Определенные интегралы примеры решений: Как вычислить определенный интеграл, примеры решений

Примеры решения определённых интегралов с ответами

Алгоритм решения определенных интегралов

Теорема

Определённым интегралом функции на отрезке называется разность первообразных функции, вычисленных на концах этого отрезка.

Алгоритм

Определённый интеграл вычисляется при помощи формулы Ньютона-Лейбница:

   

Для нахождения определённых интегралов, используются свойства неопределённых интегралов, правила вычисления определённых интегралов, а также таблица основных неопределённых интегралов.

– постоянная величина

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Примеры решений

определенных интегралов

Пример 1

Задача

Вычислить интеграл:

   

Решение

По таблице интегралов находим:

   

Ответ

   

Пример 2

Задача

Вычислить интеграл:

   

Решение

По таблице интегралов находим:

   

Ответ

   

Пример 3

Задача

Вычислить интеграл:

   

Решение

По таблице интегралов находим:

   

=

Ответ

   

Пример 4

Задача

Вычислить интеграл:

   

Решение

   

Ответ

   

Пример 5

Задача

Вычислить интеграл:

   

Решение

   

   

   

Ответ

   

Пример 6

Задача

Вычислить интеграл:

   

Решение

Вычислим по частям неопределённый интеграл

   

Обозначим:

   

   

   

   

   

Ответ

   

Пример 7

Задача

Вычислить интеграл:

   

Решение

   

Т. к. и , то:

Ответ

   

Пример 8

Задача

Вычислить интеграл:

   

Решение

   

Ответ

   

Пример 9

Задача

Вычислить интеграл:

   

Решение

   

Ответ

   

Пример 10

Задача

Вычислить интеграл:

   

Решение

   

Ответ

   

Средняя оценка 2.7 / 5. Количество оценок: 23

Поставьте вашу оценку

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

21564

Закажите помощь с работой

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Несобственный интеграл 1-го и 2-го рода.

Сходимость несобственного интеграла. Решение задач и контрольных работ по высшей математике онлайн

Краткая теория


Понятие несобственного интеграла является обобщением понятия определенного интеграла на случай, когда либо промежуток интегрирования бесконечен (интеграл имеет бесконечные пределы интегрирования), либо подынтегральная функция в некоторых точках обращается в бесконечность.

Несобственные интегралы 1-го рода

Рассмотрим несобственные интегралы первого рода.

Если функция  определена на промежутке  и при любом  существует определенный интеграл

то можно рассматривать

этот предел и называют несобственным интегралом от функции  на промежутке . Его обозначают

примем, если предел конечен, то говорят, что несобственный интеграл сходится, а функция  интегрируема на промежутке ; если же предел бесконечен или вовсе не существует, то говорят, что несобственный интеграл расходится, а функция  не интегрируема на .

Таким образом, по определению, если существует

то

Подобным образом определяются несобственные интегралы и для других бесконечных промежутков:

Так как несобственные интегралы с бесконечными пределами получаются предельным переходом из соответствующих определенных (собственных) интегралов, то на первые переносятся все те свойства последних, которые сохраняются при этом предельном переходе.

Несобственные интегралы 2-го рода

Перейдем теперь к рассмотрению несобственного интеграла от неограниченной функции (несобственного интеграла второго рода). Пусть функция  определена на отрезке , за исключением точки , в окрестности которой она не ограничена. Если существует определенный интеграл

при любом , то можно рассматривать

Этот предел называется несобственным интегралом второго рода на  от неограниченной на нем функции  и обозначается

При этом, если предел существует и конечен, то несобственный интеграл называется сходящимся, а неограниченная функция  – интегрируемой на . Если же предел бесконечен или вовсе не существует, то несобственный интеграл называется расходящимся, а функция  – не интегрируемой на .

Аналогично определяется несобственный интеграл для случая, когда функция  определена на отрезке , за исключением точки , в окрестности которой она не ограничена.

В случае, если точка разрыва функции  – точка  – лежит между точками  и  и несобственные интегралы на отрезках  и  существуют, то считают, то

Примеры решения задач


Задача 1

Вычислить несобственный интеграл или доказать его расходимость.

Решение

В этом примере для вычисления неопределенного интеграла используется интегрирование путем подведения под знак дифференциала.

Несобственный интеграл сходится.

Ответ:


Задача 2

Вычислить несобственный интеграл или доказать его расходимость.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь – свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

В этом примере для вычисления неопределенного интеграла применяется метод интегрирования по частям.

Несобственный интеграл сходится.

Ответ:


Задача 3

Вычислить несобственные интегралы или доказать их расходимость.

Решение

В этом примере для вычисления неопределенного интеграла используется интегрирование путем подведения под знак дифференциала.

Несобственный интеграл сходится. {-at}$.. .” 9{as} g(s)\,ds+c. $$

$\endgroup$

2

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Свойства определенного интеграла

Результаты обучения

  • Использование геометрии и свойств определенных интегралов для их оценки

Свойства неопределенных интегралов применимы и к определенным интегралам. Определенные интегралы также обладают свойствами, относящимися к пределам интегрирования. Эти свойства вместе с правилами интегрирования, которые мы рассмотрим позже в этой главе, помогают нам манипулировать выражениями для вычисления определенных интегралов.

92 f(x) dx[/латекс].

Показать решение

Изображение иногда может рассказать о функции больше, чем результаты вычислений. Сравнение функций по их графикам, а также по их алгебраическим выражениям часто может дать новое представление о процессе интегрирования. Интуитивно можно сказать, что если функция [latex]f(x)[/latex] находится выше другой функции [latex]g(x)[/latex], то площадь между [latex]f(x)[/latex] ] и ось [latex]x[/latex] больше площади между [latex]g(x)[/latex] и осью [latex]x[/latex].

Оставить комментарий