Онлайн взятие интегралов: Неопределенный интеграл онлайн

Содержание

Решение интегралов по-шагам online

‘) window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: rtb_id, blockId: ‘R-A-1616620-2’ }) })

Пределы интегрирования:
от до

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь

Примеры интегралов

Подробнее про Интеграл.

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x), гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x), арккосеканс acsc(x), гиперболический секанс sech(x), гиперболический косеканс csch(x), гиперболический арксеканс asech(x), гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности), функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x), Ci(x), Shi(x), Chi(x)
Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7. 5, не 7,5
Постоянные
pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Данные примеры также можно применять при вводе верхнего и нижнего предела интегрирования.

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Интеграл

Решение интегралов

Наш калькулятор интегралов онлайн с подробным решением поможет вычислить интегралы и первообразные функции онлайн — бесплатно! Пользоваться калькулятором просто. Чтобы ввести определенный интеграл или неопределенный интеграл, нажмите «+условие» и введите интеграл

Например:

Нажав кнопку Решить вы получите подробное решение интеграла онлайн.

Калькулятором интегралов поддерживается вычисление определенных и неопределенных интегралов (первообразных функций), включая интегрирование функций с несколькими переменными.

Как решить интеграл онлайн с решением?

Введите неопределенный интеграл, нажав на кнопку ∫. Затем введите подинтегральное выражение, после чего нажмите на кнопку d и введите переменную, по которой нужно провести интегрирование. Оставьте незаполненными серые квадратики.

Введите определенный интеграл, нажав на кнопку ∫. Затем введите подинтегральное выражение, после чего нажмите на кнопку d. Это можно сделать как на своей клавиатуре, так и на клавиатуре сайта. Введите переменную, по которой нужно провести интегрирование. Далее кликните на нижний серый квадратик и введите нижний предел, кликните на верхний серый квадратик и введите верхний предел.

На серые квадратики можно перейти либо кликнув на них, либо используя кнопки влево, вправо.

В определённых интегральных уравнениях применяется такое понятие как “предел”. Предел обозначает отрезок функции, в которой происходит вычисление интеграла и результатом такого действия будет число. Физический смысл такого числа – это размер площади под графиком соответствующей функции интеграла, эта операция часто применяется в науке, в частности в физике.

Операция интегрирования является своего рода обратной операции вычисления производной. Если мы будем вычислять неопределённый интеграл, то в результате получим функцию с приплюсованной константой с .

Таблица интегралов

Чтобы найти интеграл, нужно знать таблицу ниже:

Мы живем в удивительное время. Сегодня вы можете получить онлайн решение интегралов с подробным решением.

Подробное решение интегралов онлайн стало доступным благодаря современным разработкам в области искусственного интеллекта.

Где можно решить онлайн интеграл? Интеграл калькулятор онлайн Pocket Teacher!

Онлайн интегралы – это просто!

Решить онлайн интегралы вы можете на нашем сайте. Бесплатный онлайн решатель позволит решить интегралы любой сложности за считанные секунды. Вы получите решение интеграла онлайн с подробными шагами. Все, что вам необходимо сделать – это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как получить решение интегралов онлайн с решением на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Так же читайте нашу статью “Решить систему уравнений методом сложения онлайн решателем”

Интегральный калькулятор | Лучшая онлайн-интеграция по частям Калькулятор

Знакомство с интегральным калькулятором

Наш усовершенствованный интегральный калькулятор — это наиболее полное интегральное решение в Интернете, с помощью которого вы можете выполнять множество операций интеграции. Вам нужно ввести функцию, переменную и границы, и все готово.

Калькулятор интегрирования с шагами позволяет изучить принципы расчета интегралов, не тратя слишком много времени. Вы можете вычислить интеграл, используя интегральный калькулятор с шагами, легко онлайн.

Точно так же вы можете найти калькулятор двойного интеграла на этом сайте. Калькулятор двойного интеграла показывает вам графики, графики, шаги и визуальное представление, что помогает вам изучить расширенные концепции двойного интегрирования.

Есть много других полезных калькуляторов, которые можно использовать для получения выгоды. Точно так же вы можете определить объем тела вращения с помощью калькулятора метода шайбы и определить поперечные сечения тела вращения с помощью калькулятора метода диска.

Как решить Интеграция?

Чтобы найти определенный интеграл, вы должны сначала понять, что определенные интегралы имеют начальную и конечную точки, также известные как пределы или интервалы, представленные как (a,b) и расположенные сверху и снизу интеграла.

Мы можем обобщить интегралы на основе функций и областей, через которые выполняется интегрирование. Калькулятор интегрирования по частям с шагами помогает вычислять интегралы в цифровом виде.

Например, линейный интеграл выражается функциями двух или более переменных с заменой интервала интегрирования кривой, соединяющей две точки на интервале. 93$$

вычисление границ: 4

-3,4

-12

С другой стороны, неопределенный интеграл отличается от определенного из-за отсутствия у первого определенных пределов.

Неопределенный интеграл, таким образом, вычисляется по формуле:

$$\int f(x)dx$$

Вышеприведенный решатель интегрирования может вычислять неопределенный интеграл и определенный интеграл, но если вы хотите вычислить только неопределенный интеграл, найдите лучший Онлайн-калькулятор неопределенного интеграла.

Связанный: Найдите этот полезный блог, чтобы узнать об определенном интеграле и неопределенном интеграле

Как вычислить неправильный интеграл?

Одна из причин, по которой определенный интеграл становится несобственным, заключается в том, что один или оба предела достигают бесконечности. Калькулятор интегрального исчисления можно использовать для вычисления неправильных интегралов.

Этот интеграл затем решается путем превращения его в проблему пределов, где c случается приближаться к бесконечности или к отрицательной бесконечности. 9c$$

$$\lim_{c\to \infty} [-\frac {1}{c}] -(-\frac{1}{1})]$$

0+1

1

Поскольку ответ на несобственный интеграл конечен, мы считаем его сходящимся.

Если вы хотите вычислить только определенные интегралы, используйте этот лучший пошаговый онлайн-калькулятор определенных интегралов.

Связанный: Используйте калькулятор метода оболочки с шагами, чтобы легко найти объем тела вращения онлайн.

Как рассчитать непрерывную интеграцию?

Основная теорема исчисления устанавливает четкую связь между интегральным и дифференциальным исчислением. Наш интегральный калькулятор с шагами способен вычислить непрерывное интегрирование.

Если f(x) непрерывна для интервала a и b при заданной переменной x и G(x) является функцией в таком смысле, что dG/dx = f(x) для всех значений x в (a,b)

Пусть f непрерывна на интервале ‘y’. Выберите точку p в y, тогда функция f(x) будет определена как:

Пусть F(x) будет следующим 9c f(t)dt$$

Для вашего удобства и углубленного изучения множественных интегралов мы предлагаем один из самых быстрых калькуляторов тройных интегралов. Этот инструмент, несомненно, поможет вам вычислить определенные и неопределенные тройные интегралы онлайн, сделав несколько кликов.

Связанный: Понимание интегрирования неполной дробью за 5 минут!

Что такое интегральный калькулятор?

В течение многих лет существовал только один способ вычислить интегралы — вычисление вручную. В наши дни у нас есть много онлайн-калькуляторов интеграции, чтобы легко рассчитать стоимость интеграции. Большинство студентов обычно имеют прочные теоретические представления об исчислении. Таким образом, вычисление интегралов или производных на самом деле не проблема, когда у нас есть такие калькуляторы, как калькулятор интегрирования или калькулятор производных.

Однако это проблема, когда дело доходит до домашних заданий, когда ученики обычно получают массу задач, требующих решения интегралов. Для получения справки, пожалуйста, прочитайте статью, в которой говорится об интеграции, ее важности и различных методах.

Было бы неразумно повторно вычислять интегралы вручную. Калькулятор определенных интегралов удобен для решения сложных задач интегрирования. Он бесплатный и простой в использовании, и вы получаете ответ почти мгновенно, так как вы можете легко найти интегральный калькулятор с пошаговыми инструкциями в Интернете.

Также используйте другие полезные математические калькуляторы, которые важны для общих процессов интеграции. Подобно калькулятору преобразования Лапласа, вы можете преобразовать интеграл данной производной функции, а калькулятор преобразования Фурье позволяет преобразовать функцию времени в частоту.

Как найти лучший калькулятор интеграции?

В Интернете доступно множество интегральных калькуляторов, например, calculated, symbolab, wolframalpha и другие.

Однако наш интегральный калькулятор объема лучше, быстрее, обладает большей функциональностью и является лучшим калькулятором интеграции с пошаговыми инструкциями, доступными в Интернете. Узнайте о преимуществах использования нашего интегрального онлайн-калькулятора.

Когда вы вводите функцию, переменную, верхнюю и нижнюю границы пределов, наш интегральный решатель вычисляет интеграл и отображает все необходимые шаги, чтобы дать пользователю лучшее понимание вычисления интегрирования.

Вы также можете рассчитать интеграцию по вертикали и интеграцию по горизонтали в области кривых с помощью нашего интегрального онлайн-калькулятора с ограничениями.

Это еще не все. Наш интегральный решатель также отображает антипроизводные вычисления для пользователей, которые могут быть заинтересованы в математической концепции и шагах, связанных с интегрированием.

Кроме того, этот калькулятор интеграции по частям поставляется с визуализацией расчета с помощью интуитивно понятных графиков.

Связанный: Как найти объем тела вращения

Как использовать интегральный калькулятор с шагами?

Пользоваться калькулятором интегрирования по частям легко и быстро.

Выполните следующие шаги:

Шаг 1: Введите функцию

Для вычисления интегралов у вас должна быть правильная функция. Вам нужно ввести свою функцию в функциональную строку калькулятора интеграции. Существует также список «пример загрузки». Вы можете щелкнуть этот список, чтобы загрузить пример уравнения для пошагового расчета интегралов.

Шаг 2. Выберите переменную

Для вычисления интегралов можно использовать три переменные. Этими переменными являются x, y и z. Роль этих трех переменных отличается друг от друга, и все они по-разному влияют на общий результат. Вы можете выбрать переменные как x, y и z из раздела переменных.

Шаг 3: Дайте значение верхней границы

Верхняя граница — это значение, которое помогает нам суммировать интеграл при его максимальном значении. Верхняя граница обозначается как U, и ее определение имеет решающее значение в процессе интегрирования. Вы можете ввести верхнюю границу своего лимита в разделе верхней границы калькулятора верхней границы.

Шаг 4: Введите значение нижней границы

Нижняя граница — это наименьшее значение, которое мы установили для начала интегрирования. Чтобы получить точные результаты интегрирования, наименьшее значение интервала обозначается буквой L. Чтобы получить точные результаты интегрирования. Вам необходимо ввести фактическую сумму вашего нижнего лимита в разделе нижней границы калькулятора верхней и нижней границ.

После выполнения всех вышеперечисленных шагов Нажмите кнопку “GO”.

Сразу после нажатия на кнопку заработает наш интегральный калькулятор. Калькулятор интегрирования по частям покажет вам антипроизводную, интегральные шаги, дерево разбора и график вашего результата. Все эти функции и функции делают его лучшим калькулятором линейного интеграла для вычисления интеграла сложных задач интеграции.

По мере того, как вы вводите данные, под входными данными будет отображаться визуальное уравнение, где вы можете визуализировать, как ваши входные данные будут выглядеть в уравнении.

Часто задаваемые вопросы

Как вычислять интегралы?

Есть два типа интегралов, определенные и неопределенные интегралы. Вы можете решить их оба путем интеграции. Отличие состоит в том, что в определенных интегралах нужно ставить предельные значения после интегрирования, тогда как в неопределённых интегралах предельные значения ставить не нужно. 93 (1-х) дх \;=\; \left( 3 – \frac{9}{2} \right) \;-\; \влево( -4 -2 \вправо) \;=\; \frac{21}{2} $$

Итак, площадь под данной кривой равна 21/2. Мы можем убедиться в этом, оценив интегральный калькулятор для перекрестной проверки вашего ответа.

Калькулятор интеграла — отличный ресурс для вычислений такого типа, позволяющий сэкономить ваше время.

Чему равен интеграл от 1/x?

Интеграл от 1/x равен

$$ \int \frac{1}{x} dx \;=\; ln(x) + c $$

Получайте удовольствие от вычисления интегралов с помощью интегрального онлайн-калькулятора!

Другие онлайн-калькуляторы интеграции

На этом сайте есть много других пошаговых интегральных калькуляторов, которые вы можете использовать бесплатно. Эти инструменты:

  • Калькулятор площади, ограниченной кривыми
  • Калькулятор правил Симпсонов
  • Калькулятор интеграла длины дуги
  • Калькулятор длины дуги полярной кривой
  • Калькулятор лимита суммы с шагами

Интегральный калькулятор | Лучший калькулятор интеграции с шагами

Знакомство с интегральным калькулятором

Общий решатель интегралов — это онлайн-инструмент, который используется для расчета основных понятий интегралов и интегрирования. Этот интеграл калькулятора помогает вычислить площадь под кривой. Этот калькулятор может работать с помощью нескольких простых кликов. Интегральная функция очень проста в использовании и ее легко понять. Шаги, упомянутые здесь, очень понятны.

Дает правильные результаты после выполнения вычислений. Это поможет вам находить интегралы шаг за шагом и облегчит их изучение. Лучшее свойство интегрального решателя с шагами заключается в том, что он бесплатный, простой в использовании и дает точные результаты.

Что такое онлайн-калькулятор интегралов с шагами?

Слово интеграл используется при интегрировании для обозначения числа функции. Слово интеграл относится к интеграции исчисления. Интеграл – это функция, производная которой является ее функцией. Нахождение площадей любых двумерных объектов или объемов трехмерных объектов. Итак, утверждается, что нахождение интегралов любой функции относительно оси у означает нахождение площади относительно оси у и наоборот.

Калькулятор общих интегралов выполняет ту же работу. Он оценивает интегральную функцию , чтобы выдать вам результаты точно и быстро. Выполняя несколько умных кликов, можно получить требуемые результаты. Он также обозначает число функции, которая известна как интеграл.

С другой стороны, интеграл сложной функции называется интегрированием по неполной дроби, которое мы можем вычислить с помощью калькулятора интегрирования неполных дробей.

Обозначение интеграла

Знак, используемый для обозначения интеграла:;

, Этот знак показывает интеграл интегрирования.

Формула, используемая лучшим калькулятором интегралов:

Общая формула для вычисления интеграла: $$ \int f'(x) dx \;=\; f(x) + C $$

Здесь
f — интегральная функция
C — постоянная.

В случае, если под интегралом умножаются две разные функции, используйте калькулятор интегрирования по частям, который использует формулу специального метода интегрирования. 93}{3} \;+\; 9x \;+\; C $$

Связанный: Для вычисления интеграла от интеграла лучше всего использовать калькулятор двойного интеграла с шагами.

Значение интегрального калькулятора Показать шаги

Этот калькулятор имеет множество значений, так как он быстро решает интегралы. Этот калькулятор использует методы интегрирования для вычисления интегралов. Решатель общих интегралов шаг за шагом решает функцию и дает соответствующий интегральный ответ. Представленные результаты являются соответствующими, достоверными и точными.

Решатель интегрирования с шагами предоставляет интегралы различных функций. Онлайн-инструмент вычисляет сложные задачи и предоставляет точные и надежные результаты. Нет необходимости делать большие сложные задачи исчисления. Вы должны сделать несколько умных кликов, чтобы получить требуемое решение.

Также попробуйте наш калькулятор множественных интегралов, чтобы мгновенно вычислить интеграл несколько раз.

Как использовать онлайн-калькулятор интеграции с шагами?

Вычисления — самая сложная часть математики из-за сложных формул и методов. В частности, интеграция занимает так много времени и полна ошибок. Таким образом, для оценки различных методов исчисления существуют специально разработанные калькуляторы, такие как интегральный калькулятор с делением на длинное деление и многие другие.

Эти калькуляторы помогают пользователю получать безошибочные результаты для длинных и сложных задач интегрирования. Различные решатели онлайн-интеграции обеспечивают самые надежные и безошибочные результаты в кратчайшие сроки. Используя несколько простых шагов, можно получить бесплатное решение из этих доступных онлайн-инструментов интеграции. Использование калькулятора интегралов важно тем, что он упростил вычисление интеграла. Это экономит время и энергию, которые тратятся на решение проблем интеграции вручную.

Действия по использованию Online Integration Solver:

С помощью следующих простых шагов можно легко получить решение желаемой сложной проблемы.

Шаг 1: Поместите функцию

Чтобы вычислить интегралы, первым входом, который вам нужно ввести в решатель интегрирования с шагами, является функция подынтегрального выражения. Этот инструмент также предлагает опцию «Примеры» . Вы можете получить пример для расчета интеграла с пошаговыми подробными решениями.

Шаг 2: Выберите переменную

Лучший интегральный калькулятор с шагами предлагает три различные переменные x,y,z. Вы можете выбрать переменную по вашему выбору, в соответствии с которой вы хотите вычислить интеграл шаг за шагом.

Шаг 3: Выберите определенный/неопределенный интеграл

Этот интегратор предоставляет два разных типа инструментов для решения интегралов. Вы можете выбрать определенный интеграл или неопределенный интеграл, который вы хотите вычислить.

  1. Если вы выберете калькулятор определенных интегралов с шагами, вам необходимо ввести верхний предел и нижний предел в этом онлайн-решателе интегралов.
  2. Если вы выбрали решатель неопределенного интегрирования, просто нажмите кнопку “РАССЧИТАТЬ”, чтобы получить пошаговую оценку подынтегральной функции.

Преимущества использования калькулятора комплексной интеграции с шагами

В эпоху высоких технологий и машин ручные вычисления кажутся очень утомительными. Следовательно, лучший интегральный калькулятор сделал решение для решения интегралов с помощью этого калькулятора. Онлайн-инструмент интеграла упрощает нахождение интегралов различных функций. Он обеспечивает более быстрые и простые решения.

Оставить комментарий