Неопределенный интеграл примеры с решениями: Примеры интегрирования рациональных функций (дробей)

Содержание

Примеры интегрирования рациональных функций (дробей)

Здесь мы приводим подробные решения трех примеров интегрирования следующих рациональных дробей:
,   ,   .

Пример 1

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит рациональная функция, поскольку подынтегральное выражение является дробью из многочленов. Степень многочлена знаменателя (3) меньше степени многочлена числителя (4). Поэтому, вначале необходимо выделить целую часть дроби.

1.   Выделим целую часть дроби. Делим x 4 на x 3 – 6x 2 + 11x – 6:

Отсюда
.

2.   Разложим знаменатель дроби на множители. Для этого нужно решить кубическое уравнение:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, 3, 6, –1, –2, –3, –6.
Подставим x = 1:
.

Итак, мы нашли один корень x = 1. Делим на x – 1:

Отсюда
.
Решаем квадратное уравнение   .
.
Корни уравнения: ,   .
Тогда
.

3.   Разложим дробь на простейшие.

.

Итак, мы нашли:
.
Интегрируем.

Ответ

.

Пример 2

Вычислить интеграл:
.

Решение

Здесь в числителе дроби – многочлен нулевой степени (1 = x 0). В знаменателе – многочлен третьей степени. Поскольку 0 < 3, то дробь правильная. Разложим ее на простейшие дроби.

1.   Разложим знаменатель дроби на множители. Для этого нужно решить уравнение третьей степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 3 (члена без x). То есть целый корень может быть одним из чисел:
1, 3, –1, –3.
Подставим x = 1:
.

Итак, мы нашли один корень x = 1. Делим x 3 + 2x – 3 на x – 1:

Итак,
.

Решаем квадратное уравнение:
x 2 + x + 3 = 0.
Находим дискриминант: D = 1 2 – 4·3 = –11. Поскольку D < 0, то уравнение не имеет действительных корней. Таким образом, мы получили разложение знаменателя на множители:
.

2.   Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x – 1)(x 2 + x + 3):
(2.1)   .
Подставим x = 1. Тогда x – 1 = 0,
.

Подставим в (2.1) x = 0:
1 = 3A – C;
.

Приравняем в (2.1) коэффициенты при x 2:
;
0 = A + B;
.

Итак, мы нашли разложение на простейшие дроби:
.

3.   Интегрируем.
(2.2)   .
Для вычисления второго интеграла, выделим в числителе производную знаменателя и приведем знаменатель к сумме квадратов.

;
;
.

Вычисляем I2.

.
Поскольку уравнение x 2 + x + 3 = 0 не имеет действительных корней, то x 2 + x + 3 > 0. Поэтому знак модуля можно опустить.

Поставляем в (2.2):
.

Ответ

.

Пример 3

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит дробь из многочленов. Поэтому подынтегральное выражение является рациональной функцией. Степень многочлена в числителе равна 3. Степень многочлена знаменателя дроби равна 4. Поскольку 3 < 4, то дробь правильная. Поэтому ее можно раскладывать на простейшие дроби. Но для этого нужно разложить знаменатель на множители.

1.   Разложим знаменатель дроби на множители. Для этого нужно решить уравнение четвертой степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, –1, –2.
Подставим x = –1:
.

Итак, мы нашли один корень x = –1. Делим на x – (–1) = x + 1:

Итак,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, –1, –2.
Подставим x = –1:
.

Итак, мы нашли еще один корень x = –1. Можно было бы, как и в предыдущем случае, разделить многочлен     на   , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то мы получили разложение знаменателя на множители:
.

2.   Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x + 1) 2(x 2 + 2):
(3.1)   .
Подставим x = –1. Тогда x + 1 = 0,
.

Продифференцируем (3.1):

;

.
Подставим x = –1 и учтем, что x + 1 = 0:
;
;   .

Подставим в (3.1) x = 0:
0 = 2A + 2B + D;
.

Приравняем в (3.1) коэффициенты при x 3:
;
1 = B + C;
.

Итак, мы нашли разложение на простейшие дроби:
.

3.   Интегрируем.

.

Ответ

.

Примеры решения задач к разделу интегральное исчисление…

Привет, мой друг, тебе интересно узнать все про ы решения задач к разделу интегральное исчисление, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое ы решения задач к разделу интегральное исчисление , настоятельно рекомендую прочитать все из категории Математический анализ. Интегральное исчисление.

Пример N 1

Найти неопределенный интеграл:

Решение.
Ответ:
   

Пример N 2

Найти неопределенный интеграл:

Решение.
Ответ:
   

Пример N 3

Найти неопределенный интеграл:

.
Решение.

Чтобы проинтегрировать данную функцию, необходимо сделать замену переменной    .

Мы получили неправильную дробь. Выделяем в ней целую часть, деля уголком многочлен, стоящий в числителе, на многочлен знаменателя.

Ответ:
   

Пример N 4

Найти неопределенный интеграл:

Решение.

Мы получили неправильную дробь, выделяем в ней целую часть, деля уголком многочлен, стоящий в числителе, на многочлен знаменателя:


Ответ:
   

Пример N 5

Найти неопределенный интеграл:

Решение.
Ответ:
   

Пример N 6

Найти неопределенный интеграл:

Решение.
Ответ:
   

Пример N 7

Найти площадь фигуры, ограниченной линиями:

Решение.

Построим фигуру на плоскости 

OXY

, ограниченную 

y

1 = 4 – 

x

2 – параболой  и   

y

2 = 2 – 

x

 – прямой (рис . Об этом говорит сайт https://intellect.icu . 16).

Рис. 16

Находим точки пересечения функций y1 и y2 :

Так как  4 – x2 ≤ 2 – x

  на отрезке  [-1; 2],  то площадь S данной фигуры вычисляется следующим образом:

Ответ:   4,5.

Пример N 8

Найти длину дуги кривой   .

Решение.

Ответ:   

Пример N 9

Найти длину дуги кривой    .

Решение.

Дуга задана в явном виде  ,  пределы интегрирования заданы  2 ≤ x

 ≤ 3,  составим интеграл

Ответ:   

Пример N 10

Найти длину дуги астроиды

.
Решение.

Кривая задана параметрически, следовательно, ее длина L вычисляется следующим образом:


Ответ:   4,5

Пример N 11

Найти объем тела, полученного вращением вокруг оси ОХ фигуры, которая ограничена параболами  

y = 3 – x2,  y = x2 + 1.

Решение.

Построим фигуру на плоскости ОХУ, ограниченную параболами  y = 3 – x2,  y = x2 + 1 (рис. 17).

Рис. 17

Найдем точки пересечения кривых:

.
Тогда 

Ответ:   

Пример N 12

Изменить порядок интегрирования:

Решение.

Строим область интегрирования D, которая состоит из двух областей – D1 и D2 (рис. 18):

Область D1 ограничена полуокружностью    и прямыми  y = 0,  x = 2 .

Область D2 ограничена прямыми   y = x – 4,  y = 0,  x = 2.

Рис. 18

Область D

 является правильной в направлении оси ОУ. Наибольшим значением y в области D будет число y = 0, а наименьшим y = -2. Из уравнения    выражаем x через y :

Функция    задает левую границу области D . Из уравнения  y = x – 4  выражаем x через y :  x = y + 4 . Функция   x = y + 4  задает правую границу областиD . Следовательно, область D задается неравенствами:  

 

Теперь изменяем порядок интегрирования в двукратном интеграле:

Ответ:
   

Пример N 13

Найти площадь фигуры, ограниченной линиями   , , ,.

Решение.

Построим фигуру D , ограниченную заданными линиями (рис. 19):

   – окружность с центром в точке    , радиусом    ;

   – окружность с центром в точке  (1; 0)  , радиусом  1; 

   – ось ОХ;

   – прямая с угловым коэффициентом  

 

Рис. 19

Выражая окружности в полярных координатах:

приходим к выводу, что область D можно задать неравенствами:   

Находим площадь S области D по формуле площади фигур в полярных координатах:

Ответ:   

Пример N 14

Вычислить объем тела, ограниченного поверхностями  , , , .

Решение.

Тело ограничено параболическими цилиндрами, образующие которых параллельны оси OZ :   , ;  координатной плоскостью  ;  и плоскостью z= 4 – y.  Изобразим на рисунках тело (рис. 20) и его проекцию (рис. 21) в плоскости ОХУ.

Рис. 20 Рис. 21

Основанием заданного тела является область D, задаваемая неравенствами :    .

Находим объем 

V тела при помощи двойного интеграла:

Сначала находим внутренний интеграл :

Затем находим внешний интеграл :

Ответ:   

Пожалуйста, пиши комментарии, если ты обнаружил что-то неправильное или если ты желаешь поделиться дополнительной информацией про ы решения задач к разделу интегральное исчисление Надеюсь, что теперь ты понял что такое ы решения задач к разделу интегральное исчисление и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Математический анализ. Интегральное исчисление

Из статьи мы узнали кратко, но емко про ы решения задач к разделу интегральное исчисление

Неопределенный интеграл: значение и расчет

Вы замечали, как члены одной семьи похожи друг на друга? То же верно и для семейств функций! Функции одной формы очень похожи друг на друга, как члены одной семьи. Неопределенные интегралы здесь ничем не отличаются. Они представляют собой семейство первообразных функции, поэтому они очень похожи друг на друга.

В этой статье вы узнаете, что такое неопределенный интеграл, его определение, формулу и свойства. Вы также увидите примеры вычисления неопределенных интегралов.

Определение неопределенного интеграла

Как вы знаете из статьи о первообразных, процесс нахождения первообразной функции называется интегрированием . Помните, что если вам дана функция \(f(x)\), то первообразной \(f(x)\) является любая функция \(F(x)\), которая удовлетворяет условию:

\[ F'(х) = f(х). \]

Итак, при чем тут неопределенный интеграл?

Ну, это используется для обозначения всего семейства первообразных функции, тогда как первообразная — лишь одна из бесконечных возможностей.

Имея это в виду, вы определяете неопределенный интеграл как: f(x) \) называется неопределенным интегралом . Обозначение для этого неопределенного интеграла:

\[ \int f(x) ~\mathrm{d}x = F(x) + C, \]

, где \(C\) – любая константа.

Обратите внимание:

  • \( \int \) называется интегральным символом переменная интегрирования ,

  • \( \mathrm{d}x \) называется дифференциалом C\) называется константой интегрирования (или константой интегрирования).

Обратите внимание, что термины «неопределенный интеграл» и «первообразная» иногда используются взаимозаменяемо, а в некоторых текстах первообразная также называется «примитивной функцией».

Учитывая терминологию, представленную вам в этом определении, действие по нахождению первообразных функции, \( f \), обычно упоминается как:

  1. интегрирование \( \mathbf{f} \) o r
  2. нахождение интеграла от \( \mathbf{f} \).

Для функции \( f(x) \) и ее первообразной \( F(x) \) функции вида \( F(x) + C \), где \( C \ ) — любая константа, часто называют семейством первообразных \( \mathbf{f(x)} \).

Неопределенный интеграл: семейство первообразных

Чтобы лучше понять, что означает «семейство первообразных», рассмотрим этот пример.

Неопределенный интеграл, константа интегрирования и семейство первообразных 9{2} + C, \]

, где \(C\) — постоянная интегрирования.

Поскольку производная любой константы равна \(0\), \(C\) может быть любой константой (при условии, что это действительное число), положительной, отрицательной или даже самой \(0\). {2}+C \), где \(C \) — любая константа (при условии, что это действительное число).

Формула неопределенного интеграла

Как и в случае с первообразными вообще, неопределенные интегралы не имеют единственной формулы для их решения. Существует множество правил и свойств, которые вы научитесь использовать для решения неопределенных интегралов — они основаны на уже изученных вами правилах дифференцирования. Причина этого обсуждается в статье об основной теореме исчисления.

При этом суть нахождения неопределенного интеграла функции состоит в обратном выполнении уже известных вам правил дифференцирования.

Свойства неопределенного интеграла

Поскольку неопределенный интеграл — это просто семейство первообразных, их свойства одинаковы. Но, повторяю, неопределенный интеграл линейный; т. е. вы можете интегрировать «почленно» для сумм, разностей и постоянных множителей. Эти свойства линейности резюмируются приведенными ниже правилами.

Свойство суммы/разности :

\[ \int (f(x) \pm g(x)) ~\mathrm{d}x = \int f(x) ~\mathrm{d}x \pm \int г(х) ~\mathrm{d}х \]

Постоянное кратное свойство :

\[ \int kf(x) ~\mathrm{d}x = k \int f(x) ~\mathrm{d}x \]

Доказательства свойств Неопределенный интеграл

  1. В общем, если \(F\) является первообразной \(f\) и \(G\) является первообразной \(g\), то\[ \frac{d}{ dx} (F(x) \pm G(x)) = F'(x) \pm G'(x) = f(x) \pm g(x). \]Это означает, что \( F(x) \pm G(x) \) является первообразной \( f(x) \pm g(x) \), так что \[ \int (f(x) \pm g(x)) ~\mathrm{d}x = F(x) \pm G(x) + C. \]
  2. Теперь попробуйте найти первообразную \(kf(x)\), где \(k\) — любая константа. Поскольку вы знаете, что \[ \frac{d}{dx} (kf(x)) = k \frac{d}{dx}F(x) = kf'(x) \]для любой константы \( k \) , можно заключить, что \[ \int kf(x) ~\mathrm{d}x = kF(x) + C. \]

Правила нахождения неопределенных интегралов

По большей части правила нахождения неопределенного интеграла интеграл функции являются обратными (или обратными) правилам нахождения производных.

Ниже приведен список правил для общих неопределенных интегралов.

  1. T Постоянное правило Если вы рассматриваете функцию \( F(x) = 3 \) и записываете ее производную как \( f(x) \), это означает, что \( f(x) = \frac{dF}{dx} \). Вы уже знаете, что можете найти производную этой функции, применяя константное правило для производных: \( \frac{d}{dx}(k) = 0 \). Теперь предположим, что вы хотите обратить этот процесс вспять, и спросите себя: какая функция (функции) могла бы иметь производную \(f(x) = 0 \)? Очевидно, \( F(x) = 3 \) — один ответ. Вы говорите, что \(F(x) = 3\) является первообразной \(f(x) = 0\).

    • Однако существуют и другие функции, производная которых равна \( f(x) = 0 \), включая, помимо прочего, \( F(x) = 5 \), \( F(x) = -4 \ ) и \( F(x) = 200 \). Это потому, что когда вы берете производную, константа исчезает.

    • Следовательно, если вам дана первообразная \(f(x)\), все остальные можно найти, добавив другую константу. Другими словами, если \(F(x)\) является первообразной \(f(x)\), то \(F(x) + C\) также является первообразной \(f(x)\) для любой константы \( C \). Эта группа или семейство первообразных представлена ​​неопределенным интегралом. 9{x}}{\ln a} + C, ~\ a \neq 1\end{align} \]

    • Правило синусов

      \[ \begin{align}\text{Производное правило: } &\frac{d}{dx}(\sin(x)) = \cos(x) \\\text{Неопределенное интегральное правило: } &\int \cos(x) ~\mathrm{d}x = \sin (x) + C\end{align} \]

    • Правило косинуса

      \[ \begin{align}\text{Правило производной: } &\frac{d}{dx}(\cos( x)) = -\sin(x) \\\text{Неопределенное интегральное правило: } &\int \sin(x) ~\mathrm{d}x = -\cos(x) + C\end{align} \ ] 9{2}(x) ~\mathrm{d}x = \tan(x) + C\end{align} \]

    • Правило косеканса

      \[ \begin{align}\text{Производная Правило: } &\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x) \\\text{Неопределенное интегральное правило: } &\int \csc(x)\ cot(x) ~\mathrm{d}x = -\csc(x) + C\end{align} \]

    • Секущее правило

      \[ \begin{align}\text{Производное правило : } &\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x) \\\text{Неопределенное интегральное правило: } &\int \sec(x)\tan( х) ~\mathrm{d}x = \sec(x) + C\end{align} \] 9{rd} \) правило из списка выше:

      \[ \int \frac{1}{x} ~\mathrm{d}x = \ln|x| + C \Rightarrow \int \frac{\mathrm{d}x}{x} = \ln|x| + C \]

      Неопределенные интегралы: ошибки, которых следует избегать

      Вы заметили, что в приведенном выше списке нет правил произведения, частного или цепных правил для интегралов?

      Что это значит?

      Это означает, что, как и в случае с производными, правила, применимые к сложению и вычитанию, не применяются в той же мере к умножению и делению. Другими словами, так же, как и с производными:

      • Интеграл произведения (или частного) двух функций не равен произведению (или частному) интеграла функций .\[ \begin{align}\int f(x) \cdot g (x) ~\mathrm{d}x &\neq \int f(x) ~\mathrm{d}x \cdot \int g(x) ~\mathrm{d}x \\\int \frac{f( x)}{g(x)} ~\mathrm{d}x &\neq \frac{\int f(x) ~\mathrm{d}x}{\int g(x) ~\mathrm{d}x }\end{align} \]

      Вместо:

      • правила произведения и частного для производных приводят к интегрированию по частям, и

      • цепное правило для производных приводит к интегрированию путем замены.

      Хотя интегрирование по частям выводится специально из правила произведения для производных, оно применяется как к произведению, так и к частному интегралов. Это связано с тем, что для любых двух функций \(f\) и \(g\) можно записать частное двух функций в виде произведения:

      \[ \frac{f}{g} = f \cdot \ дробь{1}{г}. \]

      Другими словами, вы можете думать о частном правиле для деривативов как о замаскированном правиле произведения; то же верно и для интегрирования по частям. 9{2}} ~\mathrm{d}x \]

      и используйте правило произведения для выполнения интегрирования по частям.

      Вычисление неопределенного интеграла

      Когда дело доходит до вычисления неопределенного интеграла, точные шаги будут зависеть от самого интеграла. Однако есть несколько очень простых шагов, которые вам нужно будет запомнить для вычисления всех неопределенных интегралов.

      Основные шаги для вычисления неопределенного интеграла

      1. Определите, какие свойства и правила применяются.

      2. Если вам нужно использовать более одного свойства или правила, определите порядок их использования.

      3. Используйте выбранные вами правила.

      4. Добавьте константу интегрирования.

      5. Проверьте свой результат, доказав, что \( F'(x) = f(x) \).

      Неопределенные интегралы Примеры

      В следующих примерах оцените каждый из неопределенных интегралов. Этот первый пример относительно прост.

      Оценка 9{2} + 2x + 5 \right) ~\mathrm{d}x \]

      Решение :

      1. Определите, какие свойства и правила применяются.

      2. Если вам нужно использовать более одного свойства или правила, определите порядок их использования.

        1. Применение правила суммы/разности для интегралов.

        2. Применение правила постоянного кратного для интегралов.

        3. Применение правила степени для интегралов.

      3. 9{2}}{x} + \frac{4\sqrt[3]{x}}{x} \right) ~\mathrm{d}x. \]

      4. Теперь вы можете вычислить интеграл почленно, используя правило суммы/разности и правило степени.

  2. Если вам нужно использовать более одного свойства или правила, определите порядок их использования.

    • Применение правила суммы/разности.

    • Применение правила мощности.

  3. Используйте выбранные вами правила.

      9{2}} ~\checkmark\end{align} \]

Этот пример показывает, что упрощение тригонометрических функций в подынтегральном выражении может значительно упростить задачу.

Вычислить

\[ \int \tan(x) \cos(x) ~\mathrm{d}x \]

Решение :

  1. Определите, какие свойства и правила применяются.

  2. Если вам нужно использовать более одного свойства или правила, определите порядок их использования.

  3. Используйте выбранные вами правила.

  4. Добавьте константу интегрирования.

    \[ \int \sin(x) ~\mathrm{d}x = -\cos(x) + C \]

  5. Проверьте свой результат, доказав, что \( F'(x) = f(x ) \).\[ \begin{align}f(x) &= \tan(x) \cos(x) = \frac{\sin(x)}{\cancel{\cos(x)}} \cancel {\ cos (x)} = \ sin (x) \\ F (x) & = – \ cos (x) + C \\~ \\ F ‘(x) & = – (- \ sin (x)) \\&= \sin(x) ~\checkmark\end{align} \]

Неопределенный интеграл – ключевые выводы

  • Если \( F(x) \) является первообразной функции \( f( x) \), то семейство первообразных \( f(x) \) называется неопределенный интеграл . Это записывается как: \[ \int f(x) ~\mathrm{d}x = F(x) + C, \]где \(C\) – любая константа.
  • Вы можете интегрировать «почленно» для сумм, разностей и постоянных множителей. Эти свойства линейности резюмируются следующим образом:
    • Свойство суммы/разности: \[ \int (f(x) \pm g(x)) ~\mathrm{d}x = \int f(x) ~\mathrm{d} x \pm \int g(x) ~\mathrm{d}x \]
    • Постоянное кратное свойство:\[ \int kf(x) ~\mathrm{d}x = k \int f(x) ~\mathrm {г}х \]
  • В большинстве случаев правила нахождения неопределенного интеграла функции обратны правилам нахождения производных.

  • Интеграл произведения (или частного) двух функций не равен произведению (или частному) интеграла функций.\[ \begin{align}\int f(x) \cdot g(x ) ~\mathrm{d}x &\neq \int f(x) ~\mathrm{d}x \cdot \int g(x) ~\mathrm{d}x \\\int \frac{f(x) }{g (x)} ~ \ mathrm {d} x &\ neq \ frac {\ int f (x) ~ \ mathrm {d} x} {\ int g (x) ~ \ mathrm {d} x} \ конец {выравнивание} \]
  • Основные шаги для вычисления неопределенного интеграла:
    1. Определите, какие свойства и правила применяются.

    2. Если вам нужно использовать более одного свойства или правила, определите порядок их использования.

    3. Используйте выбранные вами правила.

    4. Добавьте константу интегрирования.

    5. Проверьте свой результат, доказав, что \( F'(x) = f(x) \).

Неопределенные интегралы – GeeksforGeeks

Производные были действительно полезны практически во всех сферах жизни. Они позволяют найти скорость изменения функции. Иногда бывают ситуации, когда доступна производная функции, и цель состоит в том, чтобы вычислить фактическую функцию, производная которой дана. В этих случаях в игру вступают интегралы. Интуитивно они представляют собой обратную сторону процесса дифференциации. Интегралы также имеют множество применений в исчислении, а также в реальной жизни. Они полезны при анализе функций, вычислении площадей и объемов различных произвольных форм.

Введение в интегралы 

Интегралы также известны как антипроизводные. Интеграция есть процесс, обратный дифференциации. Вместо дифференцирования функции нам дается производная функции и требуется вычислить функцию по производной. Этот процесс называется интеграцией или антидифференциацией. Рассмотрим функцию f(x) = sin(x), производную этой функции, если f'(x) = cos(x). Итак, интегрирование f'(x) должно вернуть функцию f(x). Обратите внимание, что для каждой функции f(x) = sin(x) + C производная одинакова, потому что после дифференцирования константа становится равной нулю. Таким образом, первообразные не уникальны, для каждой функции ее первообразные бесконечны.

Эта константа C называется произвольной константой.

Для обозначения интегралов используется новый символ . Это будет представлять операцию интегрирования над любой функцией. В таблице ниже представлены символы и значения, относящиеся к интегралам.

Имейте в виду, помогите нам упростить расчет и сделать это быстро. Правило обратной степени — это одно из правил, которые помогают нам интегрировать многочлены и другие функции.

Правило обратной степени

Это правило помогает интегрировать функции, члены которых имеют форму x н .

Здесь C — произвольная константа, а n ≠ 1.

В этом правиле показатель степени переменной увеличивается на 1, а затем результат делится на новое значение показателя степени. В таблице ниже приведены интегралы некоторых стандартных функций.

Символ/Термин/Значение .0634
x in  Переменная интегрирования
Интеграл от f(x) Функция такая, что F'(x) = f(x)
Функция Интеграл
SIN (x) -COS (x)
COS (x)
3131 (x)
.0631 e x e x
sec 2 (x) tan(x)
ln(x)

Rewriting the Integrals

Иногда, когда функции становятся слишком сложными, их становится сложно интегрировать. Существуют определенные свойства интегралов, которые помогают упростить и переписать интегралы.

Свойство 1: 

Свойство 2:  

Свойство 3: 

Визуальная интерпретация интегралов

Помимо обычных алгебраических правил вычисления интегралов. Интегралы можно понять через графики. Ясно, что интегралы есть не что иное, как антипроизводные. Рассмотрим функцию f(x) и скажем, что она является антипроизводной, если задана F(x). В этом случае F'(x) = f(x). Рассматривайте приведенный ниже график как график функции f(x), это означает, что график производных функции F(x) задан и целью является определение интегральной функции F(x).

На графике показана функция f(x) = 2x, это прямая линия, проходящая через начало координат. Проинтегрируем данную функцию, используя упомянутое выше правило обратной мощности.

⇒ 

Теперь, когда это C = 0, уравнение интеграла принимает вид F(x) = x 2 , что представляет собой параболу с центром в начале координат. При С = 1 парабола смещается вверх на одну единицу и аналогично при С = -1 парабола смещается вниз на одну единицу.

Это означает, что функция F(x) = x 2 + C представляет семейство кривых.

Определение интегралов по графикам

Интегралы можно грубо определить по графикам. Подынтегральные выражения есть не что иное, как производные от интегралов. Они дают информацию о скорости увеличения/уменьшения, а также максимумах и минимумах интегралов. Рассмотрим график функции f(x),

Предположим, что F(x) =

Поскольку производная функции положительна и возрастает, функция будет возрастать с возрастающей скоростью, график функция F(x) будет приблизительно иметь вид параболы, устремленной вверх. Рисунок ниже дает примерное представление о графике функции F(x).

Рассмотрим примеры задач.

Примеры задач. Решение:

Задано f(x) = sin(x) + 1

sin(x) — стандартная функция, и ее антипроизводная известна.

Используя упомянутое выше свойство 2,

Вопрос 2. Найдите интеграл для заданной функции f(x),

f(x) = 2e x  

e x — стандартная функция, и ее антипроизводная известна.

Используя упомянутое выше свойство 1,

⇒ 2e x + C

Вопрос 3: Найдите интеграл для функции f(99x): Найдите интеграл для функции0010

F (x) = 5x -2

Решение:

Указано F (x) = 5x -2

Использование обратной мощности

. свойство 1, указанное выше,

Вопрос 4. Найдите интеграл для заданной функции f(x),

f(x) = sin(x) + 5cos(x)

9

Решение:

Учитывая f(x) = sin(x) + 5cos(x)

sin(x) и cos(x) — стандартные функции, интеграл от которых известен.

Оставить комментарий