Основы электроники в простых примерах для чайников: термины и приборы, используемые в электротехнике

Содержание

термины и приборы, используемые в электротехнике

Люди начинают интересоваться электроникой в любом возрасте и по разным причинам. Кому-то наука необходима для работы или учёбы, а у кого-то она просто вызывает интерес. Чтобы получить полное представление об этой теме и разобраться в основных ее терминах, потребуется изучить основы электроники и электротехники.

  • Основные понятия
  • Применение электричества
  • Технические характеристики
  • Ограничители электрического тока

Основные понятия

В школьные годы всем приходилось изучать азы электроники на уроках физики. Но из-за сложных терминов, обилия формул и разных единиц измерения усвоить информацию смогли далеко не все. В жизни случаются разные ситуации, когда человеку необходимы эти знания. Сегодня существует множество пособий, изданий и журналов, в которых описываются основы электроники. Для начинающих такие пособия являются хорошими помощниками, поскольку все основные понятия и процессы в них излагаются доступным языком.

Самыми частыми терминами из области электроники, которые люди слышат в обычной жизни, являются слова ток, напряжение и сопротивление. Чтобы понять их суть, требуется вспомнить, что любое вещество представляет собой совокупность положительно и отрицательно заряженных частиц (протонов и электронов).

Направлено движущийся поток электронов образует ток. Силу, перемещающую их в одном направлении, называют напряжением. Движение отрицательных частиц не происходит беспрепятственно, ему мешает трение, называемое в физике сопротивлением. Эти величины имеют взаимную связь, поэтому зная две из них, можно легко рассчитать третью, воспользовавшись соответствующей формулой.

Каждая величина в электронике имеет собственное обозначение и измеряется в конкретных единицах. Ток А — в амперах, сопротивление R — в омах, напряжение U — в вольтах.

Применение электричества

Так называемая электроника для «чайников» не только разъясняет новичкам природу возникновения электрического тока, но и приводит примеры его применения. Ассортимент источников напряжения очень широк. Все они имеют разные размеры и технические характеристики:

  1. Литиевая батарея. Рассчитана на номинальную нагрузку 3 В. Благодаря маленькому размеру хорошо подходит для использования в карманных устройствах (часах, фонариках). Может иметь ёмкость 30—500 мАч.
  2. Никель-металлогидридный элемент. Характеризуется высокой плотностью энергии и быстрой способностью накапливать заряд. Часто используется для электропитания различной робототехники.

Свинцово-кислотный аккумулятор также является разновидностью питающей батареи и занимает отдельное место в ряду известных источников питания. Его конструкция состоит из следующих элементов:

  • положительного и отрицательного контакта;
  • набора электродов с разными зарядами;
  • предохранительного и разделительного клапана.

Все детали заключены в прочный корпус. Такой аккумулятор является основным источником напряжения для большинства радиоэлектронных устройств. Легко и быстро перезаряжается, хорошо подходит для систем, в которых главную роль играет не вес прибора, а его энергозапас.

Технические характеристики

На эффективность работы батареи оказывает влияние способ её подключения. Последовательная схема соединения ведёт к увеличению напряжения, параллельная — к увеличению текущего тока.

Основной характеристикой энергоисточника в электронике считается ёмкость. Эта величина служит мерой хранящегося в нём заряда и напрямую зависит от массы активного вещества. Указывая номинальную ёмкость, производители подразумевают максимальное количество электроэнергии, которое может быть извлечено при конкретных условиях. Но поскольку условия использования батарей далеки от идеальных, на практике уровень ёмкости оказывается ниже заявленного. Основные факторы, влияющие на её снижение — длительность эксплуатации, температурный режим, количество зарядок и разрядок.

В качестве единицы измерения этого параметра принято использовать ватт-часы (Вт*ч), киловатт-часы (кВт*ч), ампер-часы (А*ч) или миллиампер-часы (мА*ч). Ватт-час определяется как произведение силы тока и напряжения, выданного устройством за один час. Уровень напряжения является величиной постоянной и зависит от того, к какому типу принадлежит энергоисточник (литиевому, щелочному, свинцово-кислотному).

В случае полной разрядки большинство источников напряжения выходит из строя. Чтобы не допустить поломки, производители определяют долю тока, которая может быть извлечена из него. Её называют глубиной разрядки и измеряют в процентах от максимальной ёмкости.

Ограничители электрического тока

В некоторых электронных устройствах требуется ограничение электрического тока. Чтобы этого добиться, в цепь встраивают специальный ограничивающий прибор — резистор. Являясь потребителем, а не производителем тока, он эффективно справляется с функцией разделения напряжения и линий входа (выхода).

Применяется как дополнение активных элементов интегральных схем.

Разновидностей резисторов очень много. В зависимости от конструкции, технических показателей и состава они бывают:

  1. Линейными. Сопротивление остаётся постоянным вне зависимости от разницы потенциалов, прикладываемых к таким резисторам. Характеризуются прямой вольт-амперной линией.
  2. Нелинейными. Сопротивление зависит от разницы прикладываемого напряжения или проходящего тока. Резисторы такого типа работают в нестрогом соответствии с законом Ома, имеют нелинейную характеристику. Используются в робототехнических проектах в роли датчиков.
  3. Переменными. Оснащаются специальным валом, позволяющим изменять параметры сопротивления в процессе эксплуатации.
  4. Постоянными. Заданные в них показатели изменить нельзя.
  5. Углеродными. Сердечники внутри таких резисторов изготавливаются из углерода, имеют чашеобразные контакты. Из-за пористого корпуса чувствительны к влажности окружающей среды.
  6. Плёночными. Производятся путём осаждения распылённого металла на керамическую основу. Отличаются высокой надёжностью, поэтому успешно применяются в основных электронных системах.
  7. Проволочными. Их конструкция состоит из керамического сердечника и проволочной обмотки, изготовленной из разных металлических сплавов. Состав сплавов зависит от требующегося сопротивления. Показывают стабильную работу при большой мощности.
  8. Металлокерамическими. Для их изготовления используется смесь керамики и обожжённых металлов. Процентное соотношение тех или иных компонентов определяет уровень сопротивления.
  9. Плавкими. В нормальном режиме работы они выполняют роль ограничителей. При возрастании номинальной мощности функционируют как предохранители, защищая электрическую цепь от короткого замыкания.
  10. Теплочувствительными. Могут выдавать как положительный, так и отрицательный коэффициент в зависимости от колебаний температуры.
  11. Светочувствительными. Главным фактором, влияющим на их работу, является интенсивность падающего светового потока. Чем ярче свет, тем меньше сопротивление резистора.

В отношении резисторов, меняющих сопротивление в процессе работы,

используется такой термин, как допуск, измеряемый в процентах. Он показывает, насколько изменяющиеся показатели близки к номинальным значениям. К примеру, устройство с номинальным электрическим сопротивлением 500Ω и допуском 10% на практике может выдавать значения в диапазоне от 550 до 450Ω.

Электроника для начинающих. 2-е изд. (Чарльз Платт)

1 367 ₽

+ до 205 баллов

Бонусная программа

Итоговая сумма бонусов может отличаться от указанной, если к заказу будут применены скидки.

Купить

Цена на сайте может отличаться от цены в магазинах сети. Внешний вид книги может отличаться от изображения на сайте.

В наличии

В наличии в 418 магазинах. Смотреть на карте

15

Цена на сайте может отличаться от цены в магазинах сети. Внешний вид книги может отличаться от изображения на сайте.

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Новое во втором издании! – Существенно переработан текст, добавлены новые проекты и внесены изменения в старые – Переработан состав компонентов для выполнения экспериментов с целью уменьшения их количества и цены – Включены проекты с использованием платы Arduino Прочитав книгу, вы сможете: – Открыть для себя новый удивительный мир, извлекая уроки из удачных и неудачных экспериментов с электронными компонентами. – Создать дома рабочее место, удобное для выполнения проектов и оснащенное приборами и инструментами. – Узнать больше об основных электронных компонентах и функциях, которые они выполняют в электрической цепи. – Сделать охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, тестер измерения скорости реакции человека и кодовый замок. – Получить ясное, доступное для понимания объяснение того, что вы делаете и зачем.

Описание

Характеристики

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino. Новое во втором издании! – Существенно переработан текст, добавлены новые проекты и внесены изменения в старые – Переработан состав компонентов для выполнения экспериментов с целью уменьшения их количества и цены – Включены проекты с использованием платы Arduino Прочитав книгу, вы сможете: – Открыть для себя новый удивительный мир, извлекая уроки из удачных и неудачных экспериментов с электронными компонентами. – Создать дома рабочее место, удобное для выполнения проектов и оснащенное приборами и инструментами. – Узнать больше об основных электронных компонентах и функциях, которые они выполняют в электрической цепи. – Сделать охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, тестер измерения скорости реакции человека и кодовый замок. – Получить ясное, доступное для понимания объяснение того, что вы делаете и зачем.

БХВ

На товар пока нет отзывов

Поделитесь своим мнением раньше всех

Как получить бонусы за отзыв о товаре

1

Сделайте заказ в интернет-магазине

2

Напишите развёрнутый отзыв от 300 символов только на то, что вы купили

3

Дождитесь, пока отзыв опубликуют.

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в первой десятке.

Правила начисления бонусов

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в первой десятке.

Правила начисления бонусов

Книга «Электроника для начинающих. 2-е изд.» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене. Если вы находитесь в Москве, Санкт-Петербурге, Нижнем Новгороде, Казани, Екатеринбурге, Ростове-на-Дону или любом другом регионе России, вы можете оформить заказ на книгу Чарльз Платт «Электроника для начинающих. 2-е изд.» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы.

Electronics For Dummies Cheat Sheet

Имея всего несколько основных математических формул, вы можете довольно далеко продвинуться в анализе работы электронных схем и в выборе значений электронных компонентов в схемах, которые вы проектируете.

Закон Ома и закон Джоуля

Закон Ома и закон Джоуля обычно используются в расчетах, связанных с электронными схемами. Эти законы просты, но когда вы пытаетесь вычислить ту или иную переменную, в них легко запутаться. В следующей таблице представлены некоторые распространенные расчеты с использованием закона Ома и закона Джоуля. В этих расчетах:

В = напряжение (в вольтах)

I = ток (в амперах)

R = сопротивление (в омах)

P = мощность (в ваттах)

Неизвестное значение Формула
Напряжение В = I х R
Текущий И = В/Р
Сопротивление Р = В/И
Мощность P = V x I или P = V 2 /R или P = I 2 R

Формулы эквивалентного сопротивления и емкости

Электронные схемы могут содержать резисторы или конденсаторы, соединенные последовательно, параллельно или в комбинации. Вы можете определить эквивалентное значение сопротивления или емкости, используя следующие формулы:

Резисторы последовательно:

Резисторы параллельно:

или

Конденсаторы последовательно:

или

Параллельные конденсаторы:

Законы тока и напряжения Кирхгофа

Законы Кирхгофа

обычно используются для анализа того, что происходит в замкнутой цепи. Закон Кирхгофа о токе (KCL), основанный на принципе сохранения энергии, утверждает, что в любом узле (узле) электрической цепи сумма токов, втекающих в этот узел, равна сумме токов, вытекающих из этого узла. узел, а закон Кирхгофа о напряжении (KVL) гласит, что сумма всех падений напряжения на контуре цепи равна нулю.

Для показанной цепи законы Кирхгофа говорят вам следующее:

KCL: I = I 1 + I 2

KVL: В батарея – В R – В светодиод = 0, или В батарея = В R + В светодиод

0

Расчет постоянной времени RC

В цепи резистор-конденсатор (RC) требуется определенное время, чтобы конденсатор зарядился до напряжения питания, а затем, после полной зарядки, разрядился до 0 вольт.

Разработчики цепей используют RC-цепи для создания простых таймеров и генераторов, поскольку время заряда предсказуемо и зависит от номиналов резистора и конденсатора. Если вы умножите R (в омах) на C (в фарадах), вы получите то, что известно как RC-постоянная времени вашей RC-цепи, обозначенная буквой T:

.

Конденсатор почти полностью заряжается и разряжается после пятикратного увеличения его постоянной времени RC, или 5 RC . По прошествии времени, эквивалентного одной постоянной времени, разряженный конденсатор заряжается примерно до двух третей своей емкости, а заряженный конденсатор разряжается почти до двух третей пути.

Электроника для начинающих: простое введение

Они хранят ваши деньги. Они следят твое сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения — они даже стреляют подушки безопасности, если мы попадем в беду. Удивительно подумать, сколько вещи, которые «они» на самом деле делают. «Они» — это электроны: крошечные частицы внутри атомов, движущиеся по определенным траекториям, известным как цепи, передающие электрическую энергию. Одна из величайших вещей людей научились делать в 20-м веке было использовать электроны для управления машины и технологическая информация. Электронная революция, как это известно, ускорил компьютер революция, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие видеть, достигать таких масштабных и драматичных вещей? давайте возьмем поближе посмотри и узнай!

Фото: Компактная электронная плата с веб-камеры. Эта плата содержит несколько десятков отдельных электронных компонентов, в основном это небольшие резисторы и конденсаторы, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

Содержание

  1. В чем разница между электричеством и электроникой?
  2. Аналоговая и цифровая электроника
  3. Электронные компоненты
  4. Электронные схемы и печатные платы
  5. Для чего используется электроника?
  6. Краткая история электроники
  7. Узнать больше

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия — очень разносторонний вид энергии, которую мы можем производить самыми разными способами и использовать во многих других. Электричество — это создание электромагнитной энергии. обтекать цепь, чтобы она приводила в действие что-то вроде электродвигателя или нагревательного элемента, электроприборы, такие как электромобили, чайники, тостеры и лампы. Как правило, электроприборам требуется много энергии для работы. работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 Вт внутри электрического чайника работает от тока около 10 ампер. Напротив, электронные компоненты используют токи вероятно, измеряется в долях миллиампер (которые составляют тысячные доли ампер). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника — это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, в теории, отдельные электроны) тщательно направлена ​​вокруг гораздо более сложных схем для обработки сигналов (таких как те, которые несут радио и телевизионные программы) или хранить и обрабатывать информация . Подумайте о чем-то вроде микроволновой печи духовке, и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает сила, генерирующая высокоэнергетические волны, которые готовят вашу еду; электроника контролирует электрическую цепь, которая делает приготовление пищи.

Работа: Микроволновые печи питаются от электрических кабелей (серого цвета), которые подключаются к стене. Кабели подают электричество, питающее сильноточные электрические цепи и слаботочные электронные. Сильноточные электрические цепи питают магнетрон (синий), устройство, создающее волны, которые готовят вашу еду. и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как цифровой дисплей.

Аналоговая и цифровая электроника

Существует два совершенно разных способа хранения информации, известных как аналоговые и цифровые. Звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы делаете старомодную фотографию кто-то с пленочной камерой. Камера фиксирует поток света в сквозь ставни спереди в виде узора света и темные участки на химически обработанном пластике. Сцена, в которой ты фотография превращается в своего рода мгновенное химическое рисование — “аналогия” того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если вы сфотографируете именно та же сцена с цифровой камерой, камера хранит совсем другую запись. Вместо того, чтобы сохранить узнаваемый узор из света и тьмы, он преобразует свет и тьму области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-либо известна как цифровая.

Фото: Аналоговая и цифровая электроника. Радио (сзади) аналоговое: оно «впитывает» радиоволны и превращает их обратно в звук с помощью электронных компонентов, таких как транзисторы и конденсаторы. Камера (передняя) цифровая: она хранит и обрабатывает фотографии как числа.

Электронное оборудование обычно работает с информацией в любом аналоговом или цифровой формат. В старомодном транзисторном радио, широковещательные сигналы поступают в схему радио через залипание антенны из дела. Это аналоговые сигналы: это радиоволны, путешествуя по воздуху от отдаленного радиопередатчика, который вибрировать вверх и вниз по образцу, который точно соответствует словам и музыку они несут. Так что громкая рок-музыка означает более сильные сигналы, чем тихая. классическая музыка. Радио сохраняет сигналы в аналоговой форме, т.к. получает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио, все происходит по-другому. Во-первых, сигналы передаются в цифровом формате. формат — в виде кодированных чисел. Когда они прибудут на ваше радио, цифры преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые камеры, цифровые радиоприемники, слуховые аппараты и телевизоры) используют цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы будете восхищаться всеми крошечными зданиями под вами и улицы, связывающие их вместе всевозможными замысловатыми способами. Каждый здание имеет функцию и улицы, которые позволяют людям путешествовать из одной части города в другую или посетить разные здания в очередь, заставить все здания работать вместе. Коллекция здания, то, как они устроены, и многочисленные связи между Именно они делают динамичный город гораздо большим, чем сумма его отдельные части.

Схемы внутри электронного оборудования немного похожи на города тоже: они набиты компонентами (похожий на здания), которые выполняют разные задачи, а компоненты связаны между собой. вместе кабелями или печатными металлическими соединениями (похожий на улицы). В отличие от города, где практически каждое здание уникально и даже два якобы одинаковых дома или офисных блока могут быть тонко разные, электронные схемы строятся из небольшого количества стандартные компоненты. Но, как и в случае с LEGO®, вы можете компоненты вместе в бесконечном числе различных мест, так что они выполнять бесконечное количество различных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты любой схемы. Их работа заключается в ограничении потока электронов и уменьшении ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковое управление, поэтому они изменить величину сопротивления, когда вы поворачиваете их. Регуляторы громкости в в звуковом оборудовании используются переменные резисторы, подобные этим.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типичный резистор на плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды пропускают электрический ток через них только в одном направлении. Они также известны как выпрямители. Диоды можно использовать для изменения переменного тока (текущего обратно и вперед по кругу, постоянно меняя направление) в прямое токи (те, которые всегда текут в одном и том же направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды внешне похожи на резисторы, но работают по-другому и делать совсем другую работу. В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствующем стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве устройств измерения времени, но они могут преобразовывать электрические токи и другими способами. На радио, одна из самых важных работ, Настройка на станцию, которую вы хотите слушать, осуществляется с помощью конденсатора.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Небольшой конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы, пожалуй, самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать малые электрические токи в гораздо большие). Транзисторы которые работают поскольку переключатели действуют как память в компьютерах, а транзисторы работают как усилители увеличивают громкость звуков в слуховых аппаратах. Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые операции. формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фото: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот. Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи «волшебного глаза». в различных типах сенсорного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистем. оборудование. Жидкокристаллические дисплеи (LCD), такие как те, которые используются в ЖК-телевизоры с плоским экраном и ноутбуки компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, встроенный в электронную схему. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное общее. Какую бы работу они ни выполняли, они работают, контролируя поток электронов. через их структуру очень точным образом. Большинство этих компонентов изготовлены из цельных кусков частично проводящего, частично изолирующего материалы, называемые полупроводниками (описанные более подробно в нашем статью о транзисторах). Поскольку электроника подразумевает понимание точные механизмы того, как твердые тела пропускают через себя электроны, это иногда называют физикой твердого тела. Вот почему вы часто увидите электронное оборудование, описываемое как «твердотельное».

Электронные схемы и печатные платы

Ключом к электронному устройству являются не только его компоненты содержит, но так, как они расположены в цепях. Простейший возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например две бусины, прикрепленные к одному ожерелью. Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор Радио может состоять из нескольких десятков различных компонентов и печатной платы. вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то подобно компьютеру, в котором используются цифровые технологии, схемы гораздо плотные и сложные и включают в себя сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты видишь здесь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные штуки, описание которых приведено ниже).

Если вы экспериментировали с простой электроникой, то знаете, что Самый простой способ построить схему — это просто соединить компоненты вместе. с короткими медными кабелями. Но чем больше компонентов вам нужно подключить, тем сложнее это становится. Вот почему разработчики электроники обычно выбирают более систематический способ расположения компонентов на том, что называется печатной платой. Базовая схема доска это просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и множеством отверстий, просверленных в нем. Вы можете легко соединить компоненты вместе просовывая их через отверстия и используя медь, чтобы соединить их вместе, удаляя кусочки меди по мере необходимости и добавляя дополнительные провода сделать дополнительные подключения. Этот тип печатной платы часто называется «макетной доской».

Электронное оборудование, которое вы покупаете в магазинах, расширяет эту идею. далее с использованием печатных плат, которые изготавливаются автоматически на заводах. Точная схема схемы химически напечатана на пластике. плата, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверленные отверстия и закреплены на месте с помощью электрического токопроводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Впаивание компонентов в электронную схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, к которому я припаиваюсь, представляет собой типичную печатную плату, и вы видите различные компоненты, торчащие из нее, в том числе группу резисторов спереди и большую интегральную схему вверху.

Хотя печатные платы представляют собой большой шаг вперед по сравнению с печатными платами, смонтированными вручную, их все еще довольно сложно использовать, когда вам нужно подключить сотни, тысячи или даже миллионы компонентов вместе. Причина раннего компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вместе вручную в этом старомодным способом. В конце 1950-х годов, однако, инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных компоненты в миниатюрной форме на поверхности кусочков кремния. С использованием эти интегральные схемы, он быстро стал можно выжать сотни, тысячи, миллионы, а потом и сотни миллионов миниатюрные компоненты на кремниевые чипы размером с ноготь пальца. Так компьютеры стали меньше, дешевле и намного более надежным с 1960-х годов.

Фото: Миниатюризация. Там больше вычислительной мощности в процессорном чипе, который лежит у меня на пальце, чем вы нашли бы в комнате размером с комнату. компьютер из 1940 лет!

Для чего используется электроника?

Электроника сейчас настолько распространена, что думать о ней почти легче вещи, которые не используют его, чем вещи, которые делают.

Развлечения были одной из первых областей, которые выиграли, с радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты. Хотя телефон был изобретен до того, как электроника была должным образом развита, современная телефонные сети, сети сотовой связи, и компьютерные сети в сердце Интернета, все извлекают выгоду из сложная цифровая электроника.

Подумайте о том, что вы делаете, что не связано с электроникой и вы можете бороться. Двигатель вашего автомобиля вероятно, имеет электронные схемы в нем — а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в вашем рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нам жизнь и в других отношениях. Больницы упакованы всевозможными электронными гаджетами, от пульсометра от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских аппаратов машины. Слуховые аппараты были одними из первых гаджетов, получивших преимущества от разработка крошечных транзисторов в середине 20-го века, и Интегральные схемы все меньшего размера позволили слуховым аппаратам стать меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны — самые маленькие вещи, которые вы мог себе представить, изменил бы жизни людей во многих важных способы?

Краткая история электроники

Фото: сэр Дж. Дж. Томсон, который открыл, что электроны являются отрицательно заряженными частицами, в Кембриджском университете в 1897 году. Томсон получил Нобелевскую премию по физике в 1906 году за свою работу. Фото Bain News Service предоставлено Библиотекой Конгресса США.

  • 1874: ирландский ученый Джордж Джонстон Стони. (1826–1919 гг.11) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения. Примерно 20 лет спустя он придумал название «электрон».
  • 1875: американский ученый Джордж Р. Кэри. строит фотоэлемент, который вырабатывает электричество, когда на него падает свет это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старомодную, “ламповое” телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: плодовитый американский изобретатель Томас Эдисон (1847–1919 гг.31) обнаруживает термоэлектронную эмиссию (также известную как Эдисон). эффект), где электроны испускаются нагретой нитью.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнает больше о фотоэлектрическом эффекте, связь между светом и электричеством, на которую Кэри наткнулся предыдущее десятилетие.
  • 1897: Британский физик Дж.Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Томсон называет их «корпускулами», но вскоре они переименовываются в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, изготовил клапан Флеминга (позже переименован в диод). Он становится незаменимым компонентом в радиоприемниках.
  • 1906 год: американский изобретатель Ли Де Форест. (1873–1961), пошел еще дальше и разработал улучшенный клапан, известный как триод (или аудион), значительно улучшивший конструкцию радиоприемников. де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Он произвел революцию в электронике и цифровом ЭВМ во второй половине 20 века.
  • 1958: Работая независимо друг от друга, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Semiconductor (а позже и Intel) разрабатывают интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера на один чип, создающий первый в мире микропроцессор общего назначения Intel 4004.
  • 1987: Американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разработали первый одноэлектронный транзистор.
  • 2008: Исследователь Hewlett-Packard Стэнли Уильямс создает первый работающий мемристор, новый вид компонента магнитной цепи, который работает как резистор с памятью, впервые придуманный американским физиком Леоном Чуа почти четыре десятилетия назад (в 1971 году).

Узнайте больше

На этом сайте

  • Компьютеры
  • Электричество и электроника
  • История электричества
  • Интегральные схемы
  • Пайка и сварка

Книги для юных читателей

  • Easy Electronics by Charles Platt. Мейкер Медиа, 2017.
  • Электроника для детей: играйте с простыми схемами и экспериментируйте с электричеством Ойвинд Нидал Даль. Без крахмала, 2016.
  • Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2013.

Книги для читателей постарше

  • Открытые схемы: внутренняя красота электронных компонентов, Эрик Шлепфер и Уинделл Оксай. No Starch, 2022. Путеводитель по всем вашим любимым электронным мелочам. Что происходит внутри них и как они на самом деле работают?
  • Марка: Электроника Чарльза Платта. O’Reilly, 2015. Практическое руководство, в котором вы узнаете об электронных компонентах, используя их во все более сложных схемах.
  • Научитесь электричеству и электронике, Стэн Джибилиско и Саймон Монк. Макгроу Хилл, 2016.
  • Искусство электроники, Пол Горовиц, Уинфилд Хилл. Издательство Кембриджского университета, 2015.
  • .

Веб-сайты: история электроники

  • Открытие электрона: Эта онлайн-выставка Американского института физики объясняет, как Дж.

Оставить комментарий