Ноль и фаза в электрике: Что такое фаза, ноль и земля: объясняем простым языком

Содержание

Что такое фаза и ноль в электрике, обозначение, как определить, как найти

Больше 100 лет электричество есть на предприятиях, в офисах и домах. Все начиналось с подачи одной фазы и ноля еще в конце 19 столетия, а эксперименты Николы Тесла и Михаила Федоровича Доливо-Добровольского привели к появлению уже понятной нам электросети. Именно последний изобретатель в 1891 году на Франкфуртской электротехнической выставке представил первую трехфазную сеть протяженностью 170 км. Это событие стало триумфом электросистемы с тремя фазами и нулем, которая используется и сейчас во всем мире.

Даже не зная этого и особо не вникая в электротехническую сферу, многие люди используют в обиходе такие термины, как фаза и ноль. При этом редко задумываясь о том, что же это такое, какова их задача и как обнаружить фазу и ноль в квартире, доме. Чтобы разобраться, нужно проследить путь электричества от генератора до розетки.

Как устроена электросистема?

Если вы когда-нибудь меняли розетку или выключатель, то видели, что они подключаются двумя-тремя проводами. Это и есть фаза и ноль в розетке, а третий проводник — заземление. Однако перед тем, как зайти в дом, ток по проводам проходит длинный путь:

  • В трехфазном генераторе переменного тока на электростанции вырабатывается электричество. Из него выходит только три фазы.
  • По ЛЭП оно направляется к повышающей трансформаторной подстанции, где с 10-20 кВ повышается до 330 кВ. После этого и появляется нейтраль, также известная как ноль. Она соединяется с землей, а дальше по линиям электропередач по-прежнему идут три фазных провода.
  • Когда электроэнергия достигает населенного пункта, она попадает на понижающий трансформатор. Вольтаж уменьшается до распределительного напряжения района — 110-150 кВ. Здесь также остается три фазных проводника, а нейтраль от трансформатора заземляется.
  • Далее ток движется по сетям среднего напряжения. Они самые протяженные и состоят только из трех фаз, без ноля.
  • Следующий пункт на пути электричества — распределительная электроподстанция. От нее ток по другим линиям электропередач идет к домам на электрощит по трем фазным проводам, а также уже появляется рабочий ноль, который распределяет однофазную нагрузку по трехфазной сети.
  • В электрическом общедомовом щите и происходит самое интересное: трехфазная сеть подключается к ВРУ — вводно распределительному устройству. Здесь все фазы разделяются, для каждой отдельно выделяется ноль и заземление. Между фазой и нулем есть фазное напряжение — всем известные 220-230 В.
  • Далее ток через уже однофазную систему попадает в подъездный распределительный щит, потом в этажный и в конце — в квартирный.
  • Последний «пункт» на пути проводников — розетки. Когда в них подключается электрический прибор, цепь замыкается.

Почему на фазах для квартир и большинства частных домов именно переменный ток? Потому что его в разы легче передавать на большие дистанции по сравнению с постоянным током.

Если объяснить простыми словами, что такое фаза в электрике, то это провод, по которому ток приходит в квартиру, дом, офис и т. д. То есть на всей протяженности от электростанции до розетки кабели и проводники, по которым течет синусоидальный ток — это фазы. Соответственно, ноль — проводник, по которому он уходит назад к электрической подстанции.

При строительстве новостроек в электросети используются трехжильные провода. Это означает, что на вводное устройство заходит одна фаза 220-230 В, рабочий ноль и защитный ноль. Очень важно не перепутать нули:

  • Рабочий предназначен для нормальной работы замкнутой электроцепи — по нему ток идет обратно. Он отвечает и за выравнивание фазного напряжения.
  • Защитный основное время остается невостребованным и срабатывает в аварийной ситуации, когда произошел обрыв рабочего ноля. По нему напряжение уходит в землю.

Обозначение фаза и ноль

В Украине с 2011 года действует ГОСТ Р 50462-2009, определяющий правила идентификации и маркировки проводников с помощью оболочек определенного цвета и буквенно-цифрового обозначения. Согласно документу, компоненты трехфазной сети обозначаются так:

  • L — одна из трех фазных жил.
  • N — нейтраль.
  • PE — защитный ноль.

Буквы наносят обычно не на сами проводники, а на контакты, к которым они подключаются. Однако что делать, если есть просто вывод трехжильного кабеля в распределительный короб и нет никаких пометок на нем? Рассмотрим два ключевых метода.

Как определить фазу и ноль?

Чтобы разобраться в электрике, фаза это или ноль, в первую очередь ориентируйтесь на цветовую маркировку. Хотя есть стандарт, и его должны придерживаться электромонтеры, иногда разрабатывается специфический проект электрификации и в нем могут быть отступления от нормативов. Лучше найти техническую документацию на квартиру, где четко прописаны параметры идентификации проводников на конкретном объекте.

Иногда в старом жилом фонде, где еще не сделана замена проводки, непрофессионалу бывает сложно быстро определить фазу и ноль в электрике. В этом случае поможет либо поиск старых ГОСТов с указанием, как маркировались раньше проводники и контакты, либо простой инструмент, который есть практически у каждого в хозяйстве — индикаторная отвертка.

Как найти фазу?

Электрики рекомендуют сначала найти фазу в розетке. Если проводка новая, ищите жилу с изоляцией красного, коричневого, черного, белого или другого цвета, который отличается от синего, а также желто-зеленой или сине-белой комбинации. Этот метод удобный, но не на 100% надежный. Всегда остается риск, что при монтаже могли быть допущены ошибки, а проводники — перепутаны. Поэтому лучше использовать индикатор фаз. Это отвертка с прозрачным корпусом ручки, внутри которого размещены небольшая лампочка и резистор. Они в определенных условиях срабатывают и указывают на присутствие напряжения. Для этого:

  • Прикладываем индикаторную отвертку к проводнику. Можно даже не к срезу, а в любом месте, включая изолированный участок жилы.
  • Напряжения 220-230 В достаточно, чтобы инструмент выявил его. Лампочка загорится, если индикатор прижат к фазному проводу.

Это приспособление безопасно для человека. Внутри корпуса есть сопротивление от резистора, которое снижает ток до минимального значения. Такой индикатор — обязательное приспособление в каждом доме, ведь рано или поздно большинство хозяев все же решаются на самостоятельную замену электрофурнитуры или светильника. Его использование простое и занимает считанные секунды.

Опытные электрики, которые не соблюдают правила безопасности, знают, как найти фазу без индикатора и цветовой маркировки по своему. Для этого они касаются края проводника пальцем: где «ущипнет», там и ток. Однако мы настойчиво выступаем против подобных действий и призываем избегать такого риска для здоровья и жизни. Лучше подберите в нашем каталоге индикаторную отвертку, которая прослужит вам десятки лет и избавит вас от опасных экспериментов с электричеством в процессе поиска фазы и ноля.

Как найти ноль?

Чтобы не беспокоиться, как узнать, где фаза, а где ноль, запомните два способа маркировки последнего:

  • синяя или сине-белая изоляция жилы — это всегда рабочий ноль N;
  • желто-зеленая оболочка указывает на защитную нейтраль PE.

Аналогично фазной жиле можно проверить и нулевые проводники с помощью инструмента. Отличие только в том, что от них лампочка в индикаторе загораться не будет.

Важно! Это даст понимание, что перед вами ноль, но не ответит на вопрос — рабочий или защитный. Лучше определять фазу и ноль по цвету. Если же речь идет о старой проводке, где нет заземления, то метода проверки индикаторной отверткой будет достаточно.

Когда может понадобиться поиск ноля и фазы?

Обычно потребность в этом возникает, когда нужно установить или заменить какое-то электрооборудование:

  • Розетки и выключатели.
  • УЗО или диф автомат на 3 фазы в большом частном доме.
  • Светильники.
  • Стационарная бытовая техника и т.д.

В нашем каталоге есть кабели и проводники для обустройства одно- и трехфазных сетей любой сложности. Они маркированы по украинским ГОСТам и согласно регламентам международной системы ISO. Аналогичные обозначения есть на клеммниках и контактах в различных устройствах всех марок и моделей из нашего ассортимента. Также мы поможем подобрать индикатор фазного напряжения и бесплатно проконсультируем по любому актуальному для вас товару.

Как в электрической сети определить фазу и ноль мультиметром?

Пример HTML-страницы

Очень часто при проведении ремонтных или монтажных работ, связанных с электричеством в квартире, доме, гараже или даче, возникает необходимость найти ноль и фазу. Это необходимо для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже не имеющих специального технического образования, воображают, что для этого есть специальные показатели. Мы бегло рассмотрим этот метод, а также расскажем об еще одном устройстве, без которого не может обойтись ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Содержание

  1. Понятия нуля и фазы
  2. Самые простые способы
  3. Для исполнения цвета прожилок
  4. Индикаторная отвертка
  5. Мультиметр. Что это за устройство?
  6. Как пользоваться устройством?
  7. Некоторые правила использования мультиметра

Понятия нуля и фазы

Прежде чем определять нулевую фазу, было бы неплохо вспомнить немного физики и понять, что это за концепции и почему они используются в розетке.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Все электрические сети (как бытовые, так и промышленные) делятся на два типа: постоянного и переменного тока. Еще со школы мы помним, что ток – это движение электронов в определенном порядке. При постоянном токе электроны движутся в одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует сеть переменных, которая состоит из двух частей:

  • Фаза работы (обычно называемая просто «фазой»). На него подается рабочее напряжение.
  • Пустая фаза, называемая «нулем» в электричестве. Необходимо создать замкнутую сеть для подключения и эксплуатации электрических устройств, она же служит для заземления сети.

Когда мы подключаем устройства к однофазной сети, не имеет особого значения, где именно находится пустая или рабочая фаза. Но когда мы монтируем в квартире электропроводку и подключаем ее к общей домашней сети, нужно это знать.

Разница между нулем и фазой на видео:

Самые простые способы

Есть несколько способов найти фазу и ноль. Рассмотрим их кратко.

Для исполнения цвета прожилок

Самый простой, но в то же время и самый ненадежный способ — определить фазу и ноль по цветам изоляционных оболочек проводников. Как правило, фазовый провод имеет вариант черного, коричневого, серого или белого цвета, а ноль — синего или синего цвета. Чтобы держать вас в курсе, есть также зеленые или желто-зеленые провода, так обозначаются провода защитного заземления.

При этом никаких устройств не нужно, смотрели по цвету провода и определяли, фаза он или ноль.

Но почему этот метод самый ненадежный? И нет гарантии, что при установке электрики соблюдали цветовую кодировку жил и ничего не перепутали.

Цветовая кодировка ниток в следующем видео:

Индикаторная отвертка

Более верный метод — использовать индикаторную отвертку. Он состоит из непроводящего корпуса и встроенного резистора с индикатором, представляющего собой обычную неоновую лампу.

Например, при подключении переключателя важно не путать ноль с фазой, так как это устройство переключения работает только для одного диапазона фаз. Проверка индикаторной отверткой выглядит следующим образом:

  1. Отключите общий ввод автомата на квартиру.
  2. С помощью ножа зачистите тестируемые проводники от изоляционного слоя толщиной 1 см и отделите их на безопасном расстоянии друг от друга, чтобы полностью исключить возможность контакта.
  3. Подайте напряжение, включив входной автоматический выключатель.
  4. Острием отвертки коснитесь оголенных проводов. Если при этом загорается окошко индикатора, это означает, что провод соответствует первой фазе. Отсутствие свечения говорит о том, что найденная нить нулевая.
  5. Отметьте нужную жилу маркером или куском изоленты, затем снова выключите общий автомат и подключите коммутационный аппарат.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за устройство?

Мультиметр (электрики также называют его тестером) — это комбинированный прибор для электрических измерений, сочетающий в себе множество функций, основными из которых являются омметр, амперметр и вольтметр.

Эти устройства разные:

  • аналог;
  • цифровой;
  • легкий портативный для некоторых основных измерений;
  • комплекс стационарный с множеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и измерить ток, напряжение, сопротивление на участке цепи, проверить целостность электрической цепи.

Устройство представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные положения (вокруг восемь секторов). Вверху (в центре) есть сектор «ВЫКЛ», когда переключатель установлен в это положение, это означает, что устройство выключено. Для измерения напряжения вам необходимо установить переключатель в секторах «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплекте мультиметра еще два измерительных щупа: черный и красный. Черный зонд подключается к нижнему разъему с пометкой «COM», это соединение является постоянным и используется для любых измерений. Красный зонд, в зависимости от измерений, вставляется в среднее или верхнее гнездо.

Как пользоваться устройством?

Выше мы рассмотрели, как найти фазный провод с помощью индикаторной отвертки, но отличить ноль от земли таким инструментом не получится. Итак, давайте узнаем, как проверить жилы мультиметром.

  • Петров Василий Александрович

    Электромонтер 6 разряда, ООО “Петроэнергоспецмонтаж”, 18 лет стажа

    Задать вопрос

    Подготовительный этап выглядит точно так же, как работа индикаторной отверткой. При отключенном напряжении зачистите концы проводов и обязательно разделите их, чтобы не вызвать случайный контакт и возникновение короткого замыкания. Подайте напряжение, теперь все дальнейшие работы будут с мультиметром:

    Выберите на приборе диапазон измерения переменного напряжения выше 220 В. Как правило, в режиме «ACV» стоит знак со значением 750 В, установите переключатель в это положение.

  • В устройстве есть три гнезда, в которые вставляются наконечники. Находим среди них то, что обозначено буквой «V» (т.е для измерения напряжения). Вставьте в него щуп.

  • Коснитесь очищенных стержней зондом и посмотрите на экран устройства. Если вы видите небольшое значение напряжения (до 20 В), вы касаетесь фазного провода. Если на экране нет показаний, вы нашли ноль с помощью мультиметра.

Для определения «земли» очистите небольшой участок на любом металлическом элементе бытовых коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае мы будем использовать два гнезда «COM» и «V», мы будем вставлять измерительные щупы. Установите устройство в режим «ACV» на значение 200 В.

У нас есть три провода, среди них нам нужно найти фазу, ноль и землю. Одним щупом касается чистого места на трубке или аккумуляторе, вторым — проводника. Если на дисплее отображается значение порядка 150–220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных измерениях показание колеблется в пределах 5-10В, при касании «земли» на экране ничего не будет отображаться.

Отметьте каждую жилу маркером или изолентой и, чтобы убедиться, что измерения верны, сделайте измерения относительно друг друга.

Прикоснитесь двумя щупами к фазному и нейтральному проводам, на экране должна появиться цифра в пределах 220 В. Фаза с землей даст немного более низкие показания. А если коснуться нуля и земли, на экране отобразится значение от 1 до 10 В.

Некоторые правила использования мультиметра

Прежде чем определять фазу и ноль мультиметром, ознакомьтесь с некоторыми правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не используйте мультиметр во влажной среде.
  • Не используйте неисправные наконечники.
  • Во время измерения не изменяйте пределы измерения и не перемещайте переключатель.
  • Не измеряйте параметры, значение которых превышает верхний предел измерения устройства.

Как измерить напряжение мультиметром — в следующем видео:

Обратите внимание на важный нюанс использования мультиметра. Поворотный переключатель всегда должен быть изначально установлен в максимальное положение, чтобы избежать повреждения электронного устройства. А в дальнейшем, если показания будут ниже, переключатель перемещается в нижние отметки для более точных измерений.

0.00%

Осталось:

Понравилась статья? Поделиться с друзьями:

Принципы трехфазных электрических систем

Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, трехфазные системы переменного тока почти повсеместно используются для распределения электроэнергии и подачи электроэнергии непосредственно на оборудование большей мощности.

В этой технической статье описываются основные принципы трехфазных систем и различия между различными возможными измерительными соединениями.

  • Трехфазные системы
  • Соединение звездой или звездой
  • Соединение треугольником
  • Сравнение звезд и треугольников
  • Измерение мощности
  • Подключение однофазного ваттметра
  • Однофазное трехпроводное соединение
  • Трехфазное трехпроводное соединение (метод двух ваттметров)
  • Трехфазное трехпроводное соединение (метод трех ваттметров)
  • Теорема Блонделя: необходимое количество ваттметров
  • Трехфазное, четырехпроводное подключение
  • Настройка измерительного оборудования

Трехфазные системы

Трехфазное электричество состоит из трех переменных напряжений одинаковой частоты и одинаковой амплитуды. Каждая «фаза» напряжения переменного тока отделена от другой на 120° (рис.

1).

Рисунок 1 – Трехфазная кривая напряжения

Это может быть представлено схематически как в виде сигналов, так и в виде векторной диаграммы (рис. 2).

Рисунок 2 – Векторы трехфазного напряжения

Зачем использовать трехфазные системы? По двум причинам:

  1. Три разнесенных по вектору напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
  2. Трехфазная система может быть подключена к нагрузке таким образом, что количество необходимых медных соединений (и, следовательно, потери при передаче) составляет половину того, что было бы в противном случае.

Рассмотрим три однофазные системы, каждая из которых подает на нагрузку по 100 Вт (рис. 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает по 6 проводам и, таким образом, потери составляют 6 единиц.

3 – Три однофазных источника питания – шесть единиц потерь

В качестве альтернативы, три источника питания могут быть подключены к общему возврату, как показано на рис. 4. Когда ток нагрузки в каждой фазе одинаков, говорят, что нагрузка сбалансирована. При сбалансированной нагрузке и смещении фаз трех токов друг от друга на 120° сумма токов в любой момент времени равна нулю, и ток в обратной линии отсутствует.

Рисунок 4 – Трехфазное питание, сбалансированная нагрузка – 3 единицы потерь

В трехфазной системе 120° требуется только 3 провода для передачи мощности, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводам уменьшатся вдвое.

Соединение звездой или звездой

Трехфазная система с общим соединением обычно изображается, как показано на рисунке 5, и известна как соединение «звезда» или «звезда».

Рисунок 5 – Соединение звездой или звездой – три фазы, четыре провода

Общая точка называется нейтральной точкой. Эта точка часто заземляется на источник питания из соображений безопасности. На практике нагрузки не идеально сбалансированы, и для передачи результирующего тока используется четвертый «нейтральный» провод.

Нейтральный проводник может быть значительно меньше трех основных проводников, если это разрешено местными нормами и стандартами.

Соединение треугольником

Три однофазных источника питания, рассмотренные ранее, также могут быть соединены последовательно. Сумма трех напряжений, сдвинутых по фазе на 120°, в любой момент времени равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

Рисунок 6 – Сумма мгновенных напряжений в любой момент времени равна нулю

Соединение обычно рисуется, как показано на рисунке 7, и известно как соединение треугольником по форме греческой буквы дельта, Δ.

Рисунок 7 – Соединение треугольником – три фазы, три провода

Сравнение звездой и треугольником

Конфигурация «звезда» используется для распределения питания между повседневными однофазными приборами, которые можно найти дома и в офисе. Однофазные нагрузки подключаются к одной стороне тройника между линией и нейтралью. Общая нагрузка на каждую фазу максимально распределяется, чтобы обеспечить сбалансированную нагрузку на первичную трехфазную сеть.

Конфигурация звезда также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения представляют собой напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на рис. 8.

Рисунок 8 – Напряжение (фаза-фаза)

Конфигурация треугольника чаще всего используется для питания трехфазных промышленных нагрузок более высокой мощности. Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания треугольником путем выполнения соединений или «отводов» вдоль обмоток питающих трансформаторов.

В США, например, система треугольника 240 В может иметь обмотку с расщепленной фазой или с отводом от середины для обеспечения двух источников питания 120 В (рис. 9). ).

Центральный ответвитель может быть заземлен на трансформаторе из соображений безопасности. 208 В также доступно между центральным отводом и третьей «высокой ветвью» соединения треугольником.

Рисунок 9 – Схема «треугольник» с «расщепленной фазой» или обмоткой с отводом от середины

Мощность измеряется в системах переменного тока с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенной мощности, а затем берет среднее значение мгновенной мощности за один цикл для отображения истинной мощности.

Ваттметр обеспечит точные измерения истинной мощности, полной мощности, вольт-амперной реактивной мощности, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

Чтобы анализатор мощности давал хорошие результаты, необходимо уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

Подключение однофазного ваттметра

Требуется только один ваттметр, как показано на рис. 10. Системное подключение к клеммам напряжения и тока ваттметра не вызывает затруднений. Клеммы напряжения ваттметра подключены параллельно нагрузке, а ток проходит через клеммы тока, которые последовательно с нагрузкой.

Рисунок 10 – Измерения однофазного, двухпроводного и постоянного тока

Однофазное трехпроводное соединение

В этой системе, показанной на рисунке 11, напряжения создаются одной обмоткой трансформатора с отводом от середины, и все напряжения находятся в фазе. Это распространено в жилых домах в Северной Америке, где доступны один источник на 240 В и два источника на 120 В и могут иметь разные нагрузки на каждую ветвь.

Для измерения общей мощности и других величин подключите два ваттметра, как показано на рисунке 11 ниже.

Рисунок 11 – Однофазный трехпроводной метод ваттметра

Трехфазный трехпроводной метод (метод двух ваттметров)

При наличии трех проводов для измерения общей мощности требуется два ваттметра. Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены между фазами.

Рисунок 12 – Трехфазное, трехпроводное, метод двух ваттметров

Трехфазное трехпроводное соединение (метод трех ваттметров)

Хотя для измерения общей мощности в трехпроводной системе, как показано выше, требуется только два ваттметра, иногда удобно использовать три ваттметра. В соединении, показанном на рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

Рисунок 13 – Трехфазный, трехпроводной (метод трех ваттметров – установите анализатор на трехфазный, четырехпроводный режим)

Трехпроводное соединение с тремя ваттметрами имеет преимущества, заключающиеся в индикации мощности в каждой отдельной фазе (невозможно при двухваттном соединении) и напряжения между фазой и нейтралью.

Теорема Блонделя: необходимое количество ваттметров

В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рис. 14.

В общем, необходимое количество ваттметров = количество проводов – 1

Рисунок 14 – Трехпроводная система «звезда»

Доказательство трехпроводной системы «звезда»

Мгновенная мощность, измеренная ваттметром, является произведением мгновенных отсчетов напряжения и тока.

  • Показание ваттметра 1 = i1 (v1 – v3)
  • Показания ваттметра 2 = i2 (v2 – v3)

Сумма показаний W1 + W2 = i1v1 – i1v3 + i2v2 – i2v3 = i1v1 + i2v2 – (i1 + i2) v3

(Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)

2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

Трехфазное, четырехпроводное соединение

Для измерения общей мощности в четырехпроводной системе требуется три ваттметра. Измеренные напряжения являются истинными напряжениями между фазой и нейтралью. Напряжения фаза-фаза могут быть точно рассчитаны по амплитуде и фазе напряжения фаза-нейтраль с использованием векторной математики.

Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

Настройка измерительного оборудования

Для заданного количества проводов требуется N, N-1 ваттметров для измерения общих величин, таких как мощность. Вы должны убедиться, что у вас достаточное количество каналов (метод 3 ваттметра), и правильно их подключить.

Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как мощность, вольт, ампер, вольт-ампер и коэффициент мощности, напрямую, используя соответствующие встроенные формулы.

Формулы выбираются на основе конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения хороших измерений общей мощности. Анализатор мощности с возможностями векторной математики также будет преобразовывать величины фаза-нейтраль (или звезда) в величины фаза-фаза (или дельта).

Коэффициент √3 можно использовать только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

Понимание конфигураций проводки и выполнение правильных подключений имеет решающее значение для выполнения измерений мощности. Знакомство с распространенными системами проводки и знание теоремы Блонделя помогут вам правильно выполнить соединения и получить результаты, на которые можно положиться.

Новый трехфазный модуль измерения мощности Wago

Источник: Портал электротехники

8 мая 2018 г.

Объяснение однофазного и трехфазного питания

Вы запутались в однофазном и трехфазном питании? Это на самом деле довольно просто. В этой статье мы объясняем разницу между однофазным и трехфазным питанием и взвешиваем, какой вариант подходит именно вам.

В наших домах подключите свое устройство к сетевой розетке, и вы будете потреблять однофазный переменный ток (AC). Мощность в однофазных системах не подается постоянно, а фактически колеблется. Мощность подается волнами. Волна начинается с нуля, растет до пика, уменьшается до нуля, меняет направление, где достигает максимума в противоположном направлении, прежде чем вернуться к нулю. Один полный цикл равен 360⁰.

В Великобритании цикл переменного тока меняется 50 раз в секунду – частота 50 Гц. В других странах, таких как США, частота волн в секунду выше (60 Гц), поэтому вам нужно купить понижающий трансформатор, чтобы безопасно использовать многие зарубежные электрические устройства. Это может показаться сложным, но важно понимать, как работает переменный ток, чтобы понимать разницу между однофазными и трехфазными системами.

 

 

В чем разница между однофазным и трехфазным?

В однофазной системе питание подается по двум проводам: один подает ток, другой обеспечивает обратный путь. В течение одного фазового цикла подача электроэнергии колеблется с пиками и провалами напряжения. В однофазной системе пик мощности волны приходится на 90⁰ и 270⁰. Это означает, что в двух точках цикла подача мощности максимальна. В других случаях отдаваемая мощность меньше оптимальной.

В трехфазной системе нагрузка распределяется между тремя силовыми проводами. Три провода питания (A, B и C) расположены в противофазе друг с другом. Все три фазы мощности вошли в цикл на 120⁰. При этом три фазы мощности достигают пикового значения напряжения в разное время в течение полного цикла. При подаче питания таким образом отсутствуют пики и провалы. Разделение нагрузки между тремя проводами означает, что питание подается постоянно.

 

Сравнение однофазной и трехфазной сети

Основными отличиями однофазной сети переменного тока от трехфазной являются постоянство подачи мощности и допустимой нагрузки. Подача мощности в однофазных системах имеет пики и провалы. Трехфазные системы комбинируют переменные токи в разных фазах, что гарантирует, что отдаваемая мощность никогда не упадет ниже максимальной.

Стабильность подачи питания важна как для безопасности, так и для защиты систем. Любая электрическая цепь имеет максимальную нагрузку — общее количество ампер, которое она может проработать до перегрузки. Однофазные источники питания подходят для домашнего использования и в некоторых коммерческих приложениях с низким энергопотреблением. Они обычно используются там, где требования к общей мощности невелики, часто менее 20 кВА.

Однофазные системы на самом деле более эффективны, чем трехфазные, в маломощных приложениях. Их также проще построить и спроектировать. Конструкция трехфазных систем позволяет им безопасно переносить большую нагрузку. Как правило, трехфазные системы используются для питания устройств с высоким потреблением, таких как центры обработки данных. Непрерывная подача энергии, которую они обеспечивают, необходима для его производительности и стабильности. Когда требования к мощности выше, трехфазные системы более эффективны, но их сложнее проектировать. Эта сложность может дорого обойтись.

Оставить комментарий