Определение закона ома для участка цепи: Закон Ома для участка цепи: объяснение, формула, примеры

Содержание

Закон Ома.

Закон Ома.

Программа КИП и А

В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / RгдеI – сила тока, измеряемая в Амперах, (A)   
U – напряжение, измеряемое в Вольтах, (V)
R – сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, – “Не знаешь закон Ома, – сиди дома. .”.

Помимо закона Ома, важнейшим является понятие

электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × UгдеP – эл. мощность, измеряемая в Ваттах, (W)
I – сила тока, измеряемая в Амперах, (A)   
U – напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока,I=U/RP/U√(P/R)
Напряжение,U=I×RP/I√(P×R)
Сопротивление,R=U/IP/I²U²/P
Мощность,P=I×UI²×RU²/R

Практический пример использования таблицы:

Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.


Последовательное включение R, L, C
Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, CПри параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2)Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ – циклическая, угловая частота; γ – частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / ZгдеI – сила переменного тока, измеряемая в Амперах, (A)   
U – напряжение переменного тока, измеряемое в Вольтах, (V)
Z – полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока,I=U/ZP/(U×Cos(φ))√(P/Z)
Напряжение,U=I×ZP/(I×Cos(φ))√(P×Z)
Полное сопротивление, импедансZ=U/IP/I²U²/P
Мощность,P=I²×ZI×U×Cos(φ)U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:


Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)

 

Закон Ома для участка цепи, пример расчета.

21 Января 2017

4292

Всем привет.
В предыдущей статье мы собрали простую замкнутую цепь, состоящий из источника питания, проводников по которым протекает ток и нагрузки. Выяснили, что такое сопротивление проводника и сопротивление нагрузки. Так же рассмотрели взаимосвязь между напряжением тока, силой тока и сопротивлением на разных участках цепи (проводника и нагрузки). Все эти отношения установлены в основном законе электротехники – в законе Ома.
В этой статье, мы рассмотрим Закон Ома для участка цепи.

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Давайте рассмотрим этот закон на примере. Соберем следующую схему:

Так как сопротивление проводников близко к нулю, будем считать, что они равны нулю. В нашу электрическую цепь, кроме нагрузки, мы еще добавили два прибора.
Амперметр – прибор для измерения силы тока, или другими словами измеряет сколько потребляет нагрузка, так легче запомнить. Соединяется последовательно с нагрузкой.
Вольтметр – прибор для измерения напряжения тока, при подключении к нагрузке, показывает сколько падает напряжение на нагрузку. Соединятся параллельно с нагрузкой.

Давайте нагрузку поставим сопротивлением равной 100 Ом, с источника питания пустим напряжение 5 В (вольт). Снимем показания с приборов. Нас интересует показатель амперметра. Амперметр показывает – 0,05 А (ампер) для удобства можно перевести в миллиамперы – 50 мА (миллиампер).

наведите или кликните мышкой, для анимации

Теперь поменяем напряжение тока, вместо 5 В установим 10 В. Снимем показатель амперметра. Амперметр показывает – 0,1 А переводим в миллиамперы – 100 мА. Сразу отметим для себя – с увеличением напряжения увеличилась сила тока.
В законе ома: «сила тока в участке цепи прямо пропорциональна напряжению … ».

наведите или кликните мышкой, для анимации

Теперь вернемся к первому опыту, то есть установим напряжение обратно на значение 5 В. Попробуем изменить сопротивление нагрузки. Поменяем нагрузку со значение сопротивления 200 Ом. Снимем показатели с амперметра и сравним с показателями первого опыта. Амперметр показывает – 0,025 А переводим в миллиамперы – 25 мА. Таким образом увеличение сопротивления нагрузки, уменьшило силу тока.
В законе ома: «сила тока в участке цепи … обратно пропорциональна электрическому сопротивлению».

наведите или кликните мышкой, для анимации

Закон Ома для участка цепи записывается следующей формулой: I = U/R
Как нам уже известно:
I = сила тока
U = напряжение тока
R = сопротивление (сопротивление нагрузки)

Так же эту формулу можно преобразовывать для определения напряжения тока или сопротивления нагрузки. Что бы легче запомнить формулы, надо запомнить треугольник Ома, который изображен выше. Закрывая искомую величину пальцем, можно увидеть формулу для нее.

Формула для определения напряжения:

Формула для определения сопротивления:

Рассмотрим простой пример расчета используя закон Ома для участка цепи. Если в примере выше, мы бы не использовали амперметр, зная напряжение тока 5 В (U) и сопротивление нагрузки 100 Ом (R). Использую следующую формулу I = U/R, мы бы получили результат: 5/100 = 0,05. Ответ 0,05 А = 50 мА.

Мы разобрали закон Ома для участка цепи, ознакомились с формулами для определения силы тока, напряжение тока и сопротивления. Так же хочу добавить, при расчетах, необходимо переводить единицы измерения в систему СИ. В примерах выше для демонстраций замкнутой цепи, я использовал программу – Electronics Workbench. Программа предназначена для моделирования и анализа электронных схем.

Закон Ома для участка цепи: от истории к формуле

Закон Ома для участка цепи – основная формула, которую преподаватели используют для борьбы с непослушными студентами. Посмотрим, что до потомков хотел донести Георг Ом, когда формулировал закон:

I = U/R. Где I – сила тока, измеряемая в амперах; U – напряжение, в вольтах; а R – активное сопротивление в омах.

История создания закона Ома для участка цепи

В сочетании со знанием того, что напряжение параллельных цепей одинаково, как ток в последовательных, закон Ома для участка цепи становится мощным инструментом для решения любых задач. Будучи выведена в 1827 году, формула на несколько десятилетий опередила работы Кирхгофа. Георг Ом экспериментировал с активными сопротивлениями и целых два года бился над тем, на что сегодня рядовому студенту хватит получаса. Все от недостатка материальной базы.

Учёный Георг Ом

В 1600 году Вольта представил на суд публики батарею, исследователи стали искать, куда приспособить инновацию. Стало очевидно, что возможно передавать информацию быстро и на большие расстояния при помощи телеграфа. Но измерять оказывалось нечего. Явно не ток и напряжение, связанные позднее законом Ома для участка цепи. Затруднение маячило на горизонте лишь в период возникновения необходимости проведения ремонтных работ. После сорока лет от появления на свет закона Ома, когда в 1866 году оказался проложен трансатлантический телеграф, в виде приёмных устройств применяли зеркальный гальванометр Кельвина.

За 8 лет до описанного будущий лорд взял патент на изобретение. В первоначальном виде прибор – катушка из проволоки, с подвижным зеркалом внутри. В момент, когда регистрировался ток в цепи, огонёк отражался в нужную сторону, оператор видел происходящее собственными глазами. Согласитесь, при помощи подобного устройства сложно провести измерения. Кельвин внёс поправки, произошло это на 40 лет позднее, чем оказалось желательно для Георга Ома.

Изобретатель первого точного амперметра, Эдвард Вестон, родился в 1850 году. Прибор изготовился к 1886 году и обеспечивал точность в 0,5%. Очевидно, Георг Ом не пользовался устройством при отыскании закона для участка цепи. Однако вывел знаменитую формулу. Как? Он слыл великолепным математиком и в исследованиях использовал идеи Фурье о теплопроводности.

Работу The galvanic circuit investigated mathematically легко скачать в формате pdf с хранилища Гугл. Правда, перевода на русский язык не отыскать даже в центральной библиотеке имени Ленина.

Предыстория открытий Георга Ома

Ранее в топиках уже упоминался Фалес Милетский, в рубрике про закон Ома для участка цепи лишь добавим, что притяжение шерсти янтарём замечено его дочерью. Человечество в области электричества многим обязано женщинам и их любопытству, заставившему дочку попросить у папы Фалеса объяснения непонятному явлению.

Потом электричество оказалось забыто на века. Первым серьёзным трудом в указанной области считаются работы Вильяма Гильберта, незадолго до собственной кончины успевшего выпустить в свет трактат, название которого в вольном переводе можно передать, как «О магните, магнитных телах и о большом магните – Земле». Невозможно пройти мимо Отто фон Герике, при помощи генератора статического заряда собственной конструкции сумевшего установить ряд любопытных закономерностей:

  1. Заряды одинакового знака отталкиваются, противоположных притягиваются. Фон Герике обратил внимание на эти противоположности.
  2. При замыкании зарядов разных знаков проводником течёт ток. В то время понятия не существовало, но факт исчезновения сил взаимодействия между телами оказался подмечен.

Опыты Шарль Дюфе

Отметил наличие знаков у зарядов Шарль Дюфе: о «стеклянном» и «смоляном» электричестве уже писали.

Как Георг Ом вывел закон математически

Авторы сделали небольшой перевод целой (!) книги о математическом исследовании электрической цепи. Ом пишет, что труд создал на основе лишь трёх постулатов:

  • Распространение электричества внутри твёрдого тела (проводника).
  • Движение электричества за пределами твёрдого тела (рискнём предположить, что речь идёт о магнитном поле).
  • Явление возникновения электричества при контакте разнородных проводников (сейчас называется термопарой).

Учёный пишет, что опирался на воздух, последние два постулата к тому времени не носили форму законов, присутствовали лишь частичные экспериментальные наработки. Исследования основывались на опытах Шарля Кулона, который экспериментировал с действиями зарядов друг на друга дистанционно. Уже тогда Ом предположил, что два контактирующих разнородных проводника образуют разность потенциалов. А теперь удивительные открытия Ома:

Крутильные весы

  1. Как упомянуто выше, в то время не существовало измерительных приборов. Ом знал по научным публикациям, что текущий по проводу ток отклоняет в сторону магнитную стрелку. Непросто оказывалось соотнести угол с величиной электричества, но учёный пошёл на хитрость: при помощи крутильных весов начал определять усилие, при котором показания компаса и направление металлической жилы совпадали. А в ньютонах это крайне малое значение. Так Ом научился измерять точно силу тока – величину, неизвестную научному сообществу, введённую в обиход гением науки.
  2. В ходе опытов замечено, что вольтов столб не даёт постоянного напряжения. Эксперименты в таких условиях Георг Ом продолжать не мог. И стал использовать… термо-ЭДС (по совету физика И. Х. Поггендорфа). Это потрясающе, потому что малые напряжения – разность потенциалов между двумя разнородными проводниками (медь и висмут) токи вызывают незначительные. Ом справился с задачей при помощи крутильных весов и стрелки компаса. А незначительное снижение температуры на стыке быстро компенсировалось. Первый конец термопары учёный помещал в сосуд с кипящей водой, второй – в ёмкость со льдом. Неизвестным оставалось непостоянство температур по шкале. К примеру, кипение начинается неодинаково, на процесс влияет давление атмосферы. Но термопара показала себя с первого теста намного лучше гальванического элемента.

Кулон со своим изобретением

Добавим, крутильные весы, принцип действия которых основан на модуле упругости тонкой проволоки, сконструировал Кулон. Применял для статических зарядов. Таким образом и вывел знаменитый закон. Магнитная стрелка описана в работах Эрстеда (1820 года). Учёный заметил, что отклонение пропорционально тому, что сейчас называем силой тока. В том году Ампер сформулировал собственный знаменитый закон, сообщил, что соленоид с разностью потенциалов на своих выводах ориентируется в магнитном поле Земли. Открытия следовали одно за другим, и книга Георга Ома по математическому исследованию гальванической цепи стала очередной из ряда.

Магнитную стрелку учёный располагал по направлению магнитного меридиана. Чтобы исключить влияние магнитного поля Земли. При помощи крутильных весов измерял силу, требуемую для возврата системы в исходное состояние. Ом вывел ряд причин недовольства гальваническим элементом как источника питания:

  1. Постепенно, как любой аккумулятор, вольтов столб терял напряжение. Ом заметил это в ходе исследования теплового эффекта на куске обычной проволоки. Постепенно температура неумолимо падала. Стоило привести систему в начальное состояние (зарядить), как нагрев усиливался. Следовательно, гальванический элемент в ходе исследований вносил погрешность. Термо-ЭДС обладала большей стабильностью и меньшей величиной, что снижало нагрев проводников, нивелируя температурную погрешность.

    Подготовка к эксперименту

  2. Ом ставил опыты на небольшой длины отрезах проволоки из различного материала. Сопротивление кусков оказывалось меньше, нежели внутреннее сопротивление источника. В результате образования резистивного делителя ток с изменением материала проводника менялся крайне слабо. Внутренний импеданс гальванического элемента вносил большие погрешности. И здесь термопара проявилась наилучшим образом. Внутреннее сопротивление подобного источника чрезвычайно мало.

Вдобавок чистота материалов исследуемых образцов даже у Ома вызывала сомнения. Не существовало удобоваримого инструмента для оценки диаметра (и площади сечения). Все это говорит, сколько трудностей пришлось преодолеть школьному учителю (талантливому математику).

По мере ознакомления с работой становилось понятно, почему целых два года ушло на вывод простой формулы. В довершение учёный не обнаружил поддержки, в первую очередь, материальной, от учёных кругов и государственных институтов. А уравнение долгое время потом подвергалось критике – масла в огонь добавила неточность в первоначальной формулировке уравнения. Подытоживая:

  1. Путём абстракции однородного, симметричного кольца из проводника учёный дедуктивным методом показал, что в каждом сечении ток одинаков. Полагаем, Ому активно помогала стрелка, усилие кручения которой на протяжённости окружности сохранялось постоянным.
  2. Составляя кольцо из сегментов, Ом создавал разные геометрические абстракции, вытягивал в линию, рисовал и ввёл понятие разницы потенциалов. И все, чтобы увидеть математическое выражение закона.

Как пишет Ом, работа на тот момент считалась сложнейшей математической задачей, добавим, текст её даст сто очков форы любой современной шараде. Когда кольцо представляют в виде прямой линии, это выглядит странно, текст не поясняет это действие (хотя там терпеливо обрисовывается назначение линий). Не берёмся выяснять суть абстракций, просто указываем форму уравнения, к которой пришёл учёный:

Х = а/b + x,

где Х – сила, действующая на магнитную стрелку, a – длина исследуемого проводника, b и х – некие произвольные константы. К примеру, Ом предлагал взять, соответственно, b единым числом 20,25 и х – диапазон значений от 7285 до 6800. В этом случае, пользуясь указанным выше выражением, удавалось заранее по длине и материалу проводника предсказать магнитную силу, действующую на стрелку. Что сочтено подтверждением верности происходящего.

Вместо заключения

Над простой зависимостью два века назад талантливый математик трудился несколько лет. В этом первые помогали советом, вторые мешали. Достаточно сказать, что конечный вариант установки собирался специально для целей нахождения зависимости. Все детали, включая термопару, показывали чётко определённые размеры. Установку накрыли колпаком для исключения влияния на крутильные весы воздушных турбулентностей.

В конечном итоге это снизило погрешности до 5 – 10%. Что позволило вывести соотношение, известное сегодня как закон Ома для участка цепи.

Закон Ома для участка цепи

Пожалуй, закон Ома для участка цепи является основой электротехники и электроники. Любое Пособие по физике для поступающих в вузы описывает Закон Ома и любой инженер должен его знать. Этот закон настолько прост, что его, по идее, должен знать и понимать каждый школьник. Однако я встречал людей с высшим техническим образованием, которые не знали как рассчитать простейшую электрическую цепь из двух резисторов. И это не шутка. Именно поэтому я решил написать небольшую статью, посвящённую Закону Ома для участка цепи. Постараюсь сделать это понятными словами.

Закон Ома для участка цепи определяет зависимость между силой тока в проводнике и напряжением (разностью потенциалов) между двумя точками этого проводника. Эти точки ещё называют сечениями. Почему? Проводник, каким бы он ни был (круглым, квадратным или любой другой формы) можно мысленно рассечь (см. рис. 1). Это и будет сечение. А ещё есть понятие площадь поперечного сечения (обычно, когда говорят «сечение» по отношению к проводнику, то как раз и подразумевают площадь поперечного сечения, но это уже другая тема).

Рис. 1. Сечение проводника.

В 1826 г. немецким учёным Георгом Омом (1787-1854) было замечено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока является величиной постоянной, то есть:

U/I = R = const
Эта величина зависит от геометрических свойств проводника (то есть от его размеров, в частности, от площади поперечного сечения), а также от его электрических свойств и температуры. Эта величина называется омическим (активным) сопротивлением, или просто сопротивлением.

Определение закона Ома для участка цепи следующее

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:
I = U/R
Где
U – напряжение на данном участке цепи
R – сопротивление данного участка цепи
Сопротивление проводника – это основная электрическая характеристика проводника. Эта характеристика определяет упорядоченное перемещение носителей тока в этом проводнике (или на участке цепи).

Единица измерения омического сопротивления в СИ – ом (Ом). Проводник имеет сопротивление 1 Ом, если при силе тока в этом проводнике 1 А разность потенциалов (напряжение) на его концах равна 1 В, то есть

 
1 Ом = 1 В / 1 А
Иными словами, если взять проводник, по которому течёт ток силой 1 А, отмерить отрезок этого проводника таким образом, чтобы напряжение на концах этого отрезка было равно 1 В, то сопротивление этого отрезка будет 1 Ом (рис. 2).

Рис. 2. Сопротивление проводника.

Как говаривал один известный товарищ – теория без практики мертва. Надеюсь, что всё прочитанное выше вы поняли. Но остался один вопрос – зачем это надо? Где можно применить полученные знания на практике? Приведу два простых примера, которые, однако, используются очень часто в электронике.

Делитель напряжения

Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов (см. рис. 3). Если вы не знаете, что такое резисторы, то советую ознакомиться со статьёй РЕЗИСТОРЫ. Ну а если знаете, то дальше можете прочитать о том, как это сделать.

Задача, в общем-то, не сложная. Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором – (12 – 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А). Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:

R = U/I = 12 В / 0,05 А = 240 Ом
Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток – в АМПЕРАХ, а сопротивление – в ОМАХ.

Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:

R1 = U1 / I = 9 / 0,05 = 180 Ом
R2 = U2 / I = 3 / 0,05 = 60 Ом
Ну вот и всё. Задача решена. Однако использовать такой делитель нужно с умом. Ведь любая нагрузка имеет своё сопротивление, которое называется входным сопротивлением. Это значит, что, подключив нагрузку к выходу делителя, мы тем самым уменьшим сопротивление цепи, а это, в свою очередь, увеличит ток в цепи и падение напряжения на резисторе R1 увеличится, а на нагрузке, соответственно, уменьшится. Что из этого следует? А следует из этого тот печальный факт, что сколь-нибудь мощную нагрузку подключать к выходу делителя нецелесообразно. Поэтому такие делители используются в основном, в электронных схемах, где протекают относительно небольшие токи.

Если интересно, то вы можете немного поэкспериментировать с делителем напряжения при помощи представленного ниже флэш-ролика (рис. 3). Для изменения входного напряжения и сопротивления резисторов воспользуйтесь соответственными “ползунками” или непосредственно введите данные в поля жёлтого цвета. Если флэш-ролик не отображается или не работает, то вам придётся настроить (или заменить) ваш браузер и/или установить (обновить) флэш-плеер.

Рис. 3. Делитель напряжения.

Как зажечь (но не сжечь) светодиод?

Светодиоды в наше время применяются очень широко – от простых устройств индикации до автомобильных фонарей и светофоров. Возможно, у вас возникала мысль поменять лампочки в автомобиле на светодиоды. Как бывалый автомобилист я вам этого делать не советую – возни много, а смысла мало. А вот как электронщик – помогу разобраться в премудростях включения светодиодов в электрическую цепь. Дело это несложное, но многие просто понятия не имеют, что и здесь нужно всё делать «по науке». А потом говорят, что светодиоды – вещь ненадёжная, хотя, как правило, выходят из строя светодиоды при правильной эксплуатации очень и очень редко. А вот при неправильной – ещё как. При желании сжечь светодиод можно моментально.

Надо сказать, что сейчас в магазинах довольно много разных «мигающих» и прочих светодиодов, которые на самом деле являются электронными устройствами, встроенными в корпус светодиодов. Такие устройства можно подключать непосредственно к источнику питания, без гасящего резистора. Однако мы здесь будем говорить об обычных светодиодах.

Схема включения светодиода показана на рис. 4. При включении светодиода в цепь постоянного тока необходимо соблюдать полярность (см. документацию на светодиод).

Итак, главное, что нам нужно знать:

  • Максимальное напряжение
  • Максимально допустимый ток светодиода
Максимально допустимый ток светодиода – это ток, при котором гарантируется долговременная работа светодиода без выхода его из строя. Не надо путать с кратковременным максимальным током. Эти данные берутся из справочных материалов. Но обычно ток светодиода составляет 10…20 мА.

Итак, допустим, что мы зачем-то хотим установить светодиод на автомобиль. Напряжение бортовой сети автомобиля при исправном оборудовании не может превышать 15 В. На это напряжение и будем рассчитывать. Допустим, что максимальный ток нашего светодиода составляет 20 мА (0,02 А). Далее нам необходимо учесть тот факт, что на любом полупроводнике (коим является и светодиод) падает какое-то напряжение. Для светодиодов это обычно 1,5…2 В. Примем его для нашего случая равным 2 В.

Поскольку резистор и светодиод будут подключены последовательно, то максимально возможное напряжение на резисторе для нашего примера будет

U1 = U – Ud = 15 – 2 = 13
Где
U1 – напряжение на гасящем резисторе R1
U – входное напряжение
Ud – напряжение, падающее на светодиоде
Теперь остаётся рассчитать резистор таким образом, чтобы через него протекал ток 20 мА при напряжении 13 В. Делаем это с помощью известного нам закона Ома для участка цепи:
R = U1 / I = 13 / 0,02 = 650 Ом
Ну вот и всё. Задача решена – для включения светодиода с заданными характеристиками нам потребуется резистор сопротивлением 650 Ом. Однако сопротивление – это не единственный параметр резистора. Резистор ещё должен иметь подходящую мощность. Кроме того, промышленностью не выпускаются резисторы сопротивлением 650 Ом (точнее, выпускаются, но для особых случаев). Но это уже другая история. Хотите знать больше? Читайте статью РЕЗИСТОРЫ.

Ну и кроме того предоставлю вам возможность закрепить полученный материал с помощью флэш-ролика (рис. 4).

Рис. 4. Подключение светодиода.

См. также:


формула, определение и решение задачи

Теория и расчёты

Поддержание электроустановок в рабочем состоянии требует надлежащего технического обслуживания, с выполнением комплекса операций, предусмотренных

Теория и расчёты

Нейтралью называют соединение трансформаторных или генераторных обмоток в одной точке, при соединении трехфазной электрической

Теория и расчёты

Один из показателей, указывающих на состояние трансформаторов и его готовность к эксплуатации – коэффициент

Теория и расчёты

Все электрические приборы нагреваются в процессе эксплуатации, трансформаторы – не исключение. Мощные трансформаторы охлаждаются с

Теория и расчёты

Для обеспечения электроснабжения граждан, предприятий и организаций возникает необходимость устройства высоковольтных линий электропередач. Но

Теория и расчёты

Один из элементов, используемых для заземления трансформаторов. ЗОН – эта аббревиатура расшифровывается как заземлитель

формулировка простыми словами, формула для первого, второго и третьего

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Источник: rusenergetics.ru

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

Формула закона, известная всем со школьных лет, выглядит так:

\(I=\frac UR\)

Из нее легко выводятся формулы для определения \(U\):

\(U\;=I\times R\)

и для определения \(R\):

\(R=\frac UI\)

Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Источник: dzgo.ru

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

Описание формулы этого закона для полной цепи выглядит так:

\(I=\frac\epsilon{R+r}\)

где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

\(R\) — сопротивление внешней цепи;

\(r\) — внутреннее сопротивление источника.

Источник: multiurok.ru

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

  • Сила тока по формуле: 

\(I=I_1=I_2=I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.

  • Напряжение по формуле:

\(U=U_1+U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.

  •  Сопротивление согласно формуле:

\(R=R_1+R_2+R_3\)

Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

\(I=I_1+I_2+I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.

\(U=U_1=U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.

  • Сопротивление:

\(R=\frac{R_1\times R_2\times R_3}{R_1+R_2+R_3}\)

Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Источник: en.ppt-online.org

При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

\(I=\frac UZ\)

где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих (\(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).

Реактивное сопротивление цепи зависит:

  • от значений реактивных элементов, 
  • от частоты электротока;
  • от формы тока в цепи. 
 

Источник: fizikaotfizika.ru

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

\(I=\frac UR\)

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

\(R=p\times\left(\frac lS\right)\)

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Источник: grabachapter.com

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

для участка цепи, для полной цепи +ВИДЕО

Чтобы хоть немного разбираться в электрике, необходимо знать основополагающие законы. Один из них — закон Ома. С него начинают изучение электрики и не зря. Он иллюстрирует зависимость параметров электрической цепи друг от друга. 

Содержание статьи

Как звучит закон Ома для участка цепи

Есть говорить об официальной формулировке, то закон Ома можно озвучить так:

Сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Это высказывание справедливо для участка цепи с каким-то определенным и стабильным сопротивлением.

Формула этой зависимости на рисунке. Тут I — это сила тока, U — напряжение, R — сопротивление.

Формула закона Ома

  • Чем больше напряжение, тем больше ток.
  • Чем больше сопротивление, тем ток меньше.

Не так легко представить себе смысл этого выражения. Ведь электричество нельзя увидеть. Мы только приблизительно знаем что это такое. Попытаемся уяснить себе смысл этого закона при помощи аналогий.

Разбираемся что такое ток и сопротивление

Начнем с понятия электрического тока. Если говорить коротко, электрический ток применительно к металлам — это направленное движение электронов — отрицательно заряженных частиц. Их обычно представляют в виде небольших кружочков. В спокойном состоянии они передвигаются хаотически, постоянно меняя свое направление. При определенных условиях — возникновении разницы потенциалов — эти частицы начинают определенное движение в какую-то сторону. Вот это движение и есть электрический ток.

Чтобы было понятнее,  можно сравнить электроны с водой, разлитой на какой-то плоскости. Пока плоскость неподвижна, вода не движется. Но, как только появился наклон (возникла разница потенциалов), вода пришла в движение. С электронами примерно так же.

Примерно так можно себе представить электрический ток

Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.

Если у вас есть желание проверить эту зависимость опытным путем, найдите переменный резистор, соедините последовательно резистор — амперметр — источник тока (батарейка). Еще желательно в цепь вставить выключатель — обычный тумблер.

Цепь для проверки зависимости силы тока от сопротивления

Крутя ручку резистора вы изменяете сопротивление. При этом показания на амперметре, который измеряет силу тока, тоже меняются. Причем чем больше сопротивление, тем меньше отклоняется стрелка — меньше ток. Чем сопротивление меньше — тем сильнее отклоняется стрелка — ток больше.

Вместо стрелочного прибора можно использовать цифровой мультиметр в режиме измерения постоянного тока. В этом случае отслеживаются показания на жидкокристаллическом цифровом табло.

Зависимость тока от сопротивления почти линейная, то есть на графике отражается почти прямой линией. Почему почти — об этом надо говорить отдельно, но это другая история.

Говорим о напряжении

Не менее важно понять что такое напряжение. Давайте сразу начнем с аналогии и снова используем воду. Пусть в воронке находится вода. Она просачивается через узкое горлышко, которое создает сопротивление. Если представить, что на воду уложили груз, движение воды ускорится. Этот груз — и есть напряжение. И теперь тоже понятно, почему чем выше напряжение, тем сильнее ток — чем сильнее давление, тем быстрее будет двигаться вода. То есть, зависимость прямая: больше напряжение — больше ток. И именно это положение отражает закон Ома — «давление» стоит в числителе (в верхней части дроби).

Можно попробовать представить напряжение по-другому. Есть все те же электроны, которые скопились на одном краю источника питания. На втором краю их мало. Так как каждый из электронов имеет какой-то заряд, там, где их много, суммарный заряд больше, где мало — меньше. Разница между зарядами и есть напряжение. Это тоже несложно представить. С точки зрения электричества — это более корректное представление, хоть и не точное.

На тему закона Ома есть немало забавных картинок, позволяющих чуть лучше понять все эти явления. Одна из них перед вами и иллюстрирует, как ток зависит от напряжения и сопротивления. Смотрите что получается: сопротивление старается уменьшить ток (обратная зависимость), а с ростом напряжения он увеличивается (прямая зависимость). Это и есть закон Ома, но переданный простыми словами.

Благодаря картинке просто понять зависимость тока от напряжения и сопротивления

Если вы хотите убедиться и в этой зависимости, тоже надо создать простенькую цепь. Но нужен будет либо регулируемый источник питания, либо несколько батареек, которые выдают разное напряжение. Или можно последовательно включать несколько батареек — тоже вариант. Но менять/подпаивать батарейки надо при разорванной цепи (выключенном тумблере).

В этой схеме используются два измерительных прибора: амперметр включается последовательно с нагрузкой (резистор на схеме ниже), вольтметр параллельно нагрузке.

Схема для иллюстрации закона Ома

Так как другие параметры цепи остаются в норме, при увеличении напряжения мы увидим увеличение силы тока. Чем больше напряжение подаем, тем больше отклоняются стрелки вольтметра и амперметра. Если задаться целью построить график, он будет в виде прямой. Если поставить другое сопротивление, график также будет в виде прямой, но угол наклона ее изменится.

Что изменится для полной цепи

В ситуации выше рассмотрен только некоторый участок цепи, обладающий каким-то фиксированным сопротивлением. Мы предполагаем, что при определенных условиях электроны начнут движение. Причина этого движения — тот самый груз на картинке. В реальных условиях это — источник тока. Это может быть батарейка, генератор постоянного тока, подключенный шнур блока питания и т.д. При подключении источника питания к проводнику в нем начинает протекать ток. Это мы тоже знаем и наблюдаем, когда включаем лампу в сеть, ставим заряжаться мобильный телефон и т.д.

Полная цепь включает в себя источник питания

Участок цепи имеет какое-то сопротивление. Это понятно. Но источник  питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).

Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:

Сила тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника тока.

Вроде не слишком сложно, но можно попробовать еще проще:

  • Чем выше ЭДС источника тока, тем больше ток.
  • Чем больше суммарное сопротивление, тем ток меньше.

Как найти сопротивление, напряжение

Зная формулу закона Ома для участка цепи, мы можем рассчитать напряжение и сопротивление. Напряжение находится как произведение силы тока и сопротивления.

Формула напряжения и сопротивления по закону Ома

Сопротивление можно найти, разделив напряжение на ток. Все действительно несложно. Если мы знаем, что к участку цепи было проложено определенное напряжение и знаем какой при этом был ток, мы можем рассчитать сопротивление. Для этого напряжение делим на ток. Получаем как раз величину сопротивления этого куска цепи.

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

  • Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
  • Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга. Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя. Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

    Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

В общем, это наиболее распространенные варианты использования этих соединений.

Что такое закон Ома и как он применим к тепловым системам?

Применение закона Ома к тепловым системам

Чтобы понять, как сопротивление электрической цепи влияет на вашу тепловую систему, просмотрите различные схемы и решения по обогреву. Эти знания помогут вам приобрести оптимальный электрический нагреватель и контроллер для вашего приложения.

Определение тока

Определение величины тока, который будет протекать в вашей системе, важно для обеспечения защиты компонентов системы с помощью соответствующих предохранителей или автоматических выключателей.Ток также можно определить по закону Ома. Ток I в амперах (A) равен напряжению E в вольтах (V), деленному на сопротивление R в омах (Ω).

  • ● Ток = напряжение / сопротивление, поэтому I = E / R

Например, если нагреватель измеряет сопротивление 100 Ом, а напряжение, подаваемое в систему, составляет 240 вольт, каков ток в амперах? I = 240/100, поэтому I = 2,4 ампера.

Расчет сопротивления последовательных и параллельных цепей

Электрические цепи состоят из четырех основных компонентов.Эти четыре компонента могут быть включены в последовательную или параллельную схему для питания ваших нагревательных приборов:

  • ● Резистивное устройство (нагревательные элементы)
  • ● Источник напряжения
  • ● Текущий путь
  • ● Переключатель

Последовательная цепь соединяет нагреватели встык. Сопротивление каждого нагревателя необходимо сложить, чтобы получить общее сопротивление цепи. Параллельные цепи открывают большие возможности для прохождения электричества, поэтому добавление нагревательных элементов в параллельную цепь снижает общее сопротивление.Просто установите напряжение закона Ома как постоянное и рассчитайте сопротивление вашей системы.

Последовательная цепь характеризуется общим током, протекающим через все резисторы, так как ток может идти только по одному пути. Эквивалентное сопротивление для последовательной цепи – это сумма всех отдельных сопротивлений, поэтому R всего = R₁ + R₂ +… + Rn. Между тем, параллельная цепь характеризуется общей разностью потенциалов (напряжением) на концах всех резисторов.Эквивалентное сопротивление для параллельной цепи рассчитывается по следующей формуле: 1 / R всего = 1 / R₁ + 1 / R₂ + … + 1 / Rn.

Рис. 1. На схеме слева показана схема, состоящая из источника напряжения и трех резисторов серии . Правая диаграмма представляет собой схему с источником напряжения и 3 резисторами, включенными параллельно . Например, у вас есть три нагревателя с R1 = 10 Ом, R2 = 16 Ом и R3 = 5 Ом. Итак, рассчитав сопротивление для последовательной цепи, R итого = 10 + 16 + 5 = 31 Ом.Расчет для параллельной цепи: 1 / R всего = 1/10 + 1/16 + 1/5, поэтому 1 / R всего = 0,3625 и всего R = 2,76 Ом.

Обратите внимание, что при последовательном размещении резисторов общее сопротивление превышает сопротивление каждого отдельного нагревателя, а при параллельном подключении общее сопротивление уменьшается до уровня, меньшего, чем сопротивление каждого отдельного нагревателя.

В параллельных цепях все нагревательные элементы имеют одинаковое напряжение, а в последовательных цепях – одинаковый ток.По сути, последовательная проводка предназначена только для двух нагревателей одинаковой мощности и напряжения. Параллельная схема не только снижает сопротивление, но и не требует от каждого нагревателя постоянного тока электричества. Если один нагреватель выходит из строя последовательно, цепь разрывается, и вся линейка нагревателей перестает работать. Один поврежденный нагреватель в параллельной цепи влияет только на отдельный нагреватель, поэтому другие нагреватели могут продолжать работать.

Как улучшить тепловую систему Закон

Ома может помочь вам в поиске и устранении неисправностей в вашей тепловой системе.Если ваши контроллеры мощности и температуры показывают колебания электрического тока или тепловой мощности, вы можете использовать закон Ома для проверки статических значений компонентов схемы и определения измерений напряжения на компонентах.

Измерение большого тока в вашей цепи может быть вызвано увеличением напряжения или уменьшением сопротивления. Ваш испытательный прибор может идентифицировать любое изменение напряжения, что позволяет использовать закон Ома для расчета сопротивления, чтобы определить, вызвана ли проблема поврежденными компонентами или ослабленными электрическими соединениями.В этом случае это действительно вызовет увеличение сопротивления; низкий I и высокий W, при этом высокий W означает больший нагрев на концах.

Закон

Ома – важный инструмент, используемый инженерами-проектировщиками для расчета взаимосвязи между напряжением, током и сопротивлением. Однако это не считается универсальным законом. Закон Ома не применяется в случаях, когда имеется индуктивная нагрузка или когда сопротивление не является постоянным. Хотя большинство нагревателей имеют стабильное сопротивление при повышении температуры, некоторые – нет.Примеры этого включают вольфрамовые лампы и нагреватели из карбида кремния.

Существуют исключения схемы, особенно когда протекающий ток не прямо пропорционален разности потенциалов в проводнике. Закон Ома нельзя применять к устройствам с нелинейной зависимостью между напряжением и током, таким как термистор. Для получения дополнительной информации о законе Ома и его исключениях обратитесь к торговому представителю Watlow.

Закон

Ом
  • Изучив этот раздел, вы должны уметь:
  • Опишите закон Ома для металлических проводников:
  • • Сопротивление, напряжение и ток.
  • Определить:
  • Ом, Ампер и Вольт.

Ом, вольт и ампер.

Сопротивление проводника измеряется в Омах, а Ом – это единица измерения, названная в честь немецкого физика Джорджа Симона Ома (1787–1854), который первым показал взаимосвязь между сопротивлением, током и напряжением. Поступая так, он разработал свой закон, который показывает взаимосвязь между тремя основными электрическими свойствами сопротивления, напряжения и тока.Он демонстрирует одну из самых важных взаимосвязей в электротехнике и электронной технике.

Закон Ома гласит: «В металлических проводниках при постоянной температуре и нулевом магнитном поле протекающий ток пропорционален напряжению на концах проводника и обратно пропорционален сопротивлению проводника. ”

Проще говоря, при условии, что температура постоянна и электрическая цепь не подвержена влиянию магнитных полей, тогда:

• В цепи с постоянным сопротивлением, чем больше напряжение, приложенное к цепи, тем больше будет протекать ток.

• При подаче постоянного напряжения, чем больше сопротивление цепи, тем меньше будет протекать ток.

Обратите внимание, что закон Ома гласит: «В металлических проводниках». Это означает, что закон применим для большинства металлических материалов, но не для всех. Например, вольфрам, используемый для накаливания накала лампочек, имеет сопротивление, которое изменяется в зависимости от температуры нити, отсюда в Законе Ома ссылка на «при постоянной температуре». В электронике также используются компоненты, которые имеют нелинейную зависимость между тремя электрическими свойствами: напряжением, током и сопротивлением, но их можно описать разными формулами.Для большинства схем или компонентов, которые могут быть описаны законом Ома:

Вместо того, чтобы запоминать весь закон Ома, три электрических свойства напряжения, тока и сопротивления отдельными буквами:

Сопротивление обозначается буквой R и измеряется в единицах Ом, которые имеют символ Ω (греческая заглавная буква O).

Напряжение обозначается буквой V (или иногда E, сокращением от Electromotive Force) и измеряется в единицах вольт, которые имеют символ V.

Ток обозначается буквой I (не C, поскольку он используется для обозначения емкости) и измеряется в единицах ампер (часто сокращается до ампер), которые имеют символ A.

Используя буквы V, I и R для выражения отношений, определенных в Законе Ома, дает три простые формулы:

Каждый из них показывает, как найти значение любой из этих величин в цепи, если известны две другие. Например, чтобы найти напряжение V (в вольтах) на резисторе, просто умножьте ток I (в амперах) через резистор на значение резистора R (в омах).

Обратите внимание, что при использовании этих формул значения V I и R, записанные в формулу, должны быть в ее БАЗОВЫХ ЕДИНИЦАХ, т.

Вкратце 15 кОм (килоом) вводится как 15 EXP 03, а 25 мА (миллиампер) вводится как 25 EXP -03 и т. Д. Это проще всего сделать с помощью научного калькулятора.

Как пользоваться калькулятором с инженерными обозначениями, широко используемыми в электронике, объясняется в нашем бесплатном буклете под названием «Подсказки по математике». Загрузите его со страницы загрузки.

Определение сопротивления, ампера и напряжения

1 Ом

Может быть определено как «Величина сопротивления, которая создает разность потенциалов (p.d.) или напряжение в 1 вольт на нем, когда через него протекает ток в 1 ампер».

1 АМПЕР

Может быть определено как «Величина тока, которая при прохождении через сопротивление 1 Ом создает разность потенциалов на сопротивлении в 1 Вольт».

(Хотя доступны более полезные определения ампера)

1 ВОЛЬТ

Может быть определено как «Разность потенциалов (напряжений), возникающая на сопротивлении 1 Ом, через которое протекает ток в 1 Ампер.«

Эти определения относятся к Вольтам, Амперам и Ом в пределах величин, описанных в Законе Ома, но также могут использоваться альтернативные определения с использованием других величин.

ПОПРОБУЙТЕ ПРОСТЫЕ РАСЧЕТЫ, ИСПОЛЬЗУЯ Закон Ома.

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 116

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления.Это три основных строительных блока, необходимых для управления электричеством и его использования. Сначала эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть». Невооруженным глазом нельзя увидеть энергию, текущую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе.Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

рассматривается в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество – это движение электронов. Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. – все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение – это разница в заряде между двумя точками.
  • Текущий – это скорость, с которой происходит начисление.
  • Сопротивление – это способность материала сопротивляться прохождению заряда (тока).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь – это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество.Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов энергии между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. В этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Поэтому для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.Внизу этого бака есть шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем рассматривать этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет из-за разряда батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более узким шлангом. более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряд) в резервуаре с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга – это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или, для краткости, «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

С точки зрения электричества это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно обозначается на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • В = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в резервуаре определяется как 1 вольт, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что, зная два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. светодиода – это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. В целях безопасности мы предпочли бы не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод напрямую к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а так как сопротивления еще нет:

Деление на ноль дает бесконечный ток! Что ж, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток через светодиод не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора является обычным явлением в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации – светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, вся река перестала бы течь, а не только с одной стороны. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор не может быть размещен где-либо в цепи ; он может быть размещен на любой стороне светодиода для выполнения своей функции.

Чтобы получить более научный ответ, мы обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и дальнейшее развитие

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции – лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.

Закон Ома

| Определение | Формула | Приложения

Определение закона Ома

Закон Ома гласит, что ток в электрической цепи пропорционален приложенному напряжению и обратно пропорционален его сопротивлению.

По мере увеличения напряжения в цепи (сопротивление остается постоянным) ток увеличивается на ту же величину. Следовательно, если напряжение удвоится, ток удвоится. Кроме того, величина тока в цепи обратно пропорциональна ее сопротивлению, когда напряжение остается неизменным.

Другими словами, если сопротивление в цепи увеличивается, величина тока уменьшается. Например, если сопротивление увеличивается в три раза, ток будет уменьшен до одной трети от своего первоначального значения (напряжение остается постоянным).

Формула закона Ома

Закон Ома удобно выразить следующим простым уравнением:

$ I (ампер) = \ frac {E \ text {} (вольт)} {R \ text {} (Ом )} \ text {} \ cdots \ text {} (1) $

С помощью простой алгебры уравнение (1) можно переформулировать в терминах сопротивления или напряжения следующим образом:

$ R = \ frac {E \ text { }} {I} \ text {} \ cdots \ text {} (2) $

$ E = IR \ text {} \ cdots \ text {(3)} $

Вот еще один способ выражения закона Ома:

Электрическое давление в один вольт на сопротивлении в один ом вызовет протекание тока в один ампер.

Закон Ома и нелинейные резисторы

Поскольку R является постоянным, уравнение (3) является уравнением прямой линии, по этой причине резистор называется линейным резистором. График зависимости v от I показан на рисунке 1, который представляет собой линию, проходящую через начало координат с наклоном R. Очевидно, что прямая линия – единственный возможный график, для которого отношение v к I является постоянным для всех i.

Рис.1: вольт-амперная характеристика линейного резистора

Резисторы, сопротивление которых не остается постоянным при разных токах на клеммах, известны как нелинейные резисторы.Для такого резистора сопротивление является функцией тока, протекающего в устройстве. Простым примером нелинейного резистора является лампа накаливания. Типичная вольт-амперная характеристика для этого устройства показана на рисунке 2, где мы видим, что график больше не является прямой линией. Поскольку R не является константой, анализ схемы, содержащей нелинейные резисторы, является более трудным.

Рис. 2: типичная вольт-амперная характеристика нелинейного резистора

На самом деле все практические резисторы нелинейны, поскольку на электрические характеристики всех проводников влияют факторы окружающей среды, такие как температура.Однако многие материалы очень близки к идеальному линейному резистору в желаемой рабочей области.

Закон Ома: решение для тока

Простая электрическая цепь показана в графической форме на рисунке 3, так что вы можете увидеть физическое соотношение между несколькими компонентами. Вообще говоря, в работе с электроникой используются принципиальные схемы, а не графические схемы. Диаграмма, показанная на рисунке 4, схематически представляет собой графическое изображение на рисунке 3.

Рис.3: Графическая схема простой электрической цепи

Рис. 4: Принципиальная схема последовательной цепи

Соблюдайте полярность соединений амперметра на рисунке 4. Обратите внимание, что положительный полюс амперметра подключается к положительному полюсу батареи. , в то время как отрицательная клемма подключается к резистору: также обратите внимание, что амперметр подключен последовательно с резистором, так что весь ток в цепи должен проходить через него. Поскольку амперметры имеют очень низкое сопротивление, они существенно не увеличивают сопротивление цепи.Если бы амперметр был случайно подключен параллельно (параллельно) батарее или резистору, на мгновение протек бы очень большой ток, который, вероятно, повредил бы измеритель.

К аккумулятору подключен вольтметр для измерения напряжения аккумулятора. Поскольку вольтметры обычно представляют собой приборы с очень высоким сопротивлением, они не потребляют значительного количества тока от батареи. Соблюдайте полярность подключения вольтметра. Положительный вывод подключается к положительной клемме аккумулятора, а отрицательный вывод подключается к отрицательной клемме аккумулятора.Следует помнить очень важное правило: вольтметры всегда подключаются параллельно источнику напряжения или нагрузке, а амперметры всегда подключаются последовательно с цепью или нагрузкой.

Вот пример, иллюстрирующий, как можно использовать закон Ома для определения тока в последовательной цепи.

Закон Ома Пример 1

Определить ток в простой последовательной цепи, показанной на рисунке 4, по предоставленной информации?

Решение

Используйте формулу закона Ома для определения силы тока:

$ I \ text {=} \ frac {E \ text {}} {R} $

Подставьте известные значения в формулу:

$ I = \ frac {12 \ text {}} {3} = 4A $

Таким образом, 12 В, подключенные к сопротивлению 3 Ом, дают ток 4 А через резистор.В этом случае амперметр покажет 4А.

Закон Ома: определение сопротивления

Сопротивление электрической цепи может быть легко определено с помощью формулы закона Ома, приведенной ранее, и решения для сопротивления следующим образом:

$ R = \ frac {E \ text { }} {I} \ text {} $

Эта формула говорит нам, что сопротивление в цепи обратно пропорционально величине тока. Если ток небольшой, сопротивление цепи должно быть большим, если предполагается, что напряжение остается постоянным.Следующий пример иллюстрирует использование этой формулы:

Закон Ома Пример 2

Ссылаясь на рисунок 5, определите омическое значение сопротивления нагрузки RL по приведенным данным.

Рис.5: Определение сопротивления в последовательной цепи

Решение

Используйте уравнение (2) и подставьте известные значения:

$ {{R} _ {L}} = \ frac {E \ text {}} {I} \ text {=} \ frac {10} {2} \ text {= 5} \ Omega \ text {} $

Цепь будет считаться схемой с относительно низким сопротивлением, поскольку ток 2А протекает только с Подано 10 В.

Закон Ома: решение для напряжения

Если сопротивление и ток цепи известны, легко вычислить величину приложенного напряжения. Мы используем формулу закона Ома и решаем для напряжения:

$ E = IR \ text {} $

Из этой формулы мы видим, что напряжение является произведением тока и сопротивления. Падение напряжения на сопротивлении или цепи будет напрямую зависеть от тока или сопротивления. Например, если ток через резистор удвоится, падение напряжения (IR-падение) удвоится.Или, если ток можно поддерживать на заданном уровне, но сопротивление удваивается, падение напряжения удваивается. В следующем примере показано, как рассчитать падение напряжения или IR.

Закон Ома Пример 3

Определите значение напряжения питания в цепи, показанной на рисунке 5, по предоставленной информации.

Рис.6: Расчет E, когда известны R и I

Решение

$ E = IR = 2 * 50 = 100 В $

Следовательно, из примера мы видим, что для этого требуется питание 100 В. подайте ток 2 А через резистор 50 Ом.Можно сказать, что падение напряжения на резисторе составляет 100 В, то же самое, что и на питании. На амперметре не происходит падения ИК-излучения, поскольку его сопротивление принято равным нулю для всех практических целей.

Графическое представление закона Ома

Ранее мы узнали, что ток в цепи прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению. Если напряжение увеличится вдвое, ток увеличится в два раза при условии, что сопротивление останется постоянным.Эта линейная зависимость показана верхней диагональной прямой линией на рисунке 7, которая представляет собой график уравнения I = V / R для сопротивления 20 Ом. Обратите внимание, что напряжение отложено по горизонтальной оси, а ток – по вертикальной оси.

Рис. 7: Линейная зависимость между током и напряжением в цепи постоянного сопротивления

Если бы мы приняли сопротивление нагрузки 40, а не 20 Ом, результатом была бы диагональная линия R = 40 Ом. Если использовалось сопротивление менее 20 Ом, результирующая линия была бы круче, чем линия для нагрузки 20 Ом.Кривые на рисунке 7 показывают прямую пропорциональность между напряжением и током для различных значений сопротивления нагрузки.

Закон Ома Память AID

Закон Ома можно легко запомнить с помощью простого вспомогательного средства запоминания, показанного на рисунке 8. Закрыв одну из букв, вы получите расположение двух других в правой части формула определения стоимости перепечатанного письма.

  • При наведении пальца на I дает E / R, указывая, что I = E / R.
  • Закрытие буквы E оставляет IR, указывая, что E является продуктом IR.
  • Точно так же, если R покрывается, E / I остается, что означает, что R равно E, деленному на I.

Рис.8: Вспомогательное средство для изучения закона Ома

Применение закона Ома
  1. Закон Ома полезен в линейных цепях для расчета напряжения, тока и сопротивления. Если мы знаем два из них
  2. Расчет мощности становится проще.

https: // www.youtube.com/watch?v=OGI-065RhFo

Проверьте свое понимание; ответьте на эти контрольные вопросы.

  1. Какова основная формула закона Ома? Каковы два вывода этой формулы?
  2. Какой ток протекает в цепи с сопротивлением 100 В и сопротивлением 1000 Ом?
  3. Какое напряжение требуется для получения тока 2 А через 60 Ом?
  4. Какое сопротивление ограничит ток до 4 А в цепи с питанием 200 В?
  5. Сопротивление цепи остается прежним, но ток через резистор внезапно увеличивается втрое.Что случилось с напряжением цепи?
  6. Если напряжение, приложенное к цепи, удваивается, но сопротивление остается неизменным, что будет делать текущее значение?
  7. Если R утроится, а E удвоится, каким будет новое текущее значение?

Ответы на контрольную викторину

  1. I = E / R B. R = E / I C. E = IR
  2. 0,1 A
  3. 120V
  4. 50Ω
  5. Он утроился
  6. Double
  7. Две трети исходного

Закон Ома

Мы рассмотрим фундаментальную связь в электронике и физике.

Закон Ома был открыт Георгом Омом в 1837 году, и это основное уравнение, которое управляет многими схемами. Три основных ингредиента – это ток через простую цепь, приложенное напряжение (обычно от батареи) и сопротивление устройства, которое использует ток для выполнения некоторой работы, обычно тепла или света. На этом этапе вы узнаете о
  • математическая формулировка закона Ома и основная обратная зависимость, которую он кодирует
  • как аналогия с водопроводной трубой может помочь понять значение закона Ома.

Закон Ома

Закон Ома гласит, что если \ (\ normalsize {V} \) – это напряжение (измеренное в вольтах) на резисторе \ (\ normalsize {R} \) (измеренное в омах), которое потребляет ток \ (\ normalsize {I} \) (измеряется в амперах), то \ [\ Large {V = IR}. \] Резистор – это объект, который использует электрическую энергию и преобразует ее во что-то еще, например, тепло или свет. Примером может служить тостер. Электроэнергия, протекающая через тостер, питается от перепада напряжения, подаваемого через электрическую розетку.Чем больше напряжение, тем больше тока \ (\ normalsize {I} \) проходит через тостер. Итак, для фиксированного резистора \ (\ normalsize {R} \) закон Ома устанавливает линейную пропорциональность между напряжением и током. Нити для тостеров Ник Карсон, en.wikipedia CC BY 3.0, через Wikimedia Commons Однако мы можем взглянуть на закон и по-другому. Если мы рассматриваем напряжение \ (\ normalsize {V} \) как фиксированное, то сопротивление и ток обратно пропорциональны, поскольку их произведение постоянно и равно фиксированному напряжению.Если мы увеличиваем сопротивление, то ток уменьшается, а если мы уменьшаем сопротивление, то ток увеличивается. Это ситуация с цепью, работающей от батареи, или с электричеством в нашем доме, где подаваемое напряжение является постоянным (\ (\ normalsize {110-120} \) вольт в большинстве стран Америки, \ (\ normalsize { 220-230} \) вольт в Европе, Австралии и большинстве стран Азии). Однако, строго говоря, в этом случае напряжение меняется по направлению. В предельном случае, когда сопротивление становится равным нулю, например, если вы заменяете тостер на провод, то течет бесконечно большой ток.Затем возникает короткое замыкание , часто с катастрофическими последствиями, особенно если у вас нет предохранителя, который бы размыкал цепь в такой аварийной ситуации.

Некоторые примеры

Если мы подключим лампу к цепи, питаемой 6-вольтовой батареей, и потребляем ток 3 ампера, то сопротивление \ (\ normalsize R \) будет равно \ [\ Large R = \ frac {V} {I} = \ frac 63 = 2 \; \ text {ohms}. \] Теперь, если мы подключим ту же лампу к 10-вольтовой батарее, то ток \ (\ normalsize I \) будет \ [\ Large I = \ frac {V} {R} = \ frac {10} 2 = 5 \; \ text {amps}.\] Если мы хотим сделать свет ярче, нам нужно увеличить ток, скажем, до 8 ампер, тогда нам нужно увеличить наше напряжение до \ [\ Large V = IR = 8 \ times2 = 16 \; \ text {volts}. \]

Q1 (E): электрическое устройство подключено к напряжению 120 вольт. Найдите ток, если сопротивление 480 Ом.

Q2 (E): Предположим, что у нас есть батарея с некоторым постоянным напряжением, освещающая небольшую лампу, и амперметр показывает 40 мА, где мА означает миллиампер, что составляет одну тысячную амперметра.Если ток упал до 20 мА, что случилось с сопротивлением?

Как резистор сопротивляется?

Резистор – это любое устройство, замедляющее прохождение тока в цепи. Электричество, по сути, перемещает электроны, и, как и вода, если поток прерывается, ограничивается или сопротивляется , проходит меньше. Некоторые материалы имеют низкое сопротивление, например медная проволока, что позволяет электронам проходить через них без особых проблем. Другие материалы, такие как дерево, обладают высоким сопротивлением, почти мгновенно останавливая электрический ток.На практике у нас есть такие вещи, как лампы и тостеры, которые генерируют свет или тепло от электронов, замедляя их, но все же пропуская.

Ом также обнаружил другой закон, который описывает, какое сопротивление имеет данный материал, например кусок проволочной трубки:

\ [\ Large R = \ frac {\ rho L} {A} \]

где \ (\ normalsize L \) – длина резистора, \ (\ normalsize \ rho \) – величина, которая зависит от материала, а \ (\ normalsize A \) – площадь поперечного сечения резистора. .Итак, \ (\ normalsize R \) равен , прямо пропорционально длине \ (\ normalsize L \): удвоить длину проволочной трубки, и ее сопротивление удвоится. Но \ (\ normalsize R \) также обратно пропорционален площади поперечного сечения \ (\ normalsize A \): удвоить площадь и половину сопротивления.

3 кв. (E): трубчатый резистор имеет форму проволоки. Если мы утроим его длину и уменьшим вдвое диаметр, что произойдет с его сопротивлением?

Гидравлический аналог

Для понимания закона Ома иногда бывает полезна аналогия с гидравликой для начинающих.Представьте себе воду, текущую по горизонтальной трубе. Давление воды \ (\ normalsize P \) аналогично напряжению \ (\ normalsize V \), потому что это разница давлений между двумя точками вдоль трубы, которая заставляет воду течь. Фактический расход воды \ (\ normalsize F \) тогда является аналогом текущего \ (\ normalsize I \).

А что с аналогом резистора? Это можно представить как нечто, препятствующее потоку воды, например, ограничители или отверстия в трубах. Если вода проталкивается через очень тонкую трубку, то чем длиннее трубка и меньше ее площадь поперечного сечения, тем большее сопротивление \ (\ normalsize R \) она будет оказывать на расход воды \ (\ normalsize F \) .И чем больше сопротивление, тем меньше расход.

Соответствующее уравнение для нашего гидравлического аналога в соответствующих единицах:

\ [\ Large P = FR. \]

Таким образом, если мы сохраним давление фиксированным, то расход и ограничение будут обратно пропорциональны: по мере уменьшения размера ограничения \ (\ normalsize R \) расход \ (\ normalsize F \) должен увеличиваться.

На рисунке ниже мы ожидаем, что более тонкая трубка будет действовать как сопротивление потоку в большой трубке.

ответы

A1. По закону Ома ток можно найти по

\ [\ Large {I = \ frac {V} {R} = \ frac {120} {480} = 0,25 \; \ text {amps}}. \]

A2. При постоянном напряжении соотношение между током и сопротивлением обратное. Следовательно, если ток уменьшается вдвое, сопротивление увеличивается вдвое.

A3. Утроение длины резистора увеличивает его сопротивление в 3 раза, а уменьшение его диаметра вдвое увеличивает площадь поперечного сечения на 1/4.В целом сопротивление изменяется в \ (\ frac {3} {1/4} = 12 \) раз.

Законы Ома и Ватта | SpazzTech

Что такое закон Ома и закон Ватта ?:

Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением.Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.

Вольт:

Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, – это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры.Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге. Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками. Напряжение иногда называют «потенциалом», потому что оно может перемещать эти электроны.

Ампер или Ампер:

Единицей измерения параметра тока является ампер.Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, – это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр. Символ, используемый для представления параметра тока, – это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге. Единица A равна количеству кулонов, проходящих через контур за одну секунду.

Ом:

Единицей измерения параметра сопротивления является ом.Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, – это буква «R». Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками. Это составляет основу форм закона Ома, приведенных в следующем разделе.

Формы закона Ома:

Мощность:

Ватт чаще всего используется для измерения мощности в электронике.Символ, используемый для обозначения ватта, – это заглавная буква «W». По сути, мощность – это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, приведенных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт – это мера джоулей на кулон, а ампер – мера кулонов в секунду. Кулоны сокращаются, и у нас остаются джоули в секунду.

Формы закона Ватта:

Объединенная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:

Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие.Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.

© Copyright 2014-2017 SpazzTech LLC. Все права защищены

Что такое закон Ома? – Определение из Техопедии

Что означает закон Ома?

Закон Ома устанавливает взаимосвязь между напряжением, током и сопротивлением.Согласно этому закону, количество электричества, проходящего через проводник между двумя точками в цепи, прямо пропорционально напряжению в этих двух точках при определенной температуре. Ом выразил свою идею в виде простого уравнения E = IR, которое описывает взаимосвязь тока, напряжения, тока и сопротивления. Согласно этому алгебраическому выражению, напряжение (E) в двух точках равно току (I), умноженному на сопротивление (R). Закон Ома – очень полезный и простой инструмент для анализа электрических цепей.Он широко используется при исследовании электрических цепей, резистивных цепей, электроники, гидравлических аналогий, реактивных цепей с изменяющимися во времени сигналами, линейных приближений, температурных эффектов и теплопроводности.

Techopedia объясняет закон Ома

Закон Ома открыл немецкий физик Георг Симон Ом. Закон был опубликован в его статье 1827 года «Математические исследования гальванической цепи». Материал, подчиняющийся принципу закона Ома, называется линейным или омическим, потому что разность потенциалов, измеренная между двумя точками, изменяется линейно с электрическим током.Густав Кирхгоф переформулировал закон Ома как J = sE, где J – плотность тока в данном месте в материале, имеющем сопротивление, E – электрическое поле в этом конкретном месте, а s – проводимость, которая является параметром, который зависит от материал. Закон Ома обобщен после множества экспериментов с материалами, которые доказали прямую связь тока с электрическим полем, связанным с материалами. Закон Ома не всегда выполняется. Эксперименты показали, что некоторые материалы ведут себя неомическим образом при приложении к ним слабого электрического поля.Раньше считалось, что закон Ома не будет неудачным в атомном масштабе. Но позже исследователи доказали, что закон Ома применим для кремниевых проводов, ширина которых составляет всего четыре атома, а высота – всего один атом.

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *