерирования, преобразования электрических сигналов и владение методами анализа и расчета электронных цепей приобре­тает особую актуальность с развитием микроэлектроники.

Данное методическое пособие создано на базе курса “Электро­техника и электроника”, читаемого авторами на кафедре “Электро­техника, электроника и электрооборудование” для студентов фа­культетов Э, СМ, РК, МТ МГГУ им. Н.Э.Баумана.

В пособии основное внимание уделено изучению характеристик и параметров усилительных каскадов на транзисторах и операцион­ных усилителях. Практические знания, приобретенные студентами в процессе выполнения данной работы, будут способствовать лучшему усвоению теоретического материала, излагаемого в курсе “Электротехника и электроника”.

Цель работы – изучить свойства транзисторного усилительно­го каскада на дискретных элементах, исследовать влияние обрат­ных связей на показатели усилителя, ознакомиться со свойствами усилителей, построенных на базе операционных усилителей.

Теоретическая часть

Электронным усилителем называют устройство, позволяющее повысить мощность входного электрического сигнала за счет энер­гии источника питания усилителя с помощью усилительных элемен­тов (транзисторов, операционных усилителей и т.п.) при заданном уровне искажений.

Электронные усилители являются одними из наиболее важных и широко используемых устройств в системах передачи и обработки различной информации, представленной с помощью электрических сигналов! Высокая чувствительность, быстродействие, компакт­ность, экономичность электронных усилителей обусловили их широ­кое применение в измерительной технике, электро- и радиосвязи, автоматике, вычислительной технике и т. п.

В зависимости от назначения усилители подразделяются так:

усилители постоянного тока (ЖЕ),

усилители низкой частоты (УНЧ),

усилители высокой частоты (УВЧ),

избирательные усилители,

широкополосные (видеоусилители),

импульсные,

операционные и т.д.

Операционные усилители относятся к классу многофункцио­нальных, или универсальных, так как с их помощью можно реализо­вать практически любой вид усиления электрического сигнала.

В настоящее время основным элементом электронного усили­тельного устройства является транзистор.

Транзистором называют полупроводниковый прибор, в котором изменение входного электрического сигнала приводит к изменению сопротивления выходной цепи транзистора (транзистор – дословно “преобразователь сопротивления”). Это свойство транзистора мо­жет быть использовано для различных преобразований электри­ческих сигналов (усиление, генерирование, преобразователей фор­мы и т.

д.) в электронных стабилизаторах, переключателях и т.п. Существует большое разнообразие транзисторов, отличающихся принципом действия, назначением, мощностью, частотными свойст­вами и другими признаками.

В данной работе используется биполярный транзистор типа n-р-п,  и имеющий два р- п- перехода. На рис. 1а показано условное графическое и буквенное обозначение таких транзисторов на электрических схемах. На рис. 1б изображена схема подключе­ния внешних элементов, генератора усиливаемого входного напря­жения U

ВХ и  источника питания +Un к выводам транзистора.

Так как эмиттер является общим, то такое включение транзистора получило название схемы включения с общим эмиттером (ОЭ). Это основная схема включения биполярных транзи­сторов, так как в ней наилучшим образом используются усилитель­ные свойства транзистора. Существуют также схемы включения с общей базой (ОБ) и общим коллектором (ОК), которые использу­ются реже.

 

Рис. 1

Цепь “коллектор-эмиттер” транзистора является силовой цепью, в которую включается резистор коллекторной нагрузки Р, а цепь “база-эмиттер” называют управляющей цепью, к которой подводится усиливаемый электрический сигнал.

По 2-му  закону Кирхгофа для транзистора (см. рис. 16) мож­но записать

,

т.е. ток коллектора Iк меньше тока эмиттера IЭ на величину тока базы IБ. Токи коллектора и эмиттера связаны между собой коэффициентом передачи тока

.

Величина  всегда меньше единицы, однако, близка к ней. Для современных транзисторов  = 0,900…0,999.

В схеме включения транзистора с ОЭ входной величиной явяется ток базы, а выходной – ток коллектора. Испоьзуя соотноше­ния (1) и (2), получаем

.

Коэффициент  называют статическим коэффициентом усиле­ния тока в схеме с ОЭ и значение его составляет приблизительно 10..1000 для различных типов транзисторов

  Рис. 2 Рис. 3         

Основными статическими вольтамперными характеристиками (BАХ) транзис- тора в схеме с ОЭ являются:

                  а) входные характеристики (рис. 2)

                            при 

б) выходные или коллекторные характеристики (рис. 3)

                            при

Входные характеристики при UKЭ>0 постепенно сгущаются, практически перестают зависеть от этой величины, поэтому в справочниках приводятся две кривые – для U

KЭ = 0 В  и UКЭ=3 В, либо UKЭ = 5 В.

Выходные характеристики приблизительно равноудалены друг от друга при одинаковых приращениях тока базы, начиная с IБ=0. Однако в дальнейшем они начинают сгущаться по мере приближения к току базы насыщения IБнас. При Iв= IБнас транзистор насыщается, т.е. полностью открывается, и он перестает быть управляемым током базы, т.

е. переходит в ключевой режим работы.

Рабочей областью выходных характеристик в режиме усиления является область, ограниченная предельно допустимыми значениями и областями насыще-ния и отсечки (см. линии со штриховкой на рис.3).В этой области характеристики можно считать практически линейными, а транзистор – линейным элементом.

На входные и выходные характеристики транзистора (см. рис.2 и 3) сущест- венно влияет температура нагрева транзистора. С ростом температуры они эквива-лентно поднимаются вверх (см. рис.3).

В справочниках [I] приводятся электрические параметры (оптимальные или номинальные для каждого типа транзистора), а также предельные эксплуатационные данные. К первым, в качестве основных относятся: статический коэффициент передачи тока  (или ) в схеме с ОЭ; граничное напряжение U

KЭ; обратный ток коллектора IК0; граничная частота fгр коэффициента , т.е. та частота усиливаемого сигнала, при которой коэффициент   (или ) уменьшается в  раза и др.

Усилительный каскад на транзисторе с ОЭ (рис. 4). Каскад предназначен для усиления только переменных сигналов. К входной цепи усилительного каскада относятся все элементы, подсоединяе­мые между базой и эмиттером транзистора, а также источник вход­ного сигнала UBХ.

                                                   Рис. 4

Выходная цепь каскада включает источник питания Un, управляемый элемент-транзистор VT и резистор R. Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекающего коллекторного тока iK , управляемого током ба­зы ig , создается усиленное переменное напряжение на выходе схемы Uвых. Остальные элементы играют вспомогательную роль.

Конденсаторы CI и С2 являются разделительными: CI исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исклю­чить протекание постоянного тока через источник входного сигна­ла по цепи +

Un— Rl– внутреннее сопротивление источника  ив (на рис. 4 не показано) и, во-вторых, обеспечить независимость напряжения на базе U~Bn в режиме покоя, т.е. при отсутствии входного сигнала и=0, от внутреннего сопротивления источ­ника входного сигнала. Назначение конденсатора С2 – пропускать в цепь нагрузки только переменную составляющую напряжения.

Резисторы Rl и R2 используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ввиду малости входного сопротивления транзистора, включенного по схеме с ОЭ, ток покоя в коллек-торной цепи Г (см. рис3) задается соответствующей величиной тока базы покоя r

gn (см. рис.2), протекающего о сточника питания Un через резистор R1. Совместно с R2 резистор R1 образует делитель напряжения пита­ния   , часть которого, выделяемая на резисторе R2 , равна значению Uбп  (см. рис.2). Выбор значения и определяется требованием минимальных искажений формы входного сигнала, вно­симых транзистором в режиме усиления. Это требование выполняет­ся, если точка покоя П (см. рис.2 и 3) находится в середине линейного участка входных и выходных характеристик транзистора. Чтобы положение точки покоя оставалось практически неизменным при старении транзистора или воздействии внешних возмущающих факторов, ток I делителя R1-R2 должен быть в 2…5 раз больше необходимого тока покоя базы   IБП.

Резистор RЭ является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменениях температуры. Конденсатор СЭ шунтирует рези­стор Р по переменному току, исключая тем самым проявление от­рицательной обратной связи в каскаде по переменным составляющим.

Отсутствие СЭ приведет к уменьшению коэффициента усиления каскада [2] .

Рассмотрим работу каскада в режиме усиления, когда на вход каскада подается изменяющееся входное напряжение, например, по синусоидальному закону: 

При этом начинают изменяться напряжение Uбэ и ток iб в некоторых пределах, определяемых амплитудой Uвхm и видом входной характеристики транзистора. Причем эти изменения будут происходить относитель­но точки покоя П (см. рис.2, 3). В соответствии с выходными характеристиками транзистора будет изменяться и ток коллекто­ра г, мгновенные значения которого определяются напряжениями. Для дальнейшего анализа режима работы каскада необходимо использовать графоанали- тический метод расче­та нелинейных электрических цепей, так как транзистор в общем случае является нелинейным элементом.

Составляем уравнение по 2-му закону Кирхгофа для режима покоя, т.е. для постоянных составляющих токов и напряжений:

       (4)

Величина незначительна, поэтому ею для упрощения анализа можно пренебречь, и тогда получаем уравнение

       (5)

Выражение (5) является уравнением прямой линии в координатах Iк и Uкэ, т.е. на выходных характеристиках транзистора. Линия, построенная по этому уравнению в координатах IK и Uкэ, на­зывается линией нагрузки каскада по постоянному току (см. пря­мую линию на рис.3). Точка пересечения этой линии с характе­ристикой, соответствующей I6п, т.е. точка П, определяет ре­жим работы каcкада по постоянному току.

В режиме усиления, когда Uвх=Uвхsinωt, рабочая точка перемещается вдоль линии нагрузки относительно точки П, определяя тем самым переменные составляющие тока коллекто­ра iк и напряжения UКЭ. Вследствие наличия разделительного конденсатора С2 на выходных зажимах каскада выделяется только переменная составляющая напряжения UКЭ, которая и является выходным напряжением каскада. Графический анализ показывает, что выходное напряжение Uвых и входное Uвх  находятся в противофазе, т.е. одиночный усилительный каскад на транзисторе, включенный по схеме с ОЭ, сдвигает фазу выходного напряжения по отношению к входному на 180°. Это одно из основ­ных свойств такого каскада.

Основным показателем любого усилителя является его коэффи­циент усиления – это величина, равная отношению выходного сиг­нала к входному. В зависимости от назначения усилителя различа­ют коэффициенты усиления по напряжению

Ввиду наличия в схеме каскада элементов, параметры которых зависят от частоты, в общем случае коэффициент усиления являет­ся комплексной величиной К=Ке , где К – модуль коэффи­циента усиления, а у – аргумент, показывающий угол сдвига по фазе между выходным и входным сигналами.

Основными характеристиками усилительного каскада являются амплитудная и амплитудно-частотная (АЧХ). Амплитудная характеристика определяет зависимость амплитуды или действующего значения при синусоидальном входном сигнале выходного напряжения от амплитуды или действующего значения входного напряжения при постоянной частоте входного сигнала. Примерный вид этой характеристики показан на рис.5. Линейная зависимость между Uвых и Uвх (участок 1-2) сохраняется до тех пор, пока смещение рабочей точки на входной характеристике транзистора относитель­но точка покоя П осуществляется по ее линейному участку (в окрестности точки П на рис. 2). При Uвх>Uвх2  линейность амплитудной характе- ристики нарушается из-за нелинейности вольтамперных характеристик транзи­стора.

    Рис. 5     

             Это приводит к появлению искажений формы выходного сиг­нала относительно формы входно­го, т.е. так называемых, нели­нейных искажений. Нелинейные искажения могут возникнуть при любой форме входного сигнала. Они зависят от амплитуды вход­ного сигнала, положения точки покоя на входных и выходных характеристиках транзистора, а также от вида этих характеристик.

Амплитудно-частотная характеристика (АЧХ) усилителя пред­ставляет собой зависимость модуля коэффициента усиления К от частоты усиливаемого сигнала при постоянстве значения входного сигнала. Общий вид ее для усилителя с разделительными конденсаторами, т.е. с конденсаторной связью, показан на рис. 6.

  Рис. 6

                                                

Нелинейность AЧX обусловлена наличием в схеме усилителя элемен­тов (в частности, конденсаторов и транзистора), параметры кото­рых зависят от частоты. АЧХ позволяет судить о частотных иска­жениях, называемых линейными. Такие искажения возникают, если входной сигнал имеет сложную форму и его можно представать как сумму гармонических составляющих с различными частотами и амплитудами, которые усиливаются неодинаково, т.е. с различны­ми коэффициентами усиления. Анализируя рис.6, мы видим, что имеется диапазон средних частот с постоянным коэффициентом КV0.

Для усилителей низкой частоты, к которым относится исследуемый нами усилительный каскад, диапазон средних частот находится ориентировочно в пределах 500…1000 Гц. В диапазонах низких и высоких частот коэффициент усиления уменьшается (происходят уменьшения коэффициента усиления в области низких и высоких частот, т.е. так называемые “завалы” АЧХ).

Диапазон частот усилителя, в пределах которого усилитель обеспечивает заданное значение коэффициента усиления, называ­ют полосой пропускания, которая определяет нижнюю fH и верхнюю fa граничные частоты усиления при заданном уровне частот­ных (линейных) искажений. Как правило, значение коэффициента усиления на граничных частотах полосы пропускания составляет KVo /√2. “Завал” АЧХ в диапазоне низких частот (НЧ) обуслов­лен влиянием разделительных конденсаторов CI, C2 и конденсато­ра Сэ. Обычно емкости этих конденсаторов выбираются так, чтобы их сопротивление хС=1/ωС в диапазоне частот полосы пропускания было пренебрежимо мало и падением напряжения на них можно было пренебречь. С уменьшением частоты усиливаемого сигнала реактивные сопротивления хс возрастают, что приводит к увели­чению падения напряжения на них, и, как следствие, потери части входного сигнала на разделительных конденсаторах C1 и С2. Шунтирующее действие конденсатора Сэ при этом также ослабляется, что приводит к возрастанию влияния отрицательной обратной свя­зи по переменному току и снижению коэффициента усиления кас­када.

“Завал” АЧХ на высоких частотах обусловлен зависимостью коэффициента усиления транзистора (5 от частоты, наличием межэлектродных емкостей транзистора (особенно емкостью между базой и коллектором), влияние которых заключается в шунтирова­нии соответствующих р- п- переходов тем большем, чем выше ча­стота усиливаемого сигнала.

На практике ни один усилитель не используется без обрат­ной связи (ОС). Обратной связью называют передачу мощности электрического сигнала из выходной цепи во входную.

На рис. 7 показана структурная схема усилителя с ОС, где электрический сигнал с выхода усилителя с коэффициентом усиле­ния К через звено ОС с коэффициентом передачи γ поступает обратно на вход усилителя. В состав звена ОС могут вхо­дить линейные, нелинейные, ча­стотно-зависимые и другие эле­менты или даже целые устройст­ва.

    Рис. 7

                                        

Существует целый ряд ква­лификационных признаков ОС.

Если электрический сигнал после звена ОС пропорционален выходному напряжению, то в усилителе используется обратная связь по напряжению; если сигнал на выходе звена ОС пропорционален току в выходной цепи, то ис­пользуется ОС по току. Возможна и комбинированная ОС.

Воздействие ОС может привести либо к увеличению, либо к уменьшению результирующего сигнала непосредственно на входе усилителя. В первом случае ОС называют положительной, во вто­ром – отрицательной (сигналы на входе усилителя либо складыва­ются, либо вычитаются).

По способу введения сигнала ОС во входную цепь усилителя различают последовательную и параллельную обратные связи. В первом случае напряжение с выхода звена ОС включается после­довательно с напряжением источника входного сигнала (рис.8а), а во втором – параллельно (рис.86).

Рис. 8

                                         

В усилителях в основном используется отрицательная обрат­ная связь (ООС), введение которой позволяет улучшить почти вое характеристики усилителей. На рис. 8а показан усилитель, охва­ченный последовательной отрицательной обратной связью по на­пряжению. Оценим свойства такого усилителя.

Уравнение по 2-му закону Кирхгофа для входной цепи усилителя имеет вид

Разделим обе части (6) на

 

Введём обозначения:

       – коэффициент усиления усилителя без ОС.

        – коэффициент передачи звена ОС.

   – коэффициент усиления усилителя с ОС.

После преобразований получаем

Выражение (7) показывает, что введение ООС приводит к уменьшению результирующего коэффициента усиления. Практи­чески это единственное негативное свойство ООС. Однако если γК>>1, а этого достичь очень просто, то КOC =1 /γ, т.е. результирующий коэффициент усиления КOC  не зависит от К, а следовательно, и от всех факторов, влияющих на его величину, т.е. существенно повышается стабильность КOC. Кроме того, ООС расширяет полосу пропускания (рис.9) и линейный участок ампли­тудной характеристики (рис.10), что приводит к уменьшению ис­кажений как линейных, так и нелинейных.

 

Рис. 9      Рис. 10

                                                                     

В исследуемом усилительном каскаде (см. рис.4) применена ООС по току эмиттера, а резистор £ является элементом цепи обратной связи, которая необходима для стабилизации положения точки покоя при возможных изменениях температуры транзистора, т.е. используется эмиттерная температурная стабилизация. Она осуществляется ввдением в схему последовательной ООС по постоянному току эмиттера IЭП.

В режиме покоя, когда UВХ=0 , с учетом IД>>IБП для постоянных составляющих токов и напряжений по 2-му закону Кирх­гофа можно записать

С изменением температуры изменится ток покоя транзистора IКП, а, следовательно, и ток покоя эмиттера IЭП (например, возра­стут при увеличении температуры). Смещение точки покоя на вы­ходных характеристиках вверх вдоль линии нагрузки может приве­сти к увеличению IБП и UБЭП, на входных характеристиках (см. рис.2). Так как  IД>>IБП, можно полагать IДR2= const.

Из (8) очевидно уменьшение UБЭП, а, следовательно, уменьшение IБП, что приводит к снижению  IКП и к неизменности ре­жима покоя.

Для исключения влияния ООС по переменному току на коэффи­циент усиления параллельно   Rэ включен конденсатор СЭ, ем­кость которого должна быть достаточно большой, чтобы реактив­ное сопротивление в полосе пропускания  Х << RЭ /10.

Если же СЭ отсутствует, то переменная составляющая тока эмит­тера Iэ      создает на резисторе R падение напряжения 

Операционным усилителем (ОУ) называют усилитель с входным дифференциальным каскадом, с очень высоким и стабильным коэф­фициентом усиления (от 1000 до 10000), широкой полосой пропус­кания (от 0 до 10. ..100 МГц), высоким входным сопротивлением ( RВых>10 кОм) и малым выходным сопротивлением ( Rвых<100 Ом).

Применение ОУ позволяет за счет использования перечисленных свойств и различных звеньев обратной связи выполнять узлы и устройства электронной аппаратуры самого разнообразного назна­чения (различные типы усилителей – УПТ, УШ, УВЧ и др., гене­раторы электрических сигналов различной формы, стабилизаторы напряжений, активные фильтры и много других электронных уст­ройств). СУ в настоящее время выпускаются только в микро­электронном (интегральном) исполнении и считаются базовым эле­ментом современной микроэлектроники. ОУ обладают высокой на­дежностью и механической прочностью, малыми габаритами, массой и энергопотреблением.

   Рис. 11    Рис. 12

                                                       

В настоящей лабораторной работе используется простейший ОУ типа 1Ш0УД1Л. На рис. II показаны условные обозначения ОУ, графическое и буквенное, а на рис. 12 – типовая схема его включения для реализации инвертирующего усилителя. Каждый внешний вывод ОУ имеет вполне определенное функциональное назначение. Один из входов ОУ называют инвертирующим (цифра 9 на рис.II), а второй – неинвертирующим (цифра 10). При подаче сигнала на инвертирующий вход приращение выходного сигнала тлеет обратный знак, противоположный по фазе входному. При по­даче сигнала на неинвертирующий вход фазы входного и выходного сигналов совпадают, т.е. сдвиг по фазе равен нулю. Усилитель­ные устройства на базе ОУ без отрицательной обратной связи не используются, в противном случае они, как правило, самовозбуждаются, т.е. превращаются в автогенератор произвольной частоты и формы. Поэтому инвертирующий вход ОУ предназначен для введения ООС.

Входным каскадом ОУ является дифференциальный усилительный каскад постоянного тока, выходным каскадом – эмиттерный повторитель тока [3]. Применение двух разнополярных источни­ков электропитания с общей точкой – Un для ОУ позволяет полу­чать напряжение U обеих полярностей относительно нулевой точки, а также обеспечить Uвых=0 при Uвх=0. Выполнение последнего условия называют балансировкой ОУ, и осуществляется оно с помощью дополнительных навесных, т.е. внешних элементов, подсоединяемых к соответствующим внешним выводам ОУ (как пра­вило, это переменный резистор).

Основные показатели ОУ – это коэффициент усиления по напряжению Кц, полоса пропускания f, входное сопротивле­ние R, выходное сопротивление Uвых. Идеальным ОУ назы­вают такой усилитель, у которого вывод некоторых основных показателей ОУ, включенных по схеме инвертирующего усилителя (см. рис.12), выполнен в пред­положении того, что используемый в нашей работе ОУ типа К140УД1А является идеальным. В этом случае получаются очень простые выражения для показателей инвертирующего усилителя, а вносимая погрешность незначительна.

Найдем выражение для коэффициента усиления ОУ, охвачен­ного отрицательной обратной связью по напряжению, т.е. найдем

  (см. рис. 12).

Для идеального ОУ имеем , следовательно, ;, т. е. , и тогда по 1-му закону Кирхгофа . Составим уравнение по 2-му закону Кирхгофа ; , следовательно, входное сопротивление инвертирующего усилителя определяется выражением . Далее, , ; так как , получаем:

      

Знак “-” физически означает, что инвертирующий усилитель имеет сдвиг фазы выходного напряжения относительно входного, равный 180°, т.е. Uвх и Uвых  находятся в противофазе.

Выходное сопротивление инвертирующего усилителя Rос определяется выражением:

   Рис. 13

                                                

Амплитудно-частотная характеристика реального операцион­ного усилителя при отсутствии разделительных емкостей на входе в выходе представлена на рис. 13. В ней отсутствует снижение коэффициента усиления в области низких частот, что позволяет с помощью 07 усиливать медленно меняющиеся и постоянные сигналы (УНТ). Снижение коэффицинта усиления в области высоких частот обусловлено частотными свойствами входящих в ОУ транзисторов, механизм воздействия которых на вид АЧХ рассматривался выше.

ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА

Лабораторный стенд содержит однокаскадный усилитель переменного напряжения на биполярном транзисторе, включенном по схеме с ОЭ (рис.14а), а инвертирующий усилитель, собранный на базе 07 (рис. 146).

        Рис. 14

                                       

В схеме усилителя с ОЭ усиливаемый сигнал подается через разделительный конденсатор СТ. Нагрузкой каскада является рези­стор R. Предусмотрена возможность изменять с помощью переклю­чателя S5 величину емкости разделительного конденсатора между цепью коллектора транзистора и нагрузкой R. Введение ООС по переменному току осуществляется с помощью переключателя S4. При отключении конденсатора Сэ, шунтирующего резистор Rэ, в цепи эмиттера транзистора вводится ООС по переменному току. Усилитель на базе ОУ состоит из собственно операционного усилителя DА , входной цепи, содержащей резистор Ri , выходной цепи – цепи нагрузки Rн, цепи ООС, реализуемой с помощью сопро­тивления Roc=Roc1+Roc2. Значение сопротивления  Roc может регулироваться изменением величины переменного резистора Roc2

Для включения лабораторного стенда служит выключатель S1, а для включения каждой из исследуемых схем – переключатель S2, имеющий два положения.

На входы схем усилителей усиливаемый сигнал синусоидальной формы подается с генератора сигналов. Выходные напряжения на резисторах нагрузки RH усилителей измеряют цифровым вольтмет­ром. Наблюдение формы напряжения на нагрузке производится с по­мощью электронного осциллографа. Правила пользования приборами необходимо изучить в лаборатории.

ПРАВИЛА ПО ОХРАНЕ ТРУДА.

1.Работы следует выполнять строго в соответствии с зада­нием.

2.Необходимо знать функциональное назначение всех элемен­тов коммутации (выключателей, кнопок, переключателей и т.п.) и, прежде чем включать стенд, убедиться, что все исследуемые  в работе устройства отключены от источника электропитания.

3.Студент обязан знать и строго соблюдать правила поль­зования применяемыми в работе электронными приборами: генера­тором, осциллографом, вольтметром. В случае необходимости за консультацией обращаться к преподавателю.

4.При выполнении работы запрещается: включать схемы без разрешения преподавателя; использовать измерительные приборы, которые не указаны в методических указаниях к данной работе; пользоваться неисправными приборами, и устройствами.

5.После выполнения работы необходимо выключить электро­питание всех исследованных устройств.

ЗАДАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Перед выполнением экспериментальной части обязательно со­беседование студентов с преподавателем для усвоения ими после­довательности всех этапов работы и получения разрешения на про­ведение эксперимента.

Исследование усилителя напряжения низкой частоты на транзисторе (ОЭ)

Задание 1. Исследовать влияние величины входного напряже­ния Uвх на величину и форму напряжения на нагрузке усилите­ля Uн при постоянной частоте fг входного сигнала для двух случаев:

а) без обратной связи по переменному току;

б) с отрицательной обратной связью по переменному току.
            Для этого необходимо:

1.Установить переключатель пределов выходного напряжения генератора в положение 100 мВ, ручку “Регулировка выхода”  в крайнее  левое  положение,  частоту f =1000 Гц.

2.Подсоединить генератор синусоидальных сигналов к входу усилителя, а измерительные щупы цифрового вольтметра и элект­ронного осциллографа – к нагрузке усилителя. При этом во избе­жание наводок, искажающих выходной сигнал усилителя, необходи­мо клеммы “Земля” генератора, вольтметра и осциллографа под­ключить к общей точке входа и выхода усилителя

3. Подключить лабораторный стенд и схему усилителя ОЭ.
            4. Установить емкость СЗ =10 мкФ.

5. Изменяя значение входного сигнала от 0 до 100 мВ, про­извести необходимые измерения при двух положениях переключа­теля S4 , соответствующих отсутствию ОС и наличию ООС по пере­менному току. Результаты измерений занести в табл. I и постро­ить графики амплитудных характеристик в единой системе коорди­нат.

Таблица 1

 мВ

 В

 мВ

 В

Без ОС

С ООС

Без ОС

С ООС

0

10

20

30

40

50

60

70

80

90

100

 

 

 

 

 

 

 

 

6.     Определить и сравнить коэффициенты усилителя по напряжению Ки на линейных участках амплитудных характе­ристик.

7.    Наблюдая форму выходного сигнала UН (1) на экране осциллографа, найти значение входного напряжения UВХ, при котором наступают заметные искажения выходного напряжения при отсутствии ОС и наличии ООС. Нарисовать форму искаженного сиг­нала и отметить на амплитудных характеристиках соответствующие этому значения XI.

Задание 2. Построить амплитудно-частотную характеристику усилителя без обратной связи. Для этого необходимо:

1.    Установить ручкой “Регулировка выхода” напряжение UВХ=100 мВ и в дальнейшем поддерживать его постоянным.

2.    Установить переключатель S4 в положение отсутствия ОС, оставив СЗ=10 мкФ.

3.    Изменяя дискретно частоту сигнала в диапазоне от 0 до 200 кГц и устанавливая ее значения в соответствии с табл. 2, измерить напряжение на нагрузке усилителя RH. Результаты за­нести в табл. 2.

4.    Вычислить значения коэффициента усиления по напряжению и построить амплитудно-частотную характеристику. Значения ча­стот по оси абсцисс откладываются в логарифмическом масштабе по основанию 2, т.е. 210°; 2101; 2102;….Гц, что соответст­вует значениям, указанным в табл. 2.

5. Определить по полученной характеристике полосу пропускания усилителя, отметив на характеристике граничные частоты.

Таблица 2

 

 Гц

Без ОС

 Гц

Без ОС

 В

 В

20

40

80

160

320

640

1280

2560

5120

10240

40960

81920

163840

 

Задание 3. Исследовать влияние на полосу пропускания уси­лителя значения ёмкости разделительных конденсаторов и ООС. Для этого необходимо:

1.Установить конденсатор С2=1 мкФ, переключатель S4 в положение, соответствующее отсутствию ОС по переменному току.

2.Установив UВХ=10 мВ и fг=1000 Гц, найти коэффици­ент усиления усилителя Кu0 на средних частотах (примерно 1000 Гц).  

3.Изменяя частоту генератора синусоидальных сигналов в пределах от 20 до 200 Гц, определить полосу пропускания уси­лителя.

Занести значения Кu0 нижней fн и верхней fв граничных частот в табл. 3.

Таблица 3

Режим

 Гц

 Гц

Без ОС

мкФ

мкФ

С ООС

мкФ

мкФ

4. Аналогично определить полосу пропускания усилителя с ОOC по переменному току при С2 =1 мкФ и СЗ =10 мкФ.

Результаты измерений (fH, fв) и расчетов (Кu0) зане­сти в табл. 3.

Исследование инвертирующего усилителя напряжения низкой частоты на базе ОУ

Задание 4. Исследовать зависимость коэффициента усиления усилителя от параметров цепи обратной связи и частоты входного сигнала.

Для этого необходимо:                                                   

1.Установить переключатель пределов выходного напряжения генератора в положение 10 мВ, ручку “Регулировка выхода” в крайнее левое положение, частоту, равную fг=1000 Гц.

2.Подсоединить измерительные приборы к операционному усилителю аналогично п.2 задания 1.

3.Подключить схему СУ.

4.    Подав напряжение на вход усилителя Uвх=5 мВ, изме­рять значение выходного напряжения UH при двух крайних положе­ниях ручки переменного резистора Roc2 в цепи 00С. По резуль­татам эксперимента вычислить для двух случаев коэффициент уси­ления по напряжению Кu и сравнить с расчетной величиной Кuрас = Roc/R1. Результаты измерений и расчетов занести в табл. 4.   

Таблица 4

Установлено

Измерено

Вычислено

 мВ

 кОм

 В

Эксперимент.

Расчёт.

5. Наблюдая форму выходного сигнала UН(t) на экране осциллографа, определить значение входного напряжения Uвх, при котором наступают заметные искажения при двух крайних положениях ручки переменного резистора R0C2. Нарисовать форму иска­женного сигнала и указать соответствующие значения Uвх2.

6.Установить напряжение Uвх=5 мВ; изменяя частоту в пределах от 20 Гц до 200 кГц, проследить, как зависит коэффи­циент усиления усилителя от частоты входного сигнала при двух крайних положениях ручки резистора.

Определить полосу пропускания ОУ, записать значения Кu0, fн и fв при двух крайних положениях ручки резистора  Roc2,  в таб­лицу, аналогичную табл. 3.

7. После окончания экспериментов выключить лабораторный стенд.

С0ДЕРЖАНИЕ ОТЧЕТА

1.    Титульный лист с названием работы, указанием индекса группы, фамилии студента и даты исполнения.

2.    Краткое описание принципа работы и назначения исследуе­мого устройства.

3.    Электрические схемы исследуемых устройств, вычерченных с помощью чертежных инструментов с соблюдением условных графи­ческих обозначений элементов по ГОСТ.

4.    Графики и осциллограммы, выполненные на миллиметровой бумаге.

5.    Таблицы, графики, осциллограммы и выводы в соответст­вии с заданием.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1.    Что называется электронным усилителем? Объяснить прин­цип действия усилителя.

2.    Перечислить основные параметры и характеристики усили­теля.

3.    Объяснить назначение элементов, входящих в схему уси­лительного каскада на транзисторе.

4.Объяснить характер экспериментальных зависимостей и осциллограмм, полученных в работе.

5.Что такое обратная связь? Как она влияет на параметры и характеристики усилителя?

6.Как осуществляется температурная стабилизация в усили­теле?

7.Что такое полоса пропускания усилителя? Как ее опреде­лить?

8.Что называется операционным усилителем? Каково его условное обозначение?

9. Что представляет собой операционный усилитель в интег­ральном исполнении?

10.Назовите возможные области применения электронных усилителей.

11.Назовите назначение используемых в работе электронных приборов.

СПИСОК ЛИТЕРАТУРЫ

1.Полупроводниковые приборы. Транзисторы: Справочник. /Под ред. Н.Н.Горюнова. М.; Высш. шк., 1986.

2.Основы промышленной электроники. /Под ред. В.Г.Герасимова. М.: Высш. шк., 1986.

3.Справочное пособие по основам электротехники и электро­ники. /Под ред. А.В.Нетушила. М.: Энергоатомиздат, 1995.

4.Электротехника и основы электроники. /Под ред. О.П.Глудкина, Б.П.Соколова. М.: Высш. шк., 1993.

Биполярный транзистор

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы I

b

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора I

С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения V

out

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

7

7.Структура и режимы работы биполярного транзистора.

 

 

Биполярный транзистор представляет собой полупроводниковый прибор, состоящий из трех областей полупроводника с чередующимися типами проводимости, разделенными р-п-переходами. Из-за близкого расположения  р-п-переходов между ними существует взаимодействие. Каждая область транзистора выполняет определенную функцию, поэтому концентрации легирующих примесей в них и названия областей различны.

Средняя область транзистора, расположенная между двумя               р-п-переходами, называется базой (B). Одна из крайних областей с наивысшей концентрацией легирующей примеси называется эмиттером (E). Основным назначением эмиттера является инжекция неосновных носителей заряда в область базы. Соответствующий          р-п-переход называют эмиттерным. Инжектированные в базу носители диффундируют в сторону третьей области, называемой коллектором (C). Основным назначением коллектора является собирание инжектированных эмиттером носителей заряда. Соответствующий   р-п-переход, расположенный между базой и коллектором, называют коллекторным.

Существуют два типа биполярных транзисторов: п-р-п и р-п-р.  Буквы обозначают тип проводимости эмиттерной, базовой и коллекторной областей соответственно. Символическое изображение транзисторов разных типов приведено на рис. 3.18. Стрелка эмиттера показывает условное направление тока.

 

                        

 

Рис. 3.18. Символическое изображение транзисторов:

а – n-p-n-типа;  б – p-n-p-типа

 

При анализе работы биполярного транзистора ограничим наше рассмотрение приборами п-р-п-типа, которые в настоящее время используются гораздо чаще, имеют лучшие характеристики и большее усиление, особенно в интегральных схемах. Транзисторы  р-п-р-типа по принципу действия ничем не отличаются от п-р-п-транзисторов, однако им свойственны другие полярности рабочих напряжений.

Известны три схемы включения биполярных транзисторов в электрическую цепь, при которых возможно усиление электрической мощности: схема с общей базой (ОБ), схема с общим эмиттером (ОЭ) и схема с общим коллектором (ОК), которые приведены на рис. 3.19 для транзистора п-р-п-типа. Кроме того на рис. 3.19 показаны внешние источники напряжений и токи, протекающие через транзистор, в нормальном режиме работы.

Любая из схем включения обладает своими достоинствами и недостатками, поэтому выбор схемы включения транзистора в каждом конкретном случае зависит от требуемых условий. На практике чаще всего используется схема включения с общим эмиттером (ОЭ), которая позволяет получать наибольшее усиление по мощности.

.

                     а)                                     б)                                     в)

 

Рис. 3.19. Схемы включения транзистора:

а – схема ОБ; б – схема ОЭ; в – схема ОК

 

Структура дискретного биполярного п-р-п-транзистора приведена на рис. 3.20.

 

                           

 

Рис. 3.20. Структура дискретного       

биполярного n-p-n-транзистора 

 

Результирующее распределение примесей в областях транзистора (сплошная линия) распределения примесей при базовой и эмиттерной диффузиях (пунктирные линии) показаны на рис. 3.21.

                                         

                     

 

Рис. 3.21. Распределение примесей в дискретном биполярном

 n-p-n-транзисторе

 

 Здесь  и – поверхностные концентрации примесей при эмиттерной и базовой диффузиях, а  – концентрация примеси в коллекторной области, выполненной методом эпитаксии. Эмиттер представляет собой сильнолегированную область, о чем  свидетельствует знак “+” при обозначении типа проводимости эмиттернорного слоя – . У реальных транзисторов площади                    р-п-переходов существенно различаются. Эмиттерный переход имеет значительно меньшую площадь, чем коллекторный.

Каждый из р-п-переходов транзистора имеет донную и боковые части. Рабочей или активной областью транзистора является область, расположенная под донной частью эмиттерного перехода (на рис. 3.20 эта область заштрихована). Остальные участки, наличие которых обусловлено технологическими  причинами, являются пассивными.

Идеализированная структура биполярного п-р-п-транзистора для его активной области приведена на рис. 3.22. Взаимодействие между эмиттерным и коллекторным переходами обеспечивается малой щириной базы , которая у современных транзисторов, как правило не превышает 1 мкм.

 

 

Рис. 3.22. Идеализированная структура биполярного n-p-n-транзистора

 

Внешние напряжения  и  создают соответствующие смещения на переходах. В зависимости от полярности напряжений  и  различают четыре режима работы транзистора (рис. 3.23):

 

           

 

Рис. 3.23. Режимы работы n-p-n-транзистора

 

1) нормальный (активный) режим, когда на эмиттерном переходе действует прямое смещение, а на коллекторном – обратное;

2) инверсный режим, когда на эмиттерном переходе действует обратное смещение, а на коллекторном – прямое;

3) режим двойной инжекции (насыщения), когда на оба перехода поданы прямые смещения;

4) режим отсечки (запирания), когда на оба перехода поданы обратные смещения.

В режимах двойной инжекции и отсечки управление транзистором практически отсутствует. В нормальном режиме управление транзистором осуществляется наиболее эффективно. Только работая в нормальном режиме, транзистор может выполнять функции активного элемента электрической схемы, т. е. усиливать, генерировать, переключать электрические сигналы и  т. д.

Основные свойства транзистора определяются процессами, происходящими в базе. Существенное влияние на работу транзистора оказывает распределение легирующей примеси в базе. Если примесь в базе распределена равномерно (однородная база), то в ней отсутствует внутреннее поле и движение носителей заряда имеет чисто диффузионный характер. При неравномерном распределении примеси   в области базы (неоднородная база) в ней возникает внутреннее электрическое поле, а значит, появляется дополнительная дрейфовая составляющая в движении носителей заряда. При этом необходимо так распределить примесь в базе, чтобы внутреннее поле способствовало движению носителей заряда от эмиттера к коллектору. Это возможно в случае уменьшения концентрации некомпенсированной примеси в базе   в направлении от эмиттера к коллектору (см. рис. 3.21.).

Принцип работы биполярного транзистора заключается в управлении током через обратно смещенный коллекторный переход. Известно, что в обратно смещенном р-п-переходе ток очень мал и определяется только неосновными носителями заряда, которые генерируются в области объемного заряда или вблизи нее. Однако при появлении у границ такого перехода дополнительных источников неосновных носителей  ток через обратносмещенный переход увеличивается. Такими источниками, например, могут быть частицы высокой энергии, попадающие при внешнем излучении в диодные фотоприемники или датчики излучения.

Другой способ увеличения концентрации неосновных носителей заряда около обратно смещенного p-n-перехода заключается в размещении в непосредственной близости от него другого                      p-n-перехода, смещенного в прямом направлении. Данный способ особенно удобен, так как обеспечивает электрическое управление концентрацией неосновных носителей, т. е. управление ею с помощью напряжения смещения, приложенного к этому прямо смещенному переходу.

Такая модуляция тока в одном  p-n-переходе с помощью изменения напряжения смещения другого перехода, расположенного рядом с ним, называется механизмом работы биполярного транзистора. Эта одна из самых важных идей во всей истории развития электронных приборов.  За исследования, в результате которых эта идея была разработана и реализована, изобретатели биполярного плоскостного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии по физике в 1956 г.

Применение pnp транзисторов

На рис. 22.6 приведена схема усилителя на pnp-транзисторе. Пусть это будет кремниевый транзистор. Тогда его ток и напряжения на эмиттере, базе и коллекторе можно рассчитать следующим образом:

Из соотношения VBE= VbVe следует Ve= VbVBE. Поскольку VBE = 0,6 В (кремниевый транзистор) и Vb = 1,5 В, то

Ve = 1,5 – 0,6 = 0,9 В.

Учитывая, что Ve = Ie·R4, получаем

Таким образом, статический режим работы транзистора определяется следующими условиями:

Ve = – 0,9 В, Vb = – 1,5 В, Vc = – 6,4 В, Ie = 1,1 мА.

Приведенные значения напряжений на эмиттере, базе и коллекторе типичны для однокаскадных усилителей — УПЧ или предоконечных каскадов. Напряжение на базе равно примерно 0,1 VСС, а на коллекторе — примерно 0,6 VСС. Видно, что для транзисторов того и другого типа наи­меньшим по абсолютной величине является напряжение на эмиттере, наибольшим — напряжение на коллекторе, а напряжение на базе при­мерно на 0,6 В (для кремниевого транзистора) «выше» напряжения на эмиттере.

Транзистор прп-типа в схеме усилителя с отрицательным напряжением питания

Можно использовать прп-транзистор в схеме усилителя, питаемого от ис­точника с отрицательным напряжением VСС, как показано на рис. 22.7. В этом случае шасси играет роль положительной шины питания, и все напряжения в схеме отрицательны, поскольку они измеряются относи­тельно положительного шасси. Используя типичные величины, указан­ные на схеме, и учитывая, что напряжение на базе Vb равно падению напряжения на резисторе R1, а напряжение на коллекторе — падению напряжения на резисторе R3, получаем

Таким образом, статический режим работы транзистора определяется следующими условиями: Ve = – 8,8 В, Vb = – 8,2 В, Vc = – 4 В.


Рис. 22.7.   Усилитель на прп-транзисторе

с отрицательным напря­жением питания —VCC.

          Рис. 22.8. Влияние базового тока Ib.

Базовый ток

Базовый ток Ib (рис. 22.8) течет от положительной шины источника пита­ния через резистор R1 и эмиттерный переход транзистора к эмиттеру. Та­ким образом, через резистор смещения R1 протекают два тока: ток покояIs (протекающий также через резистор R2) и базовый ток (не протекаю­щий через R2).За счет базового тока падение напряжения на резисторе R1 возрастает на величину IbR1. Поскольку VR1 + VR2= VCC, то увеличе­ние VR1 приводит к уменьшению VR1, т. е. к уменьшению напряжения на базе. В нормальных условиях ток Ib очень мал, и им можно пренебречь, считая, что Vbполностью определяется резистивным делителем R1 R2.

Однако при большой величине базового тока (например, когда транзи­стор работает в сильноточном режиме) или при очень большом сопроти­влении резистора R1 изменение напряжения на базе, связанное с током Ib, начинает влиять на статические условия работы транзистора, и это изменение нужно принимать во внимание.

Рассмотрим схему на рис. 22.8. При нормальных условиях базовый ток, например          10 мкА, создает на резисторе R1 падение напряжения IbR1 = 10 · 10-6 · 15 · 103= 150 · 10-3 = 0,15 В. Как видим, это мало по сравнению с напряжением на базе 1,8 В, определяемым цепью сме­щения R1 R2. Если теперь перевести транзистор в состояние высокой проводимости с большим пропускаемым током, то базовый ток также воз­растет. Предположим, что он увеличится до 80 мкА. Тогда падение на­пряжения на резисторе R1, создаваемое таким базовым током, составит 80 · 10-6 · 15 · 103 = 1,2 В. На эту величину, т. е. от 1,8 В до 0,6В, уменьшится напряжение на базе транзистора.

Смещение базовым током

Базовый ток можно использовать для задания нормального смещения транзистора, как показано на рис. 22.9. В этой схеме резистор R2 исклю­чен и используется только резистор R1 с очень большим сопротивлением. Ток Ib теперь полностью определяет падение напряжения на этом ре­зисторе (ток покоя отсутствует). Величина этого падения напряжения достаточна для создания нормального смещения.

Для базового тока величиной 10 мкА (рис. 22.9) напряжение на базе рассчитывается следующим образом:

VR1 = IbR1 = 10 · 10-6 · 390 · 103 = 3,9 В.

Напряжение на базе — это напряжение между базой и шасси, т. е.

Vb= VCCVR1 = 6 – 3,9 = 2,1 В.

Преимущество схемы на рис. 22.9 — высокое входное сопротивление, обусловленное отсутствием резистора R2, шунтирующего вход, недоста­ток — полное отсутствие стабильности по постоянному току.

Отсечка и насыщение

Говорят, что транзистор находится в состоянии отсечки, когда он пере­стает проводить, т. е. когда его ток равен нулю. При Ie = 0 падение напряжения на резисторе R4 отсутствует (рис. 22.10).

Рис. 22.9. Смещение базовым током.                                 Рис. 22.10. Условие отсечки тран­зистора:

                                                                                                 Ve = 0, Vc = VCC.


Рис. 22.11. Условие насыщения транзистора; VeVc.

Следовательно, на­пряжение на эмиттере также равно нулю. Поскольку Ic = 0, то падение напряжения на резисторе R3 отсутствует и напря­жение на коллекторе равно напряжению питания VCC. Таким образом, напряжение между коллектором и эмиттером VCE= VcVe также равно напряжению питания VCC.

Говорят также, что транзистор находится в состоянии насыщения, ко­гда пропускаемый им ток настолько велик, что дальнейшее увеличение этого тока невозможно, т. е. когда Ie и Ic достигают своих максималь­ных значений. При увеличении Ie увеличивается также Ve (рис. 22.11). При увеличении Ic возрастает падение напряжения на резисторе R3, что приводит к уменьшению напряжения на коллекторе относительно VCC и  приближению его к напряжению на эмиттере. Таким образом, при увеличении тока транзистора напряжения на эмиттере и коллекторе приближаются друг к другу. В состоянии насыщения, когда ток транзистора максимален, напряжения Ve и Vc становятся практически одинаковыми, т> е. vceпрактически равно нулю. На рис. 22.11 указаны типичные значения напряжений в схеме, когда транзистор находится в состоянии насыщения.

Таким образом, транзистор можно использовать в качестве ключа (рис. 22.12):

ключ ЗАМКНУТ   — транзистор в состоянии насыщения,

ключ РАЗОМКНУТ — транзистор в состоянии отсечки.

 

Рис. 22.12. Транзисторный ключ.

Добавить комментарий

описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www. radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т. д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т. е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

 

Транзистор составной – Энциклопедия по машиностроению XXL

Транзистор составной — комбинация двух транзисторов, соединенных определенным образом и представляющих собой единое целое такая комбинация транзисторов позволяет резко повысить коэффициент усиления [10].  [c.159]

Усилитель мощности с выходными транзисторами составного типа  [c.93]

Р-111), выход которого выполнен в виде источника тока, к которому последовательно подключены вход формирователя импульсов Ф и вход усилителя УТ, собранного по схеме составного транзистора.  [c.86]


Схема работает следующим образом при открытом транзисторе УТ1, транзистор УТЗ открыт, так как его ток базы проходит через переход эмиттер — коллектор УТ и закрыт составной транзистор УТ4, VT5, поскольку его переход эмиттер — база зашунтирован переходом эмиттер — коллектор транзистора УТЗ. Если транзистор УТ1, закрыт, что бывает при напряжении ниже напряжения настройки регулятора (ток через стабилизатор VDI не протекает), то закрыт транзистор УТЗ и открыт составной транзистор УТ4, УТ5.  [c.97]

В схеме регулятора имеется резистор жесткой обратной связи R6. Переход составного транзистора УТ4, УТ5 в открытое состояние подключает резистор R6 параллельно резистору R4 входного делителя напряжения, что приводит к скачкообразному повышению напряжения на стабилитроне У01, его ускоренному отпиранию и соответственно, ускоренному отпиранию транзисторов УТ1, УТЗ и запиранию составного транзистора УТ4, УТЗ. Запирание этого транзистора отключает резистор R6, что способствует скачкообразному уменьшению напряжения на стабилитроне VDI и его ускоренному запиранию. Таким образом, резистор R6 повышает частоту переключения регулятора напряжения. Конденсатор С1 осуществляет фильтрацию пульсаций напряжения и исключает их влияние на работу регулятора напряжения.  [c. 97]

Запирание составного транзистора VT4, VT5 вызывает резкое понижение потенциала его коллектора. При этом в цепи переход эмиттер -база транзистора VT2. резистор R9, конденсатор С2 появляется ток. что приводит к отпиранию транзистора VT2 и обеспечивает в результате форсированное отпирание транзистора УТЗ и ускорение запирания составного транзистора VT4, VT5. При отпирании составного транзистора VT4, VTS транзистор VT2 находится в закрытом состоянии и конденсатор С2 разряжается в цепи переход эмиттер — коллектор транзистора VT2 — диод VD2 резистор RII. Разрядный ток, проходя по резистору RI1, повышает потенциал базы транзистора УТЗ, т. е. создает дополнительное отрицательное смещение его перехода эмиттер — база, чем форсирует запирание транзистора УТЗ и сокращает время отпирания составного транзистора VT4. УТ5.  [c.98]

В аварийном режиме схема на транзисторе VT2 осуществляет защиту выходного составного транзистора VT4, УТЗ регулятора от перегрузки, В результате замыкания вывода Ш на массу понижается потенциал коллектора транзистора VT5 и, если транзистор в момент замыкания открыт, то он начинает- работать в линейном режиме. При этом конденсатор С2 заряжается, в цепи переход эмиттер — база транзистора VT2 — R9 — С2 появляется ток, транзистор VT2 открывается, следовательно, открывается транзистор УТЗ и запирается составной транзистор УТ4, VTS. После заряда конденсатора, ток в его цепи пропадает, транзисторы VT2, УТЗ закрываются, открывается составной транзистор VT4, УТЗ. Процесс повторяется, а выходной транзистор переходит в автоколебательный режим. Средняя сила тока через транзистор невелика и не может влиять на его отказ. Диод VD3 является в схеме регулятора гасящим диодом. Диод VD4 защищает регулятор от импульсов напряжения обратной полярности. Остальные элементы схемы обеспечивают нужный режим работы полупроводниковых элементов схемы.  [c.98]


Измерительный орган регулятора делитель на резисторах R1. R2 — соединен с его органом сравнения стабилитроном VDI. Электронное реле регулятора собрано на транзисторах VTI, VT2, УТЗ, причем силовым транзистором в выходной цепи регулятора является составной транзистор УТ2, УТЗ. Резисторы R3, R4 совместно с диодом У02 представляют собой цепь жесткой обратной связи. При закрытом транзисторе VTI одно из плеч измерительного делителя образуется параллельным включением резистора RI и цепочки резисторов R4 — R3. При переходе УТ1 в открытое состояние он шунтирует совместно с диодом У02 резистор R4, что способствует ускорению запирания транзистора УТ1 и, следовательно, повышает частоту переключения схемы. Гибкая обратная связь через конденсаторы С1 к С2 снижает влияние электромагнитных помех, в том числе пульсаций выпрямленного напряжения генератора на работу регулятора напряжения, и предотвращает возможность самовозбуждения его схемы на высокой частоте.  [c.99]

При открытом транзисторе УТ открыт и транзистор УГЗ, так как его ток базы протекает через переход эмиттер — коллектор УТ, и закрыт составной транзистор V 7 4, УГ5, поскольку его переход эмиттер — база зашунтирован переходом эмиттер — коллектор транзистора УТЗ. Если транзистор УТ закрыт, что бывает при низком напряжении, когда ток через стабилитрон VD не протекает, то закрыт и транзистор УТЪ и открыт составной транзистор УГ4, УТЪ.[c.37]

Til R2 — соединен с его элементом сравнения стабилитроном VD. Электронное реле регулятора собрано на транзисторах VT, VT2 и VT3, причем силовым транзистором в выходной цепи регулятора является составной транзистор VT2, VT3. Резисторы R3 и RA совместно с диодом VD2 представляют собой цепь жесткой обратной связи. При закрытом транзисторе VTI одно из плеч измерительного делителя образуется параллельным включением резистора / 1 и цепи резисторов R3 и / 4. При переходе транзистора VT в открытое состояние он шунтирует совместно с диодом VD2 резистор RA, Это приводит к резкому уменьшению напряжения на стабилитроне VD, что способствует ускорению запирания транзистора VTI. Следовательно, в схеме этого регулятора цепь жесткой обратной связи повышает частоту переключения регулятора напряжения.  [c.39]

Выходной 1/710 и предвыходной V79 транзисторы соединены по схеме составного транзистора, что исключило необходимость постановки мощного резистора в цепи коллектора транзистора 1/79, вследствие чего в 2 раза снизилось тепловыделение в коммутаторе.[c.139]

При открытых транзисторах УТ9, УТк становится возможно протекание через их переходы коллектор — эмиттер тока базы транзистора УТ 0 и переход составного транзистора УТ 0 и УТИ в открытое состояние.  [c.253]

Если в цепи электромагнитного клапана Y А существует короткое замыкание (цепь, подходящая к выводу XI, замкнута на массу), то составной транзистор закроется после зарядки конденсатора С7, что предохранит его от перегрузки. Если же цепь нагрузки функционирует нормально, то открытый составной транзистор через переход эмиттер — коллектор транзистора УТ и резистор R21 подключает базу транзистора УТ9 к сети питания, чем обеспечивает самоблокировку схемы. При этом транзистор VT9 и составной транзистор УТЮ, УТ остаются во включенном состоянии, соединяя вывод XI штекерного разъема с выводом + сети. Резисторы R15, RI6 совместно с транзистором УГ5 образуют жесткую обратную связь. При открывании транзистора УТ открывается и транзистор УТ5, и параллельно резистору RIO подключается цепь резисторов i 15, / 16.[c.253]

Кроме того, диод V38 ограничивает не только напряжение i/пил, но и отрицательное напряжение между базой и эмиттером транзистора V23 до значения прямого падения напряжения на нем. Этого напряжения достаточно для запирания транзистора V23, в связи с чем составной транзистор V21, V22 открывается и на его коллекторной нагрузке (резисторе R28] появляется напряжение прямоугольной формы 24 В, которое после дифференцирования цепочкой С9, R29, R30 поступает на управляющий электрод тиристора V24, который открывается.  [c.108]

Резистор R26 предназначен для ограничения положительного тока смещения транзистора V23 до допустимого значения, а диод V37 срезает отрицательные импульсы на выходе цепочки, возникающие при запирании составного транзистора. Монтаж элементов выполнен печатным способом.  [c.108]

Когда транзистор Т1 открыт, ток течет от движка потенциометра Я2 через эмиттер-коллектор транзистора Т1, резистор / 5, переходы база-эмиттер транзисторов Т2 и ТЗ, которые включены по схеме составного транзистора для увеличения коэффициентов усиления, далее через дроссель Др1 на минус вспомогательного генератора. Дроссель имеет очень малое активное сопротивление и практически не оказывает сопротивления постоянному току. Транзисторы Т2 и ТЗ имеют обратную проводимость (п-р-п) по сравнению с транзистором Т1 (типа р-п-р) и при показанном выше направлении тока в цепи база-эмиттер они открываются. При этом сопротивление транзистора ТЗ между эмиттером и коллектором близко к нулю.  [c.192]


Усиленный транзистором Т1 сигнал подается через резистор Я5 на базу транзистора Т2, объединенного с транзистором ТЗ по схеме составного транзистора. Транзисторы Т2 и ТЗ открываются и шунтируют переход, управляющий электрод — катод тиристора Т4.  [c.193]

Минус Ын подается на базу ГУ, а плюс через диод Д39, систему контактов реле и один из резисторов Я34—ЯЗб (например, Я34) — на коллектор Г2. Транзисторы Т1 и Т2 соединены по схеме составного транзистора и могут рассматриваться как один транзистор с увеличенным коэффициентом усиления. На резисторы Я34—Я36  [c.360]

Схема реле наибольшего напряжения вырабатывает сигнал на срабатывание электромеханического реле РМН в случае, когда повышенное сверх допустимого значение напряжения контактной сети действует достаточно длительное время. До получения сигнала от канала КОН схема (рис. 305) находится в исходном состоянии транзисторы T9—Т4 закрыты, а транзистор Т5 открыт базовым током по цепи 0 —Т5—Д38—к35 и шунтирует катушку реле РМН. Конденсатор С17 заряжен. В качестве входного сигнала используется падение напряжения на резисторе R67 (см. рис. 304), которое появляется при срабатывании канала КОН. Это напряжение открывает составной транзистор T9—Т4, что приводит к запиранию диода Д38. Конденсатор С17 начнет разряжаться по цепи С17, эмиттер — база Т5 и R59, поддерживая открытое состояние транзистора Т5. Когда напряжение конденсатора С17 сравняется с напряжением смешения, подаваемого на базу Т5 через резистор R57, транзистор Т5 закроется. На катушке РМН появится напряжение и реле сработает. Если же опасное повышение было кратковременным (отрыв токоприемника и др.) и транзисторы T9—Т4 закроются раньше, чем закроется Т5, то схема придет в исходное состояние, т. е. транзистор Т5 останется открытым, ибо на его базу будет подаваться отрицательный потенциал по цепи R55, Д38, а конденсатор С17 вновь зарядится.  [c.362]

Предположим, что напряжение на выводах О—12 В превысило 12 В. Положение движка R13 выбрано таким, чтобы по абсолютной величине Ыи было больше Uo, т. е. потенциал эмиттера оказался бы выше, чем потенциал базы. Ток коллектора транзистора Т1 начнет увеличиваться, подавая на базу составного транзистора ТЗ—Тб положительный потенциал и вызывая уменьшение его коллекторного тока,- Так как он включен последовательно с резисторами R13, R14 и потребителями напряжения 12 В, то это приведет к уменьшению выходного напряжения.  [c.381]

После пуска дизеля напряжение вспомогательного генератора растет пропорционально частоте вращения якоря, поэтому между движком потенциометра Я2 и выводом Я2 появится напряжение, пропорциональное напряжению вспомогательного генератора При этом к управляющему переходу транзистора Т1 приложена разность потенциалов между движком потенциометра Я2 и анодом стабилитрона ДЗ. Когда напряжение вспомогательного генератора достигает 75 В, открывается транзистор Т1, что приводит к открыванию тиристоров Т2 и ТЗ, включенных по схеме составного транзистора.  [c.71]

Транзисторы находят наибольшее использование в качестве составных частей бесконтактных логических элементов и различных других узлов автоматического управления триггеры, счетчики, дешифраторы и т. п.  [c.36]

Каскад с нагрузкой в эмиттере сохраняет фазу неизменной, но имеет малый коэффициент усиления. Большой коэффициент усиления можно получить за счет использования схем составных транзисторов.  [c.26]

Значение тока определяется резисторами R3, R4, R5 и состоянием транзистора Т2, который управляется по базе транзистором Т1. Транзисторы Т1 и Т2 включены по схеме составного транзистора. База транзистора Т1 застабилизирована, и его коллекторный ток изменяется нелинейно относительно приложенного напряжения U. Сопротивление коллекторно-эмиттерного перехода транзистора Т2 изменяется в зависимости оттока эмиттера транзистора Т/. В результате изменение тока оказывается существенно нелинейным относительно напряжения U.  [c.107]

Полупроводники. Индий — существенная составная часть германиевого транзистора, в котором он действует как присадка и как средство для прикрепления свинцовой проволоки к германиевому кристаллу 16 . В настоящее время в различных областях техники применяются германиевые транзисторы и выпрямители нескольких типов, в том числе с точечным контактом, с поверхностным барьером и с диффузионным сплавленным переходом. Для последнего типа германиевого транзистора, где используется примесный диффузионный р — п — р-переход, требуется значительно больший расход индия. Действие транзистора основано на р — -переходе, который осуществляется, когда происходит превращение германия /j-типа в германий п-типа в твердом состоянии. Германш п-типа образуется при введении в германий высокой степени чистоты специальных примесей, например сурьмы или мышьяка. Эти элементы, имеющие пять электронов на своей внешней орбите (германий имеет четыре электрона), дают избыточные электроны в решетку кристаллического германия. При введении в германий в качестве примеси индия образуется германий р-типа. Поскольку индий имеет на своей внешней орбите три электрона, а терма-ний — четыре, в кристаллической решетке германия наблюдается недостаток электронов, и недостающие электроны известны как дырки. Под влиянием электрического поля избыточные электроны в германии п-тппа движутся к положительному источнику в германии р-типа электроны могут перескакивать в дырки, и дырки появляются в направлении отрицательной клеммы.  [c.239]

Основное назначение элементов схемы УТ1 — измерительный элемент УТ2 — транзистор защиты от замыкания вывода Ш на — УТЗ — управляющий элемент УТ4, УТЗ — регулирующий элемент, выполненный в виде составного транзистора по схеме Дарлингтон У01 — опорный элемент У02 — диод схемы защиты УОЗ — гасящий диод У04 — диод, обеспечивающий защиту транзисторов регулятора от кратковременных импульсов напряжения обратной полярности С1 — фильтрующий элемент С2 — элемент цепи обратной связи —Я4 — элементы входного делителя напряжения ЯЗ — резистор, обеспечивающий минимальный ток стабилитрона Я6 — резистор цепи отрицательной обратной связи / 7 — резистор, ограничивающий ток коллектора транзистора УТ] Я8 — резистор цепи положительной обратной связи Я9 — резистор, ограничивающий ток базы транзистора УТ2 НЮ — резистор базовой цепи транзистора УТЗ ЯП — резистор, ограничивающий ток диода У02 Я12 — коллекторная нагрузка транзисторов УТ2, УТЗ Я13 — резистор, обеспечивающий режим работы транзистора УТ2 Я14 — ограничительный резистор Я13 — резистор, обеспечивающий стабильность работы транзистора УТЗ.[c.52]


Часть схемы иа транзисторах VTI, УТЗ, УТ4, VT5 является регулирующим органом. Транзисторы УТ4, VT5 включены по схеме составного транзистора (схема Дарлингтона) два транзистора рассматриваются как один с большим коэффициентом усиления.  [c.97]

Транзистор VT3 (2Т809А) является промежуточным усилителем мощности. В последних модификациях коммутатора пара транзисторов VT3 и VT4 заменена составным транзистором (2Т848А). Транзистор УТЗ (2Т630Б) является еще одной ступенью усиления на базу  [c.227]

Часть схемы на транзисторах VTI, УТЗ, УГ4 и УТБ является регулирующим элементом. Интерес представляют транзисторы УТ4 и УТ5, включенные по схеме составного транзистора (схема Дарлингтона). При такой схеме включения два транзистора рассматриваются как один с большим коэффициентом усиления. Применение составного транзистора в выходной цепи регулятора напряжения позволило снизить силу его базового тока, а следовательно, исключить применение в базовой цепи резистора большого  [c. 36]

Особенностью регулятора ЯП2В является питание его входной цепи через отдельный вывод Б. Это позволило выполнить схему генераторной установки на автомобилях ВАЗ-2105 Жигули по схеме, представленной на рис. 11, б. При отсутствии напряжения на выводе Б отсутствует и базовый ток составного транзистора УГ2, УТЗ. В этом случае транзистор заперт и протекание тока в цепи обмотки возбуждения генератора невозможно.  [c.40]

Когда напряжение генератора превысит 75 В, напряжение на втором плече моста станет выше напряжения на ДЗ (Д6). При этом потенциал базы Т1 станет меньше потенциала эмиттера, и транзистор Т1 откроется. Начнет протекать ток от движка потенциометра Я2 через переход эмиттер-коллектор Т/, резистор / 5, переходы база-эмиттер транзисторов Т2 и ТЗ, дроссель Др1 и далее на минус вспомогательного генератора. Благодаря этому откроются транзисторы Т2 и ТЗ. Для увеличения коэффициента усиления они включены по схеме составного транзистора. Поскольку при закрытом состоянии транзистора сопротивление перехода эмиттер-коллектор очень велико, а при открытом близко к нулю, можно считать, что выходной транзистор ТЗ представляет собой выключатель, контакты которого при напряжении вс1юмогательного генератора меньше 75 В разомкнуты, а при напряжении больше 75 В — замкнуты.[c.153]

По принципу действия КОН (см. рис. 304) аналогичен каналу регулирования тока якоря. Он имеет выход на те же точки схемы айв. Сигнал датчика напряжения контактной сети Ывых днк сравнивается с опорным напряжением, на резисторе R33. Когда напряжение датчика превысит опорное, откроется составной транзистор ТЗ—Т8, который вызовет шунтирование точек а и б и уменьшение входного тока фазорегуляторов. С резистора R67 подается напряжение на схему реле наибольшего напряжения РМН, которое, включаясь, производит в схеме управления необходимые переключения для перехода на реостатное торможение. Назначение элементов R68 и С18 аналогично назначению R39 и СП.  [c.362]

Элемент Т302 — транзисторная задержка (см. Э13 на рис. ЗП,а). Он содержит два независимых инвертора (на схеме изображен один). Используется как составная часть схемы формирователя импульсов, состоящей из инвертора на транзисторе Т2 (ЭЮ), конденсатора С21 и Э13.  [c. 369]

Элемент Т404 — выходной усилитель (см. Э16 на рис. 311,а). Содержит один четырехкаскадный усилитель. Транзисторы Т1 н Т2 двух первых каскадов включены по схеме с общим эмиттером, а вторых ТЗ и Т4) — по схеме составного транзистора. Диод Д1 также включается встречно-параллельно индуктивной нагрузке и при необходимости усиливается (диод Д26).  [c.370]

Замена неисправного транзистора в электронном коммутаторе зажигания 36.3734 автомобилей ВАЗ-2108 Спутник , ЗАЗ-1102 Таврия предлагается встраиванием в коммутатор на место отказавшего в работе мощного транзистора КТ848А составного транзистора.  [c.277]

Регулятор напряжения 201.3702 (рис. 3.14) выпускается взамен регуляторов РР350, РР350-А. Чувствительный элемент здесь содержит делитель напряжения на резисторах Ri, R2, R3, Н4 и стабилитрон У01. Отличием регулятора 201.3702 является то, что стабилитрон ]/01 расположен не в базовой, а в эмиттерной цепи первого транзистора электронного реле УГ/, что увеличивает ток через него и повышает четкость его срабатывания. Электронное реле, кроме транзистора VII, включает в себя транзисторы УТЗ— УТ5. Транзисторы УТ4, УТ5 включены по схеме составного транзистора (схема Дарлингтона), при которой эти два транзистора могут рассматриваться как один с большим коэффициентом усиления. Схема, кроме гибких обратных  [c.53]

С 1991 г. выпускается двухканальный коммутатор 64.3734-20 (рис. 4.16) на базе интегральных микросхем Ь497В. Применение микросхем позволило разместить все элементы, включая силовые транзисторы УТ2 и УТЗ, на одной плате. Коммутатор выполняет все те же функции, что и двухканальный коммутатор 42.3734, и полностью с ним взаимозаменяем. Применение в качестве силовых транзисторов УТ2 и УТЗ составных транзисторов В 9312РР1 с внутренней схемой защиты от перенапряжения позволило в значительной степени повысить надежность коммутаторов 6420.3734.  [c.85]

При включении массы ток от аккумуляторной батареи течет через входной делитель напряжения, а также через резистор / б. базоэмиттерные переходы составного транзистора V3-V2 и резистор R5. Составной транзистор открывается и пропускает незначительный ток через резистор R в обмотку возбуждения генератора (до 0,085 А). После пуска двигателя обмотку возбуждения питает генератор от дополнительного выпрямителя. Пока напряжение генератора не достигло регулируемого уровня, ток в обмотку возбуждения идет через открытый составной транзистор. Когда напряжение генератора достигает регулируемого значения, увеличивается ток в делителе напряжения и возрастает падение напряжения на резисторе / рег. При этом стабилитрон переходит в проводящее состояние и повышает потенциал базы входного транзистора VI. Последний открывается и шунтирует переходы база — эмиттер составного транзистора V3-V2, который закрывается и размыкает цепь питания обмотки возбуждения. Ток в обмотке возбуждения снижается его некоторое время поддерживает ЭДС  [c.195]


Что такое транзистор, его функции и характеристики[Видео]

Теплые подсказки: В этой статье около 3200 слов, а время чтения около 15 минут.

Каталог

Введение

В этой статье в основном будет рассказано, что такое транзистор , а также его подробные характеристики и функции. Транзистор — это своего рода твердотельное полупроводниковое устройство, которое выполняет множество функций, таких как обнаружение, выпрямление, усиление, переключение, стабилизация напряжения, модуляция сигнала и так далее.В качестве переключателя переменного тока транзистор может управлять выходным током в зависимости от входного напряжения.

 

В отличие от обычных механических переключателей (таких как реле и переключатели), транзисторы используют телекоммуникационные сигналы для управления их включением и выключением, а скорость переключения может быть очень высокой, которая в лаборатории может достигать более 100 ГГц. В 2016 году команда Национальной лаборатории Лоуренса в Беркли преодолела физический предел и сократила самый сложный транзисторный техпроцесс с 14 нм до 1 нм, совершив прорыв в вычислительных технологиях.

Что такое транзистор? Определение, функция и использование

Артикул Core

Введение в транзисторы

Назначение

Познакомить с транзистором, его функциями и характеристиками

Английское название

Транзистор

Категория

Дискретные полупроводники Продукция

Функция

Используется в качестве детектора, выпрямителя, усилителя, переключателя, стабилизатора напряжения, модуляции сигнала

Функция

Высокая скорость отклика и высокая точность

I Что такое транзистор?

Транзисторы представляют собой полупроводниковые устройства, которые обычно используются в усилителях или переключателях с электрическим управлением. Транзисторы являются основным строительным блоком, который регулирует работу компьютеров, мобильных телефонов и всех других современных электронных схем.

 

Благодаря своему быстрому отклику и высокой точности транзисторы могут использоваться для широкого спектра цифровых и аналоговых функций, включая усилители, переключатели, стабилизаторы напряжения, модуляцию сигналов и генераторы. Транзисторы могут быть упакованы независимо или на очень небольшой площади, вмещающей часть 100 миллионов или более транзисторных интегральных схем.

(Транзисторная технология Intel 3D)

Строго говоря, под транзисторами понимаются все отдельные элементы на основе полупроводниковых материалов, включая диоды, транзисторы, полевые транзисторы, тиристоры и т.п., изготовленные из различных полупроводниковых материалов. Транзисторы чаще всего относятся к кристаллическим триодам.

Транзисторы

делятся на две основные категории: биполярные транзисторы (BJT ) и полевые транзисторы (FET) .

структура транзистора

Транзистор имеет три полюса: три полюса биполярного транзистора состоят из N-типа и P-типа соответственно: Эмиттер, База и Коллектор ; три полюса полевого транзистора : Исток, Затвор, Сток .

 

Из-за трех полярностей транзистора существует также три способа их использования: заземленный эмиттер (также называемый усилителем с общей эмиссией/конфигурация CE), заземленная база (также называемая конфигурацией усилителя с общей базой/CB) и заземленный коллектор (также называется усилителем с общим набором / конфигурацией CC / ответвителем излучателя).


II Разработка транзисторов

В декабре 1947 года группа Belle Labs, Shockley, Barding and Bratton разработала германиевый транзистор с точечным контактом, появление которого стало крупным изобретением 20-го века и предвестником революция в микроэлектронике. С появлением транзисторов люди получили возможность использовать небольшое маломощное электронное устройство вместо лампы большого объема и большой потребляемой мощности. Изобретение транзистора послужило сигналом к ​​рождению интегральной схемы.

 

В начале 1910-х годов в системах связи стали использовать полупроводники. В начале 1910-х годов в системах связи начали использовать полупроводники. В первой половине 20 века широкое распространение среди радиолюбителей получили рудные радиоприемники. Они используются для обнаружения с помощью таких полупроводников. Электрические свойства полупроводников также применяются в телефонных системах.

В феврале 1939 года в лаборатории Белла было сделано великое открытие — кремниевый PN-переход.В 1942 году студент по имени Сеймур Бензер из исследовательской группы Университета Пердью под руководством Ларка Горовица обнаружил, что монокристаллы германия обладают превосходными выпрямляющими свойствами, которых нет у других полупроводников. Эти два открытия соответствовали требованиям правительства Соединенных Штатов и подготовили почву для последующего изобретения транзисторов.

  • 2.

    2 Транзисторы с точечным контактом

В 1945 году точечный транзистор, изобретенный Шокли и другими учеными, стал предтечей микроэлектронной революции человечества.По этой причине Шокли подал заявку на патент на первый транзистор для Белла. Наконец, он получил разрешение на первый патент на транзистор.

  • 2.3 Биполярные и униполярные транзисторы

В 1952 году Шокли предложил концепцию униполярного переходного транзистора на основе биполярного транзистора 1952 года, который сегодня называется переходным транзистором. Его структура аналогична структуре биполярного транзистора PNP или NPN , но на границе раздела материала PN имеется обедненный слой, формирующий контакт выпрямителя между затвором и проводящим каналом исток-сток.При этом полупроводник на обоих концах используется как затвор. Ток между истоком и стоком регулируется затвором.

Подробный обзор того, как работает биполярный транзистор NPN и что он делает

 

Fairy Semiconductor, производящая транзисторы, выросла из компании, состоящей из нескольких человек, в крупную компанию с 12 000 сотрудников.

После изобретения кремниевых транзисторов в 1954 году большие перспективы применения транзисторов становились все более и более очевидными.Следующая цель ученых — дальнейшее эффективное соединение транзисторов, проводов и других устройств.

  • 2.6 Полевой транзистор (FET) и МОП-транзистор

В 1962 году Стэнли, Хейман и Хофштейн, работавшие в Исследовательской группе по интеграции устройств RCA, обнаружили, что транзисторы, МОП-транзисторы, могут быть созданы путем диффузии и термического окисления проводящих полос, каналов с высоким сопротивлением и оксидных изоляторов на кремниевых подложках.

В начале своего основания компания Intel по-прежнему занималась планками памяти.Хофф интегрировал все функции центрального процессора в один чип, а также память. И это первый в мире микропроцессор —- 4004 (1971). Рождение 4004 знаменует собой начало эры. С тех пор Intel стала неуправляемой и доминирующей в области исследований микропроцессоров.

В 1989 году Intel представила процессоры 80486. В 1993 году Intel разработала новое поколение процессоров. А в 1995 году Intel выпустила Pentium_Pro. Процессор Pentium II выпущен в 1997 году. В 1999 году выпущен процессор Pentium III, а в 2000 году выпущен процессор Pentium 4.

III Классификация транзисторов
  • 3.1 Классификация транзисторов

> Материал, используемый в транзисторе

В соответствии с полупроводниковыми материалами, используемыми в транзисторе, его можно разделить на кремниевый транзистор и германиевый транзистор. По полярности транзистора его можно разделить на германиевый NPN-транзистор , германиевый PNP-транзистор , кремниевый NPN-транзистор и кремниевый PNP-транзистор.

 

> Технология

В соответствии с их структурой и процессом изготовления транзисторы можно разделить на диффузионные транзисторы, сплавные транзисторы и планарные транзисторы.

 

> Текущая емкость

По токовой емкости транзисторы можно разделить на транзисторы малой мощности, транзисторы средней мощности и транзисторы большой мощности.

 

> Рабочая частота

По рабочей частоте транзисторы можно разделить на низкочастотные, высокочастотные и ультравысокочастотные.

 

> Структура упаковки

В зависимости от структуры упаковки транзисторы можно разделить на транзисторы в металлической упаковке, транзисторы в пластиковой упаковке, транзисторы в стеклянной оболочке, транзисторы в поверхностной упаковке, транзисторы в керамической упаковке и т. д.

 

> Функции и использование

В соответствии с функциями и применением транзисторы можно разделить на малошумящие транзисторы усилителя, транзисторы усилителя средней и высокой частоты, переключающие транзисторы, транзисторы Дарлингтона, транзисторы с высоким обратным напряжением, полосовые режекторные транзисторы, демпфирующие транзисторы, микроволновые транзисторы, оптические транзисторы и магнитный транзистор и многие другие типы.

  • 3.2 Типы транзисторов и их характеристики

> Гигантский транзистор (GTR)

GTR представляет собой высоковольтный, сильноточный биполярный переходной транзистор (BJT), поэтому его иногда называют силовым BJT.

Особенности: Высокое напряжение, большой ток, хорошие характеристики переключения, высокая мощность привода, но схема управления сложна; Принцип работы ГТР и обычных биполярных транзисторов одинаков.

 

> Фототранзистор

Фототранзисторы — оптоэлектронные устройства, состоящие из биполярных транзисторов или полевых транзисторов. Свет поглощается в активной области таких устройств, создавая фотогенерируемые носители, которые проходят через внутренний механизм электрического усиления и генерируют усиление фототока. Фототранзисторы работают на трех концах, поэтому их легко реализовать электронным управлением или электрической синхронизацией.

 

Материалы, используемые в фототранзисторах, обычно представляют собой GaAs, которые в основном делятся на биполярные фототранзисторы, полевые фототранзисторы и связанные с ними устройства.Биполярные фототранзисторы обычно имеют высокий коэффициент усиления, но не слишком быстрый. Для GaAs-GaAlAs коэффициент увеличения может быть больше 1000, время отклика больше наносекунды, что часто используется в качестве фотодетектора и оптического усиления.

 

Полевые фототранзисторы (ПТ) реагируют быстро (около 50 пикосекунд), но недостатком является малая светочувствительная площадь и коэффициент усиления, что часто используется в качестве сверхбыстродействующего фотоприемника. Связано множество других планарных оптоэлектронных устройств, особенностью которых является высокое быстродействие (время отклика составляет десятки пикосекунд) и возможность интеграции.Ожидается, что такие устройства будут применяться в оптоэлектронной интеграции.

 

> Биполярный транзистор

Биполярный транзистор — это разновидность транзистора, обычно используемого в аудиосхемах. Биполярный возникает из-за протекания тока в двух видах полупроводниковых материалов. Биполярные транзисторы можно разделить на тип NPN или тип PNP в зависимости от полярности рабочего напряжения.

 

> Биполярный переходной транзистор (BJT)

«Биполярный» означает, что и электроны, и дырки находятся в движении одновременно с работой.Биполярный переходной транзистор, также известный как полупроводниковый триод, представляет собой устройство, которое объединяет два PN-перехода посредством определенного процесса. Есть две комбинированные структуры PNP и NPN. Внешнее выявление трех полюсов: коллектор, эмиттер и база. BJT имеет функцию усиления, которая в зависимости от его эмиттерного тока может передаваться через область базы в область коллектора.

 

Для обеспечения данного транспортного процесса, с одной стороны, должны быть выполнены внутренние условия.Это означает, что концентрация примеси в области излучения должна быть намного больше, чем концентрация примеси в области основания, а толщина области основания должна быть очень малой. С другой стороны, внешние условия должны быть удовлетворены. Это означает, что эмиссионный переход должен иметь положительное смещение (плюс положительное напряжение), а коллекторный переход должен иметь обратное смещение. Есть много видов BJT, в зависимости от частоты, есть высокочастотные и низкочастотные лампы; по мощности различают лампы малой, средней и большой мощности; по полупроводниковому материалу есть кремниевые и германиевые трубки и т.д.Схема усилителя состоит из общего эмиттера, общей базы и общего коллектора.

БДЖТ

> Полевой транзистор (FET)

Значение термина «эффект поля» заключается в том, что принцип работы транзистора основан на эффекте электрического поля полупроводника.

 

Полевые транзисторы — это транзисторы, работающие по принципу полевых эффектов. Существует два основных типа полевых транзисторов: переходной полевой транзистор (JFET) и полевой транзистор на основе оксида металла и полупроводника (MOS-FET).В отличие от BJT, полевой транзистор состоит только из одной несущей, поэтому его также называют униполярным транзистором. Он относится к полупроводниковым устройствам, управляемым напряжением, которые обладают такими преимуществами, как высокое входное сопротивление, низкий уровень шума, низкое энергопотребление, широкий динамический диапазон, простота интеграции, отсутствие вторичного пробоя, широкая безопасная рабочая зона и так далее.

 

Эффект поля заключается в изменении направления или величины электрического поля, перпендикулярного поверхности полупроводника, для управления плотностью или типом большинства носителей в полупроводниковом проводящем слое (канале).Ток в канале модулируется напряжением, и рабочий ток переносится большинством носителей в полупроводнике. По сравнению с биполярными транзисторами полевые транзисторы характеризуются высоким входным сопротивлением, низким уровнем шума, высокой предельной частотой, низким энергопотреблением, простым производственным процессом и хорошими температурными характеристиками, которые широко используются в различных усилителях, цифровых схемах и микроволновых схемах и т. д. Металлические МОП-транзисторы на основе кремния и полевой транзистор с барьером Шоттки (MESFET) на основе GaAs являются двумя наиболее важными полевыми транзисторами.Они являются основными устройствами крупномасштабной интегральной схемы MOS и сверхвысокоскоростной интегральной схемы MES соответственно.

ФЕТ

> Одноэлектронный транзистор

Одноэлектронный транзистор — это транзистор, который может записывать сигнал с одним или небольшим числом электронов. С развитием технологии травления полупроводников интеграция крупных интегральных схем становится все выше и выше. Возьмем в качестве примера динамическую память с произвольным доступом (DRAM), ее интеграция растет почти в четыре раза каждые два года, и ожидается, что конечной целью станет одноэлектронный транзистор.

 

В настоящее время средняя память содержит 200 000 электронов, в то время как одноэлектронный транзистор содержит только один или несколько электронов, поэтому это значительно снизит энергопотребление и улучшит интеграцию интегральных схем. В 1989 году Дж.Х. Ф.Скотт-Томас и другие исследователи открыли явление кулоновской блокировки. Когда приложено напряжение, через квантовую точку не будет проходить ток, если изменение количества электрического заряда в квантовой точке меньше одного электрона.

 

Таким образом, зависимость ток-напряжение является не нормальной линейной зависимостью, а ступенчатой. Этот эксперимент является первым случаем в истории, когда движение электрона контролируется вручную, что обеспечивает экспериментальную основу для изготовления одноэлектронного транзистора.

 

> Биполярный транзистор с изолированным затвором (IGBT)

Биполярный транзистор с изолированным затвором

сочетает в себе преимущества Giant Transistor-GTR и мощных полевых МОП-транзисторов.Обладает хорошими свойствами и широким спектром применения. IGBT также является трехвыводным устройством: затвор, коллектор и эмиттер.

IV Основные параметры транзисторов

К основным параметрам транзистора относятся коэффициент усиления тока, мощность рассеяния, характеристическая частота, максимальный ток коллектора, максимальное обратное напряжение, обратный ток и т.д.

  • 4.1 Коэффициент усиления постоянного тока

Коэффициент усиления постоянного тока, также называемый коэффициентом усиления статического тока или коэффициентом усиления постоянного тока, относится к отношению IC тока коллектора транзистора к току базы IB, которое обычно выражается hFE или β, когда вход статического сигнала не изменяется .

  • 4.2 Коэффициент усиления переменного тока

Коэффициент усиления переменного тока, также называемый коэффициентом усиления переменного тока и коэффициентом динамического усиления тока, относится к отношению IC к IB в состоянии переменного тока, которое обычно выражается через hFE или β. hFE и β тесно связаны, но также и различны. Эти два параметра близки на низких частотах и ​​имеют некоторые различия на высоких частотах.

Мощность рассеяния, также известная как максимально допустимая мощность рассеяния коллектора —- PCM, относится к максимальной мощности рассеяния коллектора, когда параметр транзистора не превышает заданного допустимого значения.

 

Мощность рассеяния тесно связана с максимально допустимым током перехода и коллектора транзистора. Фактическая потребляемая мощность транзистора не должна превышать значение PCM при его использовании, в противном случае транзистор будет поврежден из-за перегрузки.

 

Транзистор, у которого мощность рассеяния PCM меньше 1 Вт, обычно называют маломощным транзистором, который равен или превышает 1 Вт. Транзистор мощностью менее 5 Вт называется транзистором средней мощности, а транзистор, у которого PCM равен или превышает 5 Вт, называется транзистором большой мощности.

  • 4.4 Характеристическая частота (fT)

Когда рабочая частота транзистора превышает частоту среза fβ или fα, коэффициент усиления тока β будет уменьшаться с увеличением частоты. Характерная частота – это частота транзистора, при которой значение β уменьшается до 1,

 

Транзисторы, характеристическая частота которых меньше или равна 3 МГц, обычно называют низкочастотными транзисторами.Транзисторы с fT больше или равным 30 МГц называются высокочастотными транзисторами. Транзисторы с fT более 3 МГц и транзисторы менее 30 МГц называются транзисторами промежуточной частоты.

  • 4,5 Максимальная частота (фМ)

Максимальная частота генерации – это частота, при которой коэффициент усиления по мощности транзистора снижается до 1.

 

В общем случае максимальная частота колебаний высокочастотных транзисторов ниже частоты отсечки общей базы fα, а характеристическая частота fT выше частоты отсечки общей базы fα и ниже частоты отсечки общего коллектора fβ.

  • 4.6 Максимальный ток коллектора (ICM)

Максимальный ток коллектора (ICM) — это максимальный ток, допустимый через коллектор транзистора. Когда ток коллектора IC транзистора превышает ICM, значение β транзистора, очевидно, изменится, что повлияет на его нормальную работу и даже вызовет выход из строя.

  • 4.7 Максимальное обратное напряжение

Максимальное обратное напряжение — это максимальное рабочее напряжение, которое транзистор может подавать во время работы.Оно включает обратное напряжение пробоя коллектор-эмиттер, обратное напряжение пробоя коллектор-база и обратное напряжение пробоя эмиттер-база.

> Коллектор – Обратное напряжение пробоя коллектора

Это напряжение относится к максимально допустимому обратному напряжению между коллектором и эмиттером, когда базовая цепь транзистора разомкнута, обычно выражается в VCEO или BVCEO.

 

> База — базовое обратное напряжение пробоя

Напряжение относится к максимально допустимому обратному напряжению между коллектором и базой при открытии транзистора, которое выражается в VCBO или BVCBO.

 

> Эмиттер — обратное напряжение пробоя эмиттера

Это напряжение относится к максимально допустимому обратному напряжению между эмиттером и базой, когда коллектор транзистора открыт, что выражается в VEBO или BVEBO.

 

> Коллектор — базовый обратный ток (ICBO)

ICBO, также называемый обратным током утечки коллектора, относится к обратному току между коллектором и базовым электродом, когда эмиттер транзистора открыт.Обратный ток чувствителен к температуре. Чем меньше значение, тем лучше температурная характеристика транзистора.

 

> Обратный ток пробоя коллектора-эмиттера (ICEO)

Обратный ток пробоя ICEO между коллектором и эмиттером

ICEO — обратный ток утечки между коллектором и эмиттером при открытой базе транзистора. Чем меньше ток, тем лучше производительность транзистора.

 

Часто задаваемые вопросы о транзисторе, его функциях и характеристиках

1. Что такое транзистор и как он работает?
Транзистор — это миниатюрный электронный компонент, который может выполнять две разные функции. Он может работать либо как усилитель, либо как переключатель: … Крошечный электрический ток, протекающий через одну часть транзистора, может вызвать гораздо больший ток через другую его часть. Другими словами, меньший ток включает больший.

 

2. Каковы основные функции транзистора?
Транзистор — это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии. Транзисторы являются одним из основных строительных блоков современной электроники. Он состоит из полупроводникового материала, обычно с не менее чем тремя клеммами для подключения к внешней цепи.

 

3. Каков принцип работы транзистора?
Транзистор состоит из двух PN-диодов, соединенных встречно-параллельно.Он имеет три вывода, а именно эмиттер, базу и коллектор. Основная идея транзистора заключается в том, что он позволяет вам управлять потоком тока через один канал, изменяя интенсивность гораздо меньшего тока, протекающего через второй канал.

 

4. Какие существуют два основных типа транзисторов?
Транзисторы в основном делятся на два типа; это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET). BJT снова подразделяются на транзисторы NPN и PNP.

 

5. Сколько существует типов транзисторов?
два типа
Существует два типа транзисторов, которые имеют небольшие различия в том, как они используются в схеме. У биполярного транзистора выводы обозначены базой, коллектором и эмиттером.

 

6. Что такое транзистор PNP и NPN?
В транзисторе NPN положительное напряжение подается на клемму коллектора для создания тока, протекающего от коллектора к эмиттеру.В транзисторе PNP положительное напряжение подается на эмиттерную клемму для создания тока, протекающего от эмиттера к коллектору.

 

7. Как измеряются характеристики транзисторов?
Выходная характеристика транзистора определяется путем изучения изменения напряжения между клеммами коллектор-эмиттер, относящегося к току коллектора, для различных токов базы. Эксперимент запускается нажатием кнопки «Выходная характеристика» на мобильном устройстве.

 

8. Что такое транзистор в процессоре?
Транзистор — это основной электрический компонент, который изменяет поток электрического тока. Транзисторы являются строительными блоками интегральных схем, таких как компьютерные процессоры или центральные процессоры. Транзисторы в компьютерных процессорах часто включают или выключают сигналы.

 

9. Каково назначение транзистора NPN?
Определение: Транзистор, в котором один материал p-типа помещен между двумя материалами n-типа, известен как NPN-транзистор.Транзистор NPN усиливает слабый сигнал, поступающий в базу, и создает сильные усиливающие сигналы на конце коллектора.

 

10. Для чего в мобильном телефоне используются транзисторы?
Они накапливают электрический заряд. Они хранят данные. Они усиливают входящий сигнал телефона.


Предложение книги

Тщательно переработанный и обновленный, этот очень популярный учебник помогает учащимся анализировать и проектировать транзисторные схемы.Он охватывает широкий спектр схем, как линейных, так и переключающих. Методы транзисторных схем: дискретные и интегрированные дает студентам обзор основных качественных операций схемы, за которым следует изучение процедуры анализа и проектирования. Он включает в себя проработанные проблемы и примеры дизайна для иллюстрации концепций. Это третье издание включает две дополнительные главы, посвященные усилителям мощности и источникам питания, которые развивают многие методы проектирования схем, представленные в предыдущих главах.Эта книга входит в серию Tutorial Guides in Electronic Engineering и предназначена для студентов первого и второго курсов бакалавриата. Полный текст сам по себе, он предлагает дополнительное преимущество перекрестных ссылок на другие заголовки в серии. Это идеальный учебник как для студентов, так и для преподавателей.

–Гордон Дж. Ричи

Создание сложных транзисторных радиостанций, недорогих, но очень эффективных. Создайте свои собственные транзисторные радиоприемники: руководство для любителей высокопроизводительных и маломощных радиосхем предлагает полные проекты с подробными схемами и информацией о том, как были спроектированы радиоприемники.Узнайте, как выбирать компоненты, создавать различные типы радиостанций и устранять неполадки в работе. Если копнуть глубже, этот практический ресурс покажет вам, как разрабатывать инновационные устройства, экспериментируя с существующими конструкциями и радикально улучшая их.

–Рональд Куан


Актуальная информация о «Что такое транзистор, его функции и характеристики»

О статье «Что такое транзистор, его функции и характеристики». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти дополнительные статьи об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

Альтернативные модели

Часть Сравнить Производители Категория Описание
Произв.Номер детали: 2N3700 Сравните: Текущая часть Производитель: ST Microelectronics Категория:BJT Описание: Trans GP BJT NPN 80V 1A 0.5W(1/2W) 3Pin TO-18 Сумка
№ производителя: JANTX2N3700 Сравните: 2N3700 VS JANTX2N3700 Производители:Microsemi Категория:BJT Описание: Trans GP BJT NPN 80V 1A 3Pin TO-18
ПроизводительНомер детали: JANTXV2N3700 Сравните: 2N3700 VS JANTXV2N3700 Производители:Microsemi Категория:BJT Описание: Маломощный кремниевый транзистор JANTXV серии 80V 1A сквозного отверстия NPN – TO-18
ПроизводительНомер детали: 2N3700 Сравните: 2N3700 VS 2N3700 Производители: Мультикомп Категория:BJT Описание: MULTICOMP 2N3700, биполярный (BJT), один транзистор, NPN, 80 В, 400 МГц, 0.5 Вт (1/2 Вт), 1 А, 300 чFE

Транзисторы – обзор | Темы ScienceDirect

8.4.3 Силовые транзисторы

Транзистор представляет собой трехслойное устройство с тремя выводами. Это может быть либо биполярный транзистор (BJT), либо полевой транзистор на основе оксида металла и полупроводника (MOSFET). Транзисторы обычно классифицируются производителем в соответствии с областью их предполагаемого применения:

Малосигнальные транзисторы общего назначения предназначены для работы с малой и средней мощностью (менее 1 Вт) или для коммутационных приложений.

Мощные транзисторы предназначены для работы с большими токами и/или большими напряжениями.

RF (радиочастотные) транзисторы предназначены для работы на высоких частотах, например, в системах связи.

Биполярный транзистор представляет собой транзистор NPN или PNP, показанный на рис. 8.40, с тремя выводами: базой, коллектором и эмиттером. BJT иногда представляют как два диода, соединенных последовательно, чтобы получить структуру n-p-n или p-n-p.

Рисунок 8.40. BJT: структура (вверху) и символ схемы (внизу), NPN-транзистор (слева) и PNP-транзистор (справа)

Протекание тока базы (I B ) позволяет большему току коллектора (I C ) поток.Ток эмиттера представляет собой сумму токов базы и коллектора. BJT действует как усилитель тока, хотя во многих случаях этот ток проходит через резистор для создания напряжения. При соединении биполярных транзисторов с резисторами (и конденсаторами) полученные схемы могут обеспечить усиление как тока, так и напряжения.

МОП-транзистор представляет собой nMOS- или pMOS-транзистор, показанный на рис. 8.41, с тремя выводами: затвор, сток и исток. Некоторые полевые МОП-транзисторы также имеют четвертое соединение, объем или подложку, но в устройстве с тремя выводами объем внутренне соединен с истоком транзистора.

Рисунок 8.41. MOSFET: структура (вверху) и символ схемы (внизу), транзистор nMOS (слева) и транзистор pMOS (справа)

Приложение напряжения между затвором и истоком (V GS ) МОП-транзистора (напряжение выше чем пороговое напряжение транзистора) позволяет протекать току стока (I D ). Вход затвора транзистора является емкостным, и через устройство протекает лишь небольшой ток затвора (ток утечки в неидеальном конденсаторе). (При простом анализе этот ток затвора считается равным нулю для идеального конденсатора.) МОП-транзистор использует входное напряжение для управления выходным током. Во многих случаях этот ток проходит через резистор для создания напряжения. При соединении МОП-транзистора с резисторами (и конденсаторами) получающиеся цепи могут обеспечивать выходное напряжение и ток.

И биполярные транзисторы, и полевые МОП-транзисторы можно использовать для создания схем усилителей или аналоговых фильтров (линейные приложения) или коммутационных устройств (нелинейные приложения). Пример приложений для силовых транзисторов включает в себя:

DC мотор управления

5 •

управление двигателем переменного тока

шаговый контроль двигателя

Audio Anminifiers (выходной этап усилителя, управляющего динамиками)

импульсные источники питания

Для силового транзистора безопасная рабочая область (SOAR) определяет безопасные пределы работы транзистора с точки зрения рабочего напряжения и токи для непрерывной работы (постоянные уровни тока и напряжения), а также для уровней, выходящих за пределы области непрерывной работы в течение ограниченного периода времени.При использовании в качестве переключателя (особенно применимого для управления двигателем) также необходимо учитывать время включения и выключения, чтобы обеспечить правильную работу схемы, в которой используется транзистор. Если схема пытается включить и выключить транзистор слишком быстро, транзистор не сможет среагировать достаточно быстро, и результатом будет неправильная работа схемы.

Выбор силового транзистора зависит от ряда факторов:

наличие транзистора, способного работать при требуемых уровнях напряжения, тока и температуры

максимальное количество транзисторов мощность рассеяния

подходящий корпус — корпус транзистора (два примера показаны на рис. 8.42) требуется для крепления транзистора к печатной плате или корпусу и для обеспечения пути отвода тепла, выделяемого внутри корпуса

Рисунок 8.42. Пример корпуса силового транзистора

размер транзистора

материал корпуса (пластик, керамика или металл) — если в корпусе корпуса используется металл, одна из клемм устройства должна быть электрически подключается к корпусу

Сопротивление включения и выключения — когда MOSFET используется в качестве переключателя

стоимость

Когда транзистор используется в качестве усилителя один из пяти классов усилителя (таблица 8.13). Каждый класс имеет рейтинг эффективности, который описывает количество мощности, подаваемой на нагрузку цепи (например, электродвигатель), в процентах от мощности, подаваемой на усилитель. Эффективность 100 процентов означает, что усилитель не рассеивает мощность (в виде тепла), но эффективность 100 процентов недостижима.

Таблица 8.13. Класс усилителя

Класс усилителя Описание
Класс A Транзистор работает в течение всего периода входного сигнала.КПД низкий, максимум 25%.
Класс B Транзистор открыт в течение половины периода входного сигнала. КПД выше, максимум около 78%.
Класс AB Работа усилителя находится где-то между классом A и классом B.
Класс C Транзистор работает менее половины периода входного сигнала. Эффективность приближается к 100%, но дает большие искажения входного сигнала.
Класс D Транзистор используется в качестве переключателя (ВКЛ. или ВЫКЛ.) и обеспечивает хороший КПД усилителя. Их часто называют переключающими усилителями или импульсными усилителями.

Мощные транзисторы могут использоваться в управлении двигателем для управления скоростью, положением или крутящим моментом двигателя. Пример схемы транзисторного усилителя для управления скоростью электродвигателя постоянного тока показан на рисунке 8.43:

Рисунок 8.43. Управление скоростью двигателя без обратной связи

Схема работает от двухканального источника питания, где +V S — положительное напряжение питания, а –V S — отрицательное напряжение питания.

Пользователь устанавливает положение потенциометра для получения напряжения, которое соответствует требуемой скорости двигателя.

Выходной сигнал потенциометра буферизуется с помощью операционного усилителя.

Выход операционного усилителя управляет усилителем класса B.

Усилитель класса B управляет двигателем постоянного тока.

В усилителе класса B используется один NPN- и один PNP-транзистор.Когда входное напряжение (выходное напряжение операционного усилителя) положительно (по отношению к общему узлу), транзистор NPN проводит. Ток течет от положительного источника питания к общему узлу через двигатель, и двигатель вращается в одном направлении. Когда входное напряжение (выходное напряжение операционного усилителя) отрицательно (по отношению к общему узлу), транзистор PNP проводит. Ток течет от общего узла к отрицательному источнику питания через двигатель, и двигатель вращается в другом направлении.Два диода с обратным смещением подключены к транзисторным узлам коллектор-эмиттер и используются для защиты транзисторов от высоких напряжений, которые могут возникать из-за быстро меняющихся токов в индуктивных катушках двигателя.

Это пример системы без обратной связи, в которой напряжение, подаваемое на двигатель из цепи контроллера, заставляет двигатель вращаться. Изменение напряжения двигателя приведет к тому, что двигатель будет вращаться с другой скоростью. Одна потенциальная проблема с этой компоновкой заключается в том, что скорость двигателя изменяется в зависимости от различных нагрузок, подключенных к выходному валу двигателя, даже когда приложенное напряжение является постоянным.

Если скорость вала двигателя измеряется с помощью тахогенератора, напряжение генерируется в соответствии с фактической скоростью двигателя. Если затем это напряжение подается обратно в схему контроллера, как показано на рис. 8.44, создается замкнутая система, и этот сигнал обратной связи можно использовать для автоматической регулировки скорости двигателя вверх или вниз. Здесь усилитель мощности (символ треугольника) представляет схему транзисторного усилителя. Пользовательский ввод устанавливает требуемую скорость, а схема контроллера автоматически регулирует скорость двигателя до правильного значения.Динамика результирующей системы управления зависит от динамики двигателя и используемого алгоритма управления.

Рисунок 8.44. Регулирование скорости двигателя с обратной связью

Система управления, показанная на рис. 8.44, может быть реализована путем разработки цифровой схемы управления с аналоговыми входом и выходом. Базовая компоновка показана на рис. 8.45. Здесь CPLD реализует цифровой алгоритм управления, такой как пропорционально-интегральное (PI) управление. Скорость двигателя задается пользователем с помощью аналогового напряжения.Полярность ввода команды определяет направление вращения вала двигателя, а величина определяет скорость вращения вала двигателя.

Рисунок 8.45. Пример управления двигателем постоянного тока с помощью CPLD

Цифровой выход контроллера обеспечивает ввод данных для n-разрядного ЦАП. Выходное напряжение от ЦАП подается через схему формирования сигнала на основе операционного усилителя, и это обеспечивает вход для усилителя класса B. Схема формирования сигнала на основе операционного усилителя вырабатывает выходное напряжение в диапазоне, необходимом для каскада усилителя мощности.Выходной сигнал усилителя обеспечивает напряжение и ток, необходимые для вращения двигателя в любом направлении.

Тахогенератор вырабатывает постоянное напряжение, полярность которого определяется направлением вращения вала двигателя, а величина определяется скоростью вращения вала двигателя. Это напряжение подается на схему формирования сигнала на основе операционного усилителя, которая изменяет уровни напряжения тахогенератора до уровней, требуемых n-разрядным АЦП. АЦП преобразует напряжение обратно в цифровое значение, которое обеспечивает цифровое представление аналогового напряжения тахогенератора.

Схема внутри CPLD обеспечивает функции цифрового алгоритма управления, который контролирует напряжение, подаваемое на двигатель.

Для каждого АЦП и ЦАП в проекте требуется собственный опорный сигнал (обычно напряжение).

Заключительной частью схемы является источник питания, который получает доступное напряжение источника питания и создает уровни напряжения питания, необходимые для каждой части конструкции.

Примером коммерческого биполярного силового транзистора является NPN-транзистор 2N3772 от ST Microelectronics.Это мощный кремниевый транзистор в металлическом корпусе TO-3, который применяется в таких областях, как линейные усилители и индуктивные переключатели. В Таблице 8.14 приведены типичные абсолютные максимальные номинальные характеристики силового транзистора в различных рабочих условиях.

Таблица 8.14. Типичная таблица данных абсолютных максимальных оценок

параметр единицы
EB0 CM
V CE0
CE0 COLLECTER-EMATTER напряжение (I E = 0)
V CEV Коллектор-эмиттер напряжение (для набора ненулевого значения V BE ) V
V CB0
Коллектор-базовое напряжение (I B = 0) v
V EB0
Эмиттер-базовое напряжение (I C = 0) V
I C Collector Turge A
I
коллектор пиковый ток A
I b базовый ток A
I bm пиковый ток 0 0 A
P Tot P Tot Общая мощность рассеивания в установленном температуре Условия (T C ) W
T STG
Температура хранения ° C

Примером коммерческого мощного МОП-транзистора является N-канальный транзистор STF2NK60Z от ST Microelectronics.Это мощный кремниевый транзистор, доступный в следующих корпусах: ТО-92, ТО-220, ИПАК и ТО-220ФП. Внутри транзистора находятся защитные стабилитроны. Области применения включают маломощные зарядные устройства, импульсные источники питания и управление люминесцентными лампами.

2N3904 NPN Транзистор общего назначения TO-92 Пакет купить онлайн по низкой цене в Индии

2N3904 — это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии.Он состоит из полупроводникового материала, обычно с не менее чем тремя клеммами для подключения к внешней цепи. Напряжение или ток, подаваемые на одну пару выводов транзистора, управляют током через другую пару выводов. Поскольку управляемая (выходная) мощность может быть выше, чем управляющая (входная) мощность, транзистор может усиливать сигнал. Сегодня некоторые транзисторы упакованы по отдельности, но многие другие встроены в интегральные схемы.

Особенности:-

• Усовершенствованный технологический процесс

• Низкое напряжение ошибки

• Высокая скорость переключения

• Работа при полном напряжении

• Высокая мощность и возможность обработки по току

Подробные характеристики:-

Полярность транзистора НПН
Напряжение коллектор-база (VCBO) 60 В постоянного тока
Напряжение коллектор-эмиттер (VCEO) 40 В постоянного тока
Напряжение эмиттер-база (VEBO) 6 В постоянного тока
Непрерывный ток коллектора (IC) 200 мА
Выходная емкость (початок) 4пФ
Частота перехода (fT) 300 МГц
Коэффициент усиления постоянного тока (hFE) 100-300
Диапазон рабочих температур -55 – 150°С
Рассеиваемая мощность (PD) 1.5 Вт

Связанные документы:-

 2N3904 Транзистор Технический паспорт

Торговая марка/Производитель Универсальный
Страна происхождения Китай
Адрес упаковщика/импортера Constflick Technologies Limited, здания № 13 и 14, 3-й этаж, 2-й главный, Сиддайя-роуд, Бангалор, штат Карнатака, 560027, Индия.
ППМ рупий. 10,62 (включая все налоги)

* Изображения продукта показаны только в иллюстративных целях и могут отличаться от фактического продукта.

PN2222A Транзистор NPN общего назначения (10 шт.)

Описание

PN2222A — хороший NPN-транзистор общего назначения для усиления и коммутации малой и средней мощности.

КОМПЛЕКТ ВКЛЮЧАЕТ:

  • Кол-во 10 – Транзисторы общего назначения PN2222A NPN

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ТРАНЗИСТОРА ОБЩЕГО НАЗНАЧЕНИЯ NPN PN2222A:
  • NPN Биполярная конструкция из кремния
  • Стандартная распиновка EBC в корпусе TO-92
  • До 40 В коллектор-эмиттер и 75 В коллектор-база
  • Непрерывный ток до 600 мА

PN2222A — это хороший недорогой NPN-транзистор общего назначения для усиления и коммутации малой и средней мощности, и он должен быть частью каждой корзины деталей.

Это может быть очень удобно, когда вам нужно увеличить выходной сигнал UC для управления чем-то, чем он не может управлять напрямую. Транзисторы NPN обычно используются в устройствах переключения нижнего плеча, где они подключаются между нагрузкой и землей.

Ниже приведен пример схемы, в которой используется транзистор PN2222 для создания простого средства проверки непрерывности для проверки наличия непрерывности между двумя точками. Это может быть короткое замыкание или между ними может быть некоторое сопротивление, но не разомкнутая цепь.

Когда между двумя щупами есть непрерывность, база транзистора PN2222 получает высокий уровень, поэтому транзистор включается и обеспечивает путь заземления для включения светодиода и звучания зуммера.

При отсутствии непрерывности база остается неподключенной, а транзистор выключается. Можно добавить слабый подтягивающий резистор от базы к земле, чтобы гарантировать, что транзистор остается закрытым, когда выводы плавают и подвержены воздействию электрических помех.Этот резистор также можно выбрать так, чтобы база смещалась только тогда, когда сопротивление цепи меньше некоторого значения, путем создания делителя напряжения.

Тестер непрерывности

Примечания:

  1. Эти транзисторы могут поставляться с прямыми или формованными выводами.

Технические характеристики

Максимальные номиналы
В Генеральный директор Напряжение коллектор-эмиттер 40В
В СВО Напряжение коллектор-база 75В
И С Ток коллектора – непрерывный 600 мА
Упаковка ТО-92-3
Тип упаковки Пластик, 3-жильный, сквозное отверстие
Производитель Фэирчайлд / ON Semi
Технический паспорт PN2222A

2N3903 – Транзисторы общего назначения

%PDF-1.4 % 1 0 объект > эндообъект 5 0 объект /Заголовок (2N3903 – Транзисторы общего назначения) >> эндообъект 2 0 объект > эндообъект 3 0 объект > эндообъект 4 0 объект > ручей BroadVision, Inc.2021-08-06T13:26:57+02:002021-08-03T15:00:35+02:002021-08-06T13:26:57+02:00application/pdf

  • 2N3903 – Транзисторы общего назначения
  • онсеми
  • Особенности • Доступны пакеты без свинца
  • Acrobat Distiller 18.0 (Windows)uuid:856cb56a-063b-4382-984b-0d35f630cea5uuid:3051ebc7-966e-46c7-bc5c-e795758d869d конечный поток эндообъект 6 0 объект > эндообъект 7 0 объект > эндообъект 8 0 объект > эндообъект 9 0 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > эндообъект 18 0 объект > эндообъект 19 0 объект > эндообъект 20 0 объект > эндообъект 21 0 объект > эндообъект 22 0 объект > ручей HTW[-7U;Ўd~,a @$Oa 30]~ȲT*y)oSEt(P”yI%QqtS$

    [Точно] Функция транзистора поясняется на примерах

    Транзистор — один из самых полезных и простых электронных компонентов, изменивший весь мир электроники.Практически во всех электронных схемах используются транзисторы. Интегральные схемы или ИС также невозможно сделать без транзистора. В этой статье мы собираемся обсудить основную функцию транзистора . Транзистор — это активное устройство, имеющее как минимум три вывода. В основном используются два типа транзисторов: BJT или , биполярный транзистор , полевой транзистор или полевой транзистор .

    BJT имеет три терминала, называемых Коллектор, База, Излучатель.FET имеет три терминала, называемых истоком, затвором и стоком. Оба они используются для разных целей, но функции у них почти одинаковые.

    Функция транзистора

    Не путайте функцию, обеспечиваемую транзистором, и применение транзистора , потому что транзистор может выполнять только две функции. Только эти две функции мы использовали для разных целей и разных приложений. Две функции, обеспечиваемые транзистором,

    1.Переключение

    2. Усиление

    Таким образом, две функции , обеспечиваемые транзисторами , представляют собой переключение электронных сигналов и усиление электронных сигналов.

    Теперь давайте рассмотрим эти две функции на примерах.

    Транзистор в качестве переключателя

    Обычно в цифровых электронных схемах транзистор используется в качестве полупроводникового переключателя с электрическим приводом. Транзистор используется как в высокомощных, так и в маломощных коммутационных устройствах.Используя сигнал малой мощности, мы можем управлять или переключать сигнал высокой мощности с помощью транзистора.

    Здесь вы можете увидеть принципиальную схему на рисунке ниже, где транзистор используется в качестве переключателя.

    Здесь вы можете видеть, что светодиод подключен к источнику постоянного тока последовательно с биполярным переходным транзистором (BJT) через клеммы коллектора (C) и эмиттера (E). В нормальных условиях транзистор действует как открытый ключ, поэтому он не пропускает ток, поэтому светодиод не светится.

    Для работы транзистора в качестве замкнутого переключателя мы должны подать напряжение на базовый вывод транзистора. Итак, здесь, на рисунке выше, вы можете видеть, что LDR (светозависимый резистор) подключен к базовой клемме. Таким образом, когда на LDR подается свет, его сопротивление уменьшается, что позволяет протекать через него току. Поскольку это напряжение будет приложено к базовой клемме.

    При подаче напряжения на базовую клемму транзистор сработает как замкнутый переключатель и позволит протекать через него току, поэтому светодиод будет светиться.

    Поскольку транзистор является полупроводниковым устройством, при переключении не происходит потери мощности, а также обеспечивается очень быстрое переключение.

    Помните, что в основном полевые транзисторы (FET) используются для переключения электронных или электрических сигналов, особенно MOSFET (металло-оксид-полупроводниковый полевой транзистор), поскольку они обеспечивают очень быстрое переключение и очень низкие потери электроэнергии.

    Пример: Наиболее полезные цифровые логические элементы состоят из транзисторов, где они действуют как электронный переключатель.

    Транзистор как усилитель

    Еще одна функция транзистора — усиление электронных сигналов. Транзисторы широко применяются в качестве усилителей в электротехнике и электронике. Все схемы усилителей от малых до больших используют транзисторы для усиления электронного сигнала.

    Здесь вы можете увидеть простую схему схемы усилителя с использованием транзистора,

    Когда мы подаем слабый электронный сигнал на вход транзистора, он создает более сильный сигнал на выходе с помощью внешнего опорного напряжения или напряжения смещения.Здесь, на приведенном выше рисунке, вы можете видеть внешнее опорное напряжение, обозначенное как Vcc.

    Итак, транзистор не увеличивает величину или мощность входного слабого сигнала, он выдает новый сигнал на выходе, который точно такой же, как и входной сигнал, разница только в том, что его величина высока. Помните, что транзистор не может усиливать какой-либо электронный сигнал, пока мы не подадим внешний источник питания (источник постоянного тока) в качестве опорного напряжения.

    Помните, что в основном биполярные транзисторы (BJT) используются для усиления электронных сигналов, поскольку они обеспечивают более высокий коэффициент усиления, низкий уровень шумовых искажений и т. д.

    Пример:  В схемах усилителей, передатчиков и приемников транзисторы используются для усиления.

    Итак, вывод такой, что транзистор может выполнять только две функции, одну переключающую и другую усиливающую.

    Спасибо за посещение сайта. продолжайте посещать для получения дополнительных обновлений.

    2N5210 .1A 50V NPN Транзистор общего назначения Fairchild

    Стоимость доставки почтой первого класса:

    Сумма заказа Минимум
    Сумма заказа Максимум
    Тарифы на доставку первого класса в США
    $00.01
    25,00 $
    5,85 $
    25,01 $
    35,00 $
    6,85 $
    35,01 $
    45,00 $
    8,85 $
    45,01 $
    55,00 $
    9,85 $
    55,01 $
    75,01 $
    11,85 $
    75 долларов.01
    100,00 $
    12,85 $
    100,01 $
    200,00 $
    14,85 $
    200,01 $
    300,00 $
    15,85 $
    300,01 $
    500,00 $
    17,85 $
    500,01 $
    +
    18 долларов.85

    Стоимость доставки приоритетной почтой:

    Сумма заказа Минимум
    Сумма заказа Максимум
    Тарифы на доставку Priority Mail в США
    $00,01
    25,00 $
    10,50 $
    25,01 $
    35,00 $
    11,50 $
    35,01 $
    45 долларов.00
    12,50 $
    45,01 $
    55,00 $
    13,50 $
    55,01 $
    75,01 $
    14,50 $
    75,01 $
    100,00 $
    16,50 $
    100,01 $
    200,00 $
    18,50 $
    200 долларов.01
    300,00 $
    21,50 $
    300,01 $
    500,00 $
    24,50 $
    500,01 $
    +
    25,50 $

    Canada First Class International (исключения см. на странице доставки)

    Сумма заказа Минимум
    Сумма заказа Максимум
    Канада Первый класс Международный
    $00.01
    45,00 $
    15,95 $
    45,01 $
    90,00 $
    29,95 $
    90,01 $
    150,00 $
    49,95 $
    150,01 $
    300,00 $
    59,95 $
    300,01 $
    700,00 $
    79 долларов.95
    700,01 $
    2000,00 $
    99,95 $

    Приоритетная почта Канады (исключения см. на странице доставки)

    Сумма заказа Минимум
    Сумма заказа Максимум
    Приоритетная почта Канады
    $00,01
    45,00 $
    29,95 $
    45 долларов.01
    90,00 $
    39,95 $
    90,01 $
    150,00 $
    59,95 $
    150,01 $
    300,00 $
    79,95 $
    300,01 $
    700,00 $
    99,95 $
    700,01 $
    2000,00 $
    109 долларов.95

    Международный — за пределами США/Канады (исключения см. на странице доставки)

    Сумма заказа Минимум
    Сумма заказа Максимум
    Международный — за пределами США/Канады
    100,00 $
    150,00 $
    79,95 $
    150,01 $
    300,00 $
    99 долларов.95
    300,01 $
    500,00 $
    139,95 $
    500,01 $
    1000,00 $
    169,95 $
    .

    Оставить комментарий

    Ваш адрес email не будет опубликован.