Обозначения нуля и фазы: Обозначение фазы и нуля на схеме — Ремонт в квартире

Содержание

Цветовая маркировка проводов » сайт для электриков

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Расцветка сетей переменного тока

Именно в сетях переменного тока разнообразная расцветка жил проводов создает условия, при которых путаница фазы и нуля, между фазами, а также контуром заземления полностью исчезает. Это особенно актуально в тех случаях, когда монтаж делает один электрик, а обслуживанием сетями занимается другой. То же самое касается и проведения ремонтных работ.

Те электрики, которые сталкивались со старыми электрическими сетями, знают, как часто приходилось все время прозванивать контуры, определяя фаза ли это или ноль. Это занимало много времени и делало работу очень неудобной. Все дело было в том, что изоляция старых проводов была или белая, или черная, то есть, однотонная. Конечно, еще в период СССР специалисты задумывались над созданием определенного стандарта в цветовом оформлении. И сама цветная маркировка периодически менялась, пока не был принят окончательный стандарт.

Цвет нуля и заземления

В принятых стандартах есть два вида расцветки, которыми обозначаются жила нуля и жила заземления. Первая обозначается буквой «N» – это рабочий ноль, вторая буквами «PE» – это защитный ноль. Их расцветка соответственно:

  • Голубая.
  • Желто-зеленая.

Какого цвета провод заземления

Есть модели электрических проводов, в которых заземляющая жила и ноль соединены в один контур, он обозначается «PEN». Его расцветка – желто-зеленая, а на концах в местах соединения участков голубой цвет. Или, наоборот, по всей длине голубой цвет, на концах – желто-зеленый. Стандартом такое двойственное обозначение разрешено.

Цвет фазных жил

Опять-таки обращаясь к правилам ПУЭ, необходимо отметить, что стандарт дает возможность использовать достаточно широкий ряд расцветок для окраса жил электрического провода. Давайте перечислим все их: черный, белый, коричневый, серый, красный, розовый, фиолетовый, бирюзовый и оранжевый.

Можно сделать вывод, что расцветка фазного провода просто должна отличаться от цвета контуров заземления и рабочего нуля. Конечно, одноцветный кабель можно тоже использовать в разводке, здесь никаких проблем нет. Просто придется постоянно на концах шлейфов устанавливать кембрики или цветную изоляцию. Это не так сложно для проведения монтажных работ. Но как было сказано выше, это будет неудобно, когда встанет вопрос ремонта. И еще один момент, который касается разноцветных проводов. Обязательно нужно определиться с длиною каждого контура: и в целом, и по участкам. Это упростит проведение монтажа, не придется делать промежуточные стыки.

Цветная маркировка проводов и кабелей

Всем привет. Рад вас видеть у себя на сайте. Я продолжая наполнять статья рубрику электропроводка. В прошлый раз мы с вами

говорили про то, как расшифровывается маркировка провода ПуВВ

А сегодня давайте поговорим о такой важной теме как цветная маркировка проводов и кабелей

Согласитесь со мной, что в нынешнее время не один электромонтёр не может себе представить, как можно смонтировать хоть малейший участок какой-то электрической цепи без использования проводов и кабелей с разноцветной изоляцией. А эта разноцветная изоляция придумана не просто так – для красоты, а несёт в себе определённую информацию.

Обратите внимание

Во-первых, каждый определённый цвет провода указывает на то к какой группе он принадлежит, и куда его нужно подключать (облегчает монтаж сетей).

Во-вторых, значительно уменьшается вероятность ошибочного подключения проводов при монтаже, что впоследствии могло бы привести к короткому замыканию в то время когда на сети будет подано напряжение для проверки. А так же снижается вероятность поражения электрическим током тех людей, которые в дальнейшем будут обслуживать и ремонтировать эти сети.

Все цвета проводов выбраны и приведены к единому стандарту – ПУЭ (Правила устройства электроустановок).

В этой книге указано какого цвета должны быть жилы проводов и кабелей. А так же какая у них должна быть буквенная и цифровая маркировка.

Цвет проводов и шин переменных трёхфазных сетей

На всех электрических станциях и подстанциях, на высоковольтных вводах и выводах трансформаторов и других любого рода электрических установках, проводники и шины окрашиваются в такие цвета:

фаза A – красится жёлтым цветом

фаза B – красится зелёным цветом

фаза C – красится красным цветом

ноль N – окрашивается в синий цвет.

Кстати, чтобы не путаться в цветах, могу дать вам один хороший практический совет

Обратите внимание на то, что все цвета идут по алфавиту. Надеюсь, алфавит вы знаете, и помните, что сначала стоит буква «ж», потом «з», а потом «к»

Я когда ещё учился в лицее, то именно таким образом запомнил последовательность окрашивания шин.

А вот у кабелей расцветка на много разнообразнее. Согласно правилам устройства электроустановок, фазные провода всех существующих монтажных кабелей должны иметь окраску следующих цветов: красный, чёрный, серый, коричневый, розовый, белый, фиолетовый, оранжевый, бирюзовый.

Совмещённый рабочий ноль и защитный ноль (PEN) – должен иметь синий цвет по всей длине провода и жёлто-зелёные полосы по концам. Или же может быть наоборот – жёлто-зелёный цвет по всей длине, а на концах синий цвет.

Что касается однофазной сети, то она может быть выполнена путём ответвления от трёхфазной. В такой ситуации желательно чтобы цвета проводников совпадали по цвету.

Это нужно учесть при проектировании сетей, и при закупке материалов. А так же нужно покупать провод в таком количестве чтобы его хватило полностью на всю разводку.

Важно

К примеру, если делать проводку в квартире, то кабеля должно хватить на все комнаты.

Если случилось так, что приходится делать монтаж проводами не имеющие цветной маркировки, а такие имеются, ведь не все заводы изготовители придерживаются правил, то тогда на концах нужно использовать цветную термоусадку, кембрик или делать пометки цветной изолентой.

Цветная маркировка в сетях постоянного тока

Не стоит так же забывать о том, что кроме сетей переменного тока, ещё существуют сети постоянного тока. Но в таких сетях используются только два проводника: провод с положительным зарядом (+), и провод с отрицательным зарядом (-).

По всем нормативным документам, которые регламентируют цвет изоляции, провод положительного заряда, то есть плюс — окрашивается в красный цвет, а с отрицательным зарядом, минус — окрашивается в синий цвет.

Ещё в последнее время я часто встречаю, что минус красится чёрным цветом.

А теперь для закрепления материала я советую вам посмотреть видео ролик.

С уважением Александр!

Маркировка проводов по цвету

В советское время такое понятие, как «цветовая маркировка» отсутствовало. Для прокладки электропроводки использовался двух- или трёхжильный провод одного, чёрного или белого цвета.

Это приводило к затратам времени при монтаже для вызванивания жил, а так же к ошибкам, при которых выключатель разрывал не фазу, а ноль. При таком подключении светильник всё время находился под напряжением и простая замена электролампы была опасной операцией.

Для предотвращения подобных ситуаций ГОСТом Р 50462-2009 и ПУЭ п.1.1.30 устанавливаются нормы окраски оболочки токопроводящих жил.

Информация! Цвет изоляции в контрольных кабелях — красный, синий и белый (прозрачный) не имеют отношения к цветовой маркировке. Они используются для упрощения процесса прозвонки.

Какие цвета в элетропроводке?

Цвет провода заземления

Желто-зеленый – элементов «заземления». Иногда владельцу прибора встречается просто желтый или зеленый, с двумя буквами — «РЕ», которые отвечают за маркировку «земли». Если элемент заземления вместе с нулевым, то обозначается «PEN» и чаще имеет зелено-желтый оттенок.

Каким обозначается фаза?

Красный и черный – цвета фазы. Встречаются и другие:

Разобраться с пучком элементов питания будет проще, когда будет исключен ноль и земля. Фаза на схеме отмечается буквой L. Если в сети несколько фаз, что часто встречается при 380 В, такие провода обозначаются L1, L2, L3. В других случаях, могут обозначаться: первая фаза — A, вторая — B и т.д.

Нулевой провод в однофазной сети

Представлен синим или голубым оттенками. В электрике больше не встречается другого обозначения этого цвета

Не важно какой используется в работе кабель – трехжильный, пятижильный, цвет один и тот же

Какого цвета провод заземления

В соответствии с современными стандартами, проводник заземления должен иметь желто-зеленый цвет. С виду он похож на желтую изоляцию, на которой имеются две продольные ярко-зеленые полосы. Но встречается иногда и окраска из поперечных зелено-желтых полос.

Иногда, в кабеле могут иметься только ярко-зеленые или желтые проводники. В данном случае «земля» будет обозначаться именно таким цветом. Соответствующими цветами она же будет отображаться и на схемах. Чаще всего инженеры рисуют из ярко зелеными, но иногда можно заметить и желтые проводники. Обозначают на схемах или приборах «землю» латинскими (на английском) буквами PE. Соответственно этому маркируются и контакты, куда «земляной» провод нужно подключать.

Иногда специалисты называют заземляющий провод «нулевым и защитным», но не стоит путать. Если вы увидите такое обозначение, то знайте, что это именно земляной провод, а защитным его называют потому, что он что снижает риск удара током.

Ноль или нейтральный провод имеет следующий цвет маркировки:

  • Синий;
  • Голубой;
  • Синий с белой полоской.

Никакие цвета в электрике для маркировки нулевого провода не используются. Таким вы его найдете в любом, будь то трехжильном, пятижильном, а может и с еще большим количеством проводников. Синим и его оттенками обычно рисуют «ноль» на различных схемах. Профессионалы называют его рабочим нулем, потому, что (чего нельзя сказать о заземлении), участвует в электропроводке с питанием. Некоторые, при прочтении схемы называют его минус, в то время как фазу все считают «плюс».

Цвет нуля, нейтрали

Провод «ноля» — должен быть синего цвета. В РЩ надо подключать к нулевой шине, которая обозначается латинской буквой N. К ней же нужно подключить все провода синего цвета. Шина подсоединена к вводу посредством счетчика или же напрямую, без дополнительной установки автомата. В коробке распределения, все провода (за исключением провода с выключателя) синего цвета (нейтрали) соединяются и не участвуют в коммутации. К розеткам провода синего цвета «ноль» подключаются к контакту, который обозначается буквой N, которая маркируется на обратной стороне розеток.

Обозначение провода фазы не столь однозначно. Он может быть, либо коричневым, либо черным, либо красным, или же другими цветами кроме синего, зеленого и желтого. В квартирном РЩ фазовый провод, идущий от потребителя нагрузки, соединяется с нижним контактом автоматического выключателя либо к УЗО. В выключателях осуществляется коммутация фазового провода, во время выключения, контакт замыкается и напряжение подаётся к потребителям. В фазных розетках черный провод нужно подключить к контакту, который маркируется буквой L.

Как найти заземление, нейтраль и фазу при отсутствии обозначения

Если отсутствует цветовая маркировка проводов, то можно воспользоваться индикаторной отверткой для определения фазы, при контакте с ней индикатор отвертки загорится, а на проводах нейтрали и заземления — нет.

Можно воспользоваться мультиметром для поиска заземления и нейтрали. Находим отверткой фазу, закрепляем один контакт мультиметра на ней и «прощупываем» другим контактом провода, если мультиметр показал 220 вольт это — нейтраль, если значения ниже 220, то заземление.

Буквенные и цифровые маркировки проводов

Первой буквой «А» обозначается алюминий как материал сердечника, в случае отсутствия этой буквы сердечник — медный.

Буквами «АА» обозначается многожильный кабель с алюминиевым сердечником и дополнительной оплеткой из него же.

«АС» обозначается в случае дополнительной оплетки из свинца.

Буква «Б» присутствует в случае если кабель влагозащищенный и у него присутствует дополнительная оплетка из двухслойной стали.

«Бн» оплетка кабеля не поддерживает горение.

«В» поливинилхлоридная оболочка.

«Г» не имеет защитной оболочки.

«г»(строчная) голый влагозащищенный.

«К» контрольный кабель, обмотанный проволокой под верхней оболочкой.

«Р» резиновая оболочка.

«НР» негорящая резиновая оболочка.

Цвета проводов за рубежом

Цветовая маркировка проводов в Украине, России, Белорусии, Сингапуре, Казахстане, Китае, Гонконге и в странах европейского союза одинаковая: Провод заземления — Зелено-желтый

Провод нейтрали — голубой

фазы маркируется другими цветами

Обозначение нейтрали имеет черный цвет в ЮАР, Индии, Пакистане, Англии, однако это в случае со старой проводкой.

в настоящее время нейтраль синяя.

В австралии может быть синий и черный.

В США и Канаде обозначается белым. Так же в США можно найти серую маркировку.

Провод заземления везде имеет желтую, зеленую, желто-зеленую окраску, так же в некоторых странах может быть без изоляции.

Другие цвета проводов применяются для фаз и могут быть различными, кроме цветов означающих другие провода.

13 способов как сэкономить электричество

Цветовая маркировка фазы, нуля и земли

Для разводки и монтажа электросетей на бытовых и на промышленных объектах, используют многожильные кабели, каждый провод внутри которых окрашен в отличительный цвет. Это необходимо, как уже было сказано, для упрощения монтажа и обслуживания сети.

Так, к примеру, если ремонт сети будет проводить человек, который не занимался её прокладкой, по цвету провода, подключенного к приборам и источникам питания, он сразу поймёт рабочую схему. В противном случае возникнет необходимость пробивать ноль и фазу вручную, используя пробник. Этот процесс непрост даже при проверке новых проводов, а при необходимости ремонта старой проводки и вовсе превратится в испытание, поскольку раньше, в советское время, маркировка проводов не осуществлялась, и все они были покрыты черной или белой изоляционной оболочкой.

Согласно разработанным стандартам (ГОСТ Р 50462) и правилам электротехнического монтажа, каждый провод, находящийся в кабеле, будь то ноль, фаза или земля, должен иметь свой цвет, который говорит о его назначении. Одним из главных требований электротехнических установок является возможность быстро и точно определить функцию провода на любом его участке. Лучше всего для решения этой задачи подходит именно цветовая маркировка.

Представленная ниже маркировка проводов разработана для сетей и электроустановок переменного тока (трансформаторы, подстанции и т.п.) с глухозаземлённой нейтралью и номинальным напряжением не более 1 кВ. Этим условиям соответствует большая часть жилых и административных зданий.

Защитный и рабочий нулевой проводник

Ноль или нейтраль на электротехнических схемах обозначается буквой N и окрашивается на всем протяжении в голубой или синий цвет без дополнительных цветовых обозначений.

PE – защитный нулевой контакт или просто «земля», имеет характерную окраску из чередующихся вдоль провода линий зеленого и желтого цвета. Некоторые производители окрашивают ее в однородный желто-зеленый оттенок по всей длине, но принятый в 2011 году ГОСТ Р 50462-2009 запрещает обозначать заземление желтым или зеленым цветом по отдельности. В сочетании зеленый/желтый эти цвета могут использоваться только в ситуации, когда обозначают заземление.

У PEN-проводов, используемых в устаревших на сегодня системах TN-C, где «земля» и ноль совмещены, более сложная маркировка. Согласно последним утвержденным стандартам, основная часть провода на всем протяжении должна быть окрашена в синий цвет, а концы и места соединения – желто-зелеными полосками. Возможно также применение проводов с противоположной маркировкой – провод желто-зеленого цвета с синими концами. Встретить такой провод в зданиях современной постройки можно редко, так как от использования TN-C отказались ввиду риска поражения людей током.

  1. ноль (нулевой рабочий контакт) (N) – провод синего или голубого цвета;
  2. земля (нулевой заземляющий) (PE) – желто-зеленый;
  3. совмещенный провод (PEN) – желто-зеленый с синими метками по концам.

Фазные провода

В конструкции кабелей может встречаться несколько токоведущих фазных проводов. Правилами электротехнических установок требуется, чтобы каждая фаза была обозначена отдельно, поэтому для них принято использовать черный, красный, серый, белый, коричневый, оранжевый, фиолетовый, розовый и бирюзовый цвета.

Когда проводится монтаж однофазной цепи, подключенной к трехфазной электросети, необходимо чтобы цвет фазы ответвления точно соответствовал цвету фазного контакта питающей сети, к которому она подсоединена.

Кроме того, стандартом предписывается соблюдать цветовую уникальность всех используемых проводов, поэтому фаза не может иметь такой же цвет, как ноль или земля. Для кабелей без цветовой идентификации маркировка должна быть проставлена вручную — цветной изоляционной лентой или кембриками.

Чтобы не столкнуться с необходимостью покупки термоусадочных трубок или изоленты уже во время монтажа (и не усложнить схемы лишними обозначениями), следует определиться с тем, какая комбинация цветов будет использована во всех электрических цепях дома, и закупить нужное количество кабелей каждого цвета до начала работ.

Öâåòà íóëåâîãî ðàáî÷åãî è íóëåâîãî çàùèòíîãî ïðîâîäíèêà

Íóëåâûå ðàáî÷èå ïðîâîäíèêè (N) îáîçíà÷àþòñÿ ãîëóáûì öâåòîì. Íóëåâîé çàùèòíûé ïðîâîäíèê (ÐÅ) ìàðêèðóåòñÿ æåëòî-çåëåíûìè ïîïåðå÷íûìè èëè ïðîäîëüíûìè ïîëîñêàìè. Òàêàÿ êîìáèíàöèÿ äîëæíà îáÿçàòåëüíî ïðèìåíÿòüñÿ èñêëþ÷èòåëüíî äëÿ ìàðêèðîâêè çàçåìëÿþùèõ ïðîâîäíèêîâ.

Ñîâìåùåííûé íóëåâîé ðàáî÷èé è íóëåâîé çàùèòíûé ïðîâîäíèêè (PEN) – ñèíèé öâåò ïî âñåé äëèíå øíóðà ñ æåëòî-çåëåíûìè ïîëîñêàìè â ìåñòàõ ñîåäèíåíèÿ èëè íà êîíöàõ. Âàæíî óïîìÿíóòü, ÷òî ÃÎÑÒ ñåãîäíÿ ðàçðåøàåò îáðàòíûé âàðèàíò îêðàñêè, òî åñòü æåëòî-çåëåíûå ïîëîñû ñ ñèíèì öâåòîì â ìåñòàõ ñîåäèíåíèÿ.

Åñëè îáîáùèòü, òî öâåò ïðîâîäà äîëæíà ðàñïðåäåëÿòüñÿ òàê:

1.    Ñîâìåùåííûé (PEN) – æåëòî-çåëåíûé ñ ãîëóáûìè ìåòêàìè íà êîíöàõ;

2.    Íóëåâîé ðàáî÷èé (N) – ãîëóáîé (ñèíèé) öâåò;

3.    Íóëåâîé çàùèòíûé (ÐÅ) – æåëòî-çåëåíûé.

Цвет заземления

Цвет провода заземления, «земли» — почти всегда обозначен желто-зеленым цветом. реже встречаются обмотки как полностью желтого цвета, таки и светло-зеленого. На проводе может присутствовать маркировка «РЕ». Так же можно встретить провода зелено-желтого цвета с маркировкой «PEN» и с синей оплеткой на концах провода в местах крепления — это заземление, совмещенное с нейтралью.

В распределительном щитке (РЩ) стоит подключать к шине заземления, к корпусу и металлической дверке щитка. Что касается распределительной коробки, то там подключение идёт к заземлительным проводам от светильников и от контактов заземления розеток. Провод «земли» не надо подключать к УЗО (устройство защитного отключения), в связи с этим УЗО устанавливают в домах и квартирах, так как обычно электропроводка выполняется только двумя проводами

Обозначение заземления на схемах:

Обычное заземление(1) Чистое заземление(2) защитное заземление(3) заземление к корпусу(4) заземление для постоянного тока (5)

Чем отличается заземление

Обозначение проводов в электрике по буквам

Электрические коммуникации в бытовой и промышленной сфере организовываются посредством изолированных кабелей, внутри которых находятся проводящие жилы. Они отличаются друг от друга цветом изоляции и маркировкой. Обозначение l и n в электрике дает возможность на порядок ускорить реализацию монтажных и ремонтных мероприятий.

Нанесение данной маркировки регулирует специальный ГОСТ Р 50462: это относится к тем электроустановкам, где используется напряжение до 1000 В.

Как правило, они комплектуются глухозаземленной нейтралью. Зачастую электрическое оборудование данного типа имеют жилые, административные и хозяйственные объекты. Во время монтажа электрических сетей в зданиях этого типа необходимо хорошо разбираться в цветовых и буквенных указаниях.

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Играют ключевую роль для обслуживания и ремонта. Сильно упрощается работа для мастеров и скорость устранения проблемы.

Ручная цветовая разметка

Применяется в тех случаях, когда при монтаже приходится использовать провода с жилами одинаковой расцветки. Также часто это происходит при работе в домах старой постройки, в которых монтаж электропроводки производился задолго до появления стандартов.

Опытные электрики, чтобы не было путаницы при дальнейшем обслуживании электроцепи использовали наборы, позволяющие промаркировать фазные провода. Это допускается и современными правилами, ведь некоторые кабели изготавливаются без цветобуквенных обозначений. Место использования ручной маркировки регламентировано нормами ПУЭ, ГОСТа и общепринятыми рекомендациями. Она крепится на концы проводника, там, где он соединяется с шиной.

Разметка двужильных проводов

Если кабель уже подключен к сети, то для поиска фазных проводов в электрике используют специальную индикаторную отвертку – в ее корпусе есть светодиод, который светится, когда жало устройства касается фазы.

Правда эффективной она будет только для двухжильных проводов, ведь если фаз несколько, то определить где какая индикатор не сможет. В таком случае придется отключать провода и использовать прозвонку.

Далее понадобится набор специальных трубок с термоусадочным эффектом или ленты для изоляции, чтобы разметить фазу и ноль.

Стандарты не обязывают делать такую разметку на электропроводниках по всей их длине. Допускается отметить её лишь в местах стыков и соединения нужных контактов. Поэтому, при возникновении необходимости нанести метки на электрокабели без обозначений, нужно заранее приобрести материалы, для их разметки вручную.

Число используемых расцветок зависит от применяемой схемы, но главная рекомендация все же есть – желательно использовать цвета, исключающие возможность путаницы. Т.е. не применять для фазных проводов синие, желтые или зеленые метки. В однофазной сети, к примеру, фазу обычно обозначают красным цветом.

Разметка трехжильных проводов

Если надо определить фазу, ноль и заземление в трехжильных проводах, то можно попробовать сделать это мультиметром. Прибор устанавливается на измерение переменного напряжения, а затем щупами аккуратно коснуться фазы (его можно найти и индикаторной отверткой) и последовательно двух оставшихся проводов. Далее следует запомнить показатели и сравнить их между собой – комбинация «фаза-ноль» обычно показывает большее напряжение, нежели «фаза-земля».

Когда фаза, ноль и земля определены, то можно наносить маркировку. По правилам, для заземления применяется провод цветной желто зеленый, а точнее жила с такой расцветкой, поэтому его маркируют изолентой подходящих цветов. Ноль, отмечается, соответственно, синей изолентой, а фаза любой другой.

Если же при профилактических работах выяснилось, что маркировка устарела, менять кабеля не обязательно. Замене, в соответствии с современными стандартами, подлежит только электрооборудование, вышедшее из строя.

Нанесение маркировки на проложенный кабель

Электрикам нередко приходится сталкиваться с ситуацией, когда необходимо провести ремонт электрического щитка или сети, а оборудование соединено так, что не понятно, где расположены фаза и ноль, а где – земля. Это происходит, когда монтаж системы производится человеком неопытным, без специальных знаний, у которого не только маркировка, но и расположение кабелей внутри щита выполнено неверно.

Еще одной причиной возникновения таких проблем является устаревшая и неактуальная квалификация электриков. Работа выполняется правильно, но в соответствии со старыми нормативами, поэтому для специалиста, пришедшего «на замену», возникает необходимость «пробивать» с помощью инструмента, где расположен ноль, а где фаза.

Спорить о том, кто виноват, и стоит ли кому-либо заниматься самостоятельным ремонтом, не имеет смысла, лучше определиться с тем, как нанести правильную и понятную маркировку.

Итак, действующими стандартами установлено, что цветовая маркировка на электрических проводниках не обязательно может быть размещена на всем их протяжении. Разрешается обозначить её лишь в местах соединения и подключения контактов. Поэтому, при необходимости разметки кабелей без обозначений, следует купить набор термоусадочных трубок или изоляционной ленты. Количество цветов зависит от конкретной схемы, но желательно приобрести стандартную «палитру»: ноль – синий, земля – желтый, а на фазы — красный, черный и зеленый. В однофазной сети, естественно, фаза обозначается одним цветом, чаще всего – красным.

Использование цветной изоленты или термоусадочных кембриков подойдет и для ситуаций, когда имеющийся провод не соответствует требованиям ПЭУ. К примеру, при необходимости подключения четырехжильного кабеля в трехфазную сеть с проводами белого, красного, синего и желто-зеленого цвета. Данные провода можно подключить в любом порядке, но обязательно поставить кембрики или намотки из изоленты с «правильными» цветами в местах подключения.

Кроме того, следует помнить об описанных выше проблематичных ситуациях во время монтажа нового узла, или подключения оборудования. Отсутствие четких и понятных обозначений может значительно усложнить дальнейшее обслуживание схемы даже человеку, производившему её установку.

Если вы обнаружили, что в вашем распределительном щите или сети используются обозначения проводов, не соответствующие текущим требованиями, не стоит торопиться заменять их. До проведения ремонта или демонтажа на проводку распространяются нормативы, которые действовали на момент её прокладки. Кроме того, если сеть правильно функционирует, замена не требуется. А при вводе в эксплуатацию новой (или переделанной старой) электрической сети придется учитывать и соблюдать все современные требования и правила.

Поделиться с друзьями:

Электрика, монтаж, установка бытовых электроприборов своими руками, статьи, видео

Подробности

В этой статье вы узнаете, как маркируется по цветам двухпроводный кабель СИП-4, то есть каким цветом у него обозначается «фаза» и как обозначается нулевой провод или попросту «ноль».

 

Начнем с необходимых определений (выдержка из ГОСТ 31946-2012 ):

 

СИП (самонесущий изолированный провод): многожильный провод для воздушных линий электропередачи, содержащий изолированные жилы и несущий элемент, предназначенный для крепления или подвески провода.

Нулевая несущая жила: изолированная или неизолированная токопроводящая жила из алюминиевого сплава, выполняющая функцию несущего элемента и нулевого рабочего (N) или нулевого защитного (РЕ) проводника.

Основная жила: изолированная токопроводящая жила, предназначенная для выполнения основной функции провода.

Изоляция (рабочая изоляция): электрическая изоляция токопроводящих жил самонесущего изолированного провода для воздушных линий электропередачи на напряжение до 0,6/1 кВ, обеспечивающая нормальную работу воздушных линий электропередачи и защиту от поражения электрическим током.

 

Маркировка СИП (выдержка из ГОСТ 31946-2012)

 

5.2.7.2 Основные токопроводящие жилы самонесущих изолированных проводов должны иметь отличительное обозначение в виде продольно выпрессованных рельефных полос на изоляции, как показано на рисунке Б.1 (приложение Б), или цифр 1, 2, 3, нанесенных тиснением или печатным способом. Изолированная нулевая несущая жила не должна иметь отличительного обозначения. Отличительное обозначение также может быть выполнено в виде цветных продольных полос шириной не менее 1 мм. Цвет полос должен быть контрастным по отношению к черному цвету. Вспомогательные жилы для цепей освещения должны иметь отличительное обозначение: “В1”, “В2” или “В3”, нанесенное тиснением или печатным способом. Маркировка цифрами и буквами тиснением или печатным способом должна производиться с интервалом не более 500 мм. Высота цифр (букв) должна быть не менее 5 мм, ширина – не менее 2 мм (для цифры 1 минимальная ширина – 1 мм). Вспомогательные жилы для цепей контроля могут не иметь отличительного обозначения. Отличительное обозначение, выполненное печатным способом или в виде цветных продольных полос, должно быть стойким к воздействию солнечного излучения в течение всего срока службы.

 

Рисунок Б.1  1(первая жила) – одна полоса; 2 (вторая жила) – две полосы; 3 (третья жила) – три полосы; (нулевая жила) – без обозначения. Размеры a,b,h являются справочными.

Из вышесказанного следует: если например на китайском или российском кабеле СИП-4 2х16 мм одна из жил имеет цветную полоску – значит это «фаза». Жила не имеющая отличительных изображений соответственно «ноль».

 

Коричнево черный провод в кабеле. Цветовые обозначения фазы L, нуля N и заземления

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше.

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая — B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE . Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Чтобы облегчить труд электромонтажников, выпуск изоляции кабельной продукции подчинен определенным нормам цветовой маркировки. При подключении многожильного кабеля по окраске полимерной оболочки можно идентифицировать жилу и понять, с каким контактом ее следует коммутировать.

Разные цвета проводов в электрике, установленные положениями ГОСТ, помогают ускорить процесс монтажа и обеспечить электробезопасность. Согласитесь, понимание цветовой маркировки пригодится каждому домашнему мастеру.

Предлагаем разобраться в обозначениях электропроводки, узнать стандарты ГОСТ и научиться читать буквенные коды проводов на схемах. Кроме того, мы расскажем, как проверить соответствие подключенной жилы ее назначению, используя индикаторную отвертку или мультиметр.

Основным документом, на который стоит опираться при производстве или , является ГОСТ 31947-2012. До его появления единообразия и порядка в области цветового обозначения электропроводки не было.

До сих пор в старых домах можно встретить провода в одинаковой оболочке, по цвету которой не определить, что подключено – «фаза», «ноль» или «земля».

Сейчас идентифицировать жилы стало намного легче. Даже без применения тестера можно определить, к какому контакту следует подключить ту или иную жилу – по цвету полимерной изоляции

В выше обозначенном документе ГОСТ указано, что изоляция кабельной продукции должна отличаться по расцветке. Определенный оттенок должен покрывать провод сплошным слоем – с начала и до конца. Нельзя, чтобы один провод в начале бухты был синим, а конце – белым; также запрещена прерывистая окраска.

Каждый провод имеет маркировку и цветовое обозначение. Это необходимая мера, которая позволяет унифицировать электрическую продукцию, а также облегчает работу с ней. Нормы и требования к обозначениям проводов описаны в правилах устройства энергоустановок (ПУЭ). Это документ, по которому ориентируются электромонтажники.

Стандарты к маркировке проводов переменного тока для однофазной или трехфазной сети идентичны. Они совпадают по цвету ноля и заземления. Окрас фазного провода может совпадать или дополняться другими цветами.

Цветовая маркировка выполняется по длине проводника. Допускается идентификация на концах жил и в точках соединений, применяются цветные термоусадочные трубки (кембрики) или цветная изолента.

Чтобы распознать фазу, ноль или землю, необходимо зачистить кабель от верхней изоляции на 5 – 10 см, чтобы внутренние жилы остались в своей оплетке. По их цвету определяют назначение провода:

  • Заземление. Используют изоляцию, окрашенную в ярко желтый и зеленый цвет. При этом цветовые полоски могут быть нанесены как продольно, так и поперечно. Иногда встречаются провода с полностью зеленой или желтой изоляцией. Это также говорит о том, что данная жила идет на землю.
  • Нолевой провод. Нейтральный провод окрашивают в голубой или синий цвет. Стандарты предусмотрены в ПУЭ.
  • Фаза. В зависимости от количества фаз в электросети, провода окрашивают в цвета:
    • Красный.
    • Черный.
    • Коричневый.
    • Серый.
    • Оранжевый.
    • Белый.
    • Бирюзовый.
    • Фиолетовый.
  • В электротехнике фаза имеет красный, черный или белый окрас.

ВНИМАНИЕ: Стандарты ПУЭ действуют в электротехнике и электрических приборах на территории России, Украины и Белоруссии. В других странах может быть своя маркировка, а также иные символьные обозначение. Изделие, не предназначенное для реализации на территории России и стран СНГ, стоит проверять согласно инструкции по эксплуатации, либо методом «прозвона» с помощью мультиметра.

Буквенное обозначение

Стандарты ПУЭ также включают в себя буквенное обозначение проводов. Для сети переменного тока 220В или 380В провода маркируют:

  • Земля – «РЕ».
  • Ноль – «0» или «N».
  • Фаза – «L».

Для многофазного кабеля указывают провода в последовательности от L1 до Ln, где N – это количество фаз. Маркировка и цвет провода может отличаться от указанных стандартов.

Варианты расцветки проводов, а также ошибки при коммутации

Цветовой окрас и маркировка проводов может отличаться от современных стандартов ПУЭ из-за:

  1. Маркировка PEN. Распространенный случай. Ее можно обнаружить на старых проводах и схемах разводки электричества. Речь идет о системе заземления TN-C. Она предполагает объединение двух жил провода – заземления и ноля. Схема удобна для монтажа, но опасна в плане короткого замыкания. Провода системы TN-C имеют маркировку PEN. Единственная жила на ноль и землю окрашена в желто-зеленый цвет с ярко синими отметками на концах провода.
  2. Проводка, маркируемая согласно требованиям и стандартам других стран. Так в США маркировка ноля и земли может иметь другой окрас:
    1. Ноль – белый/серый цвет.
    2. Земля – оголенный медный/ зеленый/зелено-желтый/белый цвет.
  3. Проводка в некачественных или поддельных электрических изделиях. Продукция из стран третьего мира может иметь разную окраску. Рабочие на подпольных фабриках изготавливают проводку из того, что есть под рукой. Поэтому разбирать и ремонтировать такие изделия необходимо с особой осторожностью.
  4. Электрическая сеть, установленная не по правилам ПУЭ. К сожалению, такие случаи также бывают. Электрики самоучки, либо непрофессиональные специалисты делают разводку проводов «абы как». Неправильные подключения опасны, могут приводить к отказу электрооборудования, коротким замыканиям, ударам тока потребителя.

ВАЖНО: Некорректная коммутация проводов или путаница в маркировке влечет административную ответственность и штраф. Если вам установили некачественную проводку, в случае которой произошло короткое замыкание или выход из строя электроприборов, можно обратиться в суд. Судебный орган постановит возмещение убытков и наложение штрафа на недобросовестную компанию-монтажника.

Чтобы быть уверенным, какая жила кабеля за что отвечает, необходимо знать методы определения. Для этого понадобятся базовые знание электротехники и минимальный набор индикаторных инструментов.

Как определить фазу, ноль и землю, если одноцветные провода не имеют маркировки

Часто определение провода визуальным способом не предоставляется возможным. Подобную ситуацию можно наблюдать при замене проводки в домах, построенных во времена СССР. Сняв розетку или выключатель, человек обнаруживает два или три провода одинакового белого цвета.

Для решения возникшего противоречия потребуется индикаторная отвертка или мультиметр. Первый инструмент позволит определить рабочие фазы под нагрузкой. Фазу и ноль ищут методом прикосновения отверткой к оголенному проводу. Если лампочка загорается – значит, данный провод находится под нагрузкой. Ноль не будет давать сигналов.

Для определения земли используют прибор – мультиметр. На нем выставляют значение переменного тока на отметку свыше 220В. Один из контактов инструмента прикрепляют к фазе, второй поочередно к оставшимся проводам. Ноль зафиксирует напряжение 220В или выше. Земля покажет значительно меньше 220В.

В новостройках устанавливают розетки с маркированными проводами, так как этого требуют СНиП 3.05.06-85 и ГОСТ 10434-82.

ВАЖНО: Будьте внимательны, когда отключаете бытовую электросеть у себя в квартире или доме для проверки проводов. Иногда автоматы в распределительном щитке устанавливают неверно. Их врезают в разрыв ноля, а не фазы – электроприборы в доме работать не будут, однако напряжение с фазы никуда не денется. Необходимо не только отключать автомат, но и смотреть изменение нагрузки на проводах внутри квартиры при помощи индикаторной отвертки.

Указанные методы позволяют определить провода в бытовой электрической сети переменного тока. Рассмотрим маркировку кабелей постоянного тока.

Расцветка проводов в сети постоянного тока

В сети постоянного тока используют только две жилы:

  • Положительную шину (обозначается «+„).
  • Отрицательную шину (обозначается “-»).

По нормативным документам, провода и шины положительного заряда окрашивают в красный цвет, а провода и шины отрицательного заряда должны быть синего оттенка. Средний проводник (М) обозначают голубым цветом.

ИНФОРМАЦИЯ: В трехфазных сетях шины и высоковольтные ввода трансформаторов на электрических станциях и подстанциях окрашиваются: желтым цветом – провода и шины с фазой «A», зеленым – с фазой «B», красным – с фазой «C».

Заключение

Визуальное определение проводки – нехитрое дело. Главное знать, какой цвет за что отвечает. В целях безопасности, стоит проверять провода на наличие фазы и земли перед началом работ с ними. Неправильная коммутация жил провода может привести к короткому замыканию или выгоранию подсоединенного электрооборудования.

Существует, по сути, не так много всяческих видов проводников и их подключений. В электроэнергетике различают питающие и защитные проводники. Некоторые слышали такие слова как «нулевой» и «фазный» провод. Однако тут и возникают вопросы. Как определить ноль и фазу в реальной сети?

Какие существуют проводники в розетке?

Можно разобраться с вопросом «что такое фаза и ноль», не углубляясь в дебри выяснения строения, преимуществ и негативных моментов в трехфазных или пятифазных цепях. Все разобрать можно фактически на пальцах, раскрыв самую обычную домашнюю розетку, которая поставлена в квартиру или частный дом лет десять – пятнадцать назад. Как видно, эта розетка подключается к двум проводкам. Как определить ноль и фазу?

Как работают провода в розетке и зачем они нужны?

Как видно, есть определенные различия между рабочими и нулевыми. Какое обозначение фазы и нуля? Голубоватая или синяя окраска – это цвет провода фаза, ноль же обозначается любыми другими цветами, за исключением, естественно, голубых цветов. Он может быть желтым, зеленым, черным и в полоску. По ток не идет. Если взяться за него и не касаться рабочего, то ничего не случится – на нем нет разницы потенциалов (в сущности, сеть не идеальна, и небольшое напряжение все-таки может быть, но измеряться оно будет в лучшем случае в милливольтах). А вот с фазным проводником так не пройдет. Прикосновение к нему может повлечь за собой электрический удар, даже со смертельным исходом. Этот провод всегда находится под напряжением, к нему идет ток от генераторов и трансформаторов и станций. Необходимо всегда помнить о том, что касаться рабочего проводника ни в коем случае нельзя, так как напряжение даже в сотню вольт может быть смертельным. А в розетке составляет двести двадцать.

Как определить ноль и фазу в таком случае? В розетке, разработанной с учетом европейских стандартов, находится сразу три проводника. Первый – фазный, который находится под напряжением и окрашен в самые разные цвета (за исключением голубых оттенков). Второй – ноль, который абсолютно безопасен для прикосновения и окрашен в А вот третий провод называют нулевым защитным. Он обычно окрашен в желтые или зеленые цвета. Раположен он в розетках слева, в выключателях – снизу. Фазный провод находится справа и сверху соответственно. Учитывая такие окраски и особенности, легко определить, где фаза, а где ноль, а где защитный нулевой провод. Но для чего он?

Зачем нужен защитный проводник в евророзетках?

Если фазный предназначен для подвода тока к розетке, нулевой – для отведения к источнику, то зачем европейские стандарты регламентируют еще один провод? Если оборудование, которое подключено, работает исправно, и вся проводка находится в работоспособном состоянии, то защитный нулевой не будет принимать участие, он бездействует. Но если вдруг где-то произойдет или же перенапряжение, или замыкание на какие-то части приборов, то ток попадает в места, находящиеся обычно без его влияние, то есть не соединенные ни с фазой, ни с нулем. Человек просто сможет ощутить электрический удар на себе. В самой худшей ситуации можно даже погибнуть от этого, так как сердечная мышца может остановиться. Именно тут и нужен защитный нулевой провод. Он «забирает» ток короткого замыкания и направляет его в землю или к источнику. Такие тонкости зависят от конструкции проводки и характеристик помещения. Поэтому можно спокойно прикасаться к оборудованию – не будет никакого электрического удара. Все дело в том, что ток всегда протекает по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килоОма. У защитного проводника сопротивление не превышает нескольких десятых долей одного Ома.

Определение назначения проводников

Как определить ноль и фазу? Любой человек так или иначе сталкивался с этими понятиями. Особенно, когда необходимо починить розетку или заняться монтажом проводки. Поэтому необходимо точно понимать, где какой проводник. Но как определить ноль и фазу? Необходимо помнить, что все манипуляции подобного рода с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратитесь к специалисту. Если уже и подходить к розетке и проводам в ней, то необходимо для начала полностью обесточить всю квартиру. Как минимум, это может сохранить здоровье и жизнь. Как уже говорилось ранее, обычно обозначение фазы и нуля делают с помощью окраски. При правильной маркировке отличить их не составит никакого труда. Черный (либо коричневый) – цвет провода фаза, ноль обычно имеет голубоватый или синеватый оттенок. Если же установлена розетка европейского стандарта, то третий (защитный нулевой) выполнен зеленым или желтым цветом. Что делать, если проводка одноцветная? Как правило, в таком случае на концах проводов обычно находятся специальные изоляционные трубочки, имеющие необходимую цветовую маркировку. Их называют «кембрики».

Определение проводников с помощью специальной отвертки

Как определить ноль и фазу? Для этого удобнее всего купить специальную индикаторную отвертку. Рукоятка такого прибора изготавливается из полупрозрачного или прозрачного пластика. Внутри встроен диод – светящаяся лампочка. Верхняя часть у такой отвертки металлическая. Как определить ноль и фазу этим методом?

Порядок выполнения работ при измерении с помощью индикаторной отвертки:

  • обесточиваем квартиру;
  • зачищаем слегка концы проводов;
  • разводим их в стороны, для того чтобы случайно не вызвать короткое замыкание путем соприкосновения фазы и нуля;
  • включаем рубильник и подаем ток в квартиру;
  • берем отвертку за ручку, которая имеет диэлектрическое покрытие;
  • кладем палец (большой или указательный) на контакт, который расположен на тыльной части розетки;
  • прикасаемся рабочим концом индикатора к одному оголенному проводнику;
  • внимательно наблюдаем за реакцией отвертки;
  • если диод загорелся, то можно с уверенностью констатировать, что ;
  • методом исключения понимаем, что оставшийся проводник – это ноль.

Индикаторная отвертка реагирует на наличие напряжения. Естественно, что в нулевом проводе его нет. Однако имеется существенный недостаток такого метода. С помощью индикаторной отвертки нельзя понять, как определить: фаза, ноль, земля – где что в случае с европейской розеткой.

Метод определения фазы и нуля с помощью вольтметра

Если провода не окрашены в соответствующие цвета, и под рукой нет индикаторной отвертки, то можно пойти другим путем. Нам необходим вольтметр (мультиметр, тестер). Необходимо выставить его на необходимый диапазон – свыше двух сотен вольт переменного тока. Как тестером определить фазу? Берем один проводник, который отходит от прибора (обозначенный V). Прикрепляем его на предварительно обесточенный проводник (любой). Затем подаем ток (включаем рубильник). И просто фиксируем, что показывает дисплей прибора. После всего вышеуказанного снова выключаем питание и перебрасываем зажим тестера уже на другой проводник. Если на дисплее ничего нет, то это означает, что перед нами находится либо ноль, либо заземляющий защитный нулевой провод. Однако можно использовать и другой метод, который отвечает на вопрос: «Как определить ноль и фазу, а также заземление». Для этого снова обесточиваем квартиру, фиксируем зажим V на одном их проводов. Второй также бросаем на любой из трех проводников. Включается напряжение. Если стрелка не двигается, то вы выбрали нулевой и защитный. Соответственно, напряжение снова необходимо выключить и поменять положение клемы V (закинуть ее на другой неиспользуемый ранее проводник). Снова включаем ток и делаем соответствующие замеры. Затем проводим ту же самую операцию, но снова меняем проводник. Теперь необходимо сверить результаты. Если первая цифра оказалась больше, то значит что мы измеряли напряжением между фазным проводником (на котором висела клема V) и нулевым. Соответственно, второй провод будет является защитным заземляющим. Этот метод основан на измерении разности потенциалов.

Экзотические способы определения фазы и нуля в проводке

Существуют и «народные методы», которые не подразумевают наличие каких-либо специальных приспособлений. Использовать их можно разве что в самых крайних случаях, так как они сопряжены с повышенной опасностью для здоровья и жизни. Например, метод картошки. Для этого на предварительно обесточенные проводники надевают свежесрезанный кусок картошки. Необходимо не допустить прикосновение проводов друг к другу, чтобы не было короткого замыкания между ними. Затем буквально на пару секунд подают напряжение и смотрят на картошку. Если один участок возле провода посинел, значит к нему подведена фаза.

При монтаже проводки и сборке электрощитов цвет изоляции проводов, выполненной согласно нормативным документам, имеет большое значение. Это ускоряет монтажные работы и облегчает поиск неисправностей. По цветовой маркировке видно, какой проводник является фазным, а какой нейтральным или заземлением.

Несмотря на все преимущества использования этой маркировки, пользоваться этими стандартами можно только в том случае, если она была выполнена самостоятельно или квалифицированным электромонтёром. В остальных ситуациях необходимо проверить, в конкретном электрощите. Для этого мультиметром или тестером проверяется напряжение на проводах, отходящих от автоматических выключателей и других устройств защиты.

Маркировка проводов по цвету в разных кабелях на соединениях и клеммниках в переходных коробках может отличаться друг от друга, поэтому на остальных участках сети она проверяется аналогичным образом или путём визуального осмотра.

Цвет обозначения фаза ноль земля

Производители проводов и кабелей изготавливают кабельно-проводниковую продукцию с изоляцией, имеющей различную окраску. Цвет проводов фаза ноль земля выбран не по желанию дизайнеров, а согласно требованиям ПУЭ, ГОСТ и международных стандартов.

Бытовая электропроводка прокладывается трёхжильным проводом, каждый из которых имеет своё назначение. При подключении розеток и светильников это фаза, нейтраль и заземление. Цветовая маркировка облегчает ремонт и монтаж, позволяет избежать ошибок и предотвратить короткое замыкание.

Благодаря разноцветной оболочке нет необходимости прозванивать каждый отрезок кабеля. Достаточно просто посмотреть на цвет изоляции проводников на обоих концах кабеля. Это упрощает прокладку электропроводки и исключает ошибки при подключении розеток и выключателей.

Есть несколько распространённых ошибок, которые допускают неопытные электромонтёры при монтаже электропроводки:

  • То, какого цвета фаза и ноль в кабелях разных марок, а тем более разных лет производства и изготовленных по различным ГОСТам может не совпадать. Например, в одном из проводов чёрным цветом обозначается нейтраль, а в другом заземление. Поэтому при соединении кабелей разных марок следует обращать внимание не на цвет изоляции отдельной жилы, а на её назначение в кабеле.
  • При несоответствии цветовой маркировки отдельных проводов их следует пометить изоляцией или термоусадочной трубкой соответствующего цвета. При их отсутствии допускается сделать пометки маркером на отрезках ПХВ трубки и надеть её на конец жилы.
  • Отсутствие запаса проводов при монтаже. Эта проблема не относится к цветовой маркировке, но от этого не становится менее актуальной.

Недостаточная длина приводит к плохому контакту в автоматическом выключателе, особенно модульном, а после выгорания клеммы и конца провода его придётся удлинять.

Совет! В переходных коробках после определения длины, необходимой для подключения, нужно оставлять запас по длине не менее 15-20см, в электрощитах 0,5-1м. При неизвестной высоте установки электрощита и прокладке кабеля вверху стены он обрезается на уровне пола.

Маркировка проводов по цвету

В советское время такое понятие, как “цветовая маркировка” отсутствовало. Для прокладки электропроводки использовался двух- или трёхжильный провод одного, чёрного или белого цвета.

Это приводило к затратам времени при монтаже для вызванивания жил, а так же к ошибкам, при которых выключатель разрывал не фазу, а ноль. При таком подключении светильник всё время находился под напряжением и простая замена электролампы была опасной операцией.

Для предотвращения подобных ситуаций ГОСТом Р 50462-2009 и ПУЭ п.1.1.30 устанавливаются нормы окраски оболочки токопроводящих жил.

Информация! Цвет изоляции в контрольных кабелях – красный, синий и белый (прозрачный) не имеют отношения к цветовой маркировке. Они используются для упрощения процесса прозвонки.

Каким цветом обозначается фаза

Прежде всего, следует обратить внимание на цвет оболочки фазных проводников. В однофазной сети чаще всего этот провод имеет коричневый либо белый цвет , но встречаются и токопроводящие жилы других цветов – черный, серый, розовый, оранжевый, бирюзовый или фиолетовый.

Каким цветом обозначается ноль

Нейтральный проводник в кабеле всегда в оболочке синего или голубого цвета. Это не зависит от количества жил в кабеле и числа фаз в сети. На электросхемах и в щитках нейтраль обозначается буквой “N” .

Каким цветом обозначается заземление

Заземляющий проводник имеет жёлто-зелёную оболочку. Эти цвета расположены вдоль всей жилы. Заземление подключается к металлическому корпусу электроприбора или к заземляющему выводу розетки. На схемах и в панели оно обозначается “РЕ” . Отключать этот проводник запрещается. Правила, по которым осуществляется эта маркировка, указаны в примечаниях к п.5.3.2.

Если заземляющую шину или провод невозможно перепутать с другими проводниками, то допускается выполнять маркировку только на концах или других местах, в которых возможно подключение.

Информация! Заземлённые элементы здания, используемые в качестве контура заземления, не маркируются.

Проводник PEN

В некоторых случаях функции нулевого и заземляющего проводников выполняет один провод. Как правило такое совмещение можно встретить в системах заземления TN-C или TN-C-S. Согласно ГОСТу Р 50462-2009, специальный цвет для изоляции таких проводов отсутствует, поэтому для PEN-проводника применяется два вида сочетаний цветов:

  • синяя или голубая оболочка, на концы должны надеваться трубки ПХВ жёлто-зелёного цвета;
  • жёлто-зелёный цвет изоляции, концы помечаются голубой трубкой или изолентой.

Такой проводник и его клеммы обозначаются буквами “PEN” .

Цвет проводов в трехфазной сети (380 В)

Согласно ПУЭ п.1.1.30 и ГОСТу, действовавшему до 01.01.20011 фазные провода обозначались желтым (L1,A), зеленым (L2,B) и красным (L2,C) цветом .

Сейчас эти фазы имеют серый, коричневый и черный цвета . При прокладке шинопроводов достаточно окрасить соответствующим цветом места подключений к оборудованию и соединений с кабелями.

Друзья, а теперь я бы хотел приведенную выше информацию аргументировать правилами и ГОСТами, в которых это все указано.

Правила и ГОСТ маркировки проводов по цвету

Согласно ПУЭ п.1.1.30 для упрощения ремонтных и монтажных работ, а так же для предотвращения ошибочного подключения проводов токопроводящие части электросети должны иметь буквенно-цифровую и цветовую маркировку , причём наличие одного вида меток не отменяет необходимость использовать другой.

Там же указывается, что маркировка производится согласно ГОСТ Р 50462-92 . В п.3.1.1 этого документа указывается, какие цвета изоляции проводов и окраски шин допускается применять для маркировки. Необходимый цвет отображается на электросхемах буквенным кодом. Соотношение цветов и букв определяется ГОСТом 28763-90

Конкретное указание, какого цвета фаза, отмечено в ПУЭ п.1.1.29:

  • нулевой проводник обозначается голубым цветом и буквой “N”;
  • заземляющий проводник обозначается жёлто-зелёными продольными полосами и буквами “РЕ”;
  • провод, совмещающий функции заземления и нейтрали имеет голубой цвет, на концах должны находиться жёлто-зелёные бирки, буквенное обозначение такого проводника “PEN”.

Все остальные цвета допускаются для обозначения фазных проводников . В трёхжильных кабелях обычно используется коричневый цвет, в пятижильных белый и другие цвета.

Изменения в ГОСТ

В частности, в п.5.2.3 указывается, каким цветом обозначается фаза . Рекомендованными цветами для таких проводников являются серый, коричневый и черный. Этим новые правила отличаются от действовавших много лет стандартных цветов – жёлтого, зелёного и красного (привычная в союзе ЖЗК).

Информация! Новая цветовая маркировка используется для того, чтобы избежать путаницы – жёлто-зелёную окраску имеет заземляющий проводник.

Согласно ГОСТ Р 50462-2009 п.5.2.1 жёлтый и зелёный проводники по отдельности использовать запрещено, если есть опасность ошибочной индентификации.

Несмотря на введение в действие нового ГОСТа, нет необходимости переделывать существующую электропроводку. Новые правила являются обязательными только при прокладке новых сетей или замене старой проводки.

При отсутствии возможности использовать проводники с изоляцией необходимого цвета концы проводов необходимо пометить одним из следующих способов:

  • надеть кусочки ПХВ или термоусадочной трубки необходимого цвета;
  • намотать изоляционную ленту;
  • на концы проводов напрессовать наконечники НШВИ.

Что делать если цветовая маркировка не совпадает?

При выполнении ремонтных работ возникает необходимость определить, какого цвета фаза в существующей электропроводке. Для этого необходимо учитывать несколько правил:

  1. 1. Жёлто-зелёный проводник ВСЕГДА является заземляющим РЕ
  2. 2. Синий (голубой) всегда должен быть нейтралью N (нулем).
  3. 3. В однофазной проводке у фазного провода должна быть коричневая оболочка. Вместо коричневого фаза может обозначаться другими приоритетными цветами (серый, белый, красный и т.п.). Она не должна быть синей или жёлто-зелёной.
  4. 4. При отсутствии в кабеле проводов желто-зеленого цвета, но есть просто зелёный к заземлению подключается зелёный проводник.

При подключении двухклавишного выключателя задействуются три жилы кабеля и часто можно встретить картину, когда в распределительной коробке на общую клемму выключателя фаза подается через желто-зелёную жилу. Так делать не рекомендуется! «Общая фаза» в таких случаях должна быть коричневой или другого приоритетного цвета (серый, белый, красный и т.п.).

Если вышло так, что все провода одного цвета или цвет обозначения фаза ноль земля отличается от указанных выше, то для маркировки можно использовать цветную изоленту или термоусадочную трубку.

Важно! Наличие цветовой маркировки и бирок на концах проводов не отменяет необходимость отключения автоматического выключателя и проверки отсутствия напряжения при ремонте

Соблюдение всех правил цветовой маркировки проводов позволит упростить ремонтные работы и поможет избежать ошибок при монтаже электропроводки.

Цветовая маркировка проводов и кабелей. Цветовые обозначения фазы L, нуля N и заземления. Цвета для маркировки бытовой электропроводки

Для правильного соединения проводов используют их цветную маркировку, позволяющую быстро обнаружить нужный проводник в пучке. Но не все знают, как обозначается фаза и ноль в электрике, поэтому часто путают цвета, что затрудняет будущий ремонт электропроводки. В этой статье мы разберем принципы цветовой маркировки проводов и расскажем, как правильно разводить фазу, землю и ноль.

В противном случае невозможно гарантировать защиту от коротких замыканий фазы и земли, а в случае короткого луча между нейтралью и землей могут быть тысячи вольт, которые могли бы сжечь компьютер, даже когда он был выключен. Регуляторы напряжения имеют условную синхронизированную систему зажигания, которая гарантирует стабильность напряжения перед подключением к выходным гнездам. Кроме того, они имеют сложную электронную систему автоматического и автоматического отключения от экстремальных напряжений, которая в любое время гарантирует качество напряжения фаза-нейтраль в выходах или терминалах.

Провода нужно соединять друг с другом только в строгом соответствии. Если перепутать, то произойдет короткое замыкание, которое может привести к выходу оборудования или самого кабеля из строя, а в некоторых случаях — даже к возгоранию.

Стандартная расцветка проводов

Маркировка позволяет правильно соединять провода, быстро искать нужные контакты и безопасно работать с кабелями любых типов и форм. Маркировка, согласно ПУЭ, является стандартной , поэтому зная принципы соединения, вы сможете работать в любой стране мира.

Цветовой код электропроводки. Знание того, что обслуживает каждый кабель, по его цветам очень важно при выполнении задач в электрической установке. Имейте в виду код использования, чтобы иметь возможность идентифицировать каждый. Когда нам нужно расширить другой источник питания, создать больше электрических выходов или произвести электроустановки в нашей домашней сети, лучше всего нанять специалиста, специализирующегося на этом вопросе, чтобы избежать ненужных рисков и обеспечить хорошую работу.

Однако иногда расписание, день или различные причины заставляют нас работать самостоятельно, выполняя различные задачи по электричеству дома. Поэтому давайте узнаем о цветовом коде проводки, чтобы избежать ненужного ущерба, особенно для нас самих и для других обитателей дома.

Отметим, что старые кабеля, выпускавшиеся при СССР, имели один цвет проводника (обычно черный, синий или белый). Чтобы обнаружить нужный контакт, их приходилось прозванивать или подавать фазу поочередно на каждый провод, что приводило к необоснованным тратам времени и частым ошибкам (многие помнят свежепостроенные хрущевки, в которых при нажатии на звонок у входной двери включался свет в ванной, а при нажатии на выключатель в спальне пропадало напряжение в розетке в прихожей).

Предостережение в качестве первого шага

При работе с материалами и электроустановками всегда делайте это с достаточным солнечным светом и фонариками под рукой. Первым шагом будет обрезание общего светового пути, опуская ключи коробки. Если вы одиноки дома, сделайте это, а затем начните домашнюю работу. Если в доме больше людей, предоставьте предупреждение, что никто не включит электричество, пока вы на работе.

«При работе с электрическими кабелями всегда используйте перчатки и предохранительные элементы». При работе с электрическими кабелями всегда используйте перчатки и элементы предохранения: помните, что статичность также может повредить вас. Он использует изоляционные ленты для покрытия кабелей, которые остаются свободными, всегда и без оправданий. Вы избежите серьезных неудобств в будущем.

Различные значительно упростили процесс создания проводки, а через несколько лет стали стандартом в России, ЕС, США и других странах мира.

Земля, ноль и фаза

Всего существует три вида проводов: заземление, ноль и фаза. Расцветка наносится на весь провод, поэтому даже если вы перережете кабель посередине, то все равно сможете понять, где какой контакт. Заземление обозначается следующим образом:

Кабели и цвета: что мы можем найти?

Внутри кабелепровода электрических кабелей мы можем оказаться с простым двухканальным кабелем или с большим комплектом цветных кабелей. Если кабель двух воздуховодов имеет одинаковый цвет, это нечеткое положение. Например, если вы хотите удлинить шнур питания пьедестала, вы увидите, что ваш кабель не имеет классификации цвета. Это означает, что размещение одного положительного и одного отрицательного нечеткого. Если есть цветовые коды, следуйте их букве.

Кабель должен иметь два канала, один положительный и другой отрицательный. Давайте упростим объяснение, сказав следующее: через один из каналов поступает электричество, а с другой – «листья». Поэтому каждая установка должна иметь эти два канала, а не только один.

  1. Желто-зеленый цвет (в абсолютном большинстве случаев).
  2. Зеленый или желтый.

В схеме электропроводки заземление обозначается аббревиатурой РЕ.

Обратите внимание: на чертежах и на сленге электриков заземление часто называется нулевой защитой. Не перепутайте ее с нулем, иначе произойдет замыкание.

Зачем нужен защитный проводник в евророзетках?

Вы можете найти третий кабель в кабелепроводе, который, похоже, не имеет никакой цели. Скорее всего, это будет разрядный кабель или заземление. Этот кабель обеспечивает циркуляцию электричества в случае случайного контакта с неправильным или избыточным электричеством. Например, молниеотводы имеют канал, который захватывает электричество и выпускает его на землю, избегая конденсации дома. Заземление служит той же цели.

Цветные кабели не реагируют на эстетическую проблему. Цвет – это код, который указывает на его конкретное использование, поэтому для предотвращения использования также рекомендуется использовать изоляционную ленту того же цвета, что и кабель. Это хроматический код электрических кабелей.

Ноль в кабеле обозначается сине-белым или просто синим цветом, обозначение в схеме буквой N. Иногда его называют нейтралью или нулевым контактом, поэтому будьте внимательны и не путайте эти понятия.

Теперь разберем, применяется чаще всего. Здесь вам придется нелегко, поскольку вариантов может быть масса. Мы советуем идти обратным путем — сначала обнаружить желто-зеленую землю, потом синий ноль, а оставшиеся в кабеле провода будут фазой. Соединять их необходимо согласно цветов, чтобы не возникало путаницы. Чаще всего в трехжильных системах они маркируются коричневым цветом, но могут быть и иные варианты:

Цвет – это код, который указывает на его конкретное использование. Раньше использовались серые или белые кабели, но, во избежание путаницы, стали использовать этот кабель более биколор, более ярким. Раньше использовался зеленый цвет, поэтому, если вы найдете зеленый провод, вам лучше проверить его, прежде чем использовать его, поскольку он может быть сухим или сломанным. Черный: это также фазовый кабель, и он виден в подавляющем большинстве установок и проводки. Как и белый, он также идентифицирует фазу.

  • Зеленый и желтый: это заземляющий провод.
  • Синий: Это нейтральный провод.
Спасибо за чтение, если вам понравилась эта статья, подписаться на любую из наших социальных сетей и получать выдающиеся публикации каждый день.
  • черный;
  • красный;
  • серый;
  • белый;
  • розовый.

На схематических изображениях фазу отображают буквой L. Обнаружить ее можно тестерной отверткой или мультиметром. При соединении проводов используйте специальные зажимы или спаивайте их со смещением друг относительно друга , чтобы не произошло КЗ или окисления контактов с последующей потерей напряжения.

Цвета проводов или электрических проводов в электроустановках очень просты, но избегают других применений во избежание несчастных случаев при использовании кабеля, предназначенного для функции по его цвету, например, для подключения фаз к заземляющему кабелю, Чтобы избежать таких ошибок, мы можем найти объекты, созданные не слишком профессиональным персоналом. Всегда помните, что цвета кабелей имеют следующие функции.

Защитный проводник

Защитный проводник или земля всегда отличаются желтыми и зелеными цветами. Нейтральный проводник не существует во всех установках, но в случае, если существует нейтральный, он всегда будет подключен к светло-голубому кабелю. Фазные проводники всегда будут коричневого или черного цвета, в некоторых случаях также используется серый цвет, так как это может быть в кабельных шлангах для подключения трех фаз, где мы можем найти серый кабель или два кабеля с повторяющимися цветами, мы обычно имеем два черных кабеля.

Классическая расцветка проводов в кабеле

Разница между нулем и землей

Некоторые начинающие электрики не знают, и для чего он вообще нужен. Разберем этот вопрос подробнее. По нулю и фазе протекает электрический ток, поэтому касаться к ним нельзя. Земля же служит для отвода напряжения, если оно пробьет на корпус прибора. Это своеобразная защита, которая в последние годы стала обязательной — некоторые устройства не работают, если их не заземлить.

В установках, которые не имеют нейтрали, вы также можете использовать голубой кабель в качестве нейтрального кабеля. Типы кабельных шлангов, которые мы можем найти. Это шланг, который имеет два провода, которые в установках, которые не имеют нейтрали, такие как трехфазная установка при напряжении 220 В, используются для однофазной мощности без защиты.

Фаза нейтральной защиты или защита 2 фаз

В этом случае шланг такой же, как у предыдущего, но с заземленным проводом или защитой. Наиболее используемым для этого типа кабелей является подключение трехфазного оборудования, которое не использует нейтральные. Это кабельные шланги, которые не имеют защиты или земли. Использование синего провода для нейтрали или невозможность подключения фазы.

Внимание: не игнорируйте требование к заземлению — скопившееся статическое электричество или пробой могут испортить прибор или поразить вас электрическим током.

Если вы не уверены в том, какой из проводов земля, а какой ноль, то воспользуйтесь следующими советами. Они помогут вам определиться без цветового обозначения проводов:

Маркировка проводов при переменном трехфазном токе

Этот шланг предназначен для подключения 5-проводного кабеля для подключения трех фаз, нейтрали и защиты. Стандарт проводки устанавливает цветовой код для электрической установки. Таким образом, каждый кабель имеет цвет, определенный в соответствии с его функцией. Нейтральный проводник синий, фазовый провод коричневый, серый или черный, а провод заземления всегда зеленый и желтый. Благодаря этому коду легко найти каждый кабель, если вы хотите отремонтировать или установить новый штекер.

  1. Замеряйте сопротивление провода — оно будет менее 4 Ом (проверьте, чтобы на нем не было напряжения, чтобы не сжечь мультиметр).
  2. Найдите фазу, при помощи вольтметра измерьте напряжение между предполагаемым нулем и землей. На земле значение будет выше, чем на нуле.
  3. Если измерить мультиметром напряжение между землей и заземленным прибором (к примеру, батареей в многоэтажном доме), то вольтметр не определит напряжения. Если замерить напряжение между нулем и землей, то некое значение отобразится.

Все это справедливо только к трех- и более проводниковым кабелям. Если в кабеле всего два провода, то в них по умолчанию один будет землей (синий), второй фазой (черный или коричневый).

Однако может случиться так, что электрическая установка устарела, и кабели не соблюдают этот код. Когда это происходит, задача различения каждого кабеля сложна. Другая практика заключается в использовании механизма, образованного контрольной лампой, которая показывает идентичность земли. Этот метод никогда не должен использоваться, когда в жилище отсутствует дифференциал.

Ручная цветовая разметка

Подключите лампу к двум кабелям. Если лампа не горит, один из них отсоединен, а свободный кабель подключен. Если загорится свет, это будет провод заземления. Однако эту практику нельзя злоупотреблять. Обращение с электроустановкой сопряжено с определенным риском, поэтому вы должны действовать с осторожностью и обращаться к профессионалу, когда это необходимо.

Соблюдайте правила соединения кабелей

Ищем фазу

Вы уже знаете, какой цвет проводов фаза, ноль, земля. Рассмотрим основной вопрос — как найти фазу. Если вы собираетесь подключить розетку, то вас, по сути, этот вопрос не волнует — нет никакой разницы, на какой контакт подавать фазу или ноль. Но с выключателем дело обстоит иначе.

С другой стороны, этот метод имеет исключения. Когда корпус устарел и не имеет дифференциального переключателя – или он был поврежден – лампочка включается при подключении к фазовому проводу и провод заземления. Кроме того, отсутствие дифференциала может привести к утечке в разные массы дома, что будет означать, что при прикосновении к любому прибору человек может получить удар или удар электрическим током.

Основная функция земли – защитить людей от утечки или утечки тока. Он соединяется со всеми массами и разряжает лишнее электричество в металлический шип, который похоронен в земле. Все новые установки должны иметь заземление, чтобы предотвратить прохождение тока людям и обеспечить их защиту от случайного байпаса.

Внимание: в выключателе всегда размыкается фаза, а ноль приходит на лампочку. Это необходимо для того, чтобы во время ремонта или замены лампы вас не ударило током. Фазу нужно пускать на нижний контакт патрона, ноль — на боковой.

Если в проводке два одноцветных провода, то проще всего найти фазу индикатором — при прикосновении к оголенному проводу он начинает светиться. Перед тем как прикоснуться к проводу, отключите электроэнергию, зачистите изоляцию на проводе (1 см вполне достаточно), разведите провода в разные стороны, чтобы не произошло замыкания. Затем включите электроэнергию и прикоснитесь индикатором к контакту. Большой палец руки нужно положить на верхнюю часть отвертки, там, где расположена контактная площадка. После этого светодиод на индикаторе должен засветиться. Это позволит вам найти фазу, но вот разобраться между нулем и землей устройство не поможет. Чтобы узнать, какого цвета провод заземления в трехжильном проводе,вам нужно будет воспользоваться указанными выше способами.

При работе с электроустановкой возникают определенные риски, если это делается без принятия мер предосторожности. В дополнение к отключению тока перед началом любой работы, вы должны знать различные элементы, которые его составляют, чтобы избежать возможных сбоев. Одним из основных правил является цвет и полезность.

В соответствии с этим провод заземления зеленый и желтый, нейтральный синий, а фазовый провод может быть черного, коричневого или серого. Цвет изоляции позволяет различать их, чтобы знать, с кем нужно обращаться в любое время, поскольку каждый проводник имеет функцию.

Найти фазу можно индикатором

Заключение

Если вы создаете новую проводку, то обязательно соблюдайте принятую в ПУЭ маркировку проводов в электрике — это поможет вам в последующем ремонте системы, ведь вы легко определите провода по цвету. Используйте желто-зеленый кабель для заземления, синий для нуля, коричневый/черный/белый для фазы. В кабелях с большим количеством фаз соединяйте контакты только по цветам, используя соответствующие зажимы и термоусадку. Если приходится работать со старой проводкой, где цвета не отвечают стандарту, то первым делом ищите фазу при помощи индикаторной отвертки. Контакт, который не светится, и будет искомым нулем.

Порядок выполнения работ при измерении с помощью индикаторной отвертки

Цепи состоят из активных проводников, которые переносят энергию и различное оборудование или устройства, такие как полоски, которые соединяют их. В свою очередь, они защищены от сверхтоков, и, который выдает из корпуса любую утечку или ток утечки. Фазные и нейтральные кабели представляют собой активные проводники, которые несут энергию.

Каким должен быть заземляющий проводник?

Каждая цепь имеет нейтральный проводник. То же самое нельзя использовать для нескольких цепей. В этих устройствах всегда расположены два однополюсных кабеля, в то время как они имеют нейтральные, фазные и заземляющие кабели. Необходимо отремонтировать электрическую установку всего здания, чтобы дом считался с землей.

При прокладке проводов соблюдайте правила — они должны пролегать только горизонтально и вертикально. Не нужно пытаться сэкономить, таская их по наклонной через всю стену или потолок — в будущем вы просто не сможете найти их или во время ремонта зацепите/перебьете их, что приведет к серьезным последствиям. Раз и навсегда запомните цвета проводов в трехжильном кабеле —это поможет вам в жизни, ведь любой электрик сталкивается с ремонтом розеток, выключателей, электрощитков, прокладкой новых линий и пр.

Участок проводника или толщина определяет интенсивность, которую он способен выдерживать. По этой причине всегда должны использоваться кабели с достаточным поперечным сечением. В домах есть как минимум одна цепь для освещения, а другая для питания. Другие цепи подают более высокие потребительские устройства, такие как духовка, стиральная машина или холодильник.

Термин «земля» относится к соединению с Землей, которое действует как резервуар электрических зарядов. Провод заземления обеспечивает проводящий путь к земле, который не зависит от нормального пути, который ток несет в электрическом устройстве. Как обычная практика в домашних электрических цепях, земля подключается к электрической нейтрали служебной панели, чтобы обеспечить низкий путь сопротивления, достаточный для отключения питания в случае электрического отказа. Земля, подключенная к шасси устройства, поддерживает напряжение этого до нулевого нуля.

Существует, по сути, не так много всяческих видов проводников и их подключений. В электроэнергетике различают питающие и защитные проводники. Некоторые слышали такие слова как «нулевой» и «фазный» провод. Однако тут и возникают вопросы. Как определить ноль и фазу в реальной сети?

Какие существуют проводники в розетке?

Можно разобраться с вопросом «что такое фаза и ноль», не углубляясь в дебри выяснения строения, преимуществ и негативных моментов в трехфазных или пятифазных цепях. Все разобрать можно фактически на пальцах, раскрыв самую обычную домашнюю розетку, которая поставлена в квартиру или частный дом лет десять – пятнадцать назад. Как видно, эта розетка подключается к двум проводкам. Как определить ноль и фазу?

Как работают провода в розетке и зачем они нужны?

Как видно, есть определенные различия между рабочими и нулевыми. Какое обозначение фазы и нуля? Голубоватая или синяя окраска – это цвет провода фаза, ноль же обозначается любыми другими цветами, за исключением, естественно, голубых цветов. Он может быть желтым, зеленым, черным и в полоску. По нулевому проводнику ток не идет. Если взяться за него и не касаться рабочего, то ничего не случится – на нем нет разницы потенциалов (в сущности, сеть не идеальна, и небольшое напряжение все-таки может быть, но измеряться оно будет в лучшем случае в милливольтах). А вот с фазным проводником так не пройдет. Прикосновение к нему может повлечь за собой электрический удар, даже со смертельным исходом. Этот провод всегда находится под напряжением, к нему идет ток от генераторов и трансформаторов и станций. Необходимо всегда помнить о том, что касаться рабочего проводника ни в коем случае нельзя, так как напряжение даже в сотню вольт может быть смертельным. А в розетке составляет двести двадцать.


Как определить ноль и фазу в таком случае? В розетке, разработанной с учетом европейских стандартов, находится сразу три проводника. Первый – фазный, который находится под напряжением и окрашен в самые разные цвета (за исключением голубых оттенков). Второй – ноль, который абсолютно безопасен для прикосновения и окрашен в А вот третий провод называют нулевым защитным. Он обычно окрашен в желтые или зеленые цвета. Раположен он в розетках слева, в выключателях – снизу. Фазный провод находится справа и сверху соответственно. Учитывая такие окраски и особенности, легко определить, где фаза, а где ноль, а где защитный нулевой провод. Но для чего он?

Зачем нужен защитный проводник в евророзетках?

Если фазный предназначен для подвода тока к розетке, нулевой – для отведения к источнику, то зачем европейские стандарты регламентируют еще один провод? Если оборудование, которое подключено, работает исправно, и вся проводка находится в работоспособном состоянии, то защитный нулевой не будет принимать участие, он бездействует. Но если вдруг где-то произойдет или же перенапряжение, или замыкание на какие-то части приборов, то ток попадает в места, находящиеся обычно без его влияние, то есть не соединенные ни с фазой, ни с нулем. Человек просто сможет ощутить электрический удар на себе. В самой худшей ситуации можно даже погибнуть от этого, так как сердечная мышца может остановиться. Именно тут и нужен защитный нулевой провод. Он «забирает» ток короткого замыкания и направляет его в землю или к источнику. Такие тонкости зависят от конструкции проводки и характеристик помещения. Поэтому можно спокойно прикасаться к оборудованию – не будет никакого электрического удара. Все дело в том, что ток всегда протекает по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килоОма. У защитного не превышает нескольких десятых долей одного Ома.


Определение назначения проводников

Как определить ноль и фазу? Любой человек так или иначе сталкивался с этими понятиями. Особенно, когда необходимо починить розетку или заняться монтажом проводки. Поэтому необходимо точно понимать, где какой проводник. Но как определить ноль и фазу? Необходимо помнить, что все манипуляции подобного рода с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратитесь к специалисту. Если уже и подходить к розетке и проводам в ней, то необходимо для начала полностью обесточить всю квартиру. Как минимум, это может сохранить здоровье и жизнь. Как уже говорилось ранее, обычно обозначение фазы и нуля делают с помощью окраски. При правильной маркировке отличить их не составит никакого труда. Черный (либо коричневый) – цвет провода фаза, ноль обычно имеет голубоватый или синеватый оттенок. Если же установлена розетка европейского стандарта, то третий (защитный нулевой) выполнен зеленым или желтым цветом. Что делать, если проводка одноцветная? Как правило, в таком случае на концах проводов обычно находятся специальные изоляционные трубочки, имеющие необходимую цветовую маркировку. Их называют «кембрики».


Определение проводников с помощью специальной отвертки

Как определить ноль и фазу? Для этого удобнее всего купить специальную Рукоятка такого прибора изготавливается из полупрозрачного или прозрачного пластика. Внутри встроен диод – светящаяся лампочка. Верхняя часть у такой отвертки металлическая. Как определить ноль и фазу этим методом?

Порядок выполнения работ при измерении с помощью индикаторной отвертки:

  • обесточиваем квартиру;
  • зачищаем слегка концы проводов;
  • разводим их в стороны, для того чтобы случайно не вызвать короткое замыкание путем соприкосновения фазы и нуля;
  • включаем рубильник и подаем ток в квартиру;
  • берем отвертку за ручку, которая имеет диэлектрическое покрытие;
  • кладем палец (большой или указательный) на контакт, который расположен на тыльной части розетки;
  • прикасаемся рабочим концом индикатора к одному оголенному проводнику;
  • внимательно наблюдаем за реакцией отвертки;
  • если диод загорелся, то можно с уверенностью констатировать, что ;
  • методом исключения понимаем, что оставшийся проводник – это ноль.

Индикаторная отвертка реагирует на наличие напряжения. Естественно, что в нулевом проводе его нет. Однако имеется существенный недостаток такого метода. С помощью индикаторной отвертки нельзя понять, как определить: фаза, ноль, земля – где что в случае с европейской розеткой.

Метод определения фазы и нуля с помощью вольтметра

Если провода не окрашены в соответствующие цвета, и под рукой нет индикаторной отвертки, то можно пойти другим путем. Нам необходим вольтметр (мультиметр, тестер). Необходимо выставить его на необходимый диапазон – свыше двух сотен вольт переменного тока. Как тестером определить фазу? Берем один проводник, который отходит от прибора (обозначенный V). Прикрепляем его на предварительно обесточенный проводник (любой). Затем подаем ток (включаем рубильник). И просто фиксируем, что показывает дисплей прибора. После всего вышеуказанного снова выключаем питание и перебрасываем зажим тестера уже на другой проводник. Если на дисплее ничего нет, то это означает, что перед нами находится либо ноль, либо заземляющий защитный нулевой провод. Однако можно использовать и другой метод, который отвечает на вопрос: «Как определить ноль и фазу, а также заземление». Для этого снова обесточиваем квартиру, фиксируем зажим V на одном их проводов. Второй также бросаем на любой из трех проводников. Включается напряжение. Если стрелка не двигается, то вы выбрали нулевой и защитный. Соответственно, напряжение снова необходимо выключить и поменять положение клемы V (закинуть ее на другой неиспользуемый ранее проводник). Снова включаем ток и делаем соответствующие замеры. Затем проводим ту же самую операцию, но снова меняем проводник. Теперь необходимо сверить результаты. Если первая цифра оказалась больше, то значит что мы измеряли напряжением между фазным проводником (на котором висела клема V) и нулевым. Соответственно, второй провод будет является защитным заземляющим. Этот метод основан на измерении разности потенциалов.

Экзотические способы определения фазы и нуля в проводке

Существуют и «народные методы», которые не подразумевают наличие каких-либо специальных приспособлений. Использовать их можно разве что в самых крайних случаях, так как они сопряжены с повышенной опасностью для здоровья и жизни. Например, метод картошки. Для этого на предварительно обесточенные проводники надевают свежесрезанный кусок картошки. Необходимо не допустить прикосновение проводов друг к другу, чтобы не было короткого замыкания между ними. Затем буквально на пару секунд подают напряжение и смотрят на картошку. Если один участок возле провода посинел, значит к нему подведена фаза.

Знак фазы. Схематическое обозначение фазы и нуля на английском языке

Любой электрический кабель для удобства монтажа изготавливается с разноцветной изоляцией на жилах. При монтаже стандартной электропроводки обычно используются трехжильные кабели (фаза, ноль, заземление).

Фаза (“L”, “Line”)

Основным проводом в кабеле всегда является фаза. Само по себе слово “фаза” означает “провод под напряжением”, “активный провод” и “линия”. Чаще всего он бывает строго определенных цветов. В распределительном щитке фазовый провод, перед тем как идти к потребителю, подключается через устройство защитного отключения (УЗО, предохранитель), в нем происходит коммутация фазы. Внимание! С голой фазой шутки плохи, по этому, чтобы не спутать фазу с чем-либо еще – запомните: контакты фазы всегда маркируются латинским символом “L”, а провод фазы бывает красным, коричневым, белым или черным ! Если же вы не уверены в этом или проводка устроена иначе, то приобретите отвертку с простым индикатором фазы. Прикоснувшись его жалом к голому проводнику, всегда можно узнать – фаза это или нет по характерному свечению индикатора. А лучше сразу обратитесь к квалифицированному специалисту.

Ноль (“N”, “Neutre”, “Neutral”, “Нейтраль” “Нуль”)

Вторым немаловажным проводом является ноль, известный в народе как “провод без тока”, “пассивный провод” и “нейтраль”. Он бывает только синим . В квартирных распределительных щитках его нужно подключать к нулевой шине, она помечена символом “N”. К розетке провод нуля подключается к контактам, также обозначенным знаком “N”.

Заземление (“G”, “T”, “Terre” “Ground”, “gnd” и “Земля”)

Изоляция заземляющего провода бывает только желтого цвета с зеленой полоской. В распределительном щитке он подключается к шине заземления, к дверце и корпусу щитка. В розетках заземление подключается к контактам, обозначенным латинским символом “G” или с знаком в виде перевернутой и коротко подчеркнутой буквой “Т”. Обычно заземлительные контакты на виду и могут выступать из розеток, становясь доступными детям, что порой вызывает у многих родителей шок, тем не менее эти контакты не опасны, хотя совать пальцы туда все же не рекомендуется.


Внимание! При работе с электрическими сетями под напряжением всегда велика вероятность поражения человека электрическим током или пожара. Если даже установлено УЗО, настоятельно рекомендуется соблюдать все меры предосторожности! Известно, что специальная конструкция такого выключателя сверяет синхронность работы фазы и нуля, и в случае, если УЗО обнаружит утечку тока фазы без возвращения каких-то его процентов по нулю, то немедленно разорвет контакт, что спасет человеку жизнь; однако если прикоснуться не только к фазе, но еще и к нулю – то УЗО не спасет. Прикосновение к обоим проводам смертельно опасно!!!

Те, кто хоть раз в жизни имели дело с электропроводами, не могли не обращать внимания, что кабели всегда имеют разный цвет изоляции. Придумано это не для красоты и яркой окраски. Именно благодаря цветовой гамме в одежде провода легче распознавать фазы, заземление и нулевой провод. Все они имеют свойственную им окраску, что во много раз делает удобной и безопасной работу с электропроводкой. Самое главное для мастера – это знать, какой провод каким цветом должен обозначаться.

Цветовая маркировка проводов

При работе с электропроводкой максимальную опасность представляют провода, к которым подключена фаза. Соприкосновение с фазой может привести к летальному исходу, поэтому для этих электропроводов выбраны самые яркие, например, красный, предупреждающие цвета.

Кроме того, если провода маркированы разными цветами, то при ремонте той или иной детали можно быстрее определить какие именно из пучка проводов необходимо проверить в первую очередь, и которые из них наиболее опасны.

Чаще всего для фазных проводов используется следующая расцветка:

  • Красные;
  • Черный;
  • Коричневый;
  • Оранжевые;
  • Сиреневые,
  • Розовые;
  • Фиолетовые;
  • Белый;
  • Серые.


Именно в эти цвета могут быть окрашены фазные провода. Вы сможете проще разобраться с ними, если исключите нулевой провод и землю. Для удобства, на схеме изображение фазного провода принято обозначать латинской литерой L. При наличии не одной фазы, а нескольких, к букве должно быть добавлено численное обозначение, которое выглядит так: L1, L2 и L3, для трехфазных в 380 В сетях. В некоторых исполнениях первая фаза (масса), может быть обозначена буквой A, вторая – B, а уже третья – C.

Какого цвета провод заземления

В соответствии с современными стандартами, проводник заземления должен иметь желто-зеленый цвет. С виду он похож на желтую изоляцию, на которой имеются две продольные ярко-зеленые полосы. Но встречается иногда и окраска из поперечных зелено-желтых полос.

Иногда, в кабеле могут иметься только ярко-зеленые или желтые проводники. В данном случае «земля» будет обозначаться именно таким цветом. Соответствующими цветами она же будет отображаться и на схемах. Чаще всего инженеры рисуют из ярко зелеными, но иногда можно заметить и желтые проводники. Обозначают на схемах или приборах «землю» латинскими (на английском) буквами PE. Соответственно этому маркируются и контакты, куда «земляной» провод нужно подключать.

Иногда специалисты называют заземляющий провод «нулевым и защитным», но не стоит путать. Если вы увидите такое обозначение, то знайте, что это именно земляной провод, а защитным его называют потому, что он что снижает риск удара током.

Ноль или нейтральный провод имеет следующий цвет маркировки:

  • Синий;
  • Голубой;
  • Синий с белой полоской.

Никакие цвета в электрике для маркировки нулевого провода не используются. Таким вы его найдете в любом, будь то трехжильном, пятижильном, а может и с еще большим количеством проводников. Синим и его оттенками обычно рисуют «ноль» на различных схемах. Профессионалы называют его рабочим нулем, потому, что (чего нельзя сказать о заземлении), участвует в электропроводке с питанием. Некоторые, при прочтении схемы называют его минус, в то время как фазу все считают «плюс».

Как проверить подключение проводов по цветам

Цвета проводов в электричестве придуманы для того, чтобы ускорить идентификацию проводников. Однако, полагаться лишь только на цвет опасною, ведь какой-либо новичок, или безответственный работник из ЖЗК-а, мог подключить их неправильно. В связи с этим, перед тем, как приступить к работам, необходимо удостовериться правильности их маркировки или подключения.

Для того, чтобы выполнить проверку проводов на полярность, берем индикаторную отвертку или мультиметр. Стоит заметить, что с отверткой на много проще работать: когда вы прикасаетесь к фазе загорается вмонтированный в корпус светодиод.

Если кабель двухжильный, тогда проблем практически нет- вы исключили фазу, значит второй проводник, который остался, это ноль. Однако часто встречаются и трехжильные провода. Здесь уже для определения вам понадобиться тестер, или мультиметр. При их помощи так же не сложно определить, какой проводов фазный (плюсовой), а какой – нулевой.

Делается это следующим образом:

  • На приборе выставляется переключатель таким образом, чтобы выбрать шакалу более 220 В.
  • Затем нужно взять в руки два щупа, и держа их за пластиковые ручки, очень аккуратно дотрагиваемся стержнем одного из щупов к найденному проводу-фазе, а второй прислоняем к предполагаемому нулю.
  • После этого на экране должно будет высветиться 220 В, или то напряжение, которое есть по факту в сети. Сегодня оно может быть ниже.


Если на дисплее появилось значение 220 В или что-то в этом пределе, то другой провод – это ноль, а оставшийся – предположительно «земля». В случае, если значение, появившееся на дисплее меньше, стоит продолжить проверку. Одним щупом опять прикасаемся к фазе, другим к предполагаемому заземлению. Если показания прибора будут ниже, чем в случае с первым измерением, то перед вами «земля». По стандартам она должна быть зеленого или желтого цвета. Если вдруг показания получились выше, это означает, что где-то напутали, и перед вами «нулевой» провод. Выходом из этой ситуации будет либо искать, где именно подключили провода неправильно, или оставив все как есть, запомнив, что провода перепутаны.

Обозначения проводов в электрических схемах: особенности подключения

Начиная любые электромонтажные работы на линиях, где уже проложена сеть, необходимо убедиться в правильности подключения проводов. Делается это с помощью специальных тестирующих приборов.

Необходимо запомнить, что при проверке соединения «фаза-ноль» показания индикаторного мультиметра всегда будут выше, чем в случае прозвонки пары «фаза-земля».

Провода в электрических цепях по нормам имеют цветную маркировку. Данный факт позволяет электрику в короткий промежуток времени найти ноль, заземление и фазу. В случае, если эти провода подсоединить неправильно между собой, то возникнет короткое замыкание. Иногда такая оплошность приводит к тому, что человек получает удар электрическим током. Поэтому, нельзя пренебрегать правилам (ПУЭ) подключения, и необходимо знать, что специальная цветовая маркировка проводов предназначена для обеспечения безопасности при работе с электропроводкой. Кроме того, данное систематизирование значительно сокращает время работы электрика, так, как он имеет возможность быстро найти нужные ему контакты.

Особенности работы с электропроводами разного цвета:

  • Если вам нужно установить новую, или заменить старую розетку, то определять фазу вовсе необязательно. Вилке вовсе неважно, с какой стороны вы ее подключите.
  • В случае, когда вы подключаете выключатель от люстры, то нужно знать, что нему необходимо подавать конкретно фазу, а к лампочкам только ноль.
  • Если цвет контактов и фазы и нуля совершенно одинаковый, то значение проводников определяется с помощью индикаторной отвертки, где рукоятка изготовлена из прозрачного пластика с диодом внутри.
  • Перед тем, как определить проводник, электрическую цепь в доме или другом помещение нужно обесточить, а проводки на концах зачистить и развести в стороны. Если этого не сделать, то они могут нечаянно соприкоснуться и получится короткое замыкание.

Использование цветной маркировки в электрике намного облегчило жизнь людей. Кроме того, благодаря цветовым обозначениям, на высокий уровень поднялась безопасность при работе с проводами, которые находятся под напряжением.

Обозначения и цвета проводов в электрике (видео)

Рейтинг 4.50 (1 Голос)

Мировые производители бытовой техники при сборке своего оборудования используют цветовую маркировку монтажных проводов. Она представляет собой обозначение в электрике L и N. Благодаря строго определенному окрасу, мастер может быстро определить, какой из проводов является фазным, нулевым или заземляющим. Это важно при подключении или отключении оборудования от электропитания.

Виды проводов

При подключении электрооборудования, монтаже разнообразных систем не обойтись без специальных проводников. Их изготавливают из алюминия или меди. Эти материалы отлично проводят электрический ток.

Важно! Алюминиевые провода необходимо соединять только с алюминиевыми. Они химически активны. Если их соединить с медью, то цепь передачи тока быстро разрушится. соединяют обычно с помощью гаек и болтов. Медные – посредством клеммы. Стоит учесть, что последний вид проводников имеет существенный недостаток – быстро окисляется под воздействием воздуха.

Совет на случай, если в месте появления окисления ток перестанет проходить: чтобы восстановить подачу электроэнергии, провод необходимо изолировать от внешнего воздействия с помощью изоленты.

Классификация проводов

Проводник представляет собой одну неизолированную или одну и более изолированных жил. Второй тип проводников покрыт специальной неметаллической оболочкой. Это может быть обмотка изолирующей лентой или оплеткой из волокнистого сырья. Неизолированные провода не имеют никаких защитных покрытий. Их применяют в сооружении линии электропередач.

Исходя из вышеописанного, делаем вывод, что провода бывают:

  • защищенными;
  • незащищенными;
  • силовыми;
  • монтажными.

Они должны использоваться строго по назначению. Малейшее отклонение от требований эксплуатации ведет к поломке сети электропитания. В результате замыкания случаются пожары.

Обозначения фазных, нулевых и заземляющих проводов

При выполнении монтажа электрических сетей бытового и промышленного предназначения используют изолированные кабели. Они состоят из множества токопроводящих жил. Каждая из них окрашена в соответствующий цвет. Обозначение LO, L, N в электрике позволяют сократить время проведения монтажных, а при необходимости и ремонтных работ.

Описанное ниже обозначение в электрике L и N в полном объеме соответствует требованиям ГОСТ Р 50462 и применяется в электроустановках, в которых напряжение достигает 1000 В. Они имеют К этой группе относится электрооборудование всех жилых, административных зданий, хозяйственных объектов. Какие цветовые обозначения фазы L, нуля, N и заземления необходимо соблюдать при монтаже электрических сетей? Давайте разберемся.

Фазные проводники

В сети переменного тока имеются проводники, которые находятся под напряжением. Их называют фазными проводами. В переводе с английского языка термин «фаза» означает «линия», «активный провод», или же «провод под напряжением».

Прикосновение человека к оголенному от изоляции фазному проводу может обернуться серьезными ожогами или даже летальным исходом. Что значит обозначение в электрике L и N? На электрических схемах фазные провода маркируют латинской буквой «L», а в многожильных кабелях изоляция фазного провода будет окрашена в один из следующих цветов:

  • белый;
  • черный;
  • коричневый;
  • красный.

Рекомендации! Если по каким-либо причинам электромонтер сомневается в правдивости информации, отображающей цветовую маркировку проводов кабеля, для определения находящегося под напряжением провода необходимо воспользоваться низковольтным

Нулевые проводники

Эти электропровода подразделяются на три категории:

  • нулевые рабочие проводники.
  • нулевые защитные (земляные) проводники.
  • совмещающие в себе защитную и рабочую функцию.

Чтобы определить, какой из проводников является фазным, а какой нулевым при помощи индикаторной отвертки, необходимо прикоснуться ее жалом к неизолированной части провода. Если светодиод засветится, значит произошло касание к фазному проводнику. После прикасания отверткой к нулевому проводу светящегося эффекта не будет.

Важность цветовой маркировки проводников и четкое соблюдение правил ее использования позволит значительно сократить время проведения монтажных работ и поиск неисправностей электрооборудования, в то время как игнорирование этих элементарных требований оборачивается риском для здоровья.

А в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля – N).

Еще момент – чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой – фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между “нулем” и “землей” будет близко к нулевому значению (определяется сопротивлением заземления), а “земля” – “фаза”, в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение “фаза” – “ноль” у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление . Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и “землей” (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток “уйдет” по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается – тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур . Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль – вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу . Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт. Одним щупом мультиметра (каким – безразлично) касаемся участка измеряемой цепи, другим – естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание – если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно. Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Для облегчения выполнения монтирования электропроводки, кабели изготавливаются с разноцветной маркировкой проводов. Монтаж сети освещения и подвод питания на розетки предполагает применение кабеля с тремя проводами.

Использование данной цветовой системы в разы уменьшает время ремонта, подключения розеток и . Так же данная схема минимизирует требования к квалификации монтажника. Это значит, что почти любой взрослый мужчина в состоянии сам выполнить, к примеру, установку лампы.

В данной статье мы рассмотрим как обозначается заземление, ноль и фаза. А так же другие цветовые маркировки проводов.

Цвет заземления

Цвет провода заземления, «земли» – почти всегда обозначен желто-зеленым цветом , реже встречаются обмотки как полностью желтого цвета, таки и светло-зеленого. На проводе может присутствовать маркировка “РЕ”. Так же можно встретить провода зелено-желтого цвета с маркировкой “PEN” и с синей оплеткой на концах провода в местах крепления – это заземление, совмещенное с нейтралью.

В распределительном щитке (РЩ) стоит подключать к шине заземления, к корпусу и металлической дверке щитка. Что касается распределительной коробки, то там подключение идёт к заземлительным проводам от светильников и от контактов заземления розеток. Провод «земли» не надо подключать к УЗО (устройство защитного отключения), в связи с этим УЗО устанавливают в домах и квартирах, так как обычно электропроводка выполняется только двумя проводами Обозначение заземления на схемах:

Обычное заземление(1) Чистое заземление(2) защитное заземление(3) заземление к корпусу(4) заземление для постоянного тока (5)

Цвет нуля, нейтрали

Провод «ноля» – должен быть синего цвета . В РЩ надо подключать к нулевой шине, которая обозначается латинской буквой N. К ней же нужно подключить все провода синего цвета. Шина подсоединена к вводу посредством счетчика или же напрямую, без дополнительной установки автомата. В коробке распределения, все провода (за исключением провода с выключателя) синего цвета (нейтрали) соединяются и не участвуют в коммутации. К розеткам провода синего цвета «ноль» подключаются к контакту, который обозначается буквой N, которая маркируется на обратной стороне розеток.

Цвет фазы

Обозначение провода фазы не столь однозначно. Он может быть, либо коричневым, либо черным, либо красным, или же другими цветами кроме синего, зеленого и желтого. В квартирном РЩ фазовый провод, идущий от потребителя нагрузки, соединяется с нижним контактом автоматического выключателя либо к УЗО. В выключателях осуществляется коммутация фазового провода, во время выключения, контакт замыкается и напряжение подаётся к потребителям. В фазных розетках черный провод нужно подключить к контакту, который маркируется буквой L.

Как найти заземление, нейтраль и фазу при отсутствии обозначения

Если отсутствует цветовая маркировка проводов, то можно для определения фазы, при контакте с ней индикатор отвертки загорится, а на проводах нейтрали и заземления – нет. Можно воспользоваться мультиметром для поиска заземления и нейтрали. Находим отверткой фазу, закрепляем один контакт мультиметра на ней и “прощупываем” другим контактом провода, если мультиметр показал 220 вольт это – нейтраль, если значения ниже 220, то заземление.

Буквенные и цифровые маркировки проводов

Первой буквой “А” обозначается алюминий как материал сердечника, в случае отсутствия этой буквы сердечник – медный.

Буквами “АА” обозначается многожильный кабель с алюминиевым сердечником и дополнительной оплеткой из него же.

“АС” обозначается в случае дополнительной оплетки из свинца.

Буква “Б” присутствует в случае если кабель влагозащищенный и у него присутствует дополнительная оплетка из двухслойной стали.

“Бн” оплетка кабеля не поддерживает горение.

“В” поливинилхлоридная оболочка.

“Г” не имеет защитной оболочки.

“г”(строчная) голый влагозащищенный.

“К” контрольный кабель, обмотанный проволокой под верхней оболочкой.

“Р” резиновая оболочка.

“НР” негорящая резиновая оболочка.

Цвета проводов за рубежом

Цветовая маркировка проводов в Украине, России, Белорусии, Сингапуре, Казахстане, Китае, Гонконге и в странах европейского союза одинаковая: Провод заземления – Зелено-желтый

Провод нейтрали – голубой

фазы маркируется другими цветами

Обозначение нейтрали имеет черный цвет в ЮАР, Индии, Пакистане, Англии, однако это в случае со старой проводкой.

в настоящее время нейтраль синяя.

В австралии может быть синий и черный.

В США и Канаде обозначается белым. Так же в США можно найти серую маркировку.

Провод заземления везде имеет желтую, зеленую, желто-зеленую окраску, так же в некоторых странах может быть без изоляции.

Другие цвета проводов применяются для фаз и могут быть различными, кроме цветов означающих другие провода.

цветовая маркировка проводов от А до Я. Обозначение фазы и нуля в электрике Каким знаком обозначается фаза

Практически каждый, кто имел дело с электрической проводкой, замечал, что провода в изоляции могут иметь различную окраску. Но мало кто знает, что это действие облегчает работы при монтаже электропроводки, и даже существуют специальные правила устройства электроустановок, следуя которым можно существенно снизить риск трагических последствий при работе с электричеством. Так в чем же суть цветовых обозначений и что они обозначают, – ответы на эти вопросы будут приведены ниже.

Основная задача маркировки изоляции проводов

В первую очередь провода обозначают определенными цветами для обеспечения безопасности при проведении работ. В назначении цвета для каждого провода применяются стандарты ПУЭ (правила устройства электроустановок) и международные евростандарты. Каждый электромонтер может без особых усилий отличить, какое напряжение несет (или нет) каждый провод, а также определить, где находится фаза, ноль и заземление.

Конечно, если в пример взять подключение к сети одноклавишного выключателя, определить назначение каждого провода без цветовой маркировки не составит особого труда. Но если рассмотреть подключение распределительного щитка, то здесь уже без специальных обозначений не обойтись. Ведь в случае неправильного соединения токоведущих частей может произойти короткое замыкание, проводка начнет нагреваться (и, как следствие, произойдет возгорание), а в худшем случае произойдет поражение электрическим током человека , проводящего монтаж, или людей, находящихся вблизи.

В современной редакции ПУЭ предлагается вести не только цветовое обозначение, но и буквенное, что значительно облегчает работы в электроустановках.

Понятие фазы и ноля в электрике

Прежде чем приступить к рассмотрению цветовой маркировки , необходимо сначала разобраться с понятиями фазы и ноля в электропроводках.

Буквенные обозначения применяются на схемах в электрике .

Для правильного проведения электромонтажных работ необходимо безукоризненно следовать правилам соединения токоведущих частей, соответственно, все провода цепи должны заметно различаться между собой. Становится резонным вопрос о том, каким цветом обозначаются фаза и ноль в электричестве. Ниже приведены описания каждого случая в отдельности .

Цвета проводов фаза, ноль, земля

Как уже говорилось ранее, расцветка проводов в электрике на заводах-изготовителях проводится согласно ПУЭ.

Обозначение заземляющего провода

Провод заземления обычно обозначают желтым, зеленым и желто-зелеными цветами. Производители могут наносить полосы желто-зеленого цвета – как в продольном, так и в поперечном направлении. Кроме того, рекомендуется наносить буквенную маркировку. Однако нанесенная буквенная маркировка не исключает цветовой маркировки. Обозначение цветом, согласно ПУЭ, является обязательным. На примере распределительного щитка, этот провод подключают к шине заземления, корпусу или металлической дверце.

Нулевой провод

Говоря о нуле, не следует его путать с заземлением. Обозначается синим или бело-голубым цветом. Но в некоторых случаях провод заземления совмещается с нулем. Тогда его окрашивают в зелено-желтый цвет, а на концах обязательно имеется синяя оплетка. Как в однофазной, так и в трехфазной цепи используется всего один нулевой провод. Это происходит вследствие того, что в трехфазной цепи максимальный сдвиг одной фазы может быть равным 120°, что позволяет пользоваться одним нулевым проводом.

Обозначение фазного провода

В зависимости от типа проводки электрическая цепь с переменным током может быть как однофазной, так и иметь три фазы. Рассмотрим оба этих случая отдельно.

  • Однофазная проводка

Используется в сетях с напряжением 220 W. Чаще всего фазный провод окрашивается в черный, коричневый или белый цвет, однако можно встретить и другую маркировку провода: коричневый, серый, фиолетовый, розовый, оранжевый или бирюзовый. Также принято буквенно обозначать L. Это необходимо не только на схемах, но и в условиях плохой освещенности или если провода были покрыты пылью.

В связи с тем, что именно фаза представляет наибольшую опасность при проведении работ, именно эти части имеют наиболее яркую окраску для быстрой идентификации и впоследствии проведения более аккуратных действий с ними.

  • Трехфазная проводка

Используется в сетях с напряжением 380 W. Ранее все провода и шины в трехфазной сети окрашивались в желтый, зеленый и красный цвета (Ж-З-К), которыми соответственно обозначали фазы A, B, C. Эти обозначения представляли трудности в связи со схожестью желто-зеленой маркировки проводов заземления. Поэтому, согласно ПУЭ, с 1 января 2011 года введены новые нормативы, где фазы имеют обозначение L 1, L 2 и L 3, при этом каждая имеет коричневый, черный и серый цвета (К-Ч-С).

На примере трехжильного провода. Цвета проводов трехжильного кабеля: синий, коричневый и желто-зеленый. Коричневый – это фаза, синий – ноль, а желто-зеленым обозначают заземление.

Это были приведены варианты расцветки в сетях с переменным током.

Расцветка проводов в сетях постоянного напряжения

В сетях с постоянным током применяется иная цветовая и буквенная маркировки проводов и шин. Принципиальным отличием здесь считается отсутствие ноля и фазы в привычном понимании. В этой проводке используется положительный проводник, обозначаемый красным цветом и знаком «+», и отрицательный проводник синего цвета со знаком «-«, а также нулевая шина голубого цвета, которая обозначается латинской буквой M .

Не все люди, проводящие работы по монтажу электрических сетей, следуют установленным правилам маркировки. Поэтому, прежде чем приступать к монтажу, следует сначала проверить наличие тока в проводах при помощи мультиметра или обычной отвертки-индикатора. В дальнейшем обозначить провода необходимым цветом при помощи цветной изоленты или специальных термообжимов. Также есть специальные приборы, позволяющие наносить буквенную маркировку.

RozetkaOnline.ru – Электрика дома: статьи, обзоры, инструкции!

Обозначение L и N в электрике

Каждый раз, пытаясь подключить люстру или бра, датчик освещенности или движения, варочную панель или вытяжной вентилятор , терморегулятор теплого пола или блок питания светодиодной ленты , а также любое другое электрооборудование, вы можете увидеть следующие маркировки возле клемм подключения – L и N.

Давайте разберемся, о чем говорят обозначения L и N в электрике.

Как вы, наверное, сами догадались это не просто произвольные символы, каждый из них несет конкретное значение и выполняет роль подсказки, для правильного подключения электроприбора к сети.

Обозначение L в электрике

« L » – Эта маркировка пришла в электрику из английского языка , и образована она от первой буквы слова «Line» (линия) – общепринятого названия фазного провода. Также, если вам удобнее, можно ориентироваться на такие понятия английских слов как Lead (подводящий провод, жила) или Live (под напряжением).

Соответственно обозначением L маркируются зажимы и контактные соединения, предназначенные для подключения фазного провода. В трехфазной сети, буквенно-цифровая идентификация (маркировка) фазных проводников “L1”, “L2” и “L3”.

По современным стандартам (ГОСТ Р 50462-2009 (МЭК 60446:2007 ), действующим в России, цвета фазных проводов – коричневый или черный. Но зачастую, может встречаться белый, розовый, серый или провод любого другого цвета, кроме синего, бело-синего, голубого, бело-голубого или желто-зеленого.

Обозначение N в электрике

«N» – маркировка, образованная от первой буквы слова Neutral (нейтральный) – общепринятое название нулевого рабочего проводника, в России называемого чаще просто нулевым проводником или коротко Ноль (Нуль). В связи с этим, удачно подходит английское слово Null (нулевой), можно ориентироваться на него.

Обозначением N в электрике маркируются зажимы и контактные соединения для подключения нулевого рабочего проводника/нулевого провода. При этом это правило действует как в однофазной, так и трехфазной сети.

Цвета провода, которыми маркируется нулевой провод (нуль, ноль, нулевой рабочий проводник) строго синий (голубой) или бело-синий (бело-голубой).

Обозначение Заземления

Если уж мы говорим об обозначениях L и N в электрике, нельзя не отметить еще вот такой знак – , который также, практически всегда можно увидеть совместно с этими двумя маркировками. Таким значком отмечены зажимы, клеммы или контактные соединения для подключения провода (PE – Protective Earthing), он же нулевой защитный проводник, заземление, земля.

Общепринятая цветовая маркировка нулевого защитного провода – желто-зеленый. Эти два цвета зарезервированы только для заземляющих проводов и не встречаются при обозначении фазных или нулевых.

К сожалению, нередко, электропроводка в наших квартирах и домах выполнена с несоблюдением всех строгих стандартов и правил цветовой и буквенно-цифровой маркировки для электрики. И знать предназначение маркировок L и N у электрооборудования, порой, недостаточно, для правильного подключения. Поэтому, обязательно прочитайте нашу статью «Как определить фазу, ноль и заземление самому, подручными средствами? », если у вас есть какие-то сомнения, этот материал будет как нельзя кстати.

Вступай в нашу группу вконтакте!

http://rozetkaonline.ru

Переход на привычное напряжение 220 В проводился еще в годы существования Советского Союза и закончился в конце 70-х, начале 80-х. Электрические сети того времени выполнялись по двухпроводной схеме, а изоляция проводов использовалась однотонная, преимущественно белого цвета . В дальнейшем, появилась бытовая техника повышенной мощности, требующая заземления.

Схема подключения постепенно изменялась на трёхпроводную. ГОСТ 7396.1–89 стандартизировал типы силовых вилок приблизив их европейским. После распада СССР были приняты новые стандарты, основанные на требованиях Международной электротехнической комиссии. В частности, для повышения безопасности при работе в электрических сетях и упрощения монтажа, вводилась цветовая градация проводов.

Нормативная база

Основным документом, описывающим требования к монтажу электросетей, является ГОСТ Р 50462–2009, в основе которого лежит стандарт МЭК 60446:2007. В нем изложены правила, которым должна соответствовать цветовая маркировка проводов. Касаются они производителей кабельной продукции , строительных и эксплуатирующих организаций, деятельность которых связана с монтажом электрических сетей.

Расширенные требования к монтажу содержатся в Правилах устройства электрических установок . В них приведен рекомендуемый порядок подключения, с отсылкой к ГОСТ-Р в пунктах касающихся цветовых градаций.

Необходимость разделения по цвету

Двухпроводная система подразумевает наличие в сети фазы и нуля. Вилка для таких розеток используется плоская. Оборудование устроено таким образом, что правильность подключения роли не играет. Не важно на какой контакт будет подана фаза, аппаратура разберется самостоятельно.

При трехпроводной системе, дополнительно предусмотрено наличие заземляющей жилы. В лучшем случае , неправильное подключение проводов, приведет к постоянному срабатыванию защитного автомата, в худшем – к повреждению оборудования и пожару. Использование цветной градации для жил, позволяет исключить ошибки при монтаже и избавляет от необходимости использования специальных приборов, предназначенных для измерения получаемого напряжения.

Трехпроводная система

Посмотрим на разрез трехжильного провода, который применяется для прокладки бытовых электросетей.

Цвет проводов указывает, где находятся фаза, ноль и земля. Дополнительно, на рисунке приведены типовые буквенные обозначения, применяемые в электрических схемах . Взяв в руки такой чертеж, можно визуально определить правильность выполненного подключения.

Давайте заглянем в ГОСТ и посмотрим, насколько приведенная на рисунке цветовая маркировка проводов соответствует требованиям. Пункт 5.1 общих положений содержит описание двенадцати цветов, которые должны использоваться для маркировки.

Девять цветов выделяется для обозначения фазных проводов, один для нулевого и два для заземления. Стандартом предусматривается выполнение заземляющего провода в комбинированном желто-зеленом исполнении. Разрешается продольное и поперечное нанесение полос, при это преимущественный цвет не должен занимать более 70 % площади оплетки. Отдельное использование желтого или зеленого цвета в защитном покрытии прямо запрещается пунктом 5.2.1.

Указанная схема применяется при однофазном подключении, подходящем для большинства электрических приборов. Запутаться в ней, при правильно маркированном проводе, практически невозможно.

Пятипроводная система

Для трехфазного подключения используются пятижильные провода. Соответственно три провода выделяются под фазы, один под нейтральный или нулевой и один под защитный, заземляющий. Цветовая маркировка, как в любой сети переменного тока применяется аналогичная, в соответствии с требованиями ГОСТ.

В этом случае будет правильное подключение фазных проводников. Как видно на рисунке, защитный провод выполнен в желто-зеленой оплетке, а нулевой – в синей. Для фаз использованы разрешенные оттенки.

С помощью пятижильных проводов можно выполнять подключение сети 380 В с правильно выполненным расключением.

Совмещенные провода

В целях удешевления производства и упрощения подключений применяются также провода двух или четырехжильные, в которых защитная жила совмещена с нейтральной. В документации они обозначаются аббревиатурой PEN. Как вы догадались, складывается она из буквенных обозначений нулевого (N) и заземляющего (PE) проводов.

ГОСТом предусмотрена для них специальная цветовая маркировка. По длине они окрашиваются в цвета заземляющей жилы, то есть в желто-зеленый. Концы должны быть в обязательном порядке окрашены в синий цвет , им же дополнительно обозначаются все места соединений.

Поскольку места, в которых выполняется подключение заранее определить невозможно, в этих точках провода PEN выделяют с помощью изолирующей ленты или кембриков синего цвета.

Нестандартные провода и маркировка

Приобретая новый провод, вы разумеется обратите внимание на цветовую маркировку жил и выберете тот вариант, где она нанесена правильно. Что делать в том случае, когда проводка уже выполнена, а цвета проводов не соответствуют требованиям ГОСТа? Выход в этом случае такой же, как и с проводами PEN. Придется выполнить ручную маркировку, после того, как вы определитесь с ролью, выполняемой подходящими к оборудованию жилами. Простым вариантом будет использование цветной изоленты соответствующих оттенков. Как минимум, стоит обозначить защитный и нейтральный провода.

При профессиональном монтаже возможно применение специальных кембриков, представляющих собой полые отрезки изоляционного материала. Делятся они на обычные и термоусадочные. Вторые не требуют подбора по диаметру, но не имеют возможности повторного использования.

Встречаются также специально изготовленные маркеры, с международным буквенно-цифровым обозначением. Их применяют на вводных и распределительных щитах, к примеру, в многоквартирных домах или административных зданиях.

Цифровые метки, совместно с цветом провода, позволяют определить к какому потребителю подается питание.

Дополнительные требования

Поскольку линии, как и разводка, могут выполнятся с применением различной кабельной продукции, существует ряд правил по их взаимному подключению. Подключение трехпроводного кабеля к пятипроводному должно выполняться с соблюдением цветовой маркировки от ведущего к ведомому. Соответственно заземляющий и нейтральный цвета должны совпадать.

Фазное подключение, в данном случае выполняется с использованием объединяющей шины. С одной стороны, к ней присоединяются три жилы, с другой стороны – одна, которая и будет фазой в новом ответвлении.

При монтаже бытовых электросетей, по требованиям безопасности, запрещается использовать проводку с алюминиевыми, а также многопроводными жилами. Должен использоваться только кабель с цельной медной жилой.

Трехпроводная система постоянного тока

В системах постоянного тока , также используется трехпроводная система, но назначение проводов другое. Разделение выполняется на плюсовой, минусовой и защитный. Согласно ГОСТ в таких сетях применяется следующая цветовая маркировка:

  • Плюсовой – коричневый;
  • Минусовой – серый;
  • Нулевой – синий.

Поскольку отдельно провода под системы постоянного тока выпускать нерационально, указанная цветовая градация применяется в основном для окраски токопроводящих шин.

В заключение

Как видите, цвета проводов в электрике не прихоть производителя, а мера, направленная на обеспечение требований безопасности. При соблюдении правил монтажа обслуживать такие сети намного проще, а разобраться в подключении может не только специалист электрик, но и мы с вами.

Видео по теме

Каждый раз, когда я устанавливаю розетку или подключаю какой-то стационарный прибор встаёт вопрос о том, что значит цвет провода – фаза? Или это земля? Неразберихи добавляет то, что далеко не все кабеля – это наши родные ВВГ-3 с белым, синим и желто-зелёным проводами. Есть и китайцы с комбинациями серый + коричневый + белый, есть и сложные многожильные кабели, с которыми можно разобраться только по справочнику электрика.

В быту все эти кодировки взять неоткуда, поэтому будем ориентироваться на самую простую проводку. Простая – это кабель из трёх жил и бытовая задача, к примеру, установки розетки.

Стандартный бытовой провод с белым, синим и жёлто-зелёным цветом

Кодировка, маркировка и история

Идея разделить провода по цветам не нова – первые же эксперименты, как рисуют нам старые учебники, проводились с разноцветными клеммами и проводами. Всё та же незамутнённая простота осталась в автомобилях – синий и красный провод вряд ли перепутаешь. Правда, он иногда бывает чёрным, но это совсем другая история.

При изучении проводки самые важные для определения по цвету провода – не фаза, а земля и ноль, фазу всегда можно найти с помощью детекторной отвёртки или (практически) любого диода. А вот перепутать цвета земли и ноля иногда становится просто опасно, и определять, какого цвета провода фаза ноль земля надо заранее.

Цвет провода фазы

Как ранее было указано, особо фазу по цвету определять не требуется – почти всегда есть доступ к тому или иному инструменту для определения. Некоторый «зоопарк» в цветах наблюдается из-за того, что есть расширенные, не бытовые стандарты по цветовой дифференциации проводов, их используют настоящие электрики. Например, коричневый цвет говорит, что провод предназначен для розеток, а красный – для освещения. От этого зависит нагрузка и допустимые параметры работы.

Цвет провода земли

Заземление самый безальтернативный провод, у него всегда жёлто-зелёный цвет. Бывают отклонения, например, чисто жёлтый – когда провод импортный. В сети пишут, что встречается жёлто-зелёно-синий цвет провода, которым обозначают совмещённый рабочий нуль и землю.

Цвет провода ноля

У минуса небольшой выбор цветов – обычно это синий провод, который есть практически в любом кабеле, либо (очень редко) красный/вишнёвый. Как было сказано о земле – путать эти провода строго не рекомендуется.

Заключение

Фиксируем общую цветовую схему:

  • Земля – цвет провода жёлто-зелёный или жёлтый цвет провода;
  • Ноль – синий цвет;
  • Фаза – цвет провода белый, красный, коричневый и любые другие незнакомые.
Содержание:

Для того чтобы облегчить монтаж электропроводки, вся кабельно-проводниковая продукция имеет соответствующую разноцветную маркировку. Как правило в домах или квартирах устройство освещения, подключение розеток выполняется с помощью трех проводов. Каждый из них имеет собственное предназначение в домашней электрической сети. Поэтому обозначение цвета проводов земли, имеет большое значение. За счет этого существенно снижается время монтажа и последующего ремонта. Благодаря цветной маркировке, любой вид подключения не представляет особой сложности.

Заземляющий провод

Для обозначения заземляющего провода в большинстве случаев используется желто-зеленый цвет. Иногда можно встретить проводники с изоляцией только желтого цвета. Еще реже используется светло-зеленый цвет. Обычно такие провода маркируются символами РЕ. Однако, если заземляющий провод совмещен с нейтралью, он обозначается как PEN. Он окрашивается в зелено-желтый цвет, а на концах имеется синяя оплетка.

В распределительном щитке провод заземления подключается к специальной шине, или к корпусу и металлической дверке. В распределительной коробке соединение выполняется с аналогичными проводами, предусмотренными в светильниках и розетках, оборудованных специальными контактами заземления. Заземляющий провод не нужно подключать к устройству защитного отключения (УЗО), поэтому такие защитные устройства используются там, где для электропроводки применяется лишь два провода.

Нулевой проводник (нейтраль)

Для нулевого проводника или нейтрали традиционно используется синий цвет. Подключение в распределительном щитке осуществляется через специальную нулевую шину, обозначаемую символом N. К этой шине подключаются все провода, имеющие синий цвет.

Сама шина соединяется с вводом через . В некоторых случаях соединение может осуществляться напрямую, без каких-либо дополнительных автоматических устройств.

В распределительной коробке все нейтральные провода синего цвета соединяются вместе и не принимают участия в коммутации. Исключение составляет провод, идущий от выключателя. Подключение синих проводов к розеткам выполняется с помощью специального нулевого контакта, обозначаемого буквой N. Данная маркировка проставляется на оборотной стороне каждой розетки.

Цвет фазного провода

Фаза не имеет какого-либо точного обозначения. Довольно часто встречаются черные, коричневые, красные и другие цвета, отличающиеся от зеленого, желтого и синего. В распределительном щитке, установленном в квартире, соединение фазного провода, идущего от потребителя, выполняется с контактом автоматического выключателя, расположенным снизу. На других схемах этот проводник может соединяться с устройством защитного отключения.

В выключателях фаза непосредственно участвует в коммутации. С его помощью происходит замыкание и размыкание контакта – включение и выключение. Таким образом осуществляется подача напряжения к потребителям, а в случае необходимости – прекращение этой подачи. В розетках проводник фазы подключается к контакту с маркировкой L.

Определение проводов

Иногда возникают ситуации, когда требуется определить назначение того или иного провода при отсутствии на нем маркировки. Наиболее простым и распространенным способом является . С ее помощью можно точно установить, какой провод будет фазным, а какой – нулевым. В первую очередь нужно отключить подачу электроэнергии на щитке. После этого концы двух проводников зачищаются и разводятся в стороны подальше друг от друга. Затем необходимо включить подачу электричества и определить индикатором назначение каждого провода. Если лампочка загорелась при контакте с жилой – это фаза. Значит другая жила будет нейтралью.

При наличии в электропроводке заземляющего провода, рекомендуется воспользоваться мультиметром. Этот прибор оборудован двумя щупальцами. Вначале устанавливается измерение переменного тока в диапазоне более 220 вольт на соответствующей отметке. Один щупалец фиксируется на конце фазного провода, а вторым определяется заземление или ноль. В случае соприкосновения с нулем, на дисплее прибора отобразится напряжение 220 вольт. При касании заземляющего провода, напряжение будет заметно ниже.

Маркировка

Существует не только цвет проводов фаза, ноль, земля, но и другие виды маркировки, прежде всего буквенные и цифровые обозначения. Первая буква А указывает на материал провода – алюминий. При отсутствии этой буквы материалом сердечника будет медь.

Основная маркировка проводов в электрике:

  • АА – соответствует многожильному алюминиевому кабелю с дополнительной оплеткой из того же материала.
  • АС – дополнительная свинцовая оплетка.
  • Б – наличие защиты от влаги и дополнительной оплетки из двухслойной стали.
  • Бн – негорючая оплетка кабеля.
  • Г – отсутствие защитной оболочки.
  • Р – оболочка из резины.
  • НР – резиновая оболочка из негорючего материала.

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения , дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов , контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы , электрические щиты, пульты управления, и т.д.).

На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов , марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.


В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики . Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Монтажные работы часто приводят к появлению большого числа проводов. Как в ходе работ, так и после их завершения всегда появляется потребность в идентификации назначения проводников. Каждое соединение использует в зависимости от своей спецификации либо два, либо три проводника. Наиболее простым способом идентификации проводов и жил кабеля является окрашивание их изоляции в определенный цвет. Далее в статье мы расскажем о том,

  • как обозначается фаза и ноль способом присвоения им определенных цветов;
  • что обозначают буквы L, N, PE в электрике по-английски и какое соответствие их русскоязычным определениям,

а также другую информацию на эту тему.

Цветовая идентификация существенно уменьшает сроки выполнения ремонтных и монтажных работ и позволяет привлечь персонал с более низкой квалификацией. Запомнив несколько цветов, которыми обозначены проводники, любой домохозяин сможет правильно присоединить их к розеткам и выключателям в своей квартире.

Заземляющие проводники (заземлители)

Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.

Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.

Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.

Фазный проводник, его определение по цвету или иначе

Фаза всегда монтируется проводами, изоляция которых окрашена в любые цвета, но не синий или желтый с зеленым: только зеленый или только желтый. Фазный проводник всегда соединяется с контактами коммутаторов. Если при монтаже в наличии розетки, в которых есть клемма, маркированная буквой L, она соединяется с проводником в изоляции черного цвета. Но бывает так, что монтаж выполнен без учета цветовой маркировки проводников фазы, нуля и заземления.

В таком случае для выяснения принадлежности проводников потребуется индикаторная отвертка и тестер (мультиметр). По свечению индикатора отвертки, которой прикасаются к токопроводящей жиле, определяется фазный провод – индикатор светится. Прикосновение к жиле заземления или зануления не вызывает свечение индикаторной отвертки . Чтобы правильно определить зануление и заземление, надо измерить напряжение, используя мультиметр. Показания мультиметра, щупы которого присоединены к жилам фазного и нулевого провода, будут больше, чем в случае прикосновения щупами к жилам фазного провода и заземления.

Поскольку фазный провод перед этим однозначно определяется индикаторной отверткой , мультиметр позволяет завершить правильное определение назначения всех трех проводников.

Буквенные обозначения, нанесенные на изоляцию проводов, не имеют отношения к назначению провода. Основные буквенные обозначения, которые присутствуют на проводах, а также их содержание, показаны ниже.


Принятые в нашей стране цвета для указания назначения проводов могут отличаться от аналогичных цветов изоляции проводов других стран. Такие же цвета проводов используются в

  • Беларуси,
  • Гонконге,
  • Казахстане,
  • Сингапуре,
  • Украине.

Более полное представление о цветовом обозначении проводов в разных странах дает изображение, показанное далее.


Цветовые обозначения проводов в разных странах

В нашей стране цветовая маркировка L, N в электрике задается стандартом ГОСТ Р 50462 – 2009. Буквы L и N наносятся либо непосредственно на клеммы, либо на корпус оборудования вблизи клемм, например так, как показано на изображении ниже.


Этими буквами обозначают по-английски нейтраль (N), и линию (L – «line»). Это означает «фаза» на английском языке. Но поскольку одно слово может принимать разные значения в зависимости от смысла предложения, для буквы L можно применить такие понятия, как жила (lead) или «под напряжением» (live). А N по-английски можно трактовать как №null» – ноль. Т.е. на схемах или приборах эта буква означает зануление. Следовательно, эти две буквы – не что иное как обозначения фазы и нуля по-английски.

Также из английского языка взято обозначение проводников PE (protective earth) – защитное заземление (т.е. земля). Эти буквенные обозначения можно встретить как на импортном оборудовании, маркировка которого выполнена латиницей, так и в его документации, где обозначение фазы и нулевого провода сделано по-английски. Российские стандарты также предписывают использование этих буквенных обозначений.

Поскольку в промышленности существуют еще и электрические сети , и цепи постоянного тока, для них также актуально цветовое обозначение проводников. Действующие стандарты предписывают шинам со знаком плюс, как и всем прочим проводникам и жилам кабелей положительного потенциала, красный цвет. Минус обозначается синим цветом. В результате такой окраски сразу хорошо заметно, где какой потенциал.

Чтобы читателям запомнились цветовые и буквенные обозначения, в заключение еще раз перечислим их вместе:

  • фаза обозначается буквой L и не может быть по цвету желтой, зеленой или синей.


  • В занулении N, заземлении PE и совмещенном проводнике PEN используются желтый, зеленый и синий цвета.


  • На для проводников и шин применяются красный и синий цвета.


Цвета шин и проводов на постоянном токе

  • Не будет лишним показать цветовое обозначение шин и проводов для трех фаз:


Библия электрика ПУЭ (Правила устройства электроустановок) гласит: электропроводка по всей длине должна обеспечить возможность легко распознавать изоляцию по ее расцветке.

В домашней электросети, как правило, прокладывают трехжильный проводник, каждая жила имеет неповторимую расцветку.

  • Рабочий нуль (N) – синего цвета, иногда красный.
  • Нулевой защитный проводник (PE) – желто-зеленого цвета.
  • Фаза (L) – может быть белой, черной, коричневой.

В некоторых европейских странах существуют неизменные стандарты в расцветке проводов по фазе. Силовой для розеток – коричневая, для освещения – красный.

Расцветка электропроводки ускоряет электромонтаж

Окрашенная изоляция проводников значительно ускоряет работу электромонтажника. В былые времена цвет проводников был либо белым, либо черным, что в общем приносило немало хлопот электрику-электромонтажнику. При расключении требовалось подать питание в проводники, чтобы с помощью контрольки определить, где фаза, а где нуль. Расцветка избавила от этих мук, все стало очень понятно.

Единственное, чего не нужно забывать при изобилии проводников, помечать т.е. подписывать их назначение в распределительном щите, поскольку проводников может насчитываться от нескольких групп до нескольких десятков питающих линий.

Расцветка фаз на электроподстанциях

Расцветка в не такая, как расцветка на электроподстанциях. Три фазы А, В, С. Фаза А – желтый цвет, фаза В – зеленый, фаза С – красный. Они могут присутствовать в пятижильных проводниках вместе с проводниками нейтрали – синего цвета и защитного проводника (заземление) – желто-зеленого.

Правила соблюдения расцветки электропроводки при монтаже

От распределительной коробки к выключателю прокладывается трехжильный или двух жильный провод в зависимости от того, одно-клавишный или двух-клавишный выключатель установлен; разрывается фаза, а не нулевой проводник. Если есть в наличии белый проводник, он будет питающим. Главное соблюдать последовательность и согласованность в расцветке с другими электромонтажниками, чтобы не получилось как в басне Крылова: «Лебедь, рак и щука».

На розетках защитный проводник (желто-зеленый), чаще всего зажимается в средней части устройства. Соблюдаем полярность , нулевой рабочий – слева, фаза – справа.

В конце хочу упомянуть, бывают сюрпризы от производителей, например, один проводник желто-зеленый, а два других могут оказаться черными. Возможно, производитель решил при нехватке одной расцветки, пустить в ход то, что есть. Не останавливать ведь производство! Сбои и ошибки бывают везде. Если попался именно такой, где фаза, а где нуль решать вам, только нужно будет побегать с контролькой.

Цветовая маркировка проводов и кабелей. Стандарт для Республики Беларусь

С помощью данного материала, хочу помочь новичкам и старожилам, разобраться и понять особенности цветовой маркировки проводов и кабелей согласно нормативам Республики Беларусь и не только.

Недавно мне довелось подключать квартирный щит, к которому приходило около 30 кабелей, с различной цветовой маркировкой жил. Прикол заключался в том, что маркировка настолько разная, что каждый электрик (а на объекте работало две бригады) трактовал цветовую маркировку по- своему. Естественно не обошлось без косяков, и за один день (как обычно) подключить щит мне не удалось, так как моё мнение по цвету жил не совпало с мнением других электриков. Мне пришлось еще один день потратить, чтобы прозвонить все линии для правильного подключения в щите. Рассказываю подробности…

К щиту были протянуты одни из самых популярных кабелей в Минске (на момент 2013-2015 год) производителя «АВТОПРОВОД», сделанный по ГОСТу. В трех жильном кабеле ВВГ-П 3×1,5 и ВВГ-П 3×2,5 расцветка жил следующая:

  • зеленая + красная + белая

Далее были кабели (Белтелекабель) с жилами:

  • белая + белая с черной полосой + белая с синей полосой,
  • белая + белая с коричневой полосой + белая с черной полосой

были и более приятные, “правильные” кабели по расцветке жил (почему правильные узнаете чуть позже):

  • желто-зеленая + голубая + белая
  • желто-зеленая + голубая + черная
  • желто-зеленая + голубая + коричневая (правда эта были не кабели ВВГ а установочный ПВС и шнур ШВВП, которые не должны применяться в стационарной электропроводке, но это другая история)

Прежде чем начинать разбираться в расцветке проводов, хочу отметить ошибки электриков, на которых я получил хороший опыт.

Ошибка 1. При выполнении электромонтажных работ использовались кабеля разных производителей с различными расцветками жил. При этом в различных жилах кабелей один цвет мог трактоваться по-разному. Например, в одном кабеле ноль черный, в другом кабеле черным цветом оказалась земля*.

Ошибка 2. При таких разных по цвету проводах, не были обозначены (с помощью изоленты или термоусадочных трубок) заземляющие и нейтральные жилы. Простыми словами можно было просто куском синей изоленты обмотать вокруг жилы, которую взяли за ноль, а заземляющую жилу отметить зелено-желтой изолентой.

Ошибка 3. Еще одна ошибка не относится к маркировке, но почему-то ее часто совершают большинство электромонтажников. Речь о запасе кабеля для подключения щитов. В данном случае подключить красиво довольно сложно, так как некоторых кабелей едва хватает для подключения. Это при том, что подключение осуществлялась с помощью клемм на DIN-рейку.

Никогда не экономьте кабель, при подключении электрических щитов! Если вы не знаете, на какой высоте будет установлен щит, оставляйте запас кабеля до пола (как делаю я). Лишний кабель всегда можно использовать как перемычки для подключения розеток.

*Термины: НОЛЬ (N) – рабочий нейтральный проводник, ЗЕМЛЯ (PE) – защитный проводник 

Выводы которые я сделал при подключении щита, очень простые:

  1. Я перестал использовать кабели без желто-зеленой или голубой маркировки для линий розеток и питания освещения.
  2. В других случаях, я всегда отмечаю жилы с помощью изоляционной ленты для обозначения заземления (желто-зеленая изолента), нуля (синяя изолента) и фазы (красная изолента при однофазной электропроводки или желтая, зеленая, красная при трехфазной электропроводке).

Как-то незаметно меньше стал использовать кабель “АВТОПРОВОД”,  а все больше “КОБРИНАГРОМАШ”. С расцветкой у последнего, полный порядок.

А теперь давайте разбираться с цветами в электропроводке.

Цветовая маркировка проводов и кабелей в Республике Беларусь

Для начала следует понять, что цветная маркировка это отличное решение быстро определить любому мастеру (электрику, инженеру, энергетику и т.д.) какую роль выполняет тот или иной проводник в электроустановке. Но трудность заключается в том, что нет единого и точного правила для всех стран и производителей.

В каждой стране маркировка проводов по цвету разная и может значительно отличаться от нашей. В той же России столько путаницы с нормативами, что они сами не знают каких правил придерживаться.

В Республике Беларусь действуют национальные правила по устройству электроустановок ТКП 339-2011, которые частично сменили некоторые главы ПУЭ 6. В нем можно найти следующие пункты:

Давайте заглянем в стандарт СТБ МЭК 60173, на который ссылаются в данном пункте:

Обращаю Ваше внимание на четыре момента в этом стандарте:

  1. Четко определенно, что желто-зеленый проводник это ЗЕМЛЯ (PE) 
  2. Голубой цвет это НОЛЬ (N)
  3. Рекомендуемые цвета для остальных жил : ЧЕРНЫЙ или КОРИЧНЕВЫЙ.
  4. Нерекомендуемые цвета для жил: зеленый, желтый, красный, серый и белый.

Не будем делать еще выводы, и продолжим изучать ТКП 339-2011:

Опять же, нам указывают что заземляющий (защитный) проводник должен быть ЗЕЛЕНО-ЖЕЛТЫЙ.и обозначаться латинскими буквами PE.

Из этого пункта понятно, что НОЛЬ (нейтральный проводник) должен обозначаться ГОЛУБЫМ цветом.

А этот пункт указывает каким цветом должны быть обозначены шины фаз, для напряжения 400 (380) Вольт:

  • L1 (фаза A) – ЖЕЛТЫЙ
  • L2 (фаза B) – ЗЕЛЕНЫЙ
  • L3 (фаза С) – КРАСНЫЙ

Мы ознакомились с пунктами ТКП 339-2011, связанные с цветовой маркировкой. Однако ТКП 339-2011, лишь частично заменил некоторые главы ПУЭ 6. Всё остальное, чего нет в техническом кодексе 339-2011, следует искать в ПУЭ 6, действующим в Республике Беларусь. А в нем можно найти следующий пункт 2.1.31: 

Выводы на данный момент просты: 

1. На территории РБ действуют нормы по цветовой маркировки шин (ЖЕЛТЫЙ, ЗЕЛЕНЫЙ, КРАСНЫЙ). 

2. По расцветке жил проводов:

 ЗАЗЕМЛЕНИЕ (ЗЕМЛЯ) PE –  всегда ЖЁЛТО-ЗЕЛЁНЫЙ

 НОЛЬ (нейтральный проводник) N – всегда ГОЛУБОЙ (СИНИЙ, СВЕТЛО СИНИЙ) 

  ФАЗА (фазный проводник) L – может быть черного, коричневого, серого, красного, фиолетового, розового, белого, оранжевого, бирюзового цвета. Однако рекомендуется использовать приоритетные цвета для обозначения фаз: КОРИЧНЕВЫЙ (приоритет для фазной жилы №1) и ЧЕРНЫЙ (при наличии коричневой жилы, приоритет для фазы №2) .

Всё! Больше путать Вас не буду. Что указано выше это основа.

Цветовая маркировка проводов в будущем.

А теперь бонус. Что нас ждет впереди?

Рано или поздно, но мы должны будем признать европейский стандарт по цветовой маркировке МЭК 60445:2010. Например в России уже действует ГОСТ Р 50462-2009.

Особенность данного стандарта в расцветке фаз: L1 – коричневый, L2 – черный, L3 – серый.

Поэтому электрикам, которые собираются продолжать заниматься электропроводкой в будущем, следует выучить данную маркировку:

Я тоже потихоньку перехожу на  европейский стандарт при сборке электрических щитов.

Для однофазных щитов, все чаще применяю провода: черный + голубой + желто-зеленый. Хотя, как показывает практика, заказчикам щитов интуитивно понятней, когда фаза обозначается красным проводом.

Для трехфазных щитов начинаю использовать расцветку фаз: коричневый, черный, серый. Ввод в таких щитах маркирую с помощью термоусадочных цветных трубок согласно нормативам ТКП 339-2011 (желтый, зеленый, красный).

Как правильно идентифицировать цветовую маркировку?

Для быстрой и правильной идентификации цвета проводов для электропроводки следует придерживаться нескольких правил:

 Правило 1. Всегда использовать приоритетные цвета для проводов:

  • Желто-зеленый – всегда ЗАЗЕМЛЕНИЕ.
  • Голубой (может быть светло синий или синий) – это всегда НОЛЬ.
  • Коричневый – это приоритетный цвет для обозначения фазы в однофазной электропроводке.

 Правило 2. Если в кабеле нет коричневого, черного, серого цвета, но есть красный, то его следует делать ФАЗОЙ. У большинства красный цвет ассоциируется с фазным проводником.

 Правило 3. Если в кабеле нет желто-зеленого цвета, но есть зеленый, то в однофазной электропроводке его следует делать ЗЕМЛЕЙ. Не лишним будет обозначить его желто-зеленой маркировкой (изолентой или термоусадкой).

Часто при прокладке кабеля от выключателя к распределительной коробке, желто-зеленую жилу используют как «общую фазу» для выключателя. Так делать нельзя!

Несколько примеров по правильному определению цветов в электропроводке на фото ниже:

Вот и всё, что мне хотелось вам рассказать про цветовую маркировку проводов. Теперь только остается следовать этим правилам и не создавать лишних хлопот себе и другим мастерам, при выполнении электромонтажных работ. 

Phasor Notation – обзор

1.2.2.1 Представление Phasor и пассивные компоненты

Переменные, такие как напряжение и ток, могут быть математически представлены в виде векторов. В энергосистемах эти векторы часто называют векторами. Фазоры в полярной форме представлены величиной и углом. В векторной записи величина тока или напряжения отображается только с их среднеквадратичным значением (RMS). Среднеквадратичное значение любого периодического сигнала можно вычислить из интеграла, показанного здесь, где v (t) – это форма сигнала (например, напряжение), а T – период времени формы сигнала.

VRMS = 1T∫0Tv2 (t) dt

Для синусоидальной формы волны v (t) = Vmaxsin (ωt + φ) среднеквадратичное значение получается делением максимального значения переменной на квадратный корень из 2. мы вычислили среднеквадратичное значение, мы можем представить форму вектора переменной переменной как среднеквадратичное значение и фазовый угол, как показано здесь:

P [v (t)] = VRMS∠φ

При сложении двух синусоидальных сигналов при на той же частоте, в результате будет получен другой сигнал с той же частотой, но с другой величиной и фазовым углом.Новые амплитуда и фазовый угол могут быть вычислены путем добавления двух векторов, аналогично сложению двух векторов с определенными величинами и углами.

Как и любой другой вектор, вектора могут быть представлены в прямоугольной форме и, следовательно, могут быть представлены действительной частью плюс мнимая часть, умноженная на мнимое число j или -1.

Еще одним важным понятием здесь является закон Ома, который связывает ток, напряжение и импеданс и действителен для векторов напряжения и тока.Записывая закон Ома в виде вектора напряжения, деленного на вектор тока, мы получаем другой вектор, называемый импедансом. Угол вектора импеданса является важным параметром, так как косинус этого угла называется коэффициентом мощности. Подробнее о коэффициенте мощности мы поговорим позже в этой главе.

Импеданс можно записать в прямоугольной форме как R + jX, где R – сопротивление, а X – реактивное сопротивление.

Z = R + jX = VI

Кроме того, вектор тока, деленный на вектор напряжения, является другим вектором, называемым проводимостью, и имеет единицу измерения 1 / Ом, также известный как Siemens, и обозначается буквой Y .Проводимость – это мера того, насколько легко ток может течь в цепи переменного тока. Полная проводимость может быть записана в прямоугольных координатах как G + jB, или она может быть записана в полярной форме как величина, обратная импедансу. Проводимость в прямоугольной форме состоит из двух компонентов: G, или проводимость, представляет собой действительную часть вектора проводимости, а B, известную как проводимость, является мнимой частью. Закон Ома можно переписать для определения полной проводимости, поскольку ток равен полной проводимости, умноженной на напряжение. Опять же, проводимость – это вектор тока (I), деленный на вектор напряжения (V), и является обратной величиной импеданса.

Y = G + jB = IV

Для резистора адмиттанс равен сопротивлению, обратному сопротивлению, которое равно проводимости G. Для катушки индуктивности адмиттанс равен –j умноженному на единицу по угловой частоте (ω = 2πf ), умноженное на индуктивность L. Для конденсатора полная проводимость в j умноженная на ω, умноженная на емкость C.

Для параллельных компонентов, проводимости могут быть сложены так, чтобы эквивалентная проводимость параллельной комбинации равнялась проводимости 1 плюс проводимость 2, и т. д. Неважно, одинаковые ли компоненты или разные.Например, у вас может быть два конденсатора или конденсатор и катушка индуктивности, включенные параллельно. Для последовательного импеданса вы просто добавляете импедансы, что эквивалентно добавлению обратной величины допусков.

Импеданс может быть представлен треугольником импеданса, где ось x представляет действительную часть импеданса, также известную как сопротивление, а ось y представляет мнимую часть, называемую реактивным сопротивлением. На рис. 1.1 показано векторное представление импеданса.Угол между действительной и мнимой частью импеданса в этом случае называется θ.

Рисунок 1.1. Векторное представление вектора импеданса.

Давайте еще раз посмотрим на наши три основных электрических компонента – резисторы, конденсаторы и катушки индуктивности – чтобы определить, как они могут быть представлены в форме импеданса. Идеальные резисторы имеют только реальную часть своего импеданса и, следовательно, не имеют реактивного сопротивления. Это означает, что в полярной записи сопротивление можно записать как R с фазовым углом 0 градусов.В прямоугольной форме идеальные резисторы не имеют мнимой составляющей в векторе импеданса, поэтому их импеданс можно записать как R + j0 Ом или просто R Ом.

Идеальный конденсатор не имеет сопротивления, поэтому импеданс можно записать как реактивное сопротивление под углом -90 градусов в полярной форме. Реактивное сопротивление идеального конденсатора рассчитывается как 1 / jCω, где ω просто в 2π раз больше частоты, а C – емкость. Обратите внимание, что конденсатор будет иметь отрицательное реактивное сопротивление, если записать его как мнимую составляющую в прямоугольной форме с оператором j в числителе.Таким образом, нагрузки с отрицательным реактивным сопротивлением называются емкостными. Пример соотношения форм сигналов напряжения и тока для емкостной нагрузки показан на рис. 1.2.

Рисунок 1.2. Пример соотношения форм сигналов напряжения и тока в емкостной нагрузке.

На рис. 1.2 видно, что при емкостной нагрузке форма волны тока опережает форму волны напряжения. Как показано на диаграмме, если пик напряжения начинается в момент времени 0, вы можете видеть, что пик формы волны тока уже начался до момента времени 0.Это представляет собой емкостную нагрузку, и поэтому в емкостных нагрузках ток опережает напряжение. Вектор импеданса в этом случае будет иметь отрицательный фазовый угол, поскольку он является результатом деления вектора напряжения с углом 0 (опорный угол) на вектор тока с положительным фазовым углом. Таким образом, сопротивление с отрицательным фазовым углом является емкостным. Это также согласуется с определением реактивного сопротивления чистого конденсатора, которое мы видели ранее, которое равно 1 / jCω или -j / Cω; следовательно, фазовый угол чистого емкостного импеданса составляет -90 градусов в полярной форме.Фазорное представление напряжения и тока для примера емкостной нагрузки показано на рис. 1.3.

Рисунок 1.3. Фазорное представление напряжения и тока для емкостной нагрузки.

Идеальный индуктор не имеет сопротивления, но имеет реактивное сопротивление Lω, где ω в 2π раз больше частоты, а L – индуктивность. В полярной форме реактивное сопротивление катушки индуктивности можно записать как Lω под углом 90 градусов или в прямоугольных координатах как jLω. Обратите внимание, что катушка индуктивности будет иметь положительное реактивное сопротивление, если ее записать как мнимую составляющую в прямоугольной форме с использованием оператора j.Пример соотношения между формами сигналов напряжения и тока для индуктивной нагрузки показан на рис. 1.4.

Рисунок 1.4. Пример соотношения форм сигналов напряжения и тока в индуктивной нагрузке.

На рис. 1.4 видно, что пик формы волны тока начинается через некоторое время после времени 0. Следовательно, в индуктивной нагрузке ток отстает от напряжения. Вектор импеданса в этом случае будет иметь положительный фазовый угол, поскольку он является результатом деления вектора напряжения с углом 0 (опорный угол) на вектор тока с отрицательным фазовым углом.Это также согласуется с определением реактивного сопротивления чистого реактора, которое мы видели ранее, которое представляет собой оператор j, умноженный на индуктивность, умноженную на 2πf; следовательно, фазовый угол чистого индуктивного импеданса составляет 90 градусов в полярной форме. Фазорное представление напряжения и тока для примера индуктивной нагрузки показано на рис. 1.5.

Рисунок 1.5. Фазорное представление напряжения и тока для индуктивной нагрузки.

В целом, поскольку импеданс в цепях переменного тока заменяет общую концепцию сопротивления в цепях постоянного тока, при работе с цепями переменного тока закон Ома необходимо переписать как V = I · Z, где Z представляет импеданс вместо сопротивления; V и I – векторы напряжения и тока соответственно.

Представление сигналов во временной и частотной областях

Электрические сигналы имеют представление как во временной, так и в частотной области. Во временной области напряжение или ток выражаются как функция времени, как показано на рисунке 1. Большинство людей относительно комфортно относятся к представлениям сигналов во временной области. Сигналы, измеренные на осциллографе, отображаются во временной области, а цифровая информация часто передается с помощью напряжения как функции времени.

Рисунок 1.Представление электрического сигнала во временной области.

Сигналы также могут быть представлены величиной и фазой как функцией частоты. Сигналы, которые периодически повторяются во времени, представлены спектром мощности, как показано на рисунке 2. Сигналы, которые ограничены по времени (т.е. ненулевые только в течение конечного времени), представлены энергетическим спектром, как показано на рисунке 3.

Рисунок 2. Спектр мощности периодического сигнала.

Рисунок 3.Энергетический спектр ограниченного по времени (переходного) сигнала.

Представления в частотной области особенно полезны при анализе линейных систем. Инженеры по ЭМС и целостности сигналов должны уметь работать с сигналами, представленными как во временной, так и в частотной областях. Источники сигналов и помехи часто определяются во временной области. Однако поведение системы и преобразования сигналов более удобны и интуитивно понятны при работе в частотной области.

Линейные системы

Теория линейных систем играет ключевую роль в инженерном анализе электрических и механических систем.Инженеры моделируют самые разные вещи, включая поведение схемы, распространение сигнала, связь и излучение, как линейные преобразования. Следовательно, важно точно понять, что мы подразумеваем под линейной системой, чтобы понять, как и когда использовать доступные нам мощные инструменты анализа линейных систем.

На рис. 4 показана система с одним входом, x (t) , и одним выходом, y (t) = H [x (t)] . Если ввод, x 1 (t) производит вывод y 1 (t) , а ввод x 2 (t) производит вывод y 2 (t) , то система является линейной тогда и только тогда, когда,

ay1 (t) + by2 (t) = H [ax1 (t) + bx2 (t)] (1)

, где a и b – константы.Другими словами, масштабирование ввода константой приведет к выходу, масштабированному той же константой; а объединение (суммирование) двух входов даст выход, который представляет собой сумму выходов, произведенных отдельными входами.

Рисунок 4: Линейная система.

Контрольный вопрос

Какое из следующих уравнений описывает взаимосвязь между выходом y (t) и входом x (t) линейной системы?

  1. y = 5x
  2. y (t) = 0
  3. y = 8x + 3
  4. y = x 2
  5. y (t) = 5t x (t)
  6. y = грех x
  7. y (t) = 5 δ / δt [x (t)]

Из вышеперечисленных вариантов только a, b и g являются линейными преобразованиями системы. y = 0 – не очень интересная система, потому что ее выход всегда равен нулю, но она линейна. Простые производные и интегральные операторы являются линейными, поскольку они удовлетворяют условиям уравнения (1). Остальные варианты – нелинейные операции. Обратите внимание, что y = 8x + 3 – это уравнение прямой, но оно не описывает линейную систему, потому что оно имеет ненулевой выход, когда нет входа.

Анализ линейных систем в частотной области

Линейные системы обладают уникальным свойством: любой синусоидальный вход будет давать синусоидальный выходной сигнал с точно такой же частотой.Другими словами, если ввод имеет форму,

x (t) = Aincos (ω0t + φin). (2)

, то результат будет иметь вид

y (t) = Aoutcos (ω0t + φout). (3)

Как правило, величина и фаза синусоидального сигнала могут изменяться, но частота должна быть постоянной. Это дает нам очень мощный инструмент анализа для анализа линейных систем. Если мы представим входной сигнал как сумму его компонентов в частотной области, то мы можем выразить выходной сигнал как простое масштабирование величин и сдвиг фаз этих компонентов.

Фазорная нотация

Для облегчения анализа откликов линейной системы на синусоидальные входные сигналы удобно представлять сигналы в сокращенной форме, известной как обозначение вектора. Рассмотрим ввод формы,

x (t) = Acos (ωt + φ). (4)

Это может быть представлено как,

x (t) = Re {Aej (ωt + φ)} = A⋅Re {ejωtejφ}. (5)

, где Re {•} указывает действительную часть комплексной величины. Признавая, что частота ω будет одинаковой во всей системе, нам не нужно специально писать термин e jωt , если мы помним, что он есть.То же самое относится к обозначению Re {•} . Это позволяет нам выразить синусоидальный сигнал просто через его амплитуду и фазу как,

x = Aejϕ или A∠ϕ. (6)

Выражение в (6) – это сигнал в (4), выраженный с использованием векторной записи. Обратите внимание, что мы должны знать частоту сигнала, чтобы перейти от векторной записи к представлению во временной области.

Контрольный вопрос

Запишите следующие сигналы в векторной записи:

  1. x (t) = 5 cos (wt) В
  2. y (t) = 5 sin (wt) ампер
  3. z (t) = 5t sin (wt) вольт

Первый сигнал, выраженный в векторных обозначениях, просто равен x = 5 вольт.Чтобы получить обозначение вектора для второго сигнала, мы понимаем, что sin (ωt) = cos (ωt + π / 2), поэтому y = 5e j (π / 2) . Третий сигнал не является синусоидой и поэтому не может быть выражен с помощью векторной записи.

Серия Фурье

Конечно, многие входы в линейные системы, которые мы хотели бы проанализировать, не являются синусоидальными. В этом случае желательно представить более произвольные формы сигнала в виде суммы синусоидальных частотных составляющих. Затем мы анализируем каждый компонент по отдельности и применяем концепцию суперпозиции для восстановления выходного сигнала.

Периодический сигнал может быть представлен как сумма его частотных компонентов путем вычисления его коэффициентов ряда Фурье. Можно записать периодический сигнал с периодом T,

х (t) = ∑n = −∞∞cnejn2πf0t (7a)

где

cn = 1T∫t0t0 + Tx (t) e − jn2πf0tdt. (7b)

Если x (t) является сигналом области реального времени, коэффициенты c n и c -n являются комплексно сопряженными (т.е.), и мы можем переписать уравнение (7) в форме

x (t) = c0 + ∑n = 1∞ (cnejn2πf0t + cn ∗ e − jn2πf0t) = c0 + ∑n = 1∞ (| cn | ejn2πf0t + ϕn + | cn | e− (jn2πf0t + ϕn)) = c0 + ∑n = 1∞2 | cn | cos (n2πf0t + ϕn).(8)

В этой форме мы видим, что коэффициенты ряда Фурье состоят из постоянной составляющей c 0 и частот положительных гармоник nω 0 (n = 1,2,3,…). Это односторонний ряд Фурье, а коэффициенты соответствуют амплитудам частотных гармоник, которые можно измерить с помощью анализатора спектра.

Несколько периодических сигналов и их представления в частотной области показаны на рисунке 5. Представление периодического сигнала в частотной области представляет собой линейчатый спектр.Он может иметь ненулевые значения только при постоянном токе, основной частоте и гармониках основной гармоники. Поскольку периодические сигналы не имеют начала и конца, ненулевые периодические сигналы имеют бесконечную энергию, но обычно имеют конечную мощность. Полная мощность сигнала во временной области,

Ptotal = 1T∫t0t0 + Tx2 (t) dt. (9)

равно сумме мощностей в каждом компоненте частотной области,

Ptotal = ∑n = −∞∞ | cn | 2. (10)

Рисунок 5. Периодические сигналы во временной и частотной области.

Пример 1: Представление последовательности импульсов в частотной области

Определите представление в частотной области для последовательности импульсов, показанной на рисунке 6.

Рисунок 6: Последовательность импульсов.

Во временной области этот сигнал описывается следующей формулой:

x (t) = {1 vnT

Коэффициенты ряда Фурье затем вычисляются с использованием уравнения (7b) как,

cn = 1T∫0Tx (t) e − jn2πf0tdt = 1T∫0τ (A) e − jn2πt / Tdt = AT∫0τe − jn2πt / T dt = AτT [sin (nπτT) (nπτT)] e − j (nπτT) .(E2)

Обратите внимание, что при τ → 0 наш сигнал во временной области выглядит как последовательность импульсов, а амплитуды всех гармоник приближаются к одному и тому же значению. При τ → T / 2 сигнал становится прямоугольной формы, а величина гармоник становится равной

.

cn = A2 | sin (nπ2) (nπ2) || e − j (nπ2) | = {Anπn = ± 1, ± 3, ± 5 ⋯ 0n = ± 2, ± 4, ± 6 ⋯. (E3)

В этом случае амплитуда четных гармоник равна нулю, а нечетные гармоники линейно убывают с частотой (n).

Преобразование Фурье

Переходные сигналы (т.е. сигналы, которые начинаются и заканчиваются в определенное время) также могут быть представлены в частотной области с помощью преобразования Фурье. Представление преобразованием Фурье переходного сигнала, x (t), имеет вид

.

X (е) знак равно ∫ − ∞∞x (t) e − j2πf tdt. (11)

Обратное преобразование Фурье может использоваться для преобразования представления сигнала в частотной области обратно во временную область,

x (t) = 12π∫ − ∞∞X (f) ej2πf tdf. (12)

Некоторые переходные сигналы во временной области и их преобразования Фурье показаны на рисунке 7.

Рис. 7. Переходные сигналы во временной и частотной области.

Обратите внимание, что переходные сигналы имеют нулевую среднюю мощность (при усреднении за все время), но имеют конечную энергию. Полная энергия переходного сигнала во временной области определяется выражением

.

E = ∫ − ∞∞x2 (t) dt. (13)

Это должно равняться полной энергии в представлении сигнала в частотной области,

E знак равно ∫ − ∞∞ | X (f) | 2 df. (14)

Представление трапецеидального сигнала в частотной области

Давайте рассмотрим представление в частотной области периодического трапецеидального сигнала, показанного на рисунке 8.Изучение поведения этого сигнала помогает нам понять взаимосвязь между представлениями временной и частотной области в целом. Кроме того, сходство между трапецеидальной формой сигнала и обычным цифровым сигналом будет полезно, когда мы исследуем проблемы ЭМС или целостности сигнала в цифровых системах.

Рис. 8. Трапецеидальная форма волны.

Используя односторонний ряд Фурье, уравнения (7b) и (8), мы можем представить этот сигнал как сумму его частотных составляющих [1],

x (t) = c0 + ∑n = 1∞2 | cn | cos (n 2πf0 t + ϕn).(15)

где

2 | cn | = 2AτT | sin (nπτT) (nπτT) || sin (nπtrT) (nπtrT) |. (16)

Уравнение (16) можно вывести, отметив, что трапецеидальная форма волны на рисунке 7 может быть получена путем свертки последовательности импульсов на рисунке 9 с другой серией импульсов, импульсы которой имеют ширину t r и амплитуду A / t . r . Свертка во временной области эквивалентна умножению в частотной области, поэтому мы можем просто перемножить два представления этих последовательностей импульсов в частотной области, чтобы получить уравнение (16).

Каждый член, 2 | c n |, – амплитуда n-й гармоники. Если мы предположим, что t r << T, то заметим, что третий член примерно равен sin (малое число) small number≈1 для нижних гармоник. Если τ = T2 (т.е. рабочий цикл 50%), то числитель второго члена равен 1 для гармоник (n = 1,3,5,…) и 0 для четных гармоник (n = 2,4,6. ,…). В этом случае амплитуда нижних гармоник обратно пропорциональна n (то есть амплитуда нижних гармоник уменьшается пропорционально частоте).На более высоких гармониках третий член также начинает уменьшаться пропорционально частоте, поэтому общая амплитуда верхних гармоник уменьшается в среднем со скоростью, пропорциональной квадрату частоты. Это частотное представление трапециевидного сигнала (τ = T2, tr≪T) и его огибающая показаны на рисунке 9.

Рисунок 9: Представление трапецеидального сигнала в частотной области

Пример 2: Гармоники трапециевидного сигнала

Форма сигнала, показанная на Рисунке 10 ниже, измерена на осциллографе в лаборатории.Время нарастания и спада составляет 0,8 нс.

а.) Какая основная частота?

б.) Рассчитайте амплитуды гармоник на частотах 50, 150, 250 и 1,55 ГГц.

Если время нарастания и спада увеличится до 1,6 наносекунды, то на сколько дБ снизятся гармоники на частотах 50, 150, 250 и 550 МГц?

Рис. 10. Трапецеидальная форма волны для примера 2.

Учитывая, что период составляет 20 нсек, основная частота легко определяется как f0 = 1T = 12 × 10-8 = 50 МГц.Поэтому нас просят определить амплитуды 1 , 3 , 5 и 11 гармоник. Применяя уравнение (16) для n = 1,3,5 и 11, получаем амплитуды этих гармоник,

2 | c1 | = 2 (1 v) 2 | sin (1π (10) 20) (1π (10) 20) || sin (1π (0.8) 20) (1π (0.8) 20) | = (1 v ) (0,64) (1,00) = 0,64 v2 | c3 | = 2 (1 v) 2 | sin (3π (10) 20) (3π (10) 20) || sin (3π (0,8) 20) (3π (0,8 ) 20) | = (1 v) (0,21) (0,98) = 0,21 v2 | c5 | = 2 (1 v) 2 | sin (5π (10) 20) (5π (10) 20) || sin (5π ( 0,8) 20) (5π (0,8) 20) | = (1 v) (0.13) (0,94) = 0,12 v2 | c11 | = 2 (1 v) 2 | sin (11π (10) 20) (11π (10) 20) || sin (11π (0,8) 20) (11π (0,8) 20 ) | = (1 v) (0,06) (0,71) = 0,04 v.

Ни одна из этих гармоник не зависит от времени нарастания. Они имеют практически ту же амплитуду, что и при нулевом времени нарастания. Однако увеличение времени нарастания до 1,6 нс существенно влияет на амплитуду верхних гармоник,

2 | c1 | = 2 (1 v) 2 | sin (1π (10) 20) (1π (10) 20) || sin (1π (1.6) 20) (1π (1.6) 20) | = (1 v ) (0,64) (. 99) = 0,63 v2 | c3 | = 2 (1 v) 2 | sin (3π (10) 20) (3π (10) 20) || sin (3π (1.6) 20) (3π (1,6) 20) | = (1 v) (0,21) (0,91) = 0,19 v2 | c5 | = 2 (1 v) 2 | sin (5π (10) 20) (5π (10) 20) || sin (5π (1,6) 20) (5π (1,6) 20) | = (1 v) (0,13) (0,76) = 0,10 v2 | c11 | = 2 (1 v) 2 | sin (11π (10 ) 20) (11π (10) 20) || sin (11π (1,6) 20) (11π (1,6) 20) | = (1 v) (0,06) (0,13) = 0,008 v.

Удвоение времени нарастания с 0,8 до 1,6 нс уменьшает первую гармонику всего на 20log (0,64,63) = 0,14 дБ. Третья гармоника уменьшается на 20log (0,21,19) = 0,87 дБ. Пятая гармоника уменьшается на 20log (.12.10) = 1,6 дБ, а одиннадцатая гармоника уменьшается на 20log (0.040.008) = 14 дБ.

Обратите внимание, что изменение времени нарастания может существенно повлиять на амплитуду верхних гармоник без значительного изменения представления сигнала во временной области. Проблемы, связанные с излучаемыми электромагнитными помехами или перекрестными помехами на верхних частотах гармоник цифрового сигнала, часто можно решить, увеличив время нарастания сигнала цифрового сигнала. Как правило, время нарастания, равное 10% длины в битах или более, по-прежнему дает очень хороший цифровой сигнал, при этом значительно ограничивая амплитуду сигнала на частотах выше 10 -й гармоники .

9. Импеданс и фазовый угол

Импеданс

Сопротивление цепи является общим эффективным сопротивление потоку тока комбинацией элементы схемы.

Символ: Z

Единицы: `Ω`

Суммарное напряжение на всех 3 элементах (резисторах, конденсаторах). и индукторы) написано

В RLC

Чтобы найти это общее напряжение, мы не можем просто добавить напряжения В R , V L и V C .2`

Фазовый угол

`загар \ тета = (X_L-X_C) / R`

Угол θ представляет фазовый угол между текущим и напряжение.

Сравните это с фазовым углом, который мы встречали ранее на графиках y = a sin ( bx + c ).

Пример 1

Цепь последовательно соединена с сопротивлением 5 Ом и реактивным сопротивлением на катушке индуктивности 3 Ом. Представьте импеданс комплексным числом в полярная форма[email protected] \ Ω`.

Пример 2 (а)

В конкретной цепи переменного тока есть резистор `4 \ Ω`, реактивное сопротивление на катушке индуктивности` 8 \ Ом и реактивное сопротивление на конденсаторе 11 Ω`. Выразите полное сопротивление цепи как сложное число в полярной форме.

Ответ

В данном случае имеем: `X_L- X_C = 8-11 = -3 \ Ω`


Итак, `Z = 4 – 3j \ Ω` в прямоугольной форме.

Теперь выразим это в полярной форме:

С помощью калькулятора находим `r = 5` и` θ = [email protected] \ Ω`

Интерактивный график RLC

Ниже представлен интерактивный график для игры с (это не статичное изображение). Вы можете изучить влияние резистора, конденсатора и катушки индуктивности на полное сопротивление в цепи переменного тока.

Действия для этого интерактивного

  1. Во-первых, просто поиграйте с ползунками. Вы можете. `и
    Перетащите ползунок X C вверх или вниз, чтобы изменить импеданс конденсатора,` X_C`.
  2. Обратите внимание на влияние различных импедансов на значения X L X C и Z .
  3. Обратите внимание на влияние различных импедансов на θ, угол, который красная линия «результата» образует с горизонталью (в радианах).
  4. Рассмотрим графики напряжения и тока в интерактиве. Обратите внимание на величину отставания или опережения при смене ползунков.
  5. Что вы узнали, играя с этим интерактивом?

Авторские права www.intmath.com

Пример 2 (б)

Ссылаясь на Пример 2 (a) выше, предположим, что у нас есть ток в цепи 10 А. Найдите величину напряжения по

i) резистор ( В R )

ii) индуктор ( В L )

iii) конденсатор ( В С )

iv) комбинация ( В RLC )

Ответ

i) | V R | = | IR | = 10 × 4 = 40 В

ii) | V L | = | IX L | = 10 × 8 = 80 В

iii) | V C | = | IX C | = 10 × 11 = 110 В

iv) | V RLC | = | IZ | = 10 × 5 = 50 В

Симметричных компонентов для энергосистемы – компоненты положительной, отрицательной и нулевой последовательности

Когда система несимметрична, напряжения, токи и фазные сопротивления обычно не равны.Такая система может быть решена с помощью метода симметричной по фазе, известного как метод симметричных компонентов. Этот метод еще называют трехкомпонентным. Метод симметричных компонентов упростил задачу несбалансированной трехфазной системы. Он используется для любого количества фаз, но в основном используется для трехфазной системы.

Несимметричная трехфазная система решена относительно симметричных компонентов, а затем ее можно перенести обратно в реальную схему. Сбалансированный набор компонентов может быть задан как компонент прямой последовательности, компонент обратной последовательности и компонент нулевой фазовой последовательности.

Рассмотрим систему несимметричных векторов напряжения, показанную на рисунке ниже. Предположим, что векторы представлены как V a , V b и V c и их последовательность фаз равна V a , V b, и V c . Последовательность фаз положительного компонента – V a , V b и V c , а последовательность фаз отрицательных составляющих – V a , V c и V b .

В компоненте прямой фазовой последовательности набор из трех векторов равны по величине, разнесен на 120 ° друг от друга и имеет ту же последовательность фаз, что и исходные несимметричные векторы.Компонент прямой последовательности несбалансированной трехфазной системы показан ниже.

В компоненте обратной фазовой последовательности набор из трех векторов равны по величине, разнесен на 120 ° друг от друга и имеет фазовую последовательность, противоположную последовательности фаз исходных векторов. Обратная последовательность фаз показана на рисунке ниже

.

В компонентах нулевой последовательности фаз набор из трех векторов равен по величине нулевому смещению фаз друг от друга. Компонент нулевой последовательности фаз показан на рисунке ниже.

Трехфазная сбалансированная система – это частный случай общей трехфазной системы, в которой компоненты нулевой и обратной последовательности равны нулю.

Simple Harmonic Oscillator – The Physics Hypertextbook

Обсуждение

Поверьте мне. Это просто.

Начните с того, что пружина опирается на горизонтальную (пока что) поверхность без трения. Прикрепите один конец к неподвижному объекту, а другой – к подвижному объекту. Запустите систему в состоянии равновесия – ничего не движется и пружина находится в расслабленном состоянии.

А теперь нарушьте равновесие. Потяните или толкните гирю параллельно оси пружины и отойдите назад. Вы знаете, что будет дальше. Система будет колебаться из стороны в сторону (или назад и вперед) под действием возвращающей силы пружины. (Восстанавливающая сила действует в направлении, противоположном смещению от положения равновесия.) Если пружина подчиняется закону Гука (сила пропорциональна растяжению), то устройство называется простым гармоническим осциллятором (часто сокращенно sho ). и способ его движения называется простым гармоническим движением (часто сокращенно shm ).

Начните анализ со второго закона движения Ньютона.

F = м a

Есть только одна сила – возвращающая сила пружины (которая отрицательна, поскольку действует противоположно смещению массы из положения равновесия). Замените чистую силу законом Гука. Замените ускорение второй производной смещения.

Немного переставить.

к х = d 2 x
м дт 2

Это линейное дифференциальное уравнение второго порядка.Слева у нас есть функция со знаком минус перед ней (и некоторыми коэффициентами). С правой стороны у нас есть вторая производная этой функции. Решением этого уравнения является функция, у которой вторая производная стоит со знаком минус. У нас есть две возможные функции, которые удовлетворяют этому требованию – синус и косинус – две функции, которые по сути одинаковы, поскольку каждая является просто версией другой со сдвигом фазы. Когда триггерная функция сдвигается по фазе, ее производная также сдвигается по фазе.Больше ничего не меняется, поэтому мы можем выбрать синус со сдвигом фазы или косинус со сдвигом фазы.

Тригонометрические функции и производные
функция 1-я производная 2-я производная
f ( x ) = + sin x
д 2 f ( x ) = −sin x
dx 2
д 2 f ( x ) = −cos x
dx 2

Я думаю, что я воспользуюсь синусоидальной функцией и добавлю произвольный фазовый сдвиг или фазовый угол или фазу (φ, “phi”), чтобы наш анализ охватил синус (φ = 0), косинус (φ = π 2 ) и все, что между ними (φ = независимо от ).С физической точки зрения нам нужен фазовый член, чтобы учесть все возможные начальные положения – при движении равновесия в одну сторону (φ = 0), при движении равновесия в другую сторону (φ = π), полностью в одну сторону. (φ = π 2 ), полностью на другую сторону (φ = 2 ) и все, что между ними (φ = независимо от ).

Фаза
физическое описание сдвиг фазы
начиная с состояния равновесия,
двигаясь вперед
нет
(начальная фаза)
0 радиан
полностью в одну сторону,
остановился мгновенно
четверть
цикл
π 2 радиан
возврат к равновесию,
движение назад
половина
цикл
π радиан
полностью на другую сторону,
остановился мгновенно
три четверти
цикл
2 радиан
возврат к равновесию,
движение вперед
полный
цикл
2π радиан

Нам также нужны коэффициенты для обработки единиц.Решением нашего дифференциального уравнения является алгебраическое уравнение – положение как функция времени ( x ( t )) – которое также является тригонометрическим уравнением. Все триггерные функции являются отношениями, что делает их безразмерными (более точный математический термин) или безразмерными (термин, который я предпочитаю). Единственная единица, которую вы действительно можете поместить в функцию триггера, – это радиан. Согласно математическому определению, угол (φ) – это отношение длины дуги ( s ) к радиусу ( r ).Использование единиц СИ даст нам метры, а не метры, и размерный анализ сводится к нулю. В некотором смысле радиан – это единица измерения ничего.

.
φ = с

рад = м = “без единицы измерения”

r м

Способ обойти это – добавить коэффициент, который изменяет нашу входную переменную (время) на то, что может обрабатывать триггерная функция (радианы).Эта вещь называется угловой частотой , которая в данном случае является скоростью изменения фазового угла (φ) во времени ( t ). Его символ – омега в нижнем регистре (ω).

Единица измерения угловой частоты в системе СИ – радиан в секунду , что сокращается до обратной секунды, поскольку радиан безразмерен.



рад = 1 = с −1

с с

Я лично ненавижу это количество.В данном контексте это не имеет физического значения. Угловая частота отлично подходит для систем, которые вращаются (вращаются) или вращаются (перемещаются по кругу), но наша система колеблется (движется вперед и назад). Как одно связано с другим? Поскольку краткий ответ – «абстрактно», разумно вообще избегать ω и использовать коэффициент, основанный на физической реальности.

Периодическая система – это система, в которой время между повторяющимися событиями постоянно. (Система, в которой время между повторяющимися событиями непостоянно, называется апериодической .) Время между повторяющимися событиями в периодической системе называется периодом . Математически это время ( t ) на количество событий ( n ). Обозначение точки – это заглавный курсив T , хотя некоторые профессии предпочитают заглавный курсив P .

Единицей измерения периода в системе СИ является секунда , поскольку количество событий безразмерно.



с = с

1

Частота – это скорость, с которой происходит периодическое событие.Математически это количество событий ( n ) за раз ( t ). Обозначение частоты – длинное f , но также подойдет и курсив в нижнем регистре f . (Эти символы часто идентичны в некоторых шрифтах.)

Единица измерения частоты в системе СИ – это обратная секунда, которая называется герц (Гц) в честь Генриха Герца, немецкого физика 19 века, который подтвердил существование радиоволн.



Гц = 1 = с −1

с

Период и частота противоположны друг другу.Конечно, они также обратно пропорциональны, но это упускает суть. Они обратно пропорциональны с коэффициентом пропорциональности, равным единице (без единицы измерения). Следовательно, для уравновешивания их обратных величин коэффициент не требуется. Они абсолютно и полностью взаимны.

f = 1 т = 1
т f

Вернуться к дифференциальному уравнению.Его решение – синус с фазовым сдвигом. Время – это входная переменная в триггерной функции. Триггерные функции не могут принимать числа с единицами измерения. Исправление заключается в использовании угловой частоты (ω). Угловая частота не имеет физической реальности. Однако частота ( f ) имеет значение. Угловая частота определяет количество радианов в секунду. Частота подсчитывает количество событий в секунду. Последовательность событий, которая повторяется, называется циклом. Функция синуса повторяется после того, как она “прошла” через 2π радиан математической абстрактности.Движение простого гармонического осциллятора повторяется после того, как он прошел один полный цикл простого гармонического движения.

ω = φ = 2π радиан
т 1 период
f = n = 1 цикл
т 1 период

Разделите одно уравнение на другое…

= 2π радиан = 2π радиан
ω 1 период
f 1 цикл 1 цикл
1 период

Напомним, что и радианы, и циклы являются безразмерными величинами, что означает…

ω = 2π радиан =
f 1 цикл 1

и, следовательно,…

ω = 2π f

Умножение любой части этого уравнения на время исключает единицу измерения из входной части уравнения.А как насчет выходной стороны? Результатом синусоидальной функции является безразмерное число, которое изменяется от +1 до -1. Наше дифференциальное уравнение должно генерировать алгебраическое уравнение, которое выделяет положение между двумя крайними значениями, скажем, + A и – A . Мне нравится символ A , поскольку крайнее значение колебательной системы называется ее амплитудой , а амплитуда начинается с буквы a. Амплитуда использует те же единицы измерения, что и смещение для этой системы – метры [м], сантиметры [см] и т. Д.Умножьте синусоидальную функцию на A , и все готово. Вот решение в общем виде простого гармонического осциллятора (и многих других дифференциальных уравнений второго порядка).

x = A sin (2π футов + φ)

где…

x = позиция [м, см и т. Д.]
A = амплитуда [м, см и т. Д.]
f = частота [Гц]
т = раз [с]
φ = фаза [рад]

Я сказал, что это алгебраическое уравнение является решением нашего дифференциального уравнения, но я так и не доказал его.Я, наверное, должен это сделать. Это покажет нам кое-что интересное. Начнем с уравнения…

x = A sin (2π футов + φ)

Найдите его первую производную…

dx = 2π фА cos (2π футов + φ)
dt

, чтобы найти вторую производную…

d 2 x = −4π 2 f 2 A sin (2π футов + φ)
dt 2

Подайте уравнение и его вторую производную обратно в дифференциальное уравнение…

к х = d 2 x
м дт 2

нравится…

к A sin (2π футов + φ) = −4π 2 f 2 A sin (2π футов + φ)
м

затем упростите.Обе переменные отменяются (наряду с множеством других вещей), что означает, что мы нашли хорошее решение. Остается это…

Теперь самое интересное. Решить для частоты…

И пока мы на этом, инвертируем частоту, чтобы получить период…

Простое гармоническое движение со временем развивается как синусоидальная функция с частотой, которая зависит только от жесткости возвращающей силы и массы движущейся массы. Более жесткая пружина колеблется чаще, а большая масса – реже.Вы также можете описать эти выводы в терминах периода простого гармонического движения. Более тяжелая масса колеблется с более длительным периодом, а более жесткая пружина колеблется с более коротким периодом. Амплитуда не влияет на частоту и период. Шо, колеблющееся с большой амплитудой, будет иметь ту же частоту и период, что и идентичный шо, колеблющийся с меньшей амплитудой.

фазовый угол

Положение и время – это некоторые переменные, которые описывают движение (в данном случае shm).Частота и период – это свойства периодических систем (в данном случае ан шо). Амплитуда и фаза – это коэффициенты, которые находятся в уравнениях периодического движения, которые определяются начальными условиями (в данном случае начальным положением и начальной скоростью шо).

Начните с уравнения положения. Подставляем в произвольную начальную позицию x 0 (без нуля), но для удобства назовем начальное время нулем.

x = A sin (2π футов + φ)
x 0 = A sin φ

Затем сделайте что-то подобное с первой производной от положения, более известной как скорость.Заменить любую произвольную начальную скорость v 0 (vee naught)

v = 2π fA cos (2π ft + φ)
v 0 = 2π fA cos φ

Начальное положение разделить на начальную скорость.

x 0 = A sin φ = загар φ
v 0 фА cos φ f

Фазовый угол связан с отношением начального положения к начальной скорости следующим образом…

Напомним, что частота определяется жесткостью пружины и массой.

Фазовый угол тоже можно записать так…

tan φ = x 0 к
v 0 м

и даже так…

tan φ = √ kx 0 2
мв 0 2

Знакомо? Как насчет того, чтобы я это сделал?

tan φ = √ ½ kx 0 2
½ мв 0 2

Фазовый угол связан с отношением начальной упругой потенциальной энергии к начальной кинетической энергии.

Почти, но не совсем. Когда я переместил начальное положение и начальную скорость под знаком радикала, я возложил их в квадрат. Это не совсем так. Когда я это сделал, я уничтожил информацию о знаке в двух начальных условиях. (Кинетическая и упругая потенциальные энергии всегда положительны.) Эти знаки используются для определения квадранта, в котором находится фазовый угол.

Расположение угла сдвига фаз
v 0 + v 0
+ x 0 2-й квадрант
090 ° –180 °
1-й квадрант
00 ° –90 °
-90 415 x 0 3-й квадрант
180 ° –270 °
4-й квадрант
270 ° –360 °

Представляющие государства Кубита

1.Классические и квантовые биты

1.1 Векторы состояний

В квантовой физике мы используем вектора состояний для описания состояния нашей системы. Допустим, мы хотели описать положение автомобиля на трассе, это классическая система, поэтому мы можем использовать число $ x $:

.

$$ x = 4 $$

В качестве альтернативы мы могли бы вместо этого использовать набор чисел в векторе, называемый вектором состояний . Каждый элемент в векторе состояний содержит вероятность найти машину в определенном месте:

$$ | x \ rangle = \ begin {bmatrix} 0 \\ \ vdots \\ 0 \\ 1 \\ 0 \\ \ vdots \\ 0 \ end {bmatrix} \ begin {matrix} \\ \\ \\ \ leftarrow \\ \\ \\ \\ \ end {matrix} \ begin {matrix} \\ \\ \ text {Вероятность того, что} \\ \ text {автомобиль находится в} \\ \ text {позиции 4} \\ \\ \\ \ end {matrix} $$

Это не ограничивается положением, мы также можем сохранить вектор состояний всех возможных скоростей, которые может иметь автомобиль, и всех возможных цветов, которые может быть автомобиль.В классических системах (например, в приведенном выше примере с автомобилем) это глупо, поскольку для этого требуется хранить огромные векторы, когда нам действительно нужно только одно число. Но, как мы увидим в этой главе, векторы состояний являются очень хорошим способом отслеживания квантовых систем, включая квантовые компьютеры.

1.2 Нотация кубита

Классические биты всегда имеют полностью определенное состояние: они либо 0 , либо 1 в каждой точке во время вычисления. Мы не можем добавить больше деталей к состоянию бита, чем это.Итак, чтобы записать состояние классического бита ( c ), мы можем просто использовать эти два двоичных значения. Например:

  с = 0

  

Это ограничение снято для квантовых битов. Получим ли мы из кубита 0 или 1 , необходимо четко определить, только когда выполняется измерение для извлечения вывода. На этом этапе он должен выбрать один из этих двух вариантов. Во всех остальных случаях его состояние будет чем-то более сложным, чем может быть зафиксировано простым двоичным значением.

Чтобы увидеть, как их описать, мы можем сначала сосредоточиться на двух простейших случаях. Как мы видели в предыдущем разделе, можно подготовить кубит в состоянии, для которого он определенно дает результат 0 при измерении.

Нам нужно название для этого состояния. Давайте не будем фантазировать и назовем это $ 0 $. Точно так же существует состояние кубита, которое обязательно выведет 1 . Мы назовем это $ 1 $. Эти два состояния полностью исключают друг друга. Либо кубит определенно выдает 0 , либо он определенно выдает 1 .Нет перекрытия. Один из способов представить это с помощью математики – использовать два ортогональных вектора.

$$ | 0 \ rangle = \ begin {bmatrix} 1 \\ 0 \ end {bmatrix} \, \, \, \, | 1 \ rangle = \ begin {bmatrix} 0 \\ 1 \ end {bmatrix}. $$

Это множество обозначений, которые нужно усвоить сразу. Для начала распакуем странные $ | $ и $ \ rangle $. Их задача, по сути, просто напомнить нам, что мы говорим о векторах, которые представляют состояния кубита, помеченные как $ 0 $ и $ 1 $. Это помогает нам отличать их от таких вещей, как битовые значения 0 и 1 или числа 0 и 1.Это часть обозначения бюстгальтера, введенного Дираком.

Если вы не знакомы с векторами, вы можете просто думать о них как о списках чисел, которыми мы манипулируем, используя определенные правила. Если вы знакомы с векторами из школьных уроков физики, вы знаете, что эти правила делают векторы хорошо подходящими для описания величин с величиной и направлением. Например, скорость объекта идеально описывается вектором. Однако способ, которым мы используем векторы для квантовых состояний, немного отличается от этого, так что не слишком цепляйтесь за свою предыдущую интуицию.Пришло время заняться чем-то новым!

С помощью векторов мы можем описывать более сложные состояния, чем просто $ | 0 \ rangle $ и $ | 1 \ rangle $. Например, рассмотрим вектор

$$ | q_0 \ rangle = \ begin {bmatrix} \ tfrac {1} {\ sqrt {2}} \\ \ tfrac {i} {\ sqrt {2}} \ end {bmatrix}. $$

Чтобы понять, что означает это состояние, нам нужно использовать математические правила для управления векторами. В частности, нам нужно понять, как складывать векторы вместе и как умножать их на скаляры.

Напоминание: сложение матриц и умножение на скаляры (щелкните здесь, чтобы развернуть)

Чтобы сложить два вектора, мы складываем их элементы вместе: $$ | a \ rangle = \ begin {bmatrix} a_0 \\ a_1 \\ \ vdots \\ a_n \ end {bmatrix}, \ quad | b \ rangle = \ begin {bmatrix} b_0 \\ b_1 \\ \ vdots \\ b_n \ end {bmatrix} $$ $$ | a \ rangle + | b \ rangle = \ begin {bmatrix} a_0 + b_0 \\ a_1 + b_1 \\ \ vdots \\ a_n + b_n \ end {bmatrix} $$

А чтобы умножить вектор на скаляр, мы умножаем каждый элемент на скаляр: $$ x | a \ rangle = \ begin {bmatrix} x \ times a_0 \\ x \ times a_1 \\ \ vdots \\ x \ times a_n \ end {bmatrix} $$

Эти два правила используются для перезаписи вектора $ | q_0 \ rangle $ (как показано выше): $$ \ begin {выровнено} | q_0 \ rangle & = \ tfrac {1} {\ sqrt {2}} | 0 \ rangle + \ tfrac {i} {\ sqrt {2}} | 1 \ rangle \\ & = \ tfrac {1} {\ sqrt {2}} \ begin {bmatrix} 1 \\ 0 \ end {bmatrix} + \ tfrac {i} {\ sqrt {2}} \ begin {bmatrix} 0 \\ 1 \ end {bmatrix} \\ & = \ begin {bmatrix} \ tfrac {1} {\ sqrt {2}} \\ 0 \ end {bmatrix} + \ begin {bmatrix} 0 \\\ tfrac {i} {\ sqrt {2}} \ end {bmatrix} \\ & = \ begin {bmatrix} \ tfrac {1} {\ sqrt {2}} \\ \ tfrac {i} {\ sqrt {2}} \ end {bmatrix} \\ \ end {выровнен} $$

Напоминание: ортонормальные основы (щелкните здесь, чтобы развернуть)

Ранее было сказано, что два вектора $ | 0 \ rangle $ и $ | 1 \ rangle $ ортонормированы, это означает, что они оба являются ортогональными и нормализованными .Ортогональный означает, что векторы расположены под прямым углом:

А нормализованное означает, что их величины (длина стрелки) равна 1. Два вектора $ | 0 \ rangle $ и $ | 1 \ rangle $ являются линейно независимыми , что означает, что мы не можем описать $ | 0 \ rangle $ в терминах $ | 1 \ rangle $, и наоборот. Однако, используя как векторы $ | 0 \ rangle $ и $ | 1 \ rangle $, так и наши правила сложения и умножения на скаляры, мы можем описать все возможные векторы в 2D-пространстве:

Поскольку векторы $ | 0 \ rangle $ и $ | 1 \ rangle $ линейно независимы и могут использоваться для описания любого вектора в 2D-пространстве с использованием векторного сложения и скалярного умножения, мы говорим, что векторы $ | 0 \ rangle $ и $ | 1 \ rangle $ образуют базис .В этом случае, поскольку они ортогональны и нормализованы, мы называем это ортонормированным базисом .

Поскольку состояния $ | 0 \ rangle $ и $ | 1 \ rangle $ образуют ортонормированный базис, мы можем представить любой 2D-вектор с помощью комбинации этих двух состояний. Это позволяет нам записать состояние нашего кубита в альтернативной форме:

$$ | q_0 \ rangle = \ tfrac {1} {\ sqrt {2}} | 0 \ rangle + \ tfrac {i} {\ sqrt {2}} | 1 \ rangle $$

Этот вектор, $ | q_0 \ rangle $ называется вектором состояний кубита , он сообщает нам все, что мы могли знать об этом кубите.На данный момент мы можем сделать только несколько простых выводов об этом конкретном примере вектора состояния: это не полностью $ | 0 \ rangle $ и не полностью $ | 1 \ rangle $. Вместо этого он описывается линейной комбинацией этих двух. В квантовой механике мы обычно описываем линейные комбинации, подобные этой, с помощью слова «суперпозиция».

Хотя в нашем примере состояние $ | q_0 \ rangle $ может быть выражено как суперпозиция $ | 0 \ rangle $ и $ | 1 \ rangle $, это не менее определенное и четко определенное состояние кубита, чем они есть.Чтобы убедиться в этом, мы можем начать исследовать, как можно манипулировать кубитом.

1.3 Изучение Qubits с помощью Qiskit

Во-первых, нам нужно импортировать все инструменты, которые нам понадобятся:

cmath – Математические функции для комплексных чисел – документация Python 3.10.0


Этот модуль обеспечивает доступ к математическим функциям для комплексных чисел. В функции в этом модуле принимают целые числа, числа с плавающей запятой или комплексные числа как аргументы. Они также примут любой объект Python, имеющий либо __complex __ () или __float __ () метод: эти методы используются для преобразовать объект в комплексное число или число с плавающей запятой, соответственно, и затем функция применяется к результату преобразования.

Примечание

На платформах с аппаратной и системной поддержкой подписанных нули, функции, включающие сечения ветвей, продолжаются на и на стороны среза ветки: знак нуля отличает единицу сторону ветки срезать с другой. На платформах, которые не поддерживают подписанные нули, непрерывность указана ниже.

Преобразование в полярные координаты и обратно

Комплексное число Python z хранится внутри с использованием прямоугольника или декартовых координат .Это полностью определяется его реальными часть z.real и ее мнимая часть z.imag . В других слов:

Полярные координаты дают альтернативный способ представления комплекса количество. В полярных координатах комплексное число z определяется как модуль r и фазовый угол phi . Модуль r – это расстояние от z до начала координат, а фаза phi – против часовой стрелки угол, измеряемый в радианах, от положительной оси x до линии сегмент, соединяющий начало координат с z .

Следующие функции можно использовать для преобразования из собственного прямоугольные координаты в полярные координаты и обратно.

смат. фаза ( x )

Вернуть фазу x (также известную как аргумент x ) как плавать. фаза (x) эквивалентна math.atan2 (x.imag, x.real) . Результат лежит в диапазоне [- π , π ], а ветвь разрез для этой операции лежит по отрицательной действительной оси, непрерывный сверху.В системах с поддержкой нулей со знаком (который включает в себя большинство используемых в настоящее время систем), это означает, что знак результата такой же, как знак x.imag , даже если x.imag равно нулю:

 >>> фаза (комплекс (-1,0; 0,0))
3,141592653589793
>>> фаза (комплекс (-1.0, -0.0))
-3.141592653589793
 

Примечание

Модуль (абсолютное значение) комплексного числа x может быть вычисляется с помощью встроенной функции abs () .Здесь нет отдельная функция модуля cmath для этой операции.

смат. полярный ( x )

Вернуть представление x в полярных координатах. Возвращает пара (r, phi) , где r – это модуль x , а phi – это фаза х . полярный (x) эквивалентен (abs (x), фаза (x)) .

смат. прямое ( r , phi )

Вернуть комплексное число x с полярными координатами r и phi . Эквивалент r * (math.cos (phi) + math.sin (phi) * 1j) .

Степенные и логарифмические функции

смат. эксп. ( x )

Возврат e в степени x , где e – основание естественного логарифмы.

смат. журнал ( x [, основание ])

Возвращает логарифм x к заданному основанию . Если базы нет указано, возвращает натуральный логарифм x . Есть один срез ветки, от 0 вдоль отрицательной действительной оси до -∞, непрерывно сверху.

смат. лог10 ( x )

Вернуть десятичный логарифм x .У него такой же срез ветки, что и у журнал () .

смат. sqrt ( x )

Возвратите квадратный корень из x . У него такое же сечение ветки, что и у log () .

Тригонометрические функции

смат. acos ( x )

Вернуть арккосинус x . Есть два сечения ответвления: один идет прямо от 1 вдоль вещественной оси до ∞, непрерывный снизу.Другой простирается слева от От -1 по действительной оси до -∞, непрерывно сверху.

смат. asin ( x )

Вернуть арксинус x . Он имеет те же сечения ветвей, что и acos () .

смат. атан ( x )

Вернуть арктангенс x . Есть два отреза ветки: один идет от 1j вдоль мнимой оси до ∞j , непрерывно справа.В другой простирается от -1j вдоль мнимой оси до -∞j , непрерывно слева.

смат. cos ( x )

Вернуть косинус x .

смат. sin ( x )

Вернуть синус x .

смат. желто-коричневый ( x )

Вернуть тангенс x .

Гиперболические функции

смат. acosh ( x )

Вернуть обратный гиперболический косинус x . Есть один срез ветки, продолжающийся слева от 1 вдоль вещественной оси до -∞, непрерывный сверху.

смат. asinh ( x )

Вернуть обратный гиперболический синус x . Есть два отрезка ветки: Один простирается от 1j вдоль мнимой оси до ∞j , непрерывный справа.Другой простирается от -1j вдоль мнимая ось до -∞j , непрерывная слева.

смат. атан ( x )

Вернуть арктангенс гиперболического значения x . Есть два отрезка ветки: один. простирается от 1 вдоль действительной оси до , непрерывно снизу. В другой простирается от -1 вдоль действительной оси до -∞ , непрерывно от выше.

смат. cosh ( x )

Вернуть гиперболический косинус x .

смат. sinh ( x )

Вернуть гиперболический синус x .

смат. танх ( x )

Вернуть гиперболический тангенс x .

Классификационные функции

смат. исфинит ( x )

Вернуть Истинно , если действительная и мнимая части x конечны, и Неверно иначе.

смат. isinf ( x )

Вернуть Истинно , если действительная или мнимая часть x является бесконечность и Ложь в противном случае.

смат. иснан ( x )

Вернуть Истинно , если действительная или мнимая часть x является NaN, и Ложь в противном случае.

смат. isclose ( a , b , * , rel_tol = 1e-09 , abs_tol = 0,0 )

Вернуть Истина , если значения a и b близки друг к другу и Неверно иначе.

Считается ли два значения близкими или нет, определяется в соответствии с даны абсолютные и относительные допуски.

rel_tol – относительный допуск – это максимально допустимая разница. между a и b относительно большего абсолютного значения a или b .Например, чтобы установить допуск 5%, передайте rel_tol = 0,05 . По умолчанию допуск 1e-09 , что гарантирует, что два значения совпадают с точностью до 9 десятичных цифр. rel_tol должно быть больше нуля.

abs_tol – минимальный абсолютный допуск – полезен для сравнений рядом с нуль. abs_tol должно быть не меньше нуля.

Если ошибок не возникает, результатом будет: абс (a-b) <= max (rel_tol * max (abs (a), abs (b)), abs_tol) .

Специальные значения IEEE 754: NaN , inf и -inf будут обрабатывается в соответствии с правилами IEEE. В частности, NaN не считается близко к любому другому значению, включая NaN . inf и -inf только считается близким к себе.

См. Также

PEP 485 - Функция проверки примерного равенства

Константы

смат. пи

Математическая константа π в виде числа с плавающей запятой.

смат. e

Математическая константа e в виде числа с плавающей запятой.

смат. тау

Математическая константа τ , в виде числа с плавающей запятой.

смат. инф

Положительная бесконечность с плавающей точкой.Эквивалентно с плавающей запятой ('inf') .

смат. инфж

Комплексное число с нулевой действительной частью и мнимой положительной бесконечностью часть. Эквивалент комплексному (0,0, float ('inf')) .

смат. нан

Значение с плавающей запятой, «не число» (NaN). Эквивалентно поплавок ('nan') .

смат. нанж

Комплексное число с нулевой действительной частью и мнимой частью NaN. Эквивалентно комплекс (0,0, float ('nan')) .

Обратите внимание, что набор функций аналогичен, но не идентичен таковому в модуль математика . Причина наличия двух модулей в том, что некоторые пользователи не интересуются комплексными числами и, возможно, даже не знают, что это такое. Они предпочел бы math.sqrt (-1) вызывать исключение, чем возвращать сложный количество.Также обратите внимание, что функции, определенные в cmath , всегда возвращают комплексное число, даже если ответ можно выразить действительным числом (в котором случай комплексного числа имеет мнимую часть нуля).

Примечание о срезах ответвлений: это кривые, вдоль которых данная функция не может быть непрерывным. Они необходимы для многих сложных функций. это предполагается, что если вам нужно выполнять вычисления со сложными функциями, вы поймете насчет срезов веток. Проконсультируйтесь практически с любой (не слишком элементарной) книгой по сложным переменные для просветления.Для информации о правильном выборе филиала сокращения для числовых целей, хорошей ссылкой должно быть следующее:

См. Также

Кахан, W: Отрезки ветвей для сложных элементарных функций; или, много шума о ничего не значащий бит. В: Изерлес, А., и Пауэлл, М. (ред.), Современное состояние в численном анализе. Clarendon Press (1987), стр. 165–211.

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *