Основные формулы для цт по физике: Формулы, свойства, методы и другая справочная информация

Содержание

Формулы по физике основные. Формулы по физике для егэ. Работа, мощность, энергия

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ.
    После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

Формулы кинематики:

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов

студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Абсолютно необходимы для того, чтобы человек, решивший изучать эту науку, вооружившись ими, мог чувствовать себя в мире физики как рыба в воде. Без знания формул немыслимо решение задач по физике. Но все формулы запомнить практически невозможно и важно знать, особенно для юного ума, где найти ту или иную формулу и когда ее применить.

Расположение физических формул в специализированных учебниках распределяется обычно по соответствующим разделам среди текстовой информации, поэтому их поиск там может отнять довольно-таки много времени, а тем более, если они вдруг понадобятся Вам срочно!

Представленные ниже шпаргалки по физике содержат все основные формулы из курса физики , которые будут полезны учащимся школ и вузов.

Все формулы школьного курса по физике с сайта http://4ege.ru
I.

Кинематика скачать
1. Основные понятия
2. Законы сложения скоростей и ускорений
3. Нормальное и тангенциальное ускорения
4. Типы движений
4.1. Равномерное движение
4.1.1. Равномерное прямолинейное движение
4.1.2. Равномерное движение по окружности
4.2. Движение с постоянным ускорением
4.2.1. Равноускоренное движение
4.2.2. Равнозамедленное движение
4.3. Гармоническое движение
II. Динамика скачать
1. Второй закон Ньютона
2. Теорема о движении центра масс
3. Третий закон Ньютона
4. Силы
5. Гравитационная сила
6. Силы, действующие через контакт
III. Законы сохранения. Работа и мощность скачать
1. Импульс материальной точки
2. Импульс системы материальных точек
3. Теорема об изменении импульса материальной точки
4. Теорема об изменении импульса системы материальных точек
5. Закон сохранения импульса
6. Работа силы
7. Мощность
8. Механическая энергия
9. Теорема о механической энергии
10. Закон сохранения механической энергии
11. Диссипативные силы
12. Методы вычисления работы
13. Средняя по времени сила
IV. Статика и гидростатика скачать
1. Условия равновесия
2. Вращающий момент
3. Неустойчивое равновесие, устойчивое равновесие, безразличное равновесие
4. Центр масс, центр тяжести
5. Сила гидростатического давления
6. Давлением жидкости
7. Давление в какой-либо точке жидкости
8, 9. Давление в однородной покоящейся жидкости
10. Архимедова сила
V. Тепловые явления скачать
1. Уравнение Менделеева-Клапейрона
2. Закон Дальтона
3. Основное уравнение МКТ
4. Газовые законы
5. Первый закон термодинамики
6. Адиабатический процесс
7. КПД циклического процесса (теплового двигателя)
8. Насыщенный пар
VI. Электростатика скачать
1. Закон Кулона
2. Принцип суперпозиции
3. Электрическое поле
3.
1. Напряженность и потенциал электрического поля, созданного одним точечным зарядом Q
3.2. Напряженность и потенциал электрического поля, созданного системой точечных зарядов Q1, Q2, …
3.3. Напряженность и потенциал электрического поля, созданного равномерно заряженным по поверхности шаром
3.4. Напряженность и потенциал однородного электрического поля, (созданного равномерно заряженной плоскотью или плоским конденсатором)
4. Потенциальная энергия системы электрических зарядов
5. Электроемкость
6. Свойства проводника в электрическом поле
VII. Постоянный ток скачать
1. Упорядоченная скорость
2. Сила тока
3. Плотность тока
4. Закон Ома для участка цепи, не содержащего ЭДС
5. Закон Ома для участка цепи, содержащего ЭДС
6. Закон Ома для полной (замкнутой) цепи
7. Последовательное соединение проводников
8. Параллельное соединение проводников
9. Работа и мощность электрического тока
10. КПД электрической цепи
11. Условие выделения максимальной мощности на нагрузке
12. Закон Фарадея для электролиза
VIII. Магнитные явления скачать
1. Магнитное поле
2. Движение зарядов в магнитном поле
3. Рамка с током в магнитном поле
4. Магнитные поля, создаваемые различными токами
5. Взаимодействие токов
6. Явление электромагнитной индукции
7. Явление самоиндукции
IX. Колебания и волны скачать
1. Колебания, определения
2. Гармонические колебания
3. Простейшие колебательные системы
4. Волна
X. Оптика скачать
1. Закон отражения
2. Закон преломления
3. Линза
4. Изображение
5. Возможные случаи расположения предмета
6. Интерференция
7. Дифракция

Большая шпаргалка по физике . Все формулы изложены в компактном виде с небольшими комментариями. Шпаргалка также содержит полезные константы и прочую информацию. Файл содержит следующие разделы физики:

    Механика (кинематика, динамика и статика)

    Молекулярная физика. Свойства газов и жидкостей

    Термодинамика

    Электрические и электромагнитные явления

    Электродинамика. Постоянный ток

    Электромагнетизм

    Колебания и волны. Оптика. Акустика

    Квантовая физика и теория относительности

Маленькая шпора по физике . Все самое необходимое для экзамена. Нарезка основных формул по физике на одной странице. Не очень эстетично, зато практично. 🙂

Размер: px

Начинать показ со страницы:

Транскрипт

1 Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Версия: 0.92 β. Составитель: Ваулин Д.Н. Литература: 1. Пёрышкин А.В. Физика 7 класс. Учебник для общеобразовательных учреждений. 13-е издание, стереотипное. Москва. Дрофа Пёрышкин А.В. Физика 8 класс. Учебник для общеобразовательных учреждений. 12-е издание, стереотипное. Москва. Дрофа Пёрышкин А.В., Гутник Е.М. Физика 9 класс. Учебник для общеобразовательных учреждений. 14-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я. и др. Физика. Механика 10 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 11-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Молекулярная физика. Термодинамика 10 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 13-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика классы. Профильный уровень. Учебник для общеобразовательных учреждений. 11-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Колебания и волны 11 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 9-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика 11 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 9-е издание, стереотипное. Москва. Дрофа Жирным выделены формулы, которые стоит учить, когда уже отлично освоены не выделенные жирным формулы. 7 класс. 1. Средняя скорость: 2. Плотность: 3. Закон Гука: 4. Сила тяжести:

2 5. Давление: 6. Давление столба жидкости: 7. Архимедова сила: 8. Механическая работа: 9. Мощность совершения работы: 10. Момент силы: 11. Коэффициент полезного действия (КПД) механизма: 12. Потенциальная энергия при постоянном: 13. Кинетическая энергия: 8 класс. 14. Количество теплоты необходимое для нагревания: 15. Количество теплоты, выделяемое при сгорании: 16. Количество теплоты необходимое для плавления:

3 17. Относительная влажность воздуха: 18. Количество теплоты необходимое для парообразования: 19. КПД теплового двигателя: 20. Полезная работа теплового двигателя: 21. Закон сохранения заряда: 22. Сила тока: 23. Напряжение: 24. Сопротивление: 25. Общее сопротивление последовательного соединения проводников: 26. Общее сопротивление параллельного соединения проводников: 27. Закон Ома для участка цепи:

4 28. Мощность электрического тока: 29. Закон Джоуля-Ленца: 30. Закон отражения света: 31. Закон преломления света: 32. Оптическая сила линзы: 9 класс. 33. Зависимость скорости от времени при равноускоренном движении: 34. Зависимость радиус вектора от времени при равноускоренном движении: 35. Второй закон Ньютона: 36. Третий закон Ньютона: 37. Закон всемирного тяготения:

5 38. Центростремительное ускорение: 39. Импульс: 40. Закон изменения энергии: 41. Связь периода и частоты: 42. Связь длинны волны и частоты: 43. Закон изменения импульса: 44. Закон Ампера: 45. Энергия магнитного поля тока: 46. Формула трансформатора: 47. Действующее значение тока: 48. Действующее значение напряжения:

6 49. Заряд конденсатора: 50. Электроёмкость плоского конденсатора: 51. Общая ёмкость параллельно соединённых конденсаторов: 52. Энергия электрического поля конденсатора: 53. Формула Томпсона: 54. Энергия фотона: 55. Поглощение фотона атомом: 56. Связь массы и энергии: 1. Поглощённая доза излучения: 2. Эквивалентная доза излучения:

7 57. Закон радиоактивного распада: 10 класс. 58. Угловая скорость: 59. Связь скорости с угловой: 60. Закон сложения скоростей: 61. Сила трения скольжения: 62. Сила трения покоя: 3. Сила сопротивления среды: [ 63. Потенциальная энергия растянутой пружины: 4. Радиус вектор центра масс:

8 64. Количество вещества: 65. Уравнение Менделеева-Клапейрона: 66. Основное уравнение молекулярно кинетической теории: 67. Концентрация частиц: 68. Связь между средней кинетической энергией частиц и температурой газа: 69. Внутренняя энергия газа: 70. Работа газа: 71. Первое начало термодинамики: 72. КПД машины Карно: 5. Тепловое линейное расширение: 6. Тепловое объёмное расширение:

9 73. Закон Кулона: 74. Напряжённость электрического поля: 75. Напряжённость электрического поля точечного заряда: 7. Поток напряжённости электрического поля: 8. Теорема Гаусса: 76. Потенциальная энергия заряда при постоянном: 77. Потенциальная энергия взаимодействия тел: 78. Потенциальная энергия взаимодействия зарядов: 79. Потенциал: 80. Разность потенциалов: 81. Связь напряжённости однородного электрического поля и напряжения:

10 82. Общая электроёмкость последовательно соединённых конденсаторов: 83. Зависимость удельного сопротивления от температуры: 84. Первое правило Кирхгофа: 85. Закон Ома для полной цепи: 86. Второе правило Кирхгофа: 87. Закон Фарадея: 11 класс. 9. Закон Био-Савара-Лапласа: 10. Магнитная индукция бесконечного провода: 88. Сила Лоренца:

11 89. Магнитный поток: 90. Закон электромагнитной индукции: 91. Индуктивность: 92. Зависимость величины, изменяющейся по гармоническому закону от времени: 93. Зависимость скорости изменения величины, изменяющейся по гармоническому закону от времени: 94. Зависимость ускорения изменения величины, изменяющейся по гармоническому закону от времени: 95. Период колебаний нитяного маятника: 96. Период колебаний пружинного маятника: 11. Емкостное сопротивление: 12. Индуктивное сопротивление:

12 13. Сопротивление для переменного тока: 97. Формула тонкой линзы: 98. Условие интерференционного максимума: 99. Условие интерференционного минимума: 14. Преобразования Лоренца координат: 15. Преобразования Лоренца времени: 16. Релятивистский закон сложения скоростей: 100. Зависимость массы тела от скорости: 17. Релятивистская связь между энергией и импульсом:

13 101. Уравнение фотоэффекта: 102. Красная граница фотоэффекта: 103. Длина волны Де Бройля:


Программа вступительных испытаний по учебному предмету «Физика» для лиц, имеющих общее среднее образование, для получения высшего образования І ступени, 2018 год 1 УТВЕРЖДЕНО Приказ Министра образования

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АНГАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ “чебной работе II.В. Истомина 2016 г. ПРОГРАММА ВСТУПИТЕЛЬНОГО

2 6. Количество заданий в одном варианте теста 30. Часть А 18 заданий. Часть В 12 заданий. 7. Структура теста Раздел 1. Механика 11 заданий (36,7 %). Раздел 2. Основы молекулярно-кинетической теории и

УТВЕРЖДЕНО Приказ Министра образования Республики Беларусь от 30.10.2015 817 Программы вступительных испытаний в учреждения образования для лиц, имеющих общее среднее образование, для получения высшего

1/5 ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ФИЗИКА 1. МЕХАНИКА КИНЕМАТИКА Механическое движение и его виды. Относительность механического движения. Скорость. Ускорение. Равномерное движение. Прямолинейное равноускоренное

1. Общие положения Программа предназначена для подготовки к вступительному испытанию по физике для поступающих на факультет физики и ИКТ Чеченского государственного университета. Вступительный экзамен

Код: Содержание: 1. МЕХАНИКА 1.1. КИНЕМАТИКА 1.1.1. Механическое движение и его виды 1.1.2. Относительность механического движения 1.1.3. Скорость 1.1.4. Ускорение 1.1.5. Равномерное движение 1.1.6. Прямолинейное

ПРОГРАММА ЭЛЕМЕНТОВ СОДЕРЖАНИЯ И ТРЕБОВАНИЙ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ ДЛЯ ПРОВЕДЕНИЯ В 2014 ГОДУ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ФИЗИКЕ Программа элементов содержания по

ПРОГРАММА СОБЕСЕДОВАНИЯ ПО ДИСЦИПЛИНЕ «ФИЗИКА» Физика и методы научного познания Предмет физики. Физика как наука. Научные методы познания окружающего мира и их отличия от других методов познания. Физика

СПЕЦИФИКАЦИЯ теста по учебному предмету «Физика» для проведения централизованного тестирования в 2017 году 1. Назначение теста объективное оценивание уровня подготовки лиц, имеющих общее среднее образование

СПЕЦИФИКАЦИЯ теста по учебному предмету «Физика» для проведения централизованного тестирования в 2018 году 1. Назначение теста объективное оценивание уровня подготовки лиц, имеющих общее среднее образование

Оглавление Основные положения… 3 1. МЕХАНИКА… 3 2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕПЛОВЫЕ ЯВЛЕНИЯ… 4 3. ОСНОВЫ ЭЛЕКТРОДИНАМИКИ… 4 4. КОЛЕБАНИЯ И ВОЛНЫ… 5 5. ОПТИКА… 5 6. КВАНТОВАЯ ФИЗИКА… 6 СПИСОК

1 Общие положения Настоящая программа составлена на основе действующих учебных программ для средней школы, колледжа и техникума. При проведении собеседования основное внимание обращается на понимание абитуриентами

Спецификация теста по предмету физика для Единого национального тестирования и комплексного тестирования (Утвержден для использования в Едином национальном тестировании и комплексном тестировании с 2018

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ (БАКАЛАВРИАТ/СПЕЦИАЛИТЕТ) ПО ОБЩЕОБРАЗОВАТЕЛЬНОЙ ДИСЦИПЛИНЕ «ФИЗИКА» Программа составлена на основе Федерального государственного образовательного стандарта среднего общего

«УТВЕРЖДАЮ» Руководитель Федеральной службы по надзору в сфере образования и науки «СОГЛАСОВАНО» Председатель Научнометодического совета ФИПИ по физике Единый государственный экзамен по ФИЗИКЕ Кодификатор

По предмету: Физика, 11 класс 2017 г. СОДЕРЖАНИЕ 1. Перечень диагностических работ 2. Количественные показатели 3. Общие результаты 3.1. Результаты на уровне региона 3.2. Распределение по баллам 3.3. Результаты

НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ «АССОЦИАЦИЯ МОСКОВСКИХ ВУЗОВ» ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ

УТВЕРЖДЕНО Приказ Министра образования Республики Беларусь 03.12.2018 836 Билеты для проведения экзамена в порядке экстерната при освоении содержания образовательной программы среднего образования по учебному

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ФИЗИКЕ В первом столбце указан код раздела, которому соответствуют крупные блоки содержания. Во втором столбце приводится код элемента содержания, для которого создаются

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ФИЗИКЕ САНКТ-ПЕТЕРБУРГ 2014 ГОД 1. Механическое движение. Относительность движения. Системы отсчета. Материальная точка. 2. Траектория. Путь и перемещение. 3. Равномерное

Министерство образования и науки Краснодарского края государственное бюджетное профессиональное образовательное учреждение Краснодарского края “Краснодарский информационно- технологический техникум” Тематический

Подготовка к ЕГЭ по физике (4 месяца) Перечень лекций, тестов и заданий. Дата начала Дата завершения Блок 0 Введение В.1 Скалярные и векторные величины. В.2 Сложение и вычитание векторов. В.3 Умножение

Введение………………………………. 8 Руководство по использованию диска…………….. 8 Установка программы……………………. 8 Работа с программой……………………. 11 От издательства…………………………

Негосударственное образовательное учреждение высшего образования «Кубанский социально-экономический институт (КСЭИ)» ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ФИЗИКЕ для абитуриентов, поступающих в вуз Рассмотрено

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ФИЗИКЕ В ФГБОУ ВО «ПГУ» В 2016 ГОДУ СОДЕРЖАНИЕ ПРОГРАММЫ 1 МЕХАНИКА 1. 1 КИНЕМАТИКА 1.1.1 Механическое движение и его виды 1.1.2 Относительность механического движения

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ФИЗИКЕ для поступающих в Московский государственный университет геодезии и картографии. Программа составлена в соответствии с типовой программой по физике средней

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный строительный университет»

Вопросы к экзаменационным билетам по дисциплине Физика Билет 1 1. Физика и метод научного познания. Современная физическая картина мира. 2. Магнитное поле. Магнитное взаимодействие. Вектор магнитной индукции.

«УТВЕРЖДАЮ» Директор Федерального института педагогических измерений «СОГЛАСОВАНО» Председатель Научнометодического совета ФИПИ по физике Единый государственный экзамен по ФИЗИКЕ Кодификатор элементов

Тематика тестовых задач по физике для 11 класса Механика Кинематика: 1. Кинематика прямолинейного движения материальной точки. Путь и перемещение. Скорость и ускорение. Сложение скоростей. Прямолинейное

ÓÄÊ 373:53 ÁÁÊ 22.3ÿ72 Í34 Макет подготовлен при содействии ООО «Айдиономикс» В оформлении обложки использованы элементы дизайна: Tantoon Studio, incomible / Istockphoto / Thinkstock / Fotobank.ru Í34

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ФИЗИКЕ Составитель: Профессор, к.т.н. Першенков П.П. Пенза 2014 Механика 1. Прямолинейное равномерное движение. Вектор. Проекции

МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное казённое военное образовательное учреждение высшего образования Краснодарское высшее военное авиационное училище лётчиков имени Героя

189 УТВЕРЖДЕНО Приказ Министра образования Республики Беларусь от 30.10.2018 765 Программа вступительных испытаний по учебному предмету «Физика» для лиц, имеющих общее среднее образование, для получения

Программа вступительных испытаний по учебному предмету «Физика» для лиц, имеющих общее среднее образование, для получения высшего образования І ступени или среднего специального образования, 2019 год ПОЯСНИТЕЛЬНАЯ

Контрольные работы по физике 29 группа 4 семестр Решаем один из предложенных вариантов в каждой контрольной работе. Контрольная работа 11 Механические колебания. Упругие волны. Вариант 1 1. Материальная

Программа к вступительному испытанию по общеобразовательному предмету «Физика» при поступлении в Сыктывкарский лесной институт Программа предназначена для подготовки к массовой письменной проверке знаний

Федеральное государственное автономное учреждение высшего профессионального образования Национальный исследовательский университет «Высшая школа экономики» Программа вступительного испытания по физике

Пояснительная записка Программный материал рассчитан для учащихся 11 классов на 1 учебный час в неделю, всего 34 часа. Настоящая программа позволяет более глубоко и осмысленно изучать практические и теоретические

ФГБОУ ВПО «Петербургский государственный университет путей сообщения Императора Александра I» Программа вступительного испытания по физике для поступающих на обучение по программам бакалавриата и специалитета

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ФИЗИКЕ для абитуриентов, поступающих в ФГБОУ ВО Смоленскую ГСХА в 2017 году Программа для вступительного испытания по физике Раздел 1. Перечень элементов содержания,

Занят ия Наименование разделов и дисциплин 1 Механическое движение. Относительность механического движения. Система отсчёта. Материальная точка. Траектория. Путь. Вектор перемещения и его проекции. Прямолинейное

Аннотация к рабочей программе по физике 7 класс (базовый уровень) Рабочая программа по физике 7 класса составлена на основании ФЗ РФ 273 от компонента государственного стандарта основного общего образования

1 семестр Введение. 1 Основные науки о природе. Естественнонаучный метод познания. Раздел 1. Механика. Тема 1.1. Кинематика твёрдого тела 2 Относительность механического движения. Системы отсчета. Характеристики

2 ификатор элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения единого государственного экзамена по ФИЗИКЕ Единый государственный экзамен по

ПРОГРАММА ПО ФИЗИКЕ При проведении экзаменов по физике основное внимание должно быть обращено на понимание экзаменующимся сущности физический явлений и законов, на умение истолковать смысл физических величин

Программа по физике для поступающих в ОАНО ВПО ВУиТ Вступительные испытания по физике проводятся в форме письменной работы (тестирования) и собеседования, с помощью которой проверяются знания учащихся,

Министерство образования и науки Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ФИЗИКЕ ПО ОБРАЗОВАТЕЛЬНЫМ ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ Билет 1 1. Что изучает физика. Физические явления. Наблюдения, опыты. 2.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Брестский государственный технический университет» ПРОГРАММА собеседования для иностранных абитуриентов по предмету «ФИЗИКА» Разработана:

Аннотация к рабочим программам по физике Класс: 10 Уровень изучения учебного материала: базовый. УМК, учебник: Рабочая программа по физике для 10-11 классов составлена на основе Федерального компонента

Методы научного познания Эксперимент и теория в процессе познания мира. Моделирование явлений. Физические законы и пределы их применения. Роль математики в физике. Принципы причинности и соответствия.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Аннотация к контрольно-оценочному средству по учебному предмету «Физика» 1. Общие положения. Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся,

При составлении программы следующие правовые документы 10-11классы были использованы федеральный компонент государственного стандарта среднего (полного) общего образования по физике, утвержденный в 2004

Раздел 1. Планируемые результаты. Личностные: в ценностно-ориентированной сфере чувство гордости за российскую физическую науку, отношение к физике как элементу общечеловеческой культуры, гуманизм, положительное

Е.Н. Бурцева, В.А. Пивень, Т.Л. Шапошникова, Л.Н. Терновая ОСНОВЫ ЭЛЕМЕНТАРНОЙ ФИЗИКИ (базовый уровень) Учебное пособие Краснодар 2012 УДК 53 ББК 22.3 Б91 Рецензенты: Е.Н. Тумаев, доктор физико-математических

0 Пояснительная записка. Программа по физике для 10 11 классов составлена на основе авторской программы: Физика 10 11 класс Г.Я. Мякишев М.:Дрофа,-2010г. и ориентирована на использование учебно-методического

Тема Дата Количество часов Календарно-тематическое планирование По физике 10 класс (профильный уровень) Требования к знаниям Форма контроля ФИЗИКА И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ 1 ФИЗИЧЕСКИЕ ЗАКОНЫ И ТЕОРИИ

Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

Секреты подготовки

Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает. Почему-то не верится, что так мало школьников 11 класса желают стать:

  • инженерами;
  • ювелирами;
  • авиаконструкторами;
  • геологами;
  • пиротехниками;
  • экологами,
  • технологами на производстве и т. д.

Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

  • механику;
  • физику молекулярную;
  • электромагнетизм и электричество;
  • оптику;
  • физику атомную.

Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

Учебные материалы – Физика и Математика – Теория, тесты, формулы и задачи

Учебные материалы

В этом разделе сайта представлены необходимые для успешной подготовки к ЦТ и ЕГЭ по физике и математике учебные материалы, а именно: задачи и теория по всем темам школьной физики и математики, справочники по физике и математике, дополнительные задачники и учебники по физике и математике и другое. Представлены сведения и по высшей математике, а также материалы для тех, кто хочет поступить в польский ВУЗ. Выполнив все задания по физике и математике, вошедшие в приведенные здесь основные учебные материалы, можно успешно подготовится и сдать ЦТ или ЕГЭ. По приведенным здесь теории и задачам возможно самостоятельное онлайн обучение физике и математике. Все учебные материалы распределены по нескольким категориям, список категорий смотрите ниже.


Математика Кол-во материалов:  18

Математика – один из основных школьных предметов. Математика формирует базис для изучения других предметов в школе, таких как физика и химия. Также математика очень важна и после поступления в университет, она широко используется в огромном классе университетских дисциплин на многих специальностях, от экономических до инженерных и научных. В этом разделе размещены учебные материалы по математике необходимые для успешной подготовки к ЦТ и ЕГЭ. Учебные материалы по математике включают: теорию и задачи по всем темам школьной математики, а также справочники, дополнительные задачники и учебники по математике. По приведенным здесь учебным материалам по математике возможна самостоятельная онлайн подготовка к ЦТ и ЕГЭ. Для успешной подготовки к экзаменам и обучения математике обязательно нужно изучить все темы школьной программы по математике приведенные здесь, выучить теорию и формулы, и в полном объеме выполнить приведенные задания по математике.


Физика  Кол-во материалов:  17

Физика – один из основных школьных предметов. Физика изучает и описывает процессы происходящие в окружающем нас мире и потому она очень интересна. Также физика очень важна и после поступления в университет, навыки полученные при изучении физики широко используются в огромном классе университетских дисциплин на многих специальностях, от инженерных и научных до архитектурных и IT специальностей. В этом разделе размещены учебные материалы по физике необходимые для успешной подготовки к ЦТ и ЕГЭ. Учебные материалы по физике включают: теорию и задачи по всем темам школьной физики, а также справочники, дополнительные задачники и учебники по физике. По приведенным здесь учебным материалам по физике возможна самостоятельная онлайн подготовка к ЦТ и ЕГЭ. Для успешной подготовки к экзаменам и обучения физике обязательно нужно изучить все темы школьной программы по физике приведенные здесь, выучить теорию и формулы, и в полном объеме выполнить приведенные задания по физике.


Высшая математика один из основных университетских предметов. Она часто вызывает большие сложности у только поступивших первокурсников. Чтобы помочь им разобраться в Высшей математике и получить хорошие текущие и итоговые оценки в этом разделе собраны следующие учебные материалы: теория, задачи, формулы, справочники, учебники и задачники по Высшей математике. По приведенным здесь учебным материалам возможно самостоятельное изучение Высшей математики.

Все формулы для олимпиады по физике. Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Работа, мощность, энергия

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

Формулы кинематики:

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Шпаргалка с формулами по физике для ЕГЭ

Шпаргалка с формулами по физике для ЕГЭ

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

Шпаргалка с формулами по физике для ЕГЭ и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

А потом вордовский файл , который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.

Механика

  1. Давление Р=F/S
  2. Плотность ρ=m/V
  3. Давление на глубине жидкости P=ρ∙g∙h
  4. Сила тяжести Fт=mg
  5. 5. Архимедова сила Fa=ρ ж ∙g∙Vт
  6. Уравнение движения при равноускоренном движении

X=X 0 +υ 0 ∙t+(a∙t 2)/2 S=(υ 2 –υ 0 2) /2а S=(υ +υ 0) ∙t /2

  1. Уравнение скорости при равноускоренном движении υ =υ 0 +a∙t
  2. Ускорение a=(υ υ 0)/t
  3. Скорость при движении по окружности υ =2πR/Т
  4. Центростремительное ускорение a=υ 2 /R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона F=ma
  7. Закон Гука Fy=-kx
  8. Закон Всемирного тяготения F=G∙M∙m/R 2
  9. Вес тела, движущегося с ускорением а Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓ Р=m(g-a)
  11. Сила трения Fтр=µN
  12. Импульс тела p=mυ
  13. Импульс силы Ft=∆p
  14. Момент силы M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx 2 /2
  17. Кинетическая энергия тела Ek=mυ 2 /2
  18. Работа A=F∙S∙cosα
  19. Мощность N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υ Т

Молекулярная физика и термодинамика

  1. Количество вещества ν=N/ Na
  2. Молярная масса М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ P=nkT=1/3nm 0 υ 2
  5. Закон Гей – Люссака (изобарный процесс) V/T =const
  6. Закон Шарля (изохорный процесс) P/T =const
  7. Относительная влажность φ=P/P 0 ∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс) PV=const
  11. Количество теплоты при нагревании Q=Cm(T 2 -T 1)
  12. Количество теплоты при плавлении Q=λm
  13. Количество теплоты при парообразовании Q=Lm
  14. Количество теплоты при сгорании топлива Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики ΔU=A+Q
  17. КПД тепловых двигателей η= (Q 1 – Q 2)/ Q 1
  18. КПД идеал. двигателей (цикл Карно) η= (Т 1 – Т 2)/ Т 1

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q 1 ∙q 2 /R 2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R 2
  4. Поверхностная плотность зарядов σ = q/S
  5. Напряженность эл. поля бесконечной плоскости E=2πkσ
  6. Диэлектрическая проницаемость ε=E 0 /E
  7. Потенциальная энергия взаимод. зарядов W= k∙q 1 q 2 /R
  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙ε ε 0 /d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I 1 =I 2 =I, U 1 +U 2 =U, R 1 +R 2 =R
  19. Законы паралл. соед. U 1 =U 2 =U, I 1 +I 2 =I, 1/R 1 +1/R 2 =1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I 2 Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0) I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυ sinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI 2 /2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление X L =ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-X L) 2 +R 2

Оптика

  1. Закон преломления света n 21 =n 2 /n 1 = υ 1 / υ 2
  2. Показатель преломления n 21 =sin α/sin γ
  3. Формула тонкой линзы 1/F=1/d + 1/f
  4. Оптическая сила линзы D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=U з е
  2. Красная граница фотоэффекта ν к = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

  1. Закон радиоактивного распада N=N 0 ∙2 – t / T
  2. Энергия связи атомных ядер

E CB =(Zm p +Nm n -Mя)∙c 2

СТО

  1. t=t 1 /√1-υ 2 /c 2
  2. ℓ=ℓ 0 ∙√1-υ 2 /c 2
  3. υ 2 =(υ 1 +υ)/1+ υ 1 ∙υ/c 2
  4. Е = mс 2

Кинематика

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость перемещения:

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с высоты H :

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т. е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной из формул:

Динамика

Второй закон Ньютона:

Здесь: F – равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Сила упругости:

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g – ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Статика

Момент силы определяется с помощью следующей формулы:

Условие при котором тело не будет вращаться:

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

Гидростатика

Определение давления задаётся следующей формулой:

Давление, которое создает столб жидкости находится по формуле:

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Идеальный гидравлический пресс:

Любой гидравлический пресс:

КПД для неидеального гидравлического пресса:

Сила Архимеда (выталкивающая сила, V – объем погруженной части тела):

Импульс

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Молекулярная физика

Химическое количество вещества находится по одной из формул:

Масса одной молекулы вещества может быть найдена по следующей формуле:

Связь массы, плотности и объёма:

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Определение концентрации задаётся следующей формулой:

Для средней квадратичной скорости молекул имеется две формулы:

Средняя кинетическая энергия поступательного движения одной молекулы:

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Следствия из основного уравнения МКТ:

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Газовые законы. Закон Бойля-Мариотта:

Закон Гей-Люссака:

Закон Шарля:

Универсальный газовый закон (Клапейрона):

Давление смеси газов (закон Дальтона):

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С – большое) тела может быть рассчитана через удельную теплоёмкость (c – маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p V координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q , изменение внутренней энергии ΔU и работа газа A . Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q 1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q 2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T 1 и холодильника T 2 , достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S :

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L :

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h

Электростатика

Электрический заряд может быть найден по формуле:

Линейная плотность заряда:

Поверхностная плотность заряда:

Объёмная плотность заряда:

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Где: k – некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Напряженность электрического поля, которую создает заряженная плоскость:

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Электрическое напряжение это просто разность потенциалов, т. е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Определение потенциала задаётся выражением:

Потенциал, который создает точечный заряд или заряженная сфера:

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Для диэлектрической проницаемости вещества верно следующее:

Определение электрической ёмкости задаётся формулой:

Ёмкость плоского конденсатора:

Заряд конденсатора:

Напряжённость электрического поля внутри плоского конденсатора:

Сила притяжения пластин плоского конденсатора:

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Объёмная плотность энергии электрического поля:

Электрический ток

Сила тока может быть найдена с помощью формулы:

Плотность тока:

Сопротивление проводника:

Зависимость сопротивления проводника от температуры задаётся следующей формулой:

Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):

Закономерности последовательного соединения:

Закономерности параллельного соединения:

Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:

Закон Ома для полной цепи:

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Сила тока короткого замыкания:

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:

Мощность электрического тока:

Энергобаланс замкнутой цепи

Полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R 1 и R 2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

Электролиз

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q , прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Где: n – валентность вещества, N A – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Магнетизм

Сила Ампера , действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

Момент сил действующих на рамку с током:

Сила Лоренца , действующая на заряженную частицу движущуюся в однородном магнитном поле, рассчитывается по формуле:

Радиус траектории полета заряженной частицы в магнитном поле:

Модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:

Индукция поля в центре витка с током радиусом R :

Внутри соленоида длиной l и с количеством витков N создается однородное магнитное поле с индукцией:

Магнитная проницаемость вещества выражается следующим образом:

Магнитным потоком Φ через площадь S контура называют величину заданную формулой:

ЭДС индукции рассчитывается по формуле:

При движении проводника длиной l в магнитном поле B со скоростью v также возникает ЭДС индукции (проводник движется в направлении перпендикулярном самому себе):

Максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Индуктивность катушки:

Где: n – концентрация витков на единицу длины катушки:

Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока пронизывающего её, задаётся формулой:

ЭДС самоиндукции возникающая в катушке:

Энергия катушки (вообще говоря, это энергия магнитного поля внутри катушки):

Объемная плотность энергии магнитного поля:

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω 0:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U 1 , а на выходе U 2 , при этом число витков в первичной обмотке равно n 1 , а во вторичной n 2 , то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l :

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т. ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Оптика

Оптическая длина пути определяется формулой:

Оптическая разность хода двух лучей:

Условие интерференционного максимума:

Условие интерференционного минимума:

Закон преломления света на границе двух прозрачных сред:

Постоянную величину n 21 называют относительным показателем преломления второй среды относительно первой. Если n 1 > n 2 , то возможно явление полного внутреннего отражения, при этом:

Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Импульс фотона:

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение U з и элементарный заряд е :

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Второй постулат Бора или правило частот (ЗСЭ):

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К ) и потенциальная (П ) энергии электрона связаны с полной энергией (Е ) следующими формулами:

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Дефект массы:

Энергия связи ядра выраженная в единицах СИ:

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Закон радиоактивного распада:

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Выполняются следующие условия:

Энергетический выход такой ядерной реакции при этом равен:

Основы специальной теории относительности (СТО)

Релятивистское сокращение длины:

Релятивистское удлинение времени события:

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Энергия покоя тела:

Любое изменение энергии тела означает изменение массы тела и наоборот:

Полная энергия тела:

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Релятивистское увеличение массы:

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Равномерное движение по окружности

В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, a n – центростремительное ускорение, L – длина дуги окружности, t – время):

Расширенная PDF версия документа “Все главные формулы по школьной физике”:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

Секреты подготовки

Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает. Почему-то не верится, что так мало школьников 11 класса желают стать:

  • инженерами;
  • ювелирами;
  • авиаконструкторами;
  • геологами;
  • пиротехниками;
  • экологами,
  • технологами на производстве и т.д.

Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

  • механику;
  • физику молекулярную;
  • электромагнетизм и электричество;
  • оптику;
  • физику атомную.

Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

Физика формулы для егэ в таблицах. Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ

Абсолютно необходимы для того, чтобы человек, решивший изучать эту науку, вооружившись ими, мог чувствовать себя в мире физики как рыба в воде. Без знания формул немыслимо решение задач по физике. Но все формулы запомнить практически невозможно и важно знать, особенно для юного ума, где найти ту или иную формулу и когда ее применить.

Расположение физических формул в специализированных учебниках распределяется обычно по соответствующим разделам среди текстовой информации, поэтому их поиск там может отнять довольно-таки много времени, а тем более, если они вдруг понадобятся Вам срочно!

Представленные ниже шпаргалки по физике содержат все основные формулы из курса физики , которые будут полезны учащимся школ и вузов.

Все формулы школьного курса по физике с сайта http://4ege.ru
I. Кинематика скачать
1. Основные понятия
2. Законы сложения скоростей и ускорений
3. Нормальное и тангенциальное ускорения
4. Типы движений
4.1. Равномерное движение
4.1.1. Равномерное прямолинейное движение
4.1.2. Равномерное движение по окружности
4.2. Движение с постоянным ускорением
4.2.1. Равноускоренное движение
4.2.2. Равнозамедленное движение
4.3. Гармоническое движение
II. Динамика скачать
1. Второй закон Ньютона
2. Теорема о движении центра масс
3. Третий закон Ньютона
4. Силы
5. Гравитационная сила
6. Силы, действующие через контакт
III. Законы сохранения. Работа и мощность скачать
1. Импульс материальной точки
2. Импульс системы материальных точек
3. Теорема об изменении импульса материальной точки
4. Теорема об изменении импульса системы материальных точек
5. Закон сохранения импульса
6. Работа силы
7. Мощность
8. Механическая энергия
9. Теорема о механической энергии
10. Закон сохранения механической энергии
11. Диссипативные силы
12. Методы вычисления работы
13. Средняя по времени сила
IV. Статика и гидростатика скачать
1. Условия равновесия
2. Вращающий момент
3. Неустойчивое равновесие, устойчивое равновесие, безразличное равновесие
4. Центр масс, центр тяжести
5. Сила гидростатического давления
6. Давлением жидкости
7. Давление в какой-либо точке жидкости
8, 9. Давление в однородной покоящейся жидкости
10. Архимедова сила
V. Тепловые явления скачать
1. Уравнение Менделеева-Клапейрона
2. Закон Дальтона
3. Основное уравнение МКТ
4. Газовые законы
5. Первый закон термодинамики
6. Адиабатический процесс
7. КПД циклического процесса (теплового двигателя)
8. Насыщенный пар
VI. Электростатика скачать
1. Закон Кулона
2. Принцип суперпозиции
3. Электрическое поле
3.1. Напряженность и потенциал электрического поля, созданного одним точечным зарядом Q
3.2. Напряженность и потенциал электрического поля, созданного системой точечных зарядов Q1, Q2, …
3.3. Напряженность и потенциал электрического поля, созданного равномерно заряженным по поверхности шаром
3.4. Напряженность и потенциал однородного электрического поля, (созданного равномерно заряженной плоскотью или плоским конденсатором)
4. Потенциальная энергия системы электрических зарядов
5. Электроемкость
6. Свойства проводника в электрическом поле
VII. Постоянный ток скачать
1. Упорядоченная скорость
2. Сила тока
3. Плотность тока
4. Закон Ома для участка цепи, не содержащего ЭДС
5. Закон Ома для участка цепи, содержащего ЭДС
6. Закон Ома для полной (замкнутой) цепи
7. Последовательное соединение проводников
8. Параллельное соединение проводников
9. Работа и мощность электрического тока
10. КПД электрической цепи
11. Условие выделения максимальной мощности на нагрузке
12. Закон Фарадея для электролиза
VIII. Магнитные явления скачать
1. Магнитное поле
2. Движение зарядов в магнитном поле
3. Рамка с током в магнитном поле
4. Магнитные поля, создаваемые различными токами
5. Взаимодействие токов
6. Явление электромагнитной индукции
7. Явление самоиндукции
IX. Колебания и волны скачать
1. Колебания, определения
2. Гармонические колебания
3. Простейшие колебательные системы
4. Волна
X. Оптика скачать
1. Закон отражения
2. Закон преломления
3. Линза
4. Изображение
5. Возможные случаи расположения предмета
6. Интерференция
7. Дифракция

Большая шпаргалка по физике . Все формулы изложены в компактном виде с небольшими комментариями. Шпаргалка также содержит полезные константы и прочую информацию. Файл содержит следующие разделы физики:

    Механика (кинематика, динамика и статика)

    Молекулярная физика. Свойства газов и жидкостей

    Термодинамика

    Электрические и электромагнитные явления

    Электродинамика. Постоянный ток

    Электромагнетизм

    Колебания и волны. Оптика. Акустика

    Квантовая физика и теория относительности

Маленькая шпора по физике . Все самое необходимое для экзамена. Нарезка основных формул по физике на одной странице. Не очень эстетично, зато практично. 🙂

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Шпаргалка с формулами по физике для ЕГЭ

Шпаргалка с формулами по физике для ЕГЭ

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

Шпаргалка с формулами по физике для ЕГЭ и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

А потом вордовский файл , который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.

Механика

  1. Давление Р=F/S
  2. Плотность ρ=m/V
  3. Давление на глубине жидкости P=ρ∙g∙h
  4. Сила тяжести Fт=mg
  5. 5. Архимедова сила Fa=ρ ж ∙g∙Vт
  6. Уравнение движения при равноускоренном движении

X=X 0 +υ 0 ∙t+(a∙t 2)/2 S=(υ 2 –υ 0 2) /2а S=(υ +υ 0) ∙t /2

  1. Уравнение скорости при равноускоренном движении υ =υ 0 +a∙t
  2. Ускорение a=(υ υ 0)/t
  3. Скорость при движении по окружности υ =2πR/Т
  4. Центростремительное ускорение a=υ 2 /R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона F=ma
  7. Закон Гука Fy=-kx
  8. Закон Всемирного тяготения F=G∙M∙m/R 2
  9. Вес тела, движущегося с ускорением а Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓ Р=m(g-a)
  11. Сила трения Fтр=µN
  12. Импульс тела p=mυ
  13. Импульс силы Ft=∆p
  14. Момент силы M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx 2 /2
  17. Кинетическая энергия тела Ek=mυ 2 /2
  18. Работа A=F∙S∙cosα
  19. Мощность N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υ Т

Молекулярная физика и термодинамика

  1. Количество вещества ν=N/ Na
  2. Молярная масса М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ P=nkT=1/3nm 0 υ 2
  5. Закон Гей – Люссака (изобарный процесс) V/T =const
  6. Закон Шарля (изохорный процесс) P/T =const
  7. Относительная влажность φ=P/P 0 ∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс) PV=const
  11. Количество теплоты при нагревании Q=Cm(T 2 -T 1)
  12. Количество теплоты при плавлении Q=λm
  13. Количество теплоты при парообразовании Q=Lm
  14. Количество теплоты при сгорании топлива Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики ΔU=A+Q
  17. КПД тепловых двигателей η= (Q 1 – Q 2)/ Q 1
  18. КПД идеал. двигателей (цикл Карно) η= (Т 1 – Т 2)/ Т 1

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q 1 ∙q 2 /R 2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R 2
  4. Поверхностная плотность зарядов σ = q/S
  5. Напряженность эл. поля бесконечной плоскости E=2πkσ
  6. Диэлектрическая проницаемость ε=E 0 /E
  7. Потенциальная энергия взаимод. зарядов W= k∙q 1 q 2 /R
  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙ε ε 0 /d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I 1 =I 2 =I, U 1 +U 2 =U, R 1 +R 2 =R
  19. Законы паралл. соед. U 1 =U 2 =U, I 1 +I 2 =I, 1/R 1 +1/R 2 =1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I 2 Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0) I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυ sinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI 2 /2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление X L =ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-X L) 2 +R 2

Оптика

  1. Закон преломления света n 21 =n 2 /n 1 = υ 1 / υ 2
  2. Показатель преломления n 21 =sin α/sin γ
  3. Формула тонкой линзы 1/F=1/d + 1/f
  4. Оптическая сила линзы D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=U з е
  2. Красная граница фотоэффекта ν к = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

  1. Закон радиоактивного распада N=N 0 ∙2 – t / T
  2. Энергия связи атомных ядер

E CB =(Zm p +Nm n -Mя)∙c 2

СТО

  1. t=t 1 /√1-υ 2 /c 2
  2. ℓ=ℓ 0 ∙√1-υ 2 /c 2
  3. υ 2 =(υ 1 +υ)/1+ υ 1 ∙υ/c 2
  4. Е = mс 2

Размер: px

Начинать показ со страницы:

Транскрипт

1 Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Версия: 0.92 β. Составитель: Ваулин Д.Н. Литература: 1. Пёрышкин А.В. Физика 7 класс. Учебник для общеобразовательных учреждений. 13-е издание, стереотипное. Москва. Дрофа Пёрышкин А.В. Физика 8 класс. Учебник для общеобразовательных учреждений. 12-е издание, стереотипное. Москва. Дрофа Пёрышкин А.В., Гутник Е.М. Физика 9 класс. Учебник для общеобразовательных учреждений. 14-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я. и др. Физика. Механика 10 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 11-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Молекулярная физика. Термодинамика 10 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 13-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика классы. Профильный уровень. Учебник для общеобразовательных учреждений. 11-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Колебания и волны 11 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 9-е издание, стереотипное. Москва. Дрофа Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика 11 класс. Профильный уровень. Учебник для общеобразовательных учреждений. 9-е издание, стереотипное. Москва. Дрофа Жирным выделены формулы, которые стоит учить, когда уже отлично освоены не выделенные жирным формулы. 7 класс. 1. Средняя скорость: 2. Плотность: 3. Закон Гука: 4. Сила тяжести:

2 5. Давление: 6. Давление столба жидкости: 7. Архимедова сила: 8. Механическая работа: 9. Мощность совершения работы: 10. Момент силы: 11. Коэффициент полезного действия (КПД) механизма: 12. Потенциальная энергия при постоянном: 13. Кинетическая энергия: 8 класс. 14. Количество теплоты необходимое для нагревания: 15. Количество теплоты, выделяемое при сгорании: 16. Количество теплоты необходимое для плавления:

3 17. Относительная влажность воздуха: 18. Количество теплоты необходимое для парообразования: 19. КПД теплового двигателя: 20. Полезная работа теплового двигателя: 21. Закон сохранения заряда: 22. Сила тока: 23. Напряжение: 24. Сопротивление: 25. Общее сопротивление последовательного соединения проводников: 26. Общее сопротивление параллельного соединения проводников: 27. Закон Ома для участка цепи:

4 28. Мощность электрического тока: 29. Закон Джоуля-Ленца: 30. Закон отражения света: 31. Закон преломления света: 32. Оптическая сила линзы: 9 класс. 33. Зависимость скорости от времени при равноускоренном движении: 34. Зависимость радиус вектора от времени при равноускоренном движении: 35. Второй закон Ньютона: 36. Третий закон Ньютона: 37. Закон всемирного тяготения:

5 38. Центростремительное ускорение: 39. Импульс: 40. Закон изменения энергии: 41. Связь периода и частоты: 42. Связь длинны волны и частоты: 43. Закон изменения импульса: 44. Закон Ампера: 45. Энергия магнитного поля тока: 46. Формула трансформатора: 47. Действующее значение тока: 48. Действующее значение напряжения:

6 49. Заряд конденсатора: 50. Электроёмкость плоского конденсатора: 51. Общая ёмкость параллельно соединённых конденсаторов: 52. Энергия электрического поля конденсатора: 53. Формула Томпсона: 54. Энергия фотона: 55. Поглощение фотона атомом: 56. Связь массы и энергии: 1. Поглощённая доза излучения: 2. Эквивалентная доза излучения:

7 57. Закон радиоактивного распада: 10 класс. 58. Угловая скорость: 59. Связь скорости с угловой: 60. Закон сложения скоростей: 61. Сила трения скольжения: 62. Сила трения покоя: 3. Сила сопротивления среды: [ 63. Потенциальная энергия растянутой пружины: 4. Радиус вектор центра масс:

8 64. Количество вещества: 65. Уравнение Менделеева-Клапейрона: 66. Основное уравнение молекулярно кинетической теории: 67. Концентрация частиц: 68. Связь между средней кинетической энергией частиц и температурой газа: 69. Внутренняя энергия газа: 70. Работа газа: 71. Первое начало термодинамики: 72. КПД машины Карно: 5. Тепловое линейное расширение: 6. Тепловое объёмное расширение:

9 73. Закон Кулона: 74. Напряжённость электрического поля: 75. Напряжённость электрического поля точечного заряда: 7. Поток напряжённости электрического поля: 8. Теорема Гаусса: 76. Потенциальная энергия заряда при постоянном: 77. Потенциальная энергия взаимодействия тел: 78. Потенциальная энергия взаимодействия зарядов: 79. Потенциал: 80. Разность потенциалов: 81. Связь напряжённости однородного электрического поля и напряжения:

10 82. Общая электроёмкость последовательно соединённых конденсаторов: 83. Зависимость удельного сопротивления от температуры: 84. Первое правило Кирхгофа: 85. Закон Ома для полной цепи: 86. Второе правило Кирхгофа: 87. Закон Фарадея: 11 класс. 9. Закон Био-Савара-Лапласа: 10. Магнитная индукция бесконечного провода: 88. Сила Лоренца:

11 89. Магнитный поток: 90. Закон электромагнитной индукции: 91. Индуктивность: 92. Зависимость величины, изменяющейся по гармоническому закону от времени: 93. Зависимость скорости изменения величины, изменяющейся по гармоническому закону от времени: 94. Зависимость ускорения изменения величины, изменяющейся по гармоническому закону от времени: 95. Период колебаний нитяного маятника: 96. Период колебаний пружинного маятника: 11. Емкостное сопротивление: 12. Индуктивное сопротивление:

12 13. Сопротивление для переменного тока: 97. Формула тонкой линзы: 98. Условие интерференционного максимума: 99. Условие интерференционного минимума: 14. Преобразования Лоренца координат: 15. Преобразования Лоренца времени: 16. Релятивистский закон сложения скоростей: 100. Зависимость массы тела от скорости: 17. Релятивистская связь между энергией и импульсом:

13 101. Уравнение фотоэффекта: 102. Красная граница фотоэффекта: 103. Длина волны Де Бройля:


Н.Е.Савченко ЗАДАЧИ ПО ФИЗИКЕ С АНАЛИЗОМ ИХ РЕШЕНИЯ В книге дана методика решения задач но физике с анализом типичных ошибок, допускаемых абитуриентами на вступительных экзаменах. Сборник рекомендуется

Аннотация к рабочей программе по физике.7-9 классы. Рабочая программа разработана на основе: 1. Примерной программы среднего общего образования по физике. 2. Программы основного общего образования по физике

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Государственный университет морского и речного

12.5.13. Физика Механические явления распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ УЧЕБНОЙ ДИСЦИПЛИНЫ «ФИЗИКА» (ПРОФИЛЬНЫЙ УРОВЕНЬ) Рабочая программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного)

Рассмотрено на заседании МО Согласовано Утверждаю учителей математики и физики Зам. Директора по УВР Директор МБОУ СОШ с.ключи /Камалтдинова З.З./ /Селянина Ф.Ф./ /Селянина З.Р/ 2011 г. 2011 г. Приказ

2 Составитель: Куцов А.М., доцент кафедры естественнонаучных дисциплин, канд. геол.-минерал. наук Утверждена на заседании кафедры естественнонаучных дисциплин 03.02.2014 г., протокол 3 3 1. ПОЯСНИТЕЛЬНАЯ

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее ФГОС) по специальности среднего профессионального образования 600«Технология молока

Министерство образования и науки Российской Федерации Федеральный институт развития образования ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ФИЗИКА для профессий начального профессионального образования и специальностей

2 3 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа учебной дисциплины «Физика» предназначена для изучения физики в учреждениях среднего профессионального образования, реализующих образовательную программу среднего (полного)

ПЛАНИРУЕМ УЧЕБНУЮ ДЕЯТЕЛЬНОСТЬ ПОДГОТОВКА К ЕГЭ. 11 класс ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Базовый уровень изучения физики не рассчитан на подготовку учащихся к продолжению образования в вузах физико-технического

Муниципальное бюджетное общеобразовательное учреждение «Гатчинская средняя общеобразовательная школа 1» Приложение к образовательной программе среднего общего образования, утверждѐнной Приказом 80 от

Рабочая программа по предмету ФИЗИКА 0- классы (базовый уровень) Пояснительная записка Рабочая программа по физике составлена на основе федерального компонента государственного образовательного стандарта

Министерство образования и науки Государственное бюджетное профессиональное образовательное учреждение Республики Хакасия «Профессиональное училище 15» с. Бея РАССМОТРЕНО на заседании МО ОД (протокол от

2.Пояснительная записка. Программа соответствует Федеральному компоненту государственного стандарта основного общего образования по физике (приказ Минобразования России от 05.03.2004 1089 «Об утверждении

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ФИЗИКА (ПД.02) для специальности среднего профессионального образования 23.02.01 «Организация перевозок и управление на транспорте (по видам)»

Аннотация к рабочим программам по физике 10-11 класс 10 класс Рабочая программа по физике для учащихся 10 класса (профильного уровня) составлена на основе примерной программы среднего (полного) общего

3-7. На шелковых нитях длиной 50 см каждая, прикрепленных к одной точке, висят два одинаково заряженных шарика массой по 0,2 г каждый. Определить заряд каждого шарика, если они отошли друг от друга на

Формулы по физике для школьника сдающего ГИА по ФИЗИК (9 класс) Кинематика Линейная скорость [м/с]: L путевая: П средняя: мгновенная: () в проекции на ось Х: () () где _ Х x x направление: касательная

Рабочая программа по физике 11 класс (2 часа) 2013-2014 учебный год Пояснительная записка Рабочая общеобразовательная программа «Физика.11 класс. Базовый уровень» составлена на основе Примерной программы

ЭЛЕКТРОСТАТИКА 1. Два рода электрических зарядов, их свойства. Способы зарядки тел. Наименьший неделимый электрический заряд. Единица электрического заряда. Закон сохранения электрических зарядов. Электростатика.

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ 11 КЛАСС (базовый уровень) 4 ЭЛЕКТРОДИНАМИКА 35 часов 4.1 Элементарный электрический заряд. 1 Знать: 4.2 Закон сохранения электрического заряда Закон Кулона 1 понятия: электрический

Программа элективного курса по физике класс. «Методы решения задач по физике повышенной сложности, класс» ч., час в неделю Составитель: Шмидт Е.Ф., учитель физики первой категории МОУ «Сосновская СОШ»

Пояснительная записка Рабочая программа по физике для 0- класса составлена на основе Программы общеобразовательных учреждений по физике для 0- классов, авторы программы П. Г. Саенко, В.С. Данюшенков, О.В.

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта основного общего образования. Данная рабочая программа ориентирована на учащихся 11 класса и реализуется

Учебно-методический комплекс (УМК) Физика Аннотация к рабочей программе 7 класса А.В.Пѐрышкин. Физика 7 класс. Москва. Дрофа.2012г. А.В.Пѐрышкин. Сборник задач по физике 7-9. Москва Экзамен.2015 Учебный

Муниципальное автономное общеобразовательное учреждение лицей 102 г. Челябинска Рассмотрено на заседании НМС МАОУ лицея 102 2014 г. УТВЕРЖДАЮ директор МАОУ лицея 102 М.Л. Оксенчук 2014 г. РАБОЧАЯ ПРОГРАММА

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ФИЗИКЕ Настоящая программа составлена на основе действующих учебных программ для общеобразовательных учебных заведений. 1.1. Кинематика 1. МЕХАНИКА Механическое движение.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по физике составлена на основе примерной программы среднего (полного) общего образования по физике базового уровня и соответствует федеральному государственному

Пояснительная записка Программа составлена в соответствии с:. Законом об образовании от 29.2.202 273-ФЗ «Закон об образовании в РФ»; 2. примерной программой среднего общего образования по физике. 0- классы.,

«Согласовано» «Согласовано» на заседании методического объединения учителей Директор ГБОУ ОСОШ 88 биологии, физики, химии Маслова В.М. Протокол от 201 г. 201 г Руководитель МО учителей биологии, физики,

Муниципальное бюджетное общеобразовательное учреждение «Школа 41 «Гармония» с углубленным изучением отдельных предметов» городского округа Самара РАБОЧАЯ ПРОГРАММА Предмет физика Класс 9 Количество часов

Муниципальное бюджетное общеобразовательное учреждение гимназия 5 г. Ставрополя Рассмотрено: на заседании МО учителей естественных дисциплин МБОУ гимназии 5 Протокол 1 от «9» августа 014 г Согласовано:

Лицей автономной некоммерческой организации высшего профессионального образования академии «МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ В МОСКВЕ» «СОГЛАСОВАНО» «УТВЕРЖДАЮ» Руководитель МО Директор Лицея Полунина О.В. 201

УТВЕРЖДАЮ Ректор ФГБОУ ВПО «МГУДТ» В.С.Белгородский 2015г. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального

Приложение 5 Соответствие сроков прохождения тем по физике этапам Всероссийской олимпиады Комплекты заданий различных этапов олимпиад составляются по принципу «накопленного итога» и могут включать как

Инструктивно-методическое письмо о преподавании физики в 2015/16 учебном году Документы, необходимые для реализации учебного процесса по физике основного и среднего образования, а также в профильных классах:

ПРОГРАММА ПО ФИЗИКЕ Программа составлена на базе обязательного минимума содержания среднего (полного) общего образования. Экзаменационные задания по физике не выходят за рамки данной программы, но требуют

«Физика. 10 класс» и «Физика. 11 класс» базовый уровень стр.1 из 17 МОУ Киришская средняя общеобразовательная школа 8 Согласовано заместитель директора по УВР, Е.А. Королева «01» сентября 2014 г. Утверждена

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОДБ.08 ФИЗИКА 2013 г Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее ФГОС) по профессии начального

Управление образования АМО ГО «Сыктывкар» Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 9» (МОУ «СОШ 9») «9 -а Шӧр школа» муниципальнӧй велӧдан учреждение 02-01 Рекомендовано

Министерство физической культуры, спорта и молодежной политики Свердловской области Государственное автономное образовательное учреждение Среднего профессионального образования Свердловской области «Училище

Департамент образования и науки Кемеровской области Государственное образовательное учреждение среднего профессионального образования «Кемеровский коммунально-строительный техникум» имени В.И. Заузёлкова

Муниципальное бюджетное образовательное учреждение «Школа 13» города Сарова РАССМОТРЕНА на заседании школьного методического объединения учителей естественнонаучного цикла Протокол 1 от 29.08.2016 СОГЛАСОВАНА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный минерально-сырьевой университет

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ 0 КЛАСС БАЗОВЫЙ УРОВЕНЬ ПО УЧЕБНИКУ Г.Я.МЯКИШЕВ, Б.Б.БУХОВЦЕВ (36 часов 2 часа в неделю). ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа составлена на основе Федерального компонента

Средняя общеобразовательная школа с углубленным изучением иностранного языка при Посольстве России в Великобритании СОГЛАСОВАНО на заседании МС (Зубов С.Ю.) «10» сентября 2014 УТВЕРЖДАЮ директор школы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» «УТВЕРЖДАЮ» Ректор

Министерство образования и науки Челябинской области ГОУ СПО «Троицкий педагогический колледж» Рабочая программа учебной дисциплины ОДБ.11 Физика по специальности 050146 Преподавание в начальных классах

Экзамен в 8 классе общеобразовательной школы включает в себя проверку знаний теоретических (1 вопрос) и практических в виде навыков решения задач (1 задача). На экзамене можно пользоваться линейкой и калькулятором.

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 14» г. Воркуты РАССМОТРЕНА школьным методическим объединением учителей естественно-математического цикла Протокол 1 от 30.08.2013

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 18 с углубленным изучением математики Василеостровского района Санкт-Петербурга РАССМОТРЕНО на заседании МО протокол

Пояснительная записка При составлении программы были использованы следующие правовые документы федеральный компонент государственного стандарта среднего (полного) общего образования по физике, утвержденный

Автономное профессиональное образовательное учреждение Удмуртской Республики «Ижевский промышленно-экономический колледж» Учебно-программная документация ФИЗИКА (профильный уровень) РП.ОДП.16.СПО-01-2014

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 39 имени Георгия Александровича Чернова» г.воркуты Рассмотрена на заседании ШМО учителей математики, физики и информатики

Аннотация к рабочей программе по предмету «Физика» 10-11 класс 10 класс Рабочая программа предназначена для работы в 10 классе общеобразовательной школы и составлена на основе: – федерального компонента

Анатация Рабочая программа учебной дисциплины «Физика» предназначена для изучения физики в учреждениях начального и среднего профессионального образования, реализующих образовательную программу среднего

II четверть 2.1. Название Основы динамики. Основные законы механики – законы Ньютона. НА УЧЕБНЫЙ ПЕРИОД 2015-2020 Сформировать понятия силы как количественной характеристики взаимодействия тел. Изучить

СОДЕРЖАНИЕ. Пояснительная записка 3 2. Содержание учебной программы 5 3. График практической части рабочей программы.0 4. Календарно-тематический план…6 5. Список литературы для учащихся..33 6. Список

II четверть 2.1. Название Изменение агрегатных состояний вещества. НА УЧЕБНЫЙ ПЕРИОД 2015-2020 Продолжить формирование представлений о внутренней энергии. Изучить формулу для расчета количества теплоты,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧЕБНЫЕ ПРОГРАММЫ ДЛЯ УЧРЕЖДЕНИЙ ОБЩЕГО СРЕДНЕГО ОБРАЗОВАНИЯ С РУССКИМ ЯЗЫКОМ ОБУЧЕНИЯ ФИЗИКА VI XI классы АСТРОНОМИЯ XI класс Утверждено Министерством образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Забайкальский государственный университет»

СИБИРСКИЙ УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРЕДМЕТУ ФИЗИКА Новосибирск ВВЕДЕНИЕ Программа вступительного испытания по предмету физика составлена с учётом требований

1. ФИЗИКА 2. Кинематика. Система отсчета. Способы описания положения точки. Характеристики движения точки при различных способах описания положения. Уравнения движения. Кинематические сложения движений

Тур 1 Вариант 1 1. Точка движется по оси х по закону х = 8 + 12t – 3t 2 (м). Определите величину скорости точки при t = 1 с. 2. Тело массой m = 1 кг движется по горизонтальной поверхности под действием

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Башантинский аграрный колледж им. Ф.Г. Попова (филиал) ГОУ ВПО «КАЛМЫЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Физика

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 13 с углубленным изучением английского языка Невского района Санкт-Петербурга Аннотация к рабочей программе по

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

Формулы кинематики:

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Все формулы по магнетизму физика. Основные формулы по физике

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.


Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл ) . По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про .

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки . Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.


Сила Ампера

Представим, что есть магнитное поле с индукцией B . Если мы поместим в него проводник длиной l , по которому течет ток силой I , то поле будет действовать на проводник с силой:

Это и есть сила Ампера . Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.


Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца . Здесь важно отметить слово «движущийся» , так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v , а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.


Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. – это катушка, то есть множество круговых витков с током.


Пусть их количество – N , а длина самого соленоилда – l . Тогда поле внутри соленоида вычисляется по формуле:

Кстати! Для наших читателей сейчас действует скидка 10% на

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф .

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В .


При изменении магнитного потока через контур в контуре индуцируется ЭДС , равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила , вы можете почитать в еще одной нашей статье.

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн) . На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Формула для ЭДС самоиндукции:

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики « электричество и магнетизм» , однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в

Электричество и магнетизм формулы.

Закон Кулона

1. закон Кулона

2 . напряженность электрического поля

3. модуль напряженности поля точечного заряда

4 . принцип суперпозиции

5. -вектор электрического момента диполя – дипольный момент

6.

2. Теорема Гаусса

7

8.

9. теорема Гаусса

10. теорема Гаусса

11.

12. – дивергенция поля

13

Потенциал электростатического поля

14. -работа сил электростатического поля по перемещению пробного заряда q в электрическом поле точечного заряда Q

15. – интегральный признак потенциальности электростатического поля

16. – приращение потенциала электростатического поля

17 . – убыль потенциала электростатического поля

18 . – нормировка потенциала (выбор начала отсчета)

19 . – принцип суперпозиции для

20. – квазистатическая работа сил поля при перемещении

по произвольному пути из т.1 в т.2

21. – локальное соотношение между и

22. – потенциал точечного заряда

23. – потенциал диполя

24. – дифференциальный оператор Гамильтона («набла») в полярной системе координат

25 . – оператор Лапласа или лапласиан

26. – уравнение Лапласа

27. – уравнение Пуассона

4. Энергия в электростатике.

28. – энергия электростатического взаимодействия зарядов друг с другом

29 . – полная электростатическая энергия заряженного тела

30. – объемная плотность энергии (энергия, локализованная в единичном объеме)

31. – энергия взаимодействия точечного диполя с внешним полем

5. Проводники электростатике

32. – поле вблизи поверхности проводника

33. – электроемкость уединенного проводника

34. – емкость плоского конденсатора

35 . – емкость сферического конденсатора, образованного сферическими проводящими поверхностями радиусов а и b

36 . – энергия конденсатора

6. Электростатическое поле в диэлектриках

37. , – диэлектрическая восприимчивость вещества

38. – поляризованность (электрический дипольный момент единицы объема вещества)

39. – связь между напряженностью и поляризованностью

40 . теорема Гаусса для вектора в интегральной форме

41. – теорема Гаусса для вектора в дифференциальной форме

42. – граничные условия для вектора

43. – теорема Гаусса для вектора в диэлектриках

44 . – электрическое смещение

45. – интегральная и локальная теорема Гаусса для вектора

46. – граничные условия для вектора , где – поверхностная плотность сторонних зарядов

47. – связь и для изотропных сред

Постоянный ток

48. – сила тока

49 . – заряд, проходящий через сечение проводника

50. – уравнение непрерывности (закон сохранения заряда)

51. – уравнение непрерывности в дифференциальной форме

52 . – разность потенциалов для проводника, в котором не действуют сторонние силы, отождествляется с падением напряжения

53. – закон Ома

54. – закон Джоуля -Ленца

55. – сопротивление провода из однородного материала одинаковой толщины

56. – закон Ома в дифференциальной форме

57 . – величина, обратная удельному сопротивлению называется удельной электрической проводимостью

58 . – закон Джоуля –Ленца в дифференциальной форме

59. -интегральная форма закона Ома с учетом поля сторонних сил для участка цепи, содержащего ЭДС.

60 . – первый закон Кирхгофа. Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю.

61. -второй закон Кирхгофа. Сумма напряжений вдоль любого замкнутого контура цепи равна алгебраической сумме ЭДС, действующих в этом контуре.

62 . – удельная тепловая мощность тока в неоднородной проводящей среде

Закон Био-Савара

63 . – сила Лоренца

64 .если в некоторой системе отсчета электромагнитное поле является электрическим

(т.е. ), то в другой системе отсчета , движущейся относительно К со скоростью , компоненты электромагнитного поля отличны от нуля и связаны соотношением 64

65 .если в некоторой системе отсчета электрически заряженное тело имеет скорость , то электрическая и магнитная компоненты электромагнитного поля, создаваемого его зарядом, связаны в этой системе отсчета соотношением

66 . – если в некоторой системе отсчета электромагнитное поле является магнитным (), то в любой другой системе отсчета, движущейся со скоростью относительно первой, компоненты и электромагнитного поля отличны от нуля и связаны соотношением

67. индукция магнитного поля движущегося заряда

68 . – магнитная постоянная

6.

2. Теорема Гаусса

7 . – поток поля через произвольную поверхность

8. – принцип аддитивности потоков

9. теорема Гаусса

10. теорема Гаусса

11. – дифференциальный оператор Гамильтона («набла»)в декартовой системе координат

12. – дивергенция поля

13 . локальная (дифференциальная) теорема Гаусса

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S – площадь рамки, α – угол между нормалью к рамке и вектором магнитной индукции (нормаль – вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй – на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции – векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения – 1 Тесла. 1 Тл – очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции – окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид – намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий – это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики – кислород, платина, магний – несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков – железо, никель, кобальт – μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α – угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n – концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Формули з фізики 7-8 клас

    Скачать формули з фізики 7-8 клас doc

    7 класс 8 класс 9 класс 10 класс 11 класс. Курс физики с нуля временно не доступен из-за авторских прав. В данный момент можно посмотреть краткие лекции по физике. 7 класс. Введение. Что изучает физика. Наблюдения и опыты. Измерение физических величин.  Квантовая физика. Квантовая гипотеза Планка. Формула Эйнштейна для фотоэффекта. Инфоурок › Физика ›Другие методич. материалы›Основные формулы, изучаемые в классах в помощь учащимся.

    Основные формулы, изучаемые в классах в помощь учащимся. Скачать материал. библиотека материалов. Добавить в избранное. Формулы, изучаемые в классах. величина. Основная формула. «Физика 8: все формулы и определения» — это Справочник по физике в 8 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 4-х страницах) и МЕЛКО (формат JPG, на 1-й странице). Физика 8 класс. Все формулы и определения КРУПНО на 4-х страницах. 1 файл(ы) MB.  Глава 1. Тепловые явления.

    • § 1. Тепловое движение. температура • § 2. Внутренняя энергия • § 3. Способы изменения внутренней энергии тела • § 4. Теплопроводность • § 5. Конвекция • § 6. Излучение • § 7. Количество теплоты. Единицы количества теплоты • § 8. Удельная теплоёмкость • § 9. Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении • § Энергия топлива. Решение задач кл.  Здесь мы собрали все основные формулы, которые пригодятся Вам для решения задач в любом классе, с 7 по ый!

    Search. Ресурс создан исключительно в образовательных некоммерческих целях. Физика. 10 августа Все формулы по физике за классы. Пожаловаться. Ответ или решение1. Авдеев Сергей. Основные формулы по физике за 7,8 класс: Равномерное движение S=Vt V=S/t.

    Плотность p=m/v m=pv. Объем V=abc V=Sa. Сила тяжести, вес F=mg P=mg. Равнодействующая сила R=R1+R2 R=R1-R2. Давление твердых тел p=F/S.

    Физика, 8 класс Формулы и определения. Тепловые явления. Тепловые явления.  ЦТ по физике. Формулы: Механика Молекулярная физика и термодинамика Электричество и магнетизм Оптика Теория относительности Квантовая физика. Все формулы для ЦТ по физике. Полезное по физике: `varphi` Таблица давления и плотности насыщенного водяного пара Md Таблица Менделеева `pi` Константы и справочные материалы. 7 Вспомнить всё: 7 класс, понятия и формулы 8 Вспомнить всё: 8 класс, понятия и формулы.

    Поиск решения задачи: Введите примерный текст задачи, и мы попробуем её найти вместе с Google. Пользовательский поиск. Все формулы по физике 8 класса.

    Закон. Формула. Определение. Единицы измерения. ТЕПЛОВЫЕ ЯВЛЕНИЯ. Закон сохранения энергии. Start studying физика 8 класс формулы. Learn vocabulary, terms and more with flashcards, games and other study tools.  Upgrade to remove adverts. Only RUB /month. физика 8 класс формулы. STUDY. Flashcards.

    djvu, PDF, rtf, fb2

    Похожее:

  • Мова як основа культури народу
  • Розповідь про природу 5 клас
  • Питання боротьби зі злочинністю збірник наукових праць
  • Рідна мова 2 клас підручник захарійчук
  • Гдз історія всесвітня 7 клас подаляк
  • Мій конспект 7 клас нова програма
  • Тестові завдання 7 клас прислівник
  • Формулы нужные на егэ по физике. Формулы по физике для егэ

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Определение 1

    Физика является естественной наукой, которая изучает общие и фундаментальные закономерности строения и эволюции материального мира.

    Важность физики в современном мире огромна. Ее новые идеи и достижения приводят к развитию других наук и новых научных открытий, которые, в свою очередь, используются в технологиях и промышленности. Например, открытия в области термодинамики делают возможным строительство автомобиля, а также развитие радиоэлектроники привело к появлению компьютеров.

    Несмотря на невероятное количество накопленных знаний о мире, человеческое понимание процессов и явлений, постоянно меняется и развивается, новые исследования приводят к возникновению новых и нерешенных вопросов, которые требуют новых объяснений и теорий. В этом смысле, физика находится в непрерывном процессе развития и до сих пор далека от возможности объяснить все природные явления и процессы.

    Все формулы за $7$ класс

    Скорость равномерного движения

    Все формулы за 8 класс

    Количество теплоты при нагревании (охлаждении)

    $Q$ – количество теплоты [Дж], $m$ – масса [кг], $t_1$- начальная температура, $t_2$ – конечная температура, $c$ – удельная теплоемкость

    Количество теплоты при сгорании топлива

    $Q$ – количество теплоты [Дж], $m$ – масса [кг], $q$ – удельная теплота сгорания топлива [Дж /кг]

    Количество теплоты плавления (кристаллизации)

    $Q=\lambda \cdot m$

    $Q$ – количество теплоты [Дж], $m$ – масса [кг], $\lambda$ – удельная теплота плавления [Дж/кг]

    КПД теплового двигателя

    $КПД=\frac{A_n\cdot 100%}{Q_1}$

    КПД – коэффициент полезного действия [%], $А_n$ – полезная работа [Дж], $Q_1$ – количество теплоты от нагревателя [Дж]

    Сила тока

    $I$ – сила тока [А], $q$ – электрический заряд [Кл], $t$ – время [с]

    Электрическое напряжение

    $U$ – напряжение [В], $A$ – работа [Дж], $q$ – электрический заряд [Кл]

    Закон Ома для участка цепи

    $I$ – сила тока [А], $U$ – напряжение [В], $R$ – сопротивление [Ом]

    Последовательное соединение проводников

    Параллельное соединение проводников

    $\frac{1}{R}=\frac{1}{R_1} +\frac{1}{R_2}$

    Мощность электрического тока

    $P$ – мощность [Вт], $U$ – напряжение [В], $I$ – сила тока [А]

    Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

    Секреты подготовки

    Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает. Почему-то не верится, что так мало школьников 11 класса желают стать:

    • инженерами;
    • ювелирами;
    • авиаконструкторами;
    • геологами;
    • пиротехниками;
    • экологами,
    • технологами на производстве и т.д.

    Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

    Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

    • механику;
    • физику молекулярную;
    • электромагнетизм и электричество;
    • оптику;
    • физику атомную.

    Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

    Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

    Кинематика

    Путь при равномерном движении:

    Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

    Средняя скорость пути:

    Средняя скорость перемещения:

    Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

    Средняя скорость при равноускоренном движении:

    Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

    Координата при равноускоренном движении изменяется по закону:

    Проекция скорости при равноускоренном движении изменяется по такому закону:

    Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

    Время падения тела с высоты h без начальной скорости:

    Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

    Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

    Дальность полета тела при горизонтальном броске с высоты H :

    Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

    Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

    Время подъема до максимальной высоты при броске под углом к горизонту:

    Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

    Определение периода вращения при равномерном движении по окружности:

    Определение частоты вращения при равномерном движении по окружности:

    Связь периода и частоты:

    Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

    Угловая скорость вращения при равномерном движении по окружности:

    Связь линейной и скорости и угловой скорости выражается формулой:

    Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

    Центростремительное ускорение находится по одной из формул:

    Динамика

    Второй закон Ньютона:

    Здесь: F – равнодействующая сила, которая равна сумме всех сил действующих на тело:

    Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

    Третий закон Ньютона (сила действия равна силе противодействия):

    Сила упругости:

    Общий коэффициент жесткости параллельно соединённых пружин:

    Общий коэффициент жесткости последовательно соединённых пружин:

    Сила трения скольжения (или максимальное значение силы трения покоя):

    Закон всемирного тяготения:

    Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

    Где: g – ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

    Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

    Скорость спутника на круговой орбите:

    Первая космическая скорость:

    Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

    Статика

    Момент силы определяется с помощью следующей формулы:

    Условие при котором тело не будет вращаться:

    Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

    Гидростатика

    Определение давления задаётся следующей формулой:

    Давление, которое создает столб жидкости находится по формуле:

    Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

    Идеальный гидравлический пресс:

    Любой гидравлический пресс:

    КПД для неидеального гидравлического пресса:

    Сила Архимеда (выталкивающая сила, V – объем погруженной части тела):

    Импульс

    Импульс тела находится по следующей формуле:

    Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

    Общий импульс системы тел (важно то, что сумма векторная):

    Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

    Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

    Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

    Работа, мощность, энергия

    Механическая работа рассчитывается по следующей формуле:

    Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

    Мгновенная механическая мощность:

    Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

    Потенциальная энергия тела поднятого на высоту:

    Потенциальная энергия растянутой (или сжатой) пружины:

    Полная механическая энергия:

    Связь полной механической энергии тела или системы тел и работы внешних сил:

    Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

    Молекулярная физика

    Химическое количество вещества находится по одной из формул:

    Масса одной молекулы вещества может быть найдена по следующей формуле:

    Связь массы, плотности и объёма:

    Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

    Определение концентрации задаётся следующей формулой:

    Для средней квадратичной скорости молекул имеется две формулы:

    Средняя кинетическая энергия поступательного движения одной молекулы:

    Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

    Следствия из основного уравнения МКТ:

    Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

    Газовые законы. Закон Бойля-Мариотта:

    Закон Гей-Люссака:

    Закон Шарля:

    Универсальный газовый закон (Клапейрона):

    Давление смеси газов (закон Дальтона):

    Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

    Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

    Термодинамика

    Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

    Теплоемкость (С – большое) тела может быть рассчитана через удельную теплоёмкость (c – маленькое) вещества и массу тела по следующей формуле:

    Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

    Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

    При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

    При сгорании топлива выделяется количество теплоты равное:

    Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

    Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

    Работа идеального газа:

    Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p V координатах. Внутренняя энергия идеального одноатомного газа:

    Изменение внутренней энергии рассчитывается по формуле:

    Первый закон (первое начало) термодинамики (ЗСЭ):

    Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q , изменение внутренней энергии ΔU и работа газа A . Изохорный процесс (V = const):

    Изобарный процесс (p = const):

    Изотермический процесс (T = const):

    Адиабатный процесс (Q = 0):

    КПД тепловой машины может быть рассчитан по формуле:

    Где: Q 1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q 2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

    Наибольший КПД при заданных температурах нагревателя T 1 и холодильника T 2 , достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

    Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

    Относительная влажность воздуха может быть рассчитана по следующим формулам:

    Потенциальная энергия поверхности жидкости площадью S :

    Сила поверхностного натяжения, действующая на участок границы жидкости длиной L :

    Высота столба жидкости в капилляре:

    При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

    При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h

    Электростатика

    Электрический заряд может быть найден по формуле:

    Линейная плотность заряда:

    Поверхностная плотность заряда:

    Объёмная плотность заряда:

    Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

    Где: k – некоторый постоянный электростатический коэффициент, который определяется следующим образом:

    Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

    Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

    Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

    Напряженность электрического поля, которую создает заряженная плоскость:

    Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

    Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

    В однородном электрическом поле существует связь между напряженностью поля и напряжением:

    Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

    Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

    В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

    Определение потенциала задаётся выражением:

    Потенциал, который создает точечный заряд или заряженная сфера:

    Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

    Для диэлектрической проницаемости вещества верно следующее:

    Определение электрической ёмкости задаётся формулой:

    Ёмкость плоского конденсатора:

    Заряд конденсатора:

    Напряжённость электрического поля внутри плоского конденсатора:

    Сила притяжения пластин плоского конденсатора:

    Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

    Объёмная плотность энергии электрического поля:

    Электрический ток

    Сила тока может быть найдена с помощью формулы:

    Плотность тока:

    Сопротивление проводника:

    Зависимость сопротивления проводника от температуры задаётся следующей формулой:

    Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):

    Закономерности последовательного соединения:

    Закономерности параллельного соединения:

    Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:

    Закон Ома для полной цепи:

    Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

    Сила тока короткого замыкания:

    Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:

    Мощность электрического тока:

    Энергобаланс замкнутой цепи

    Полезная мощность или мощность, выделяемая во внешней цепи:

    Максимально возможная полезная мощность источника достигается, если R = r и равна:

    Если при подключении к одному и тому же источнику тока разных сопротивлений R 1 и R 2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

    Мощность потерь или мощность внутри источника тока:

    Полная мощность, развиваемая источником тока:

    КПД источника тока:

    Электролиз

    Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q , прошедшему через электролит:

    Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

    Где: n – валентность вещества, N A – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

    Магнетизм

    Сила Ампера , действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

    Момент сил действующих на рамку с током:

    Сила Лоренца , действующая на заряженную частицу движущуюся в однородном магнитном поле, рассчитывается по формуле:

    Радиус траектории полета заряженной частицы в магнитном поле:

    Модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:

    Индукция поля в центре витка с током радиусом R :

    Внутри соленоида длиной l и с количеством витков N создается однородное магнитное поле с индукцией:

    Магнитная проницаемость вещества выражается следующим образом:

    Магнитным потоком Φ через площадь S контура называют величину заданную формулой:

    ЭДС индукции рассчитывается по формуле:

    При движении проводника длиной l в магнитном поле B со скоростью v также возникает ЭДС индукции (проводник движется в направлении перпендикулярном самому себе):

    Максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

    Индуктивность катушки:

    Где: n – концентрация витков на единицу длины катушки:

    Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока пронизывающего её, задаётся формулой:

    ЭДС самоиндукции возникающая в катушке:

    Энергия катушки (вообще говоря, это энергия магнитного поля внутри катушки):

    Объемная плотность энергии магнитного поля:

    Колебания

    Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω 0:

    Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

    Период колебаний вычисляется по формуле:

    Частота колебаний:

    Циклическая частота колебаний:

    Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

    Максимальное значение скорости при гармонических механических колебаниях:

    Зависимость ускорения от времени при гармонических механических колебаниях:

    Максимальное значение ускорения при механических гармонических колебаниях:

    Циклическая частота колебаний математического маятника рассчитывается по формуле:

    Период колебаний математического маятника:

    Циклическая частота колебаний пружинного маятника:

    Период колебаний пружинного маятника:

    Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

    Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

    Взаимосвязь энергетических характеристик механического колебательного процесса:

    Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

    Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

    Циклическая частота колебаний в электрическом колебательном контуре:

    Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

    Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

    Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

    Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

    Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

    Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

    Действующее значение напряжения:

    Мощность в цепи переменного тока:

    Трансформатор

    Если напряжение на входе в трансформатор равно U 1 , а на выходе U 2 , при этом число витков в первичной обмотке равно n 1 , а во вторичной n 2 , то выполняется следующее соотношение:

    Коэффициент трансформации вычисляется по формуле:

    Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

    В неидеальном трансформаторе вводится понятие КПД:

    Волны

    Длина волны может быть рассчитана по формуле:

    Разность фаз колебаний двух точек волны, расстояние между которыми l :

    Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

    Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

    Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

    При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

    Оптика

    Оптическая длина пути определяется формулой:

    Оптическая разность хода двух лучей:

    Условие интерференционного максимума:

    Условие интерференционного минимума:

    Закон преломления света на границе двух прозрачных сред:

    Постоянную величину n 21 называют относительным показателем преломления второй среды относительно первой. Если n 1 > n 2 , то возможно явление полного внутреннего отражения, при этом:

    Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

    Атомная и ядерная физика

    Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

    Импульс фотона:

    Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

    Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение U з и элементарный заряд е :

    Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

    Второй постулат Бора или правило частот (ЗСЭ):

    В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

    На любой орбите в атоме водорода кинетическая (К ) и потенциальная (П ) энергии электрона связаны с полной энергией (Е ) следующими формулами:

    Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

    Дефект массы:

    Энергия связи ядра выраженная в единицах СИ:

    Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

    Закон радиоактивного распада:

    Ядерные реакции

    Для произвольной ядерной реакции описывающейся формулой вида:

    Выполняются следующие условия:

    Энергетический выход такой ядерной реакции при этом равен:

    Основы специальной теории относительности (СТО)

    Релятивистское сокращение длины:

    Релятивистское удлинение времени события:

    Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

    Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

    Энергия покоя тела:

    Любое изменение энергии тела означает изменение массы тела и наоборот:

    Полная энергия тела:

    Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

    Релятивистское увеличение массы:

    Кинетическая энергия тела, движущегося с релятивистской скоростью:

    Между полной энергией тела, энергией покоя и импульсом существует зависимость:

    Равномерное движение по окружности

    В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, a n – центростремительное ускорение, L – длина дуги окружности, t – время):

    Расширенная PDF версия документа “Все главные формулы по школьной физике”:

    Как успешно подготовиться к ЦТ по физике и математике?

    Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

    1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
    2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
    3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

    Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Абсолютно необходимы для того, чтобы человек, решивший изучать эту науку, вооружившись ими, мог чувствовать себя в мире физики как рыба в воде. Без знания формул немыслимо решение задач по физике. Но все формулы запомнить практически невозможно и важно знать, особенно для юного ума, где найти ту или иную формулу и когда ее применить.

    Расположение физических формул в специализированных учебниках распределяется обычно по соответствующим разделам среди текстовой информации, поэтому их поиск там может отнять довольно-таки много времени, а тем более, если они вдруг понадобятся Вам срочно!

    Представленные ниже шпаргалки по физике содержат все основные формулы из курса физики , которые будут полезны учащимся школ и вузов.

    Все формулы школьного курса по физике с сайта http://4ege.ru
    I. Кинематика скачать
    1. Основные понятия
    2. Законы сложения скоростей и ускорений
    3. Нормальное и тангенциальное ускорения
    4. Типы движений
    4.1. Равномерное движение
    4.1.1. Равномерное прямолинейное движение
    4.1.2. Равномерное движение по окружности
    4.2. Движение с постоянным ускорением
    4.2.1. Равноускоренное движение
    4.2.2. Равнозамедленное движение
    4.3. Гармоническое движение
    II. Динамика скачать
    1. Второй закон Ньютона
    2. Теорема о движении центра масс
    3. Третий закон Ньютона
    4. Силы
    5. Гравитационная сила
    6. Силы, действующие через контакт
    III. Законы сохранения. Работа и мощность скачать
    1. Импульс материальной точки
    2. Импульс системы материальных точек
    3. Теорема об изменении импульса материальной точки
    4. Теорема об изменении импульса системы материальных точек
    5. Закон сохранения импульса
    6. Работа силы
    7. Мощность
    8. Механическая энергия
    9. Теорема о механической энергии
    10. Закон сохранения механической энергии
    11. Диссипативные силы
    12. Методы вычисления работы
    13. Средняя по времени сила
    IV. Статика и гидростатика скачать
    1. Условия равновесия
    2. Вращающий момент
    3. Неустойчивое равновесие, устойчивое равновесие, безразличное равновесие
    4. Центр масс, центр тяжести
    5. Сила гидростатического давления
    6. Давлением жидкости
    7. Давление в какой-либо точке жидкости
    8, 9. Давление в однородной покоящейся жидкости
    10. Архимедова сила
    V. Тепловые явления скачать
    1. Уравнение Менделеева-Клапейрона
    2. Закон Дальтона
    3. Основное уравнение МКТ
    4. Газовые законы
    5. Первый закон термодинамики
    6. Адиабатический процесс
    7. КПД циклического процесса (теплового двигателя)
    8. Насыщенный пар
    VI. Электростатика скачать
    1. Закон Кулона
    2. Принцип суперпозиции
    3. Электрическое поле
    3.1. Напряженность и потенциал электрического поля, созданного одним точечным зарядом Q
    3.2. Напряженность и потенциал электрического поля, созданного системой точечных зарядов Q1, Q2, …
    3.3. Напряженность и потенциал электрического поля, созданного равномерно заряженным по поверхности шаром
    3.4. Напряженность и потенциал однородного электрического поля, (созданного равномерно заряженной плоскотью или плоским конденсатором)
    4. Потенциальная энергия системы электрических зарядов
    5. Электроемкость
    6. Свойства проводника в электрическом поле
    VII. Постоянный ток скачать
    1. Упорядоченная скорость
    2. Сила тока
    3. Плотность тока
    4. Закон Ома для участка цепи, не содержащего ЭДС
    5. Закон Ома для участка цепи, содержащего ЭДС
    6. Закон Ома для полной (замкнутой) цепи
    7. Последовательное соединение проводников
    8. Параллельное соединение проводников
    9. Работа и мощность электрического тока
    10. КПД электрической цепи
    11. Условие выделения максимальной мощности на нагрузке
    12. Закон Фарадея для электролиза
    VIII. Магнитные явления скачать
    1. Магнитное поле
    2. Движение зарядов в магнитном поле
    3. Рамка с током в магнитном поле
    4. Магнитные поля, создаваемые различными токами
    5. Взаимодействие токов
    6. Явление электромагнитной индукции
    7. Явление самоиндукции
    IX. Колебания и волны скачать
    1. Колебания, определения
    2. Гармонические колебания
    3. Простейшие колебательные системы
    4. Волна
    X. Оптика скачать
    1. Закон отражения
    2. Закон преломления
    3. Линза
    4. Изображение
    5. Возможные случаи расположения предмета
    6. Интерференция
    7. Дифракция

    Большая шпаргалка по физике . Все формулы изложены в компактном виде с небольшими комментариями. Шпаргалка также содержит полезные константы и прочую информацию. Файл содержит следующие разделы физики:

      Механика (кинематика, динамика и статика)

      Молекулярная физика. Свойства газов и жидкостей

      Термодинамика

      Электрические и электромагнитные явления

      Электродинамика. Постоянный ток

      Электромагнетизм

      Колебания и волны. Оптика. Акустика

      Квантовая физика и теория относительности

    Маленькая шпора по физике . Все самое необходимое для экзамена. Нарезка основных формул по физике на одной странице. Не очень эстетично, зато практично. 🙂

    Произошла ошибка при настройке вашего пользовательского файла cookie

    Произошла ошибка при настройке вашего пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.

    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку “Назад” и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.

    Что сохраняется в файлах cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Рентгеновская компьютерная томография (КТ)

    Ричард Кетчем, Техасский университет в Остине

    Что такое рентгеновская компьютерная томография (КТ)

    Рентгеновская компьютерная томография (КТ) – это неразрушающий метод визуализации внутренних элементов твердых объектов и получения цифровой информации об их трехмерной геометрии и свойствах.
    Трехмерная реконструкция черепа Herrerasaurus с вырезом, показывающим корпус мозга. Длина образца 32 см. Подробности КТ-изображение обычно называется срезом , поскольку оно соответствует тому, как сканируемый объект выглядел бы, если бы он был разрезан вдоль плоскости. Еще лучшая аналогия – срез буханки хлеба, потому что точно так же, как кусок хлеба имеет толщину, КТ-срез соответствует определенной толщине сканируемого объекта. Таким образом, в то время как типичное цифровое изображение состоит из пикселей (элементов изображения), изображение среза CT состоит из вокселей, (элементов объема).Продолжая аналогию на один шаг дальше, так же, как буханку хлеба можно воссоздать, сложив все ее ломтики, полное объемное представление объекта получается путем получения непрерывного набора CT-ломтиков.

    Уровни серого на изображении КТ-среза соответствуют ослаблению рентгеновских лучей, которое отражает долю рентгеновских лучей, рассеянных или поглощенных, когда они проходят через каждый воксель. Ослабление рентгеновских лучей в первую очередь зависит от энергии рентгеновских лучей, а также плотности и состава отображаемого материала.

    Основные принципы рентгеновской компьютерной томографии (КТ)

    Томографическая визуализация состоит из направления рентгеновских лучей на объект с разных ориентаций и измерения уменьшения интенсивности вдоль ряда линейных траекторий. Это уменьшение характеризуется законом Бера, который описывает снижение интенсивности в зависимости от энергии рентгеновского излучения, длины пути и коэффициента линейного ослабления материала. Затем используется специальный алгоритм для восстановления распределения ослабления рентгеновских лучей в визуализируемом объеме.
    Простейшая форма закона Бера для монохроматического рентгеновского пучка через однородный материал: где I 0 и I – начальная и конечная интенсивность рентгеновского излучения, µ – линейный коэффициент ослабления материала (единицы 1 / длина), а x – длина пути рентгеновского излучения. Если материалов несколько, уравнение выглядит следующим образом: где каждое приращение i отражает отдельный материал с коэффициентом затухания µ i с линейной протяженностью x i .В хорошо откалиброванной системе с использованием источника монохроматического рентгеновского излучения (т. Е. Синхротрона или излучателя гамма-излучения) это уравнение может быть решено напрямую. Если используется полихроматический источник рентгеновского излучения, чтобы учесть тот факт, что коэффициент ослабления сильно зависит от энергии рентгеновского излучения, полное решение потребует решения уравнения в диапазоне энергии рентгеновского излучения ( E ) используемый спектр: Однако такое вычисление обычно проблематично, поскольку большинство стратегий реконструкции решают для одного значения µ в каждой пространственной позиции.В таких случаях µ принимается как эффективный линейный коэффициент затухания, а не как абсолютный. Это усложняет абсолютную калибровку, поскольку эффективное ослабление зависит как от спектра рентгеновских лучей, так и от свойств сканируемого объекта. Это также приводит к артефактам усиления луча: изменениям уровней серого изображения, вызванным преимущественным ослаблением низкоэнергетических рентгеновских лучей.
    Доминирующими физическими процессами, ответственными за ослабление рентгеновского излучения для большинства лабораторных источников рентгеновского излучения, являются фотоэлектрическое поглощение и комптоновское рассеяние.Фотоэлектрическое поглощение происходит, когда полная энергия падающего рентгеновского фотона передается внутреннему электрону, вызывая его выброс. В комптоновском рассеянии входящий фотон взаимодействует с внешним электроном, выбрасывая электрон и теряя только часть своей собственной энергии, после чего он отклоняется в другом направлении.

    В целом для геологических материалов фотоэлектрический эффект является доминирующим механизмом ослабления при низких энергиях рентгеновского излучения, примерно до 100–150 кэВ, после чего преобладает комптоновское рассеяние.Практическое значение этого перехода состоит в том, что фотоэлектрический эффект пропорционален атомному номеру Z 4-5 , тогда как комптоновское рассеяние пропорционально только Z или, в первом порядке, плотности массы. В результате низкоэнергетические рентгеновские лучи более чувствительны к различиям в составе, чем высокоэнергетические, но также ослабляются гораздо быстрее, ограничивая толщину материала высокой плотности, через который они могут проникать и визуализироваться.

    На рисунке справа показаны линейные коэффициенты ослабления как функция энергии для четырех минералов: кварца, ортоклаза, кальцита и альмандинового граната.Кварц и ортоклаз очень похожи по массовой плотности (2,65 г / см 3 против 2,59 г / см 3 ), но при низкой энергии их коэффициенты ослабления различаются из-за присутствия калия с относительно высоким Z в полевом шпате. . С ростом энергии рентгеновского излучения их коэффициенты ослабления сходятся, и примерно при 125 кэВ они пересекаются; выше ~ 125 кэВ кварц немного более затухающий из-за его более высокой плотности. Таким образом, эти два минерала можно различить на КТ-изображениях, если средняя используемая энергия рентгеновского излучения достаточно низка, но при более высоких энергиях они почти неразличимы.Кальцит, хотя и лишь немного более плотный (2,71 г / см 3 ), чем кварц и ортоклаз, значительно более ослабляется при низкой энергии из-за присутствия кальция. Здесь расхождение с кварцем сохраняется до немного более высоких энергий, указывая на то, что их можно будет различить даже при сканировании с более высокими энергиями. Фазы с высокой плотностью и высоким Z, такие как альмандин, при всех энергиях можно отличить от других исследуемых здесь породообразующих минералов.

    Существует ряд методов, с помощью которых данные о ослаблении рентгеновских лучей могут быть преобразованы в изображение, некоторые из которых являются собственными.Наиболее частый подход называется «фильтрованная обратная проекция», при которой линейные данные, полученные при каждой угловой ориентации, сворачиваются с помощью специально разработанного фильтра, а затем проецируются обратно через пиксельное поле под тем же углом.

    Этот принцип проиллюстрирован на изображении справа и в анимации, которую можно просмотреть, щелкнув ссылку ниже. Ручной образец гранат-биотит-кианитового сланца (вверху слева) вращается, и его среднее сечение отображается плоским веерным лучом (синий). Ослабление рентгеновских лучей образцом при его вращении показано в правом верхнем углу; чем больше затухание на пути луча, ведущем от точечного источника (внизу) к линейному детектору (вверху), тем меньше рентгеновских лучей достигает детектора.Данные, собранные под каждым углом, собраны в правом нижнем углу. На этом изображении горизонтальная ось соответствует каналу детектора, а вертикальная ось соответствует углу поворота (или времени), а яркость соответствует степени ослабления рентгеновского излучения. Полученное изображение называется синограммой , так как любая точка исходного объекта соответствует синусоиде. После завершения сбора данных начинается реконструкция. Каждая строка синограммы сначала свертывается с помощью фильтра и проецируется на матрицу пикселей (внизу справа) под углом, под которым она была получена.После обработки всех углов изображение готово.
    Анимация КТ-реконструкции (9.1MB Mar30 07)

    Аппаратура для рентгеновской компьютерной томографии (КТ) – как это работает?

    Элементами рентгеновской томографии являются источник рентгеновского излучения, серия детекторов, которые измеряют ослабление интенсивности рентгеновского излучения на нескольких путях луча, а также геометрию вращения по отношению к изображаемому объекту. Различные конфигурации этих компонентов могут использоваться для создания компьютерных томографов, оптимизированных для визуализации объектов различного размера и состава.

    В подавляющем большинстве систем компьютерной томографии используются рентгеновские трубки, хотя томография также может выполняться с использованием синхротрона или гамма-излучателя в качестве источника монохроматического рентгеновского излучения. Важными характеристиками трубки являются материал мишени и пиковая энергия рентгеновского излучения, которые определяют генерируемый спектр рентгеновского излучения; ток, определяющий интенсивность рентгеновского излучения; и размер фокусного пятна, который влияет на пространственное разрешение.

    В большинстве КТ-детекторов рентгеновского излучения используются сцинтилляторы. Важными параметрами являются материал, размер и геометрия сцинтиллятора, а также средства обнаружения и подсчета сцинтилляционных событий.Как правило, детекторы меньшего размера обеспечивают лучшее разрешение изображения, но меньшую скорость счета из-за их меньшей площади по сравнению с более крупными. Для компенсации используется более длительное время сбора данных для снижения уровня шума. Обычными сцинтилляционными материалами являются йодид цезия, оксисульфид гадолиния и метавольфрамат натрия.

    На диаграмме справа показаны некоторые из наиболее распространенных конфигураций компьютерных томографов. При сканировании планарным пучком рентгеновские лучи коллимируются и измеряются с помощью линейки детекторов.Обычно толщина среза определяется апертурой линейного массива. Коллимация необходима для уменьшения влияния рассеяния рентгеновских лучей, которое приводит к ложному дополнительному рентгеновскому излучению, достигающему детектора из мест, не расположенных вдоль пути источник-детектор. Линейные массивы, как правило, могут быть сконфигурированы так, чтобы быть более эффективными, чем планарные, но имеют недостаток, заключающийся в том, что они получают данные только для одного изображения среза за раз.

    При сканировании конусным лучом линейная решетка заменяется планарным детектором, и луч больше не коллимируется.Данные для всего объекта или значительной его толщины можно получить за один оборот. Данные преобразуются в изображения с использованием алгоритма конического луча. В общем, данные конического луча подвержены некоторому размытию и искажению по мере удаления от центральной плоскости, что соответствовало бы захвату одного среза. Они также более подвержены артефактам, связанным с рассеянием, если используются высокоэнергетические рентгеновские лучи. Однако преимущество получения данных для сотен или тысяч срезов за один раз является значительным, так как большее время сбора может быть потрачено на каждую позицию поворотного стола, что снижает шум изображения.

    Сканирование параллельным пучком выполняется с использованием специально сконфигурированной линии синхротронного пучка в качестве источника рентгеновского излучения. В этом случае объемные данные получаются без искажений. Однако размер объекта ограничен шириной рентгеновского луча; в зависимости от конфигурации луча могут отображаться объекты диаметром до 6 см. Синхротронное излучение обычно имеет очень высокую интенсивность, что позволяет быстро собирать данные, но рентгеновские лучи, как правило, имеют низкую энергию (<35 кэВ), что может помешать формированию изображений образцов с обширными материалами с высоким Z.

    Другими вариантами являются получение нескольких срезов, в котором используется планарный детектор, но данные обрабатываются с помощью алгоритма реконструкции веерного луча, и спиральное сканирование, при котором высота образца изменяется во время сбора данных, что потенциально снижает артефакты конического луча.

    Приложения

    Данные КТ применяются практически во всех геологических дисциплинах, и постоянно открываются новые приложения. На сегодняшний день успешно подано:
    3D-рендеринг метеорита PAT91501-50, показывающий дифференцирующиеся частицы троилита / силиката (желтые и пурпурные) и пузырьки паровой фазы.Текстура указывает на плавление с последующим внезапным гашением в значительном гравитационном поле. Ширина образца ~ 15 см. Подробности
    • Измерение трехмерного размера и пространственного распределения кристаллов, обломков, пузырьков и т. Д.
    • Неразрушающее объемное исследование редких образцов (окаменелости, метеориты и др.)
    • Трехмерное измерение полей потока жидкости, включая пористость, микропористость, а также степень и шероховатость трещин
    • Определение трехмерной ткани (слоение, предпочтительная ориентация формы, свойства сети)
    • Изучение и измерение морфологии окаменелостей и новейших биологических образцов
    • Обнаружение и исследование фаз с высокой плотностью экономических следов
    • Разведывательная съемка образцов для оптимальной геохимической эксплуатации (например, определение местоположения центральных участков кристаллов, осей спиралей, твердых и жидких включений).

    Преимущества и недостатки рентгеновской компьютерной томографии (КТ)?

    Сильные стороны

    • Полностью неразрушающая 3D-визуализация
    • Подготовка образца практически не требуется
    • Реконструкция обычно консервативна по затуханию, позволяя извлекать детали субвоксельного уровня.

    Ограничения

    • Разрешение ограничено примерно 1000–2000-кратным диаметром поперечного сечения объекта; высокое разрешение требует мелких объектов
    • Конечное разрешение вызывает некоторое размытие границ материала
    • Калибровка уровней серого по коэффициентам ослабления, усложненным полихроматическим рентгеновским излучением
    • Крупные (в масштабе дм) геологические образцы не могут быть пронизаны рентгеновскими лучами низкой энергии, что снижает разрешающую способность
    • Не все объекты имеют достаточно большие контрасты затухания для получения полезных изображений (карбонатные окаменелости в карбонатной матрице; кварц vs.плагиоклаз)
    • Артефакты изображения (усиление луча) могут усложнить сбор и интерпретацию данных
    • Большие объемы данных (гигабайты +) могут потребовать значительных ресурсов компьютера для визуализации и анализа

    Руководство пользователя – Сбор и подготовка образцов

    Единственная подготовка, необходимая для КТ-сканирования, – убедиться, что объект помещается в поле зрения и что он не двигается во время сканирования. Поскольку поле полного сканирования для КТ представляет собой цилиндр (т.е.е., стопка круговых полей зрения), наиболее эффективной геометрией для сканирования также является цилиндр. Таким образом, когда это возможно, часто бывает выгодно, чтобы объект принял цилиндрическую геометрию либо с помощью корончатого сверла для получения цилиндрического образца, либо путем упаковки объекта в цилиндрический контейнер с прозрачным для рентгеновских лучей наполнителем или материалом. аналогичных характеристик затухания.

    Сбор данных, результаты и представление

    КТ-данные обычно представляют собой последовательность файлов изображений, которые можно визуализировать и анализировать с помощью широкого спектра инструментов обработки изображений на основе 2D и 3D.Значения данных уровня серого в изображениях КТ обычно называются числами КТ. Однако номера КТ обычно меняются от сканера к сканеру и даже от сканирования к сканированию.

    Двумя стандартными режимами 3D-визуализации являются объемная визуализация и изоповерхность. Объемный рендеринг состоит из сопоставления каждого значения CT с цветом и непрозрачностью. Таким образом, некоторые фазы можно сделать прозрачными, что позволит раскрыть внутренние особенности. Изоповерхность включает в себя определение трехмерных контурных поверхностей, которые очерчивают границы между номерами CT, так же, как контурные линии разделяют значения высот на топографической карте.

    Поскольку наборы данных КТ обычно состоят из сотен изображений и тысяч мегабайт, они не поддаются традиционной публикации. Однако данные компьютерной томографии и визуализации все чаще используются во всемирной паутине. Примером может служить веб-сайт Библиотеки цифровой морфологии (дополнительная информация).

    Литература

    Следующая литература может быть использована для дальнейшего изучения рентгеновской компьютерной томографии (КТ)

    • ASTM, 1992, Стандартное руководство по компьютерной томографии (КТ), обозначение ASTM E 1441 – 92a.В: Годовой сборник стандартов ASTM 1992 г., раздел 3 «Методы испытаний металлов и аналитические процедуры». ASTM, Филадельфия, стр. 690-713.
    • Ketcham, R.A. и Карлсон, У.Д., 2001, Сбор, оптимизация и интерпретация рентгеновских компьютерных томографических изображений: приложения к наукам о Земле. Компьютеры и науки о Земле, 27, 381-400.

    Ссылки по теме

    Для получения дополнительной информации о рентгеновской компьютерной томографии (КТ) перейдите по ссылкам ниже.

    Веб-сайт лаборатории компьютерной томографии Техасского университета предоставляет дополнительную информацию о принципах и множество примеров приложений.

    Учебная деятельность и ресурсы

    Учебная деятельность, лабораторные работы и ресурсы, относящиеся к рентгеновской компьютерной томографии (КТ).

    Математическая медицина: компьютерная томография (компьютерная томография) | Салли Чен

    Компьютерная томография (компьютерная томография или компьютерная томография) стала абсолютно фундаментальным инструментом современной диагностики заболеваний. В отличие от рентгеновского сканирования, которое представляет собой двумерное изображение общей плотности ткани в сканируемой области, компьютерная томография позволяет врачам видеть подробное трехмерное сканирование тела пациента, по сути, всматриваясь в тело без исследовательской операции.Взгляните на изображение ниже, чтобы увидеть резкую разницу между обычным 2D-рентгеновским снимком (слева) и компьютерной томографией (справа).

    Изображение предоставлено EmergencyMD

    Компьютерная томография основана на получении нескольких рентгеновских снимков и использовании «перекрывающейся» информации для объединения их в составное трехмерное изображение. От одного рентгеновского сканирования вы действительно получаете лишь эквивалент «тени» изнутри.

    Источник изображения

    Обратите внимание на то, что массив детекторов на изображении слева видит только одномерную линию измерений интенсивности от сканируемого объекта.По сути, это то, что можно увидеть на обычном рентгеновском снимке, например на снимках, полученных при заказе портативного рентгеновского снимка грудной клетки. Чем больше рентгеновских снимков делается под разными углами, тем более очевидной становится внутренняя структура сканируемого объекта.

    Источник изображения

    Обратите внимание, как «тени» каждого сканирования начинают перекрываться и образуют более темную область в центре, отображая детали внутренней части отсканированного объекта, которые в противном случае были бы скрыты поверхностью. Принципы компьютерной томографии относительно просты для понимания, но выполнение вычислений и реконструкции собранных данных является гораздо более сложной математической задачей.

    Определение проблемы

    Первым математическим инструментом, который нам нужно обсудить, является «преобразование Радона». В Википедии преобразование Радона определяется как «интегральное преобразование , которое переводит функцию f, определенную на плоскости, в функцию Rf, определенную в (двумерном) пространстве линий на плоскости, значение которой в конкретная строка равна интегралу строки функции над этой строкой ». Если вы плохо разбираетесь в многомерном исчислении, это определение немного непостижимо, но на самом деле концепция довольно проста.

    Преобразование Радона объекта – это в основном необработанные * данные, которые КТ-сканер собирает во время сканирования, которые позже преобразуются в реконструкцию среза пациента.

    Источник. Представьте, что линейный массив детекторов находится слева от объекта в GIF. Правый квадрат показывает график значений интенсивности детекторов в зависимости от угла поворота объекта.

    В более сложной математической терминологии преобразование Радона определяется как:

    Источник

    Где нижняя строка – это параметризация линейного интеграла в виде линии под углом α.Вот пример преобразования Радона (правое изображение) среза пациента и восстановленного среза (левое изображение).

    Источник: Buzug, Einführung in die Computertomography, Springer Verlag, 2004

    КТ-сканеры в основном «собирают» радоновые преобразования срезов тел пациентов, а затем реконструируют эти преобразования обратно в срезы, которые их генерировали.

    Таким образом, возникает основная математическая проблема: как вычислить обратное преобразование Радона?

    Подходы

    Существуют как итерационные, так и «точные» решения преобразования Радона, которые мы рассмотрим, хотя на практике реально используются лишь немногие.

    Во-первых, давайте рассмотрим самый простой подход. Представьте срез вашего пациента в виде двухмерной сетки, где каждый пиксель изображения может быть представлен декартовыми координатами (x, y). Интенсивность рентгеновского излучения, проходящего через срез вашего пациента, составляет ** – это сумма интенсивностей всех пикселей, через которые проходит луч. Итак, на самом деле преобразование радона представляет собой огромную *** систему одновременных линейных уравнений. К счастью, эти уравнения чрезвычайно разрежены, поскольку простая геометрия говорит нам, что луч будет проходить в среднем через √n пикселей, где n – это общее количество пикселей в изображении.

    Источник

    В идеальном мире существуют точные решения этих массивных систем уравнений, которые дают в точности изображение среза пациента. На практике для решения таких огромных систем используются итерационные методы и аппроксимации, поскольку их прямое решение с вычислительной точки зрения непрактично. Этот метод решения известен как «Техника одновременной алгебраической реконструкции».

    Источник

    Другие методы используют своего рода усовершенствованный процесс «угадать и проверить», когда начальное изображение среза угадывается случайным образом и преобразуется в то, что CT увидел бы , если бы это предположение было правильным.Затем это преобразование сравнивается с тем, что на самом деле видел CT . Затем предположение слегка модифицируется, и процесс повторяется до тех пор, пока прогнозируемое преобразование не совпадет с наблюдаемыми данными в пределах определенной ошибки.

    Современные методы полагаются на теорему Фурье о срезах, которая включает математику, которая немного выходит за рамки ожидаемых возможностей целевого читателя этого блога. Теорема о срезе Фурье в основном гласит, что выполнение специального преобразования (называемого преобразованием Фурье) изображения с последующим выделением фрагмента этого преобразования эквивалентно : сначала снимает фрагмент изображения, затем , затем принимает преобразование Фурье этого изображения. ломтик.

    Дополнительная информация

    Тем, кто больше склонен к математике, я настоятельно рекомендую вам взглянуть на более глубокую презентацию математики и физики, лежащих в основе компьютерной томографии, на которой в значительной степени основана эта статья.

    * тонн предварительной обработки выполняется с необработанными собранными данными, но, к сожалению, это выходит далеко за рамки моих знаний об обработке сигналов

    ** (поглощение электромагнитного излучения немного сложно, см. Закон Бера)

    Источник.Это уравнение показывает фактическое соотношение интенсивности обнаруженного рентгеновского излучения (δ) на основе материала, через который проходит луч (левая часть уравнения), и констант материала пучка / установки (правая сторона).

    *** эквивалентно количеству пикселей в изображении, например 2 073 600 уравнений для изображения 1080p

    (PDF) Математика и физика компьютерной томографии (КТ): демонстрации и практические примеры

    Связанное хранилище

    . Таким образом, становится возможным путем соответствующей обработки обнаруживать наличие дефектов

    , идентифицировать внутренние структуры и изучать их форму и положение, количественно определять изменения плотности, моделировать внутренние компоненты и руководить

    инструментов вмешательства в медицину.Наконец, пользователь также сможет воспользоваться преимуществами

    из большого разнообразия существующего программного обеспечения и алгоритмов для обработки, анализа и визуализации цифровых томографических изображений

    .

    Система CT объединяет несколько технологических компонентов. Его разработка требует участия конечных пользователей – врачей, физиков или биологов – для определения потребностей

    , инженеров и исследователей для разработки новых методов и, наконец, IN-

    .

    промышленных бригады по разработке, производству и продаже этих систем.

    В этой работе нас интересуют физико-математические аспекты, относящиеся к основным этапам компьютерной томографии

    , а именно: этап сканирования или проецирования и этап восстановления изображения 2D или 3D

    различными аналитическими методами, такими как обратная фильтрация. -проекционный метод

    (FBP). В этом контексте все математические уравнения и соотношения, которые казались неоднозначными или неясными, объясняются и математически демонстрируются с помощью некоторых иллюстративных примеров.Эта глава организована в виде основного текста с подразделами

    , в которых представлено краткое объяснение наиболее важных концепций или подробная демонстрация

    любого уравнения или выражения, и это каждый раз, когда это кажется необходимым. Также будет описан алгебраический метод восстановления изображений в томографии.

    Эта глава предназначена как введение в компьютерную томографию. Он был написан не

    только для тех, кто знаком с другими методами визуализации, такими как радиография передачи излучения

    , но также для новичков в области цифровой визуализации.Глава

    тер начинается с некоторых простых, но фундаментальных концепций, касающихся компьютерной томографии

    и физики и математики, лежащих в основе компьютерной томографии. По мере продвижения по главе

    и

    встречаются более подробные сведения о технике и методологии компьютерной томографии. Читатель не должен тревожиться, если здесь не упоминается его или ее конкретная проблема или забота. За последние тридцать три года было сделано столько

    различных разработок КТ, что было бы сложно описать их все в одной главе.Также представлена ​​некоторая практическая информация –

    ed, которая может иметь жизненно важное значение для получения хороших аналитических результатов; иногда бывает сложно найти.

    Я надеюсь, что это введение в технику КТ предоставит полезную информацию тем

    людям, которые собираются заняться КТ, а также нынешним пользователям КТ, а тем, у кого

    просто любопытство по поводу этой техники.

    1.1. Аналитические методы восстановления изображений в томографии

    1.1.1. Проекция и сканирование объекта

    Методологическая основа, используемая для описания реконструкции 2D и 3D изображений, была подробно представлена ​​

    в работах Кака и Слантая [1] и Розенфельда и Кака [2]. Другая важная работа

    , такая как работа Германа [3], описывает методы реконструкции, такие как метод алгебраической реконструкции

    (ART). В этой работе мы сосредотачиваемся на работе и аналитических методах Кака и

    Стэнли, чтобы объяснить различные этапы томографии от измерения до реконструкции

    Методы визуализации и радиоанализа в междисциплинарных исследованиях – основы и новейшие приложения

    82

    Основные принципы компьютерной томографии (КТ)



    Основные принципы компьютерной томографии и технологии


    Изображения компьютерной томографии (КТ) представляют собой изображение относительного (не абсолютного) ослабления рентгеновских лучей при их прохождении через тело.КТ-изображения отображают плотность тканей. Ослабляющая способность ткани при КТ связана с ее плотностью и представляет собой вероятность того, что рентгеновский фотон пройдет через ткань и будет зарегистрирован детекторами, а не взаимодействует с атомами ткани (поглощение рентгеновских лучей тканью), что препятствует прохождению фотона. дотянуться до детектора. Способность конкретной ткани ослаблять рентгеновское излучение выражается ее коэффициентом ослабления μ. Чем выше значение μ, тем меньше количество фотонов, которые достигают детектора при прохождении через этот тип ткани.Величина μ напрямую связана с плотностью ткани. То есть чем выше плотность ткани, тем выше ее значение μ. Однако коэффициент ослабления ткани непостоянен и может изменяться в зависимости от толщины ткани и энергии рентгеновского фотона (кэВ), рис. 2.1. Увеличение толщины ткани и уменьшение энергии фотонов приведет к более высоким коэффициентам ослабления для той же ткани.



    Рисунок. 2.1

    Диаграмма, иллюстрирующая факторы, влияющие на μ


    КТ-детектор – это счетчик потока фотонов, в котором сцинтилляционный детектор измеряет, записывает и преобразует в свет падающие рентгеновские фотоны, выходящие из пациента.Затем этот свет преобразуется фотодиодом в электрический сигнал, а затем электрический сигнал преобразуется компьютером в цифровой сигнал. Поток фотонов, измеренный детектором, представлен термином I, где I является функцией потока фотонов, испускаемых рентгеновской трубкой (I 0 ), и коэффициента ослабления (μ) ткани. I = I 0 × e −μ . По мере увеличения μ доля e уменьшается, так что по мере увеличения μ доля падающих фотонов, выходящих из рентгеновской трубки, которые обнаруживаются детектором, уменьшается.Таким образом, результирующий поток фотонов, измеренный детектором, составляет часть фотонов, покидающих рентгеновскую трубку. На рисунке 2.2 показано вычисление μ и числа ТТ.



    Рисунок. 2.2 Панели

    (a – c) демонстрируют расчет числа CT (единица Хаунсфилда) и коэффициента ослабления (μ)

    Напряжение трубки (энергия фотона) – это энергия, которой обладает каждый отдельный рентгеновский луч, покидающий генератор рентгеновского излучения и его единица – килоэлектрон-вольт (кэВ).Ток трубки или поток фотонов (рентгеновских лучей) – это частота, с которой рентгеновские лучи покидают рентгеновскую трубку, и ее единица измерения – миллиампер (мА). Увеличение кэВ будет иметь следующие эффекты. Проникновение в ткань увеличится, значение μ уменьшится, количество фотонов, обнаруженных детектором, увеличится, шум изображения уменьшится, доза облучения увеличится, а визуализированный контраст ткани уменьшится. Следовательно, увеличение кэВ приведет к уменьшению числа CT йодированного контраста и уменьшению помутнения коронарных артерий.Обратное тоже верно. Уменьшение КэВ приведет к более высоким числам CT и более яркому контрасту в коронарных артериях. Увеличение мА служит для уменьшения шума изображения, увеличения дозы облучения и увеличения контрастности визуализируемых тканей.


    Коэффициент затухания конкретной ткани не измеряется напрямую, а скорее рассчитывается с использованием данных подсчета (I и I 0 ) путем манипулирования уравнением I = I 0 × e −μ . Единица Хаунсфилда за изображением известна как номер CT.Он вычисляется из рассчитанного коэффициента затухания с использованием уравнения CT number = [(μ ткани – μ воды ) / μ воды ] × 1000. Число CT обратно пропорционально μ, так что чем больше значение μ, тем выше число CT. Число CT напрямую связано с яркостью изображения, где более высокие числа CT кажутся ярче на экране. Число CT или единица Хаунсфилда (H.U) не является абсолютным числом. Это представление плотности конкретной ткани по отношению к плотности воды, которой условно присвоено значение CT, равное 0.Номер CT и H.U. являются синонимичными. В таблице 2.1 показаны общие H.U. измерения.


    Таблица 2.1

    Значения единиц Хаунсфилда для различных часто встречающихся материалов

















    ткани


















    Воздух

    900


    Вода

    0 +20 по соглашению (−20 )

    Atheroma

    +70 (от +20 до +130)

    Жир

    <−80

    36

    +100 до +130

    Кальций

    > 130

    9036

    9036

    Тромб

    +50

    Ткань

    +50

    Кровь

    +30

    Артефакт усиления луча

    <−50



    КТ-сканер


    КТ-изображение представляет собой общую оценку ослабления рентгеновских лучей при их прохождении через тело.Этот процесс создает реконструкцию компьютеризированных плотностей объекта, через который проходят рентгеновские лучи, измеряя плотности в трех измерениях и отображая их на экране компьютера. Эти плотности представлены единицами Хаунсфилда или числами CT, как упоминалось ранее и дополнительно обсуждается позже. Проекции при вращении гентри на 360 ° (рис. 2.3) собираются в компьютеризированном бункере, где они служат для оценки истинной плотности рентгеновского излучения и местоположения объектов в теле, через которое они прошли.Собирая многочисленные рентгеновские проекции, создается реалистичная оценка плотности и местоположения объекта.



    Рисунок. 2.3

    Мультяшное изображение типичного компьютерного томографа


    Как показано на рис. 2.3, источник и детекторы рентгеновского излучения размещены внутри гентри, который вращается вокруг пациента (техника спирального сканирования). Конусообразные рентгеновские лучи исходят из трубки-источника на одной стороне гентри, проходят через пациента и заканчиваются у детекторов на другой стороне гентри.Гентри быстро вращается вокруг пациента, когда стол движется через отверстие в гентри. Этот метод стал возможным благодаря контактному кольцу, которое позволяет передавать данные от детекторов в систему сбора данных (DAS), обсуждаемую ниже, без использования проводов, которые, если они есть, могли бы запутаться во время вращения гентри. Технология контактных колец обеспечивает быстрое вращение портала без спутывания проволоки. Если гентри вращается вокруг пациента на полный круг, создается изображение на 360 ° по всему полю сканирования.При использовании сканера с одним источником минимальное вращение на 180 ° (полу-гентри) – это все, что необходимо для восстановления полного изображения (обсуждается ниже). Остальные 180 ° вычисляются обратно, поскольку данные с противоположных 180 ° являются зеркальным отображением первых 180 °. За счет уменьшения угла поворота гентри скорость выполнения одного поворота снижается, что приводит к улучшенному временному разрешению (обсуждается позже).

    Как только рентгеновские лучи собираются детекторами, измеренный ослабленный рентгеновский сигнал преобразуется в набор необработанных данных с помощью электрического сигнала, который требует сложного набора математических расчетов.Эти необработанные данные представляют собой полученные измерения плотности в осевом плане (с головы до пят или по оси z). Затем к необработанным данным применяются алгоритмы реконструкции (см. Ниже) для оценки каждой линии проекции по осям x и y, что обеспечивает точное трехмерное расположение плотности внутри тела. Полный набор плотностей затем преобразуется в компьютеризированное изображение, которое реконструируется и просматривается на экране компьютерной рабочей станции как полное изображение компьютерной томографии.



    Детекторы рентгеновского излучения и обнаружение рентгеновских лучей

    Детекторы КТ улавливают ослабленные рентгеновские лучи после того, как они проходят через пациента, и преобразуют их в электрические сигналы, которые затем преобразуются в двоично-кодированные пакеты информации, которые передаются в компьютерная система для дальнейшей обработки.Система сбора данных (DAS) относится к детекторной электронике, которая расположена между детекторной матрицей и компьютером. DAS измеряет переданный пучок излучения, кодирует эти измерения в двоичные данные и передает эти данные в компьютер.

    Детекторы должны быть способны быстро реагировать без задержек и должны быстро отбрасывать один сигнал до поступления следующего сигнала. Они должны быть последовательными в своих ответах и ​​небольшими по размеру. Они также требуют высокой эффективности захвата, высокой эффективности поглощения и высокой эффективности преобразования.Эффективность захвата описывает, насколько хорошо детекторы принимают приходящие рентгеновские фотоны от пациента. Это связано с размером детектора и расстоянием между ними. Эффективность поглощения зависит от того, насколько хорошо детекторы преобразуют поступающие фотоны рентгеновского излучения в электрические сигналы. Эффективность поглощения определяется материалом, размером и толщиной детектора. Эффективность преобразования описывает, насколько хорошо детектор преобразует входящий рентгеновский сигнал в цифровой сигнал.


    В дополнение к эффективности захвата, эффективности поглощения и эффективности преобразования, детекторы должны быть стабильными, иметь быстрое время отклика и иметь широкий динамический диапазон.Стабильность определяется частотой повторной калибровки детекторов для соответствия стандартам контроля качества. Время отклика относится к скорости, с которой детектор может распознавать входящий сигнал, обрабатывать его и быть готовым к следующему входу. Динамический диапазон представляет собой отношение наименьшего обнаруживаемого сигнала к наибольшему обнаруживаемому сигналу. Современные детекторы CT имеют динамический диапазон порядка от 1 миллиона до 1 [ 1 ]. В сканерах

    CT в настоящее время используются твердотельные сцинтилляционные детекторы, изготовленные из вольфрамата кадмия и керамического материала из высокоочищенных оксидов редкоземельных элементов.Преимущества твердотельных детекторов заключаются в том, что они имеют почти 100% эффективность поглощения и способны принимать сигнал от движущегося рентгеновского луча, например, от вращающегося источника в гентри. Однако, поскольку они не могут быть плотно упакованы, их эффективность захвата неоптимальна, в результате чего общая эффективность детектора составляет около 50%. Разрешение твердотельных детекторов также не оптимально.



    Многосрезовая КТ (МСКТ)

    Одной из проблем, с которыми быстро столкнулись при спиральном сканировании (SSCT) одного среза (одного ряда детекторов), было чрезмерное напряжение на рентгеновской трубке.То есть рентгеновская трубка нагревается до экстремальных температур, поскольку на анод выделяется очень большая энергия. Эта проблема ограничивала возможность выполнять визуализацию тонких срезов, необходимую для приемлемой визуализации коронарных артерий. В качестве альтернативы, если выполнялась визуализация тонких срезов, ток трубки был ограничен до 100 мАс, что во многих случаях было неудовлетворительным и приводило к зашумленным изображениям. Таким образом, были созданы мультиспиральные компьютерные томографы (МСКТ). МСКТ также известен как многодетекторный КТ (МДКТ) и многорядный КТ.


    Основное различие между МСКТ и ТСКТ заключается в расположении детектора (рис.2.4). SSCT использует одномерную детекторную систему, в которой множество отдельных детекторных элементов расположены в один ряд по облучаемому срезу, который принимает рентгеновские сигналы. В МСКТ каждый детектор в одном ряду имеет достаточную длину в направлении толщины среза (ось z), чтобы перехватывать всю ширину рентгеновского луча, включая полутень. Затем каждый отдельный детектор в каждой строке делится на несколько детекторных элементов, образующих двумерный массив. В MDCT имеется несколько рядов детекторов.При увеличении количества рядов детекторов толщина пластины покрытия по оси z увеличивается, тем самым уменьшая количество оборотов гентри, необходимых для получения изображения выбранного поля зрения (длины сканирования), теоретически уменьшая нагрузку на рентгеновскую трубку. Если бы каждый детектор был, например, длиной 1,25 мм, а сканер имел 16 рядов детекторов, охват оси z (толщина плиты) на один оборот гентри составил бы 20 мм. Однако при обычном сканировании необходимо получить более 1000 изображений за один оборот портала и собрать данные по более чем 800 детекторам в каждой строке, таким образом генерируя огромные объемы данных.Из-за ранних ограничений в сборе, обработке и обработке таких больших объемов данных МСКТ была ограничена только четырьмя рядами детекторов. Последующие сканеры МСКТ имели увеличивающееся количество рядов детекторов, начиная с 16 рядов и переходя к 64, 156 и 320 рядам. Покрытие (толщина плиты) зависит от номера ряда детектора, где толщина плиты на поворот портала прямо пропорциональна номеру ряда детектора. КТ-сканеры с одним и тем же номером ряда детектора могут иметь разную толщину пластины в зависимости от размера оси z каждого отдельного детектора.Детекторы меньшего размера (при обеспечении улучшенного пространственного разрешения) будут покрывать меньшую часть оси z на каждую строку детектора, и, таким образом, для любого заданного номера строки детектора меньший размер детектора приведет к меньшему охвату на один оборот гентри. На рисунке 2.5 представлена ​​концепция толщины плиты.



    Рисунок. 2.4

    Рисунок, изображающий однослойный сканер и мультисрезовый сканер





    Рис. 2.5

    Искусственное представление значения толщины плиты или покрытия оси z.Охват по оси Z прямо пропорционален номеру строки детектора


    В MDCT вся матрица детекторов состоит из групп, каждая из которых подключена к блоку материнской платы системы обнаружения. Каждая группа может быть выборочно активирована или деактивирована, обеспечивая различную толщину среза, которая может быть заранее определена в зависимости от индикации сканирования. Кроме того, можно варьировать детекторные матрицы в данной строке. Например, внутренние ряды детекторов, которые состоят из более узких детекторов, чем внешние ряды, могут быть выборочно активированы, так что толщина среза будет уменьшаться (рис.2.6). Кроме того, пары детекторов могут быть связаны для создания более толстых срезов.



    Рисунок. 2.6

    Мультфильм, изображающий конкретную конфигурацию матрицы детекторов. На панели (а) изображен сканер с четырьмя срезами (четыре ряда детекторов). Панель (b) иллюстрирует один единственный ряд детекторов. В каждом ряду есть несколько одиночных детекторов. В каждом ряду может быть до 800 детекторов. На панели (c) изображен один детектор в одном ряду детекторов. Каждый детектор имеет несколько детекторных элементов.Этот конкретный детектор содержит две внешние группы из двенадцати элементов детектора 1 мм и одну внутреннюю группу из шестнадцати элементов детектора 0,5 мм. Элементы внутри детектора можно комбинировать или изолировать для создания срезов различной толщины и даже субмиллиметровых срезов, необходимых для визуализации коронарных артерий.

    Между SSCT и MSCT существуют еще два существенных различия. Первый включает соотношение между толщиной среза и шириной рентгеновского луча. Второй относится к эффектам конического пучка.В SSCT толщина среза определяется коллиматорами до и после пациента (обсуждается позже). Коллимация рентгеновского луча была спроектирована таким образом, чтобы ширина рентгеновского луча по оси z в изоцентре (центре вращения) была желаемой толщиной среза. Однако в МСКТ толщина среза определяется конфигурацией детектора, а не коллимацией рентгеновского луча. Поскольку ширина детектора или ширина связанного детекторного элемента определяет полученную толщину рентгеновского пучка (толщину среза), эта длина называется коллимацией детектора.


    Эффекты конического луча в компьютерной томографии представляют собой полосовые артефакты, связанные с расходящимся характером рентгеновского луча, испускаемого пациентом [ 1 ]. Это означает, что ширина рентгеновского луча по оси z больше, когда он выходит из пациента, чем когда он входит. Рентгеновские лучи, разнесенные на 180 °, образуют одни и те же плоскости ткани, но их конусообразная выборка рентгеновского луча немного отличается при 0 °, чем при 180 °, что делает противоположные, предположительно идентичные изображения, слегка несовместимыми. Это приводит к частичным объемным полосам, которые усиливаются при увеличении ширины рентгеновского луча; как таковые, артефакты конического луча более выражены при МСКТ, чем при SSCT.Серьезность артефакта конического луча прямо пропорциональна количеству рядов детектора.

    Методы восстановления изображения


    На основе вычисленных чисел CT необходимо восстановить полное изображение CT для отображения. В настоящее время существует две формы реконструкции изображения: обратная проекция с фильтром (FBP) и итеративная реконструкция (IR). FBP включает суммирование данных с сотен углов проекции для восстановления изображения. Поскольку данные для угла проекции 0 ° идентичны данным для угла проекции 180 °, для восстановления полного КТ-изображения необходимы только данные, полученные при повороте гентри на 180 °.На рис. 2.7 показан рисунок, иллюстрирующий концепцию FBP. Отображаемое изображение CT состоит из данных числа CT (данных единицы Хаунсфилда) из суммированной информации о проекции и оконного управления (обсуждается ниже), которое применяется к изображению. К достоинствам FBP можно отнести относительно короткое время полной реконструкции (≤30–40 срезов в секунду) [ 2 ] и его мощность. Качество изображения приемлемо, но не оптимально, и поэтому его основным недостатком является ограничение качества изображения из-за необходимой фильтрации, используемой с этим методом.Эти методы фильтрации подчеркивают шум и обуславливают необходимость более высоких доз облучения для обеспечения надлежащего качества изображения. Избыточный шум изображения при использовании FBP является результатом неточности нескольких допущений, используемых в этом методе, которые ограничивают пространственное разрешение и приводят к усилению артефактов полос и относительно плохой обнаруживаемости низкого контраста. FBP имеет тенденцию давать сбои у более крупных пациентов из-за повышенного ослабления тканей и сканирования преднамеренно низкой дозы облучения, что становится все более важным по мере того, как осознание и осознание эффектов кумулятивной дозы облучения становятся все более важными.Однако преимущества и приемлемость FBP традиционно ограничивали стимул к изменению методов реконструкции. Тем не менее, с увеличением количества КТ-сканирований и расширенными приложениями, такими как КТ-ангиография сердца, важность более эффективных методов реконструкции была подчеркнута важность радиационно-эффективных методов реконструкции, требующих возникновения ИР.



    Рисунок. 2.7

    Карикатура, изображающая концепцию обратной проекции с фильтром. Панель (а) представляет собой иллюстрацию создания изображения компьютерной томографии (КТ) под углом гентри 0 °.Рентгеновские лучи генерируются рентгеновской трубкой, проходят через пациента и регистрируются решеткой детекторов. Числа CT (единицы Хаунсфилда) вычисляются и используются для создания изображения. Панель (b) концептуализирует концепцию, согласно которой данные собираются под каждым из сотен углов гентри. Панель (c) демонстрирует, что данные, собранные при угле гентри 0 °, эквивалентны данным, собранным при 180 °. Следовательно, для сбора данных, необходимых для получения полного КТ-изображения, необходимо всего лишь половину поворота гентри.Панель (d) представляет собой рисунок, показывающий, что все данные с каждого угла гентри суммируются для создания полного КТ-изображения

    .

    Связанные

    Качество изображения КТ


    Качество изображения в основном определяется тремя факторами:

    • Разрешение
    • Шум
    • Контраст

    Разрешение

    Разрешение – это мера того, насколько далеко должны быть друг от друга два объекта, чтобы их можно было увидеть как отдельные детали на изображении.Чтобы два объекта можно было рассматривать как отдельные, детекторы должны уметь определять зазор между ними.

    Разрешение измеряется в парах линий на сантиметр (lp / cm), то есть количестве пар линий, которые могут быть отображены как отдельные структуры в пределах одного сантиметра.

    В КТ-сканировании есть два типа разрешения:

    • Трансаксиальное разрешение (7 линий / см)
      • В осевом направлении поперек пациента
    • Z-чувствительность (0.5-10 мм)
      • По длине пациента в направлении z

    Трансаксиальное разрешение

    Минимальное трансаксиальное разрешение определяется фактическим размером детектора, однако его часто называют «эффективной шириной детектора» в изоцентре сканера (центр отверстия сканера). «Эффективная ширина детектора» и фактический размер детектора немного отличаются из-за расходимости луча. Чем меньше «эффективная ширина детектора», тем выше разрешение.

    На трансаксиальное разрешение влияют факторы сканера (оборудования) или параметры сканирования и реконструкции.

    Факторы сканера
    1. Фокусное пятно
    • Размер
      • Меньшие фокусные пятна дают более высокое разрешение, но максимальный ток ограничен, чтобы предотвратить повреждение анода.
      • Обычно на КТ-сканерах доступны два размера фокусного пятна, например:
        • Fine = 0,7 мм
        • Широкий = 1.2 мм
    • Свойства
      • Летающее фокусное пятно: положение фокусного пятна быстро изменяется в трансаксиальной плоскости и / или по оси Z. Каждое положение фокусного пятна увеличивает количество снимаемых проекций и улучшает пространственное разрешение. Например, если положение фокального пятна перемещается в плоскости X-Y, разрешение в плоскости увеличивается.
      • Расстояние фокус-детектор (FDD)
      • Расстояние фокус-изоцентр (FID)
    2.Размер детектора

    Детекторы меньшего размера дают более высокое разрешение, но большее количество детекторов в пределах области также означает больше перегородок (мертвое пространство) и снижает общую эффективность обнаружения.

    3. Конструктивные характеристики детектора

    Смещение детектора на четверть луча: центр матрицы детекторов смещен от центра вращения на одну четверть ширины отдельного детектора. Когда гентри поворачивается на 180 °, центр матрицы детекторов теперь смещен на половину ширины детектора, что дает чередующийся отбор проб пациента.

    Параметры сканирования
    1. Количество выступов
    • Большее количество проекций дает более высокое разрешение (до точки).
    2. Реконструкция фильтра
    • Ядра с более высоким разрешением или «острые» ядра (например, реконструкция кости) имеют лучшее пространственное разрешение, чем мягкие ядра (например, реконструкция мягких тканей).
    • Однако ядра с более высоким разрешением не усредняют сигналы с высокой пространственной частотой и, следовательно, производят больше шума.
    3. Размер пикселя
    • Размер пикселя (d) в мм определяется уравнением:

    d = FOV / n

    где:

    FOV = поле зрения (мм)
    n = размер матрицы изображения

    • Наивысшая пространственная частота, которую можно получить (fmax), называется пределом Найквиста и определяется как:

    fмакс = 1 / 2d

    • Из этого уравнения видно, что чем больше размер пикселя, тем ниже максимальная пространственная частота.
    • Для улучшения пространственной частоты мы можем:
      • Уменьшите поле зрения (меньшее поле зрения = меньший размер пикселя, как показано в первом уравнении). Мы можем сделать это ретроспективно путем целенаправленной реконструкции исходных данных в небольшом поле зрения.
      • Увеличить размер матрицы (больше n = маленький размер пикселя, как показано в первом уравнении)

    Z-чувствительность

    Z-чувствительность относится к эффективной ширине отображаемого среза.

    Факторы, влияющие на z-чувствительность

    1. Толщина среза детектора
    • Чем шире (по оси z) ряд детекторов, тем ниже разрешение.
    2. Перекрывающиеся образцы
    • Сбор данных с использованием перекрывающихся срезов может улучшить Z-чувствительность. Это достигается за счет использования малого шага спирали, т. Е. Шага <1.
    3. Фокусное пятно
    • Тонкое фокусное пятно улучшает z-чувствительность
    Важность толщины среза
    1.Шум
    • Чем тоньше срез, тем лучше разрешение, НО тем хуже шум
    2. Эффект частичного объема
    • Более толстые срезы увеличивают эффекты частичного объема
    3. Изотропное сканирование
    • Тонкие срезы допускают изотропное сканирование, т. Е. Пиксели по оси и оси z имеют одинаковый размер (кубы). Преимущества этого:
      • Эффект уменьшения частичного объема
      • Лучшее многоплоскостное переформатирование
      • Улучшенный объемный рендеринг e.грамм. отображение трехмерных представлений данных (например, изображений сердца, сосудов, КТ-колонографии и т. д.)

    Сейчас в мягкой обложке и на Kindle.
    Написано радиологами для радиологов с множеством простых в использовании диаграмм, поясняющих сложные концепции. Отличный ресурс для пересмотра физики радиологии.

    Примечание. Доступно не во всех регионах.


    Примечание. Доступно не во всех регионах.


    Шум

    Даже если мы визуализируем идеально однородный объект (например, объект, заполненный водой), в единицах Хаунсфилда все еще есть вариации относительно среднего значения. Это из-за шума. Шум ухудшает изображение, ухудшая низкое контрастное разрешение и внося неопределенность в единицы Хаунсфилда изображений.

    Мы можем измерить шум в любой однородной области изображения, например. с водяным фантомом. Стандартное отклонение единиц Хаунсфилда в выбранной интересующей области дает среднее измерение шума.

    Есть три источника шума:

    1. Квантовый шум
    2. Электронный шум
    3. Шум, вносимый процессом реконструкции, например, обратная проекция.
    Стохастический шум

    Это основной источник шума на изображении. Регистрация фотонов детекторами – случайный процесс. Количество обнаруженных фотонов будет случайным образом варьироваться от среднего значения, и это изменение является шумом.Шум на окончательном изображении определяется как:

    Шум (стандартное отклонение) ∝ 1 / √ (количество фотонов)

    Из этого уравнения мы можем сказать, что увеличение количества фотонов уменьшает количество шума и, следовательно, все, что увеличивает количество фотонов (увеличивает поток фотонов), уменьшает шум. Если мы удвоим количество фотонов, мы уменьшим шум на √2 (т.е. увеличение количества фотонов в 4 раза уменьшит шум вдвое).

    Удвоить количество фотонов можно с помощью:

    • Удвоение тока трубки (мА)
    • Удвоение времени вращения (с)
    • Увеличение толщины ломтика вдвое (мм)

    Увеличение напряжения трубки (кВ) также увеличивает поток фотонов, но он не является прямо пропорциональным (выходная мощность составляет примерно кВ 2 ).


    Контрастность

    Факторов, влияющих на контраст:

    • Шум: более высокий уровень шума затемняет любой контраст между объектами
    • Ток трубки: более высокий ток трубки уменьшает шум на изображении
    • Собственные свойства ткани: разница в линейном коэффициенте ослабления соседних отображаемых объектов будет определять контраст между этими объектами
    • Киловольт в луче: чем выше энергия луча, тем меньше контраст между объектами
    • Использование контрастного вещества

    Σ Резюме

    Разрешение

    Трансаксиальное разрешение

    • Факторы сканера
      • Размер фокусного пятна
      • Летающее фокусное пятно
      • Расстояние до фокуса детектора
      • Изоцентровое расстояние фокусировки
      • Размер детектора
      • Смещение детектора квартала
    • Параметры сканирования
      • Количество выступов
      • Реконструкция фильтра
      • Размер пикселя (d, мм), определяемый как d = FOV / n (FOV = поле зрения, n = размер матрицы изображения)
      • Наивысшая пространственная частота (fmax) = 1 / 2d
    • Не влияет:
      • Ток трубки
      • Трубка киловольт

    Z-чувствительность

    • Равная эффективная толщина среза
    • Пострадало:
      • Толщина среза детектора
      • Перекрывающиеся образцы
      • Размер фокусного пятна
    • Важность
      • Чем меньше срез, тем больше шум
      • Чем меньше размер среза, тем меньше артефакт частичного объема
      • Изотропное сканирование обеспечивает лучшую 3D-реконструкцию и MPR
    Шум

    Квантовый шум

    • Доминирующий источник шума
    • Шум ∝ 1 / √no.фотонов
    • Удвоение количества фотонов уменьшит шум в √2 раз.
    • Удвоение количества фотонов за счет:
      • Ток двойной трубки (мА)
      • Время удвоения вращения (с)
      • Толщина двойного ломтика (мм)
    • Увеличение напряжения трубки (кВ) также увеличивает поток фотонов, но он не прямо пропорционален

    Прочие:

    • Электронный шум в системе обнаружения
    • Шум, вносимый реконструкцией e.грамм. обратная проекция
    Контраст

    Пострадало:

    • Шум: более высокий шум = худшая дифференциация контрастности
    • Ток в лампе: меньший ток в лампе = больше шума (см. Выше)
    • Собственные свойства ткани: разница в линейном коэффициенте аттенюации соседних изображаемых объектов определяет контраст
    • Киловольт в луче: более высокая энергия луча обычно снижает контраст
    • Использование контрастных материалов: увеличивает контраст между объектами e.грамм. кровеносные сосуды и окружающие ткани
    Следующая страница: Артефакты КТ

    Произошла ошибка при настройке вашего пользовательского файла cookie

    Произошла ошибка при настройке вашего пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.

    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку “Назад” и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.

    Что сохраняется в файлах cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    .

    Оставить комментарий