Основы математики для чайников: Математика с нуля. Пошаговое изучение математики

Содержание

Математика с нуля. Пошаговое изучение математики

«Математика с нуля. Пошаговое изучение математики для начинающих» – это новый проект, предназначенный для людей, которые хотят изучить математику самостоятельно с нуля.

Сразу скажем, здесь нет лёгких решений и таких заявлений как «Купи эту книгу и сдай математику на 5» или «Освой математику за 12 часов» вы тут не увидите. Математика довольно большая наука, которую следует осваивать последовательно и очень медленно.

Сайт представляет собой уроки по математике, которые упорядочены по принципу «от простого к сложному». Каждый урок затрагивает одну или несколько тем из математики. Уроки разбиты на шаги. Начинать изучение следует с первого шага, и так далее по возрастанию.

Каждый изученный урок должен быть понятным. Поэтому, не поняв одного урока, нельзя переходить к следующему, поскольку каждый урок в математике основан на понимании предыдущего. Если вы с первого раза урок не поняли – не расстраивайтесь. Некоторые люди потратили месяцы и годы, чтобы понять хотя бы одну единственную тему. Отчаяние и уныние точно не ваш путь. Читайте, изучайте, пробуйте и снова пробуйте.

Математика хорошо усваивается, когда человек самостоятельно открыв учебник, учит самогó себя. При этом вырабатывается определенная дисциплина, которая очень помогает в будущем. Если вы будете придерживаться принципа «от простого к сложному», то с удивлением обнаружите, что математика не так уж и сложна. Возможно даже она покажется вам интересной и увлекательной.

Что даст вам знание математики? Во-первых, уверенность. Математику знает не каждый, поэтому осознание того, что вы знаете хоть какую-то часть этой серьёзной науки, делает вас особенным. Во-вторых, освоив математику, вы с лёгкостью освоите другие науки и сможете мыслить гораздо шире. Знание математики позволяет овладеть такими профессиями как программист, бухгалтер, экономист. Никто не станет спорить, что эти профессии сегодня очень востребованы.

В общем, дерзай друг!

Желаем тебе удачи в изучении математики!

Новые уроки будут скоро. Оставайся с нами!

Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Законы математики

В нашей жизни есть законы, которые надо соблюдать. Соблюдение законов гарантирует стабильность и гармоничное развитие. Несоблюдение же законов приводит к печальным последствиям.

У математики есть свои законы, которые тоже следует соблюдать. Несоблюдение законов математики приводит в лучшем случае к тому, что оценка учащегося снижается, а в худшем случае приводит к тому, что падают самолёты, зависают компьютеры, улетают крыши домов от сильного ветра, снижается качество связи и тому подобные нехорошие явления.

Законы математики состоят из простых свойств. Эти свойства нам знакомы со школы. Но не мешает вспомнить их ещё раз, а лучше всего записать или выучить наизусть.

В данном уроке мы рассмотрим лишь малую часть законов математики. Их нам будет достаточно для дальнейшего изучения математики.

Переместительный закон сложения

Переместительный закон сложения говорит о том, что от перестановки мест слагаемых сумма не изменяется. Действительно, прибавьте пятерку к двойке — получите семёрку. И наоборот, прибавьте двойку к пятерке — опять получите семёрку:

5 + 2 = 7

2 + 5 = 7

Если положить на одну чашу весов 10 килограмм яблок и на другую чашу так же положить 10 килограмм яблок, то весы выровнятся, и не важно, что яблоки в пакетах лежат вразброс. Если мы возьмём пакет с весов и перемешаем яблоки находящиеся в нём, словно шары в лотерейном мешке, пакет всё так же будет весить 10 килограмм. От перестановки мест слагаемых сумма не изменится. Слагаемые в данном случае это яблоки, а сумма это итоговый вес.

Таким образом,  между выражениями 5 + 2 и 2 + 5 можно поставить знак равенства. Это будет означать, что их сумма равна:

5 + 2 = 2 + 5

7 = 7

Полагаем что, вы изучили один из предыдущих уроков, который назывался выражения, поэтому мы без тени смущения запишем переместительный закон сложения с помощью переменных:

a + b = b + a

Записанный переместительный закон сложения будет работать для любых чисел. Например, возьмём любых два числа. Пусть а = 2, = 3. Мы присвоили переменным a и b значения 2 и 3 соответственно. Эти значения отправятся в главное выражение

a + b = b + a и подставятся куда нужно. Число 2 подставится вместо а, число 3 место b


Сочетательный закон сложения

Сочетательный закон сложения говорит о том, что результат сложения нескольких слагаемых не зависит от порядка действий. Этот закон позволяет группировать слагаемые для удобства их вычислений.

Рассмотрим сумму из трёх слагаемых:

2 + 3 + 5

Чтобы вычислить данное выражение, можно сначала сложить числа 2 и 3 и полученный результат сложить с числом 5. Для удобства сумму чисел 2 и 3 можно заключить в скобки, указывая тем самым, что эта сумма будет вычислена в первую очередь:

2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10

Либо можно сложить числа 3 и 5, затем полученный результат сложить с числом 2

2 + 3 + 5 = 2 + (3 + 5) = 2 + 8

 = 10

Видно, что в обоих случаях получается один и тот же результат.

Таким образом, между выражениями (2 + 3) + 5 и 2 + (3 + 5) можно поставить знак равенства, поскольку они равны одному и тому же значению:

(2 + 3) + 5 = 2 + (3 + 5)

10 = 10

Запишем сочетательный закон сложения с помощью переменных:

(a + b) + c = a + (b + c)


Переместительный закон умножения

Переместительный закон умножения говорит о том, что если множимое и множитель поменять местами, то произведение не изменится. Давайте проверим так ли это. Умножим пятерку на двойку, а затем наоборот двойку на пятерку.

5 × 2 = 10

2 × 5 = 10

В обоих случаях получается один и тот же результат, поэтому между выражениями 5 × 2 и 2 × 5 можно поставить знак равенства, поскольку они равны одному и тому же значению:

5 × 2 = 2 × 5

10 = 10

Запишем переместительный закон умножения с помощью переменных:

a × b = b × a

Для записи законов в качестве переменных необязательно использовать именно буквы a и b. Можно использовать любые другие буквы, например c и d или x и y. Тот же переместительный закон умножения можно записать следующим образом:

x × y = y × x


Сочетательный закон умножения

Сочетательный закон умножения говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.

Рассмотрим следующее выражение:

2 × 3 × 4

Данное выражение можно вычислять в любом порядке. Сначала можно перемножить числа 2 и 3, и полученный результат умножить на 4:

Либо сначала можно перемножить числа 3 и 4, и полученный результат перемножить с числом 2

Таким образом, между выражениями (2 × 3) × 4 и 2 × (3 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:

Запишем сочетательный закон умножения с помощью переменных:

a × b × с = (a × b) × с = a × (b × с)


Пример 2. Найти значение выражения 1 × 2 × 3 × 4

Данное выражение можно вычислять в любом порядке. Вычислим его слева направо в порядке следования действий:


Распределительный закон умножения

Распределительный закон умножения позволяет умножить сумму на число или число на сумму.

Рассмотрим следующее выражение:

(3 + 5) × 2

Мы знаем, что сначала надо выполнить действие в скобках. Выполняем:

(3 + 5) = 8

В главном выражении (3 + 5) × 2 выражение в скобках заменим на полученную восьмёрку:

8 × 2 = 16

Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое, которое в скобках, нужно умножить на 2, затем сложить полученные результаты:

Мы рассмотрели распределительный закон умножения слишком развёрнуто и подробно. В школе этот пример записали бы очень коротко. К такой записи тоже надо привыкать. Выглядит она следующим образом:

(3 + 5) × 2 = 3 × 2 + 5 × 2 = 6 + 10 = 16

Или ещё короче:

(3 + 5) × 2 = 6 + 10 = 16

Теперь запишем распределительный закон умножения с помощью переменных:

(a + b) × c = a × c + b × c

Давайте внимательно посмотрим на начало этого распределительного закона умножения. Начало у него выглядит так: (a + b) × c.

Если рассматривать выражение в скобках (a + b), как единое целое, то это будет множимое, а переменная с будет множителем, поскольку соединены они знаком умножения ×

Из переместительного закона умножения мы узнали, что если множимое и множитель поменять местами, то произведение не изменится.

Если множимое (a + b) и множитель поменять местами, то получим выражение c × (a + b). Тогда получится, что мы умножаем переменную c на сумму (a + b). Для выполнения такого умножения, опять же применяется распределительный закон умножения. В данном случае переменную c нужно умножить на каждое слагаемое в скобках:

c × (a + b) = c × a + c × b


Пример 2. Найти значение выражения 5 × (3 + 2)

Умножим число 5 на каждое слагаемое в скобках и полученные результаты сложим:

5 × (3 + 2) = 5 × 3 + 5 × 2 = 15 + 10 = 25


Пример 3. Найти значение выражения 6 × (5 + 2)

Умножим число 6 на каждое слагаемое в скобках и полученные результаты сложим:

6 × (5 + 2) = 6 × 5 + 6 × 2 = 30 + 12 = 42

Если в скобках располагается не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. Затем из полученного первого числа вычесть второе число. В принципе, ничего нового.

Пример 4. Найти значение выражения 5 × (6 − 2)

Умножим 5 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

5 × (6 − 2) = 5 × 6 − 5 × 2 = 30 − 10 = 20


Пример 5. Найти значение выражения 7 × (3 − 2)

Умножим 7 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

7 × (3 − 2) = 7 × 3 − 7 × 2 = 21 − 14 = 7


Задания для самостоятельного решения

Задание 1. Найдите значение выражения, используя распределительный закон умножения:

3 × (7 + 8)

Решение:

3 × (7 + 8) = 3 × 7 + 3 ×­ 8 = 21 + 24 = 45

Задание 2.

Найдите значение выражения, используя распределительный закон умножения:

5 × (6 + 8)

Решение:

5 × (6 + 8) = 5 × 6 + 5 × 8 = 30 + 40 = 70

Задание 3. Найдите значение выражения, используя порядок выполнения действий:

4 × (5 + 4) + 9 × (3 + 2)

Решение:

Задание 4. Найдите значение выражения, используя распределительный закон умножения:

4 × (5 + 4) + 9 × (3 + 2)

Решение:

4 × (5 + 4) + 9 × (3 + 2) = 4 × 5 + 4 × 4 + 9 × 3 + 9 × 2 = 20 + 16 + 27 + 18 = 81

Задание 5. Найдите значение выражения, используя распределительный закон умножения:

16 × (2 + 7) + 5 × (4 + 1)

Решение:

16 × (2 + 7) + 5 × (4 + 1) = 16 × 2 + 16 × 7 + 5 × 4 + 5 × 1 = 32 + 112 + 20 + 5 = 169


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Основные операции

Основные операции, которые используются в математике это сложение, вычитание, умножение и деление. Помимо этих операций существуют ещё и операции отношения, такие как равно (=), больше (>), меньше (<), больше или равно (≥), меньше или равно (≤), не равно (≠).

Вообще, операции можно разделить на два вида:

  1. операции действия;
  2. операции отношения.

Операции действия это:

  • сложение (+)
  • вычитание (-)
  • умножение (×)
  • деление ( ÷ ).

Операции отношения это:

  • равно (=)
  • больше (>)
  • меньше (<)
  • больше или равно (≥)
  • меньше или равно (≤)
  • не равно (≠).

Операции отношения

Начнем с операций отношения. Слово «отношение» говорит само за себя. Примеры из жизни: что-то имеет отношение к чему-то. Папа имеет отношение к маме. Это отношение называют браком:

Примеров отношений множество. Можно сказать, что наш красивый мир, который развивается гармонично, тоже состоит из отношений.

Если пятёрка больше тройки, то мы говорим, что «пятерка больше по отношению к тройке» и записываем как 5 > 3 (читается: пять больше, чем три). Острый угол знака отношения должен быть направлен в сторону меньшего числá. В нашем примере число 3 было меньше, чем число 5, поэтому острый угол знака отношения был направлен в сторону числа 3.

Ещё пример. Число 11 меньше, чем число 15. Эту фразу можно записать так:

11 < 15

В математике с помощью отношений можно записывать законы, формулы, уравнения и функции. Можно записать, что одно выражение равно другому, либо какое-то действие недопустимо по отношению к какому-нибудь объекту, числу, закону.

Например, знаменитая фраза «на ноль делить нельзя» записывается следующим образом:

Не будем опережать события и забегать вперёд. Просто скажем, что в этом выражении вместо a имогут стоять любые числа. Но потом говорится, что b не должно быть равным нулю.

Знак равенства = стáвится между величинами и говорит о том, что эти величины равны между собой.

Например, «пять равно пять» записывается как 5 = 5. Понятно, что две пятерки равны между собой. Помимо простых чисел, знаком равенства могут соединяться более сложные выражения, например: 9 + x + y = 4 + 5 + x + y.

Ещё пример: если один большой арбуз весит 20 кг, а два маленьких арбуза весят по 10 кг каждый, то между арбузом в 20 кг и двумя арбузами по 10 кг можно поставить знак равенства. Это отношение можно прочитать так: «один арбуз весом в 20 килограмм равен весу двух арбузов, каждый из которых весит 10 кг». Ведь 20 кг 10 кг + 10 кг.

 

Знак не равно ≠ ставится между величинами тогда, когда они не равны между собой.

Например, 5 ≠ 7. Ясно, что пятёрка не равна семёрке. Ещё примеры: отличник не равен двоечнику, собака не равна кошке, мандарин это не апельсин:

отличник  ≠  двоечник

собака  ≠  кошка

мандарин  ≠  апельсин

Вы можете осмотреться вокруг себя и найти множество примеров отношений, которые можно истолковать с точки зрения математики.


Операция сложения

Операция сложения обозначается знаком «плюс» (+) и используется, когда складывают числа.

Числа, которые складывают называются слагаемыми. Число, которое получается в результате их сложения, называется суммой.

Например, сложим числа 3 и 2.

Записываем 3 + 2 = 5

В этом примере 3 − это слагаемое, 2 − второе слагаемое, 5 − сумма.

В будущем придётся складывать довольно большие числа. Но сложение этих больших чисел в конечном итоге будет сводиться к тому, чтобы сложить маленькие.

Поэтому нужно научиться складывать маленькие числа в диапазоне от 0 до 9. Например:

2 + 2 = 4

3 + 4 = 7

7 + 2 = 9

0 + 7 = 7

Можете потренироваться, записав в тетради несколько простых примеров. Поверьте, ничего в этом постыдного нет.


Операция вычитания

Операция вычитания обозначается знаком «минус» (−) и используется тогда, когда из одного числа вычитают другое.

Число, из которого вычитают другое число, называется уменьшаемым. Число, которое вычитают из уменьшаемого числа, называется вычитаемым. Число, которое получается в результате, называется разностью.

Например, вычтем из числа 10 число 2.

10 − 2 = 8

В этом примере число 10 − это уменьшаемое, число 2 − вычитаемое, а число 8 − разность.


Операция умножения

Обозначается знаком умножения (×) и используется, когда одно число умножается на другое. Слово умножение говорит само за себя — какое-то число увеличивается в определенное количество раз, то есть множится.

Например, запись 4 × 3 означает, что четверка в ходе операции умножения будет увеличена в три раза.

Число, которое увеличивают, называется множимым. Число, которое показывает во сколько раз нужно увеличить множимое, называется множителем. Число, которое получается в результате называется произведением.

Например, умножим число 4 на 3.

4 × 3 = 12

В этом примере 4 − это множимое, 3 − множитель, 12 − произведение.

Запись 4 × 3 можно понимать как «повторить число 4 три раза». Например, если у нас имеются четыре конфеты и мы повторим их три раза, то полýчится двенадцать конфет:

Другими словами, умножение 4 на 3 можно представить как сумму трёх четвёрок. Схематически это выглядит следующим образом:

Умножение можно понимать и другим образом, а именно как взятие чего-то определенное количество раз. Допустим, в вазе лежат конфеты. Возьмём четыре конфеты один раз:

4 конф. × 1 = 4 конф.

У нас в руках окажется четыре конфеты.

Попробуем взять четыре конфеты 2 раза:

4 конф × 2 = 8 конф.

У нас в руках окажется восемь конфет.

Попробуем взять четыре конфеты ноль раз, то есть ни разу:

4 × 0 = 0

У нас на руках не окажется конфет, поскольку мы ни разу их не взяли. Поэтому умножение любого числа на ноль даёт в ответе ноль.

В некоторых книгах множимое и множитель называют одним общим словом — сомножители. Например, в записи 4 × 3 множимым является 4, а множителем 3, но эти два числа ещё можно назвать сомножителями. Ошибкой это не будет.

В будущем мы будем умножать довольно большие числа. Но умножение больших чисел свóдится к тому, чтобы умножить маленькие. Поэтому сначала нужно научиться умножать маленькие числа. Благо, они уже перемножены и записаны в специальную таблицу, которую называют таблицей умножения. Если вы живёте в России или в странах бывшего СССР, то наверняка знаете эту таблицу наизусть. Если не знаете, обязательно выучите!


Операция деления

Обозначается знаком деления (÷ или : ) и используется тогда, когда делят числа.

Число, которое делят называют делимым. Число, которое указывает на сколько частей делят делимое, называется делителем. Число, которое получается в результате, называется частным.

Например, разделим число 10 на 2.

10 :­ 2 = 5

В этом примере число 10 − это делимое, число 2 − делитель, число 5 − частное.

Если у нас имеются десять конфет и мы разделим их на две равные части, то в каждой части полýчится по пять конфет:

Так можно понять смысл записи 10 :­ 2 = 5.


Задания для самостоятельного решения

Большинство людей решат эти задания в уме что конечно похвально. Однако, рекомендуется выполнить эти задания именно в тетради, взяв в руку карандаш. К математике следует привыкать посредством решения простых примеров.

Задание 1. Запишите в тетради, что 2 больше, чем 1

Задание 2. Запишите в тетради, что 2 меньше, чем 3

Задание 3. Запишите в тетради, что 5 больше, чем 2

Задание 4. Запишите в тетради, что 8 больше, чем 5

Задание 5. Запишите в тетради, что 10 больше, чем 8

Задание 6. Запишите в тетради, что 1 равно 1

Задание 7. Запишите в тетради, что 10 равно 10

Задание 8. Запишите в тетради, что 7 не равно 8

Задание 9. Запишите в тетради, что 15 не равно 12

Задание 10. Запишите в тетради, что 3 не равно 2

Задание 11. Сложите числа 2 и 3

Задание 12. Сложите числа 7 и 2

Задание 13. Сложите числа 4 и 3

Задание 14. Сложите числа 10 и 5

Задание 15. Сложите числа 12 и 8

Задание 16. Вычесть из числа 5 число 2

Задание 17. Вычесть из числа 9 число 4

Задание 18. Вычесть из числа 10 число 8

Задание 19. Вычесть из числа 12 число 4

Задание 20. Вычесть из числа 20 число 12

Задание 21. Умножьте 2 на 3

Задание 22. Умножьте 3 на 4

Задание 23. Умножьте 5 на 3


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Выражения

Выражение — это любое сочетание чисел, букв и знаков операций. Можно сказать, что вся математика состоит из выражений.

Выражения бывают двух видов: числовые и буквенные.

Числовые выражения состоят из чисел и знаков математических операций. Например, следующие выражения являются числовыми:

Буквенные выражения помимо чисел и знаков операций содержат ещё и буквы. Например, следующие выражения являются буквенными:

Буквы, которые содержатся в буквенных выражениях, называются переменными. Запомните это раз и навсегда! Спросите любого школьника что такое переменная — этот вопрос поставит его в ступор, несмотря на то что он будет решать сложные задачи по математике, не зная что это такое. А между тем, переменная это фундаментальное понятие, без понимания которого математику невозможно изучать.

Под словом «изучать» мы подразумеваем самостоятельное чтение соответствующей литературы  и способность понимать, что там написано. А то вроде и знаешь математику на четвёрку, задачи решаешь, но не можешь понять, что написано в лекциях и книгах. Каждому знакомо такое чувство, особенно студентам.

Поскольку понятие переменной очень важно, остановимся на нём подробнее. Посмотрите внимательно на слово «переменная». Ничего не напоминает? Слово «переменная» происходит от слов «меняться», «изменить», «изменить своё значение». Переменная в математике всегда выражена какой-то буквой. Например, запишем следующее выражение:

a + 5

Это буквенное выражение. Здесь одна переменная a. Поскольку она является переменной, значит может изменить свое значение в любой момент времени. Изменить значение может любой: вы, учитель, ваш товарищ, кто угодно. Например, давайте изменим значение этой переменной. Присвоим ей значение 5. Для этого запишем саму переменную, затем поставим знак равенства и запишем 5

a = 5 

Что случится в результате этого? Значение переменной a, то есть 5 отправится в главное выражение a + 5, и подставится вместо a.

Значение переменной a подставляется в исходное выражение.

В результате имеем: 5 + 5 = 10

Конечно, мы рассмотрели простейшее выражение. На практике встречаются более сложные выражения, в которых присутствуют дроби, степени, корни и скобки. Выглядит это устрашающе. На самом деле ничего страшного. Главное понять сам принцип.

В учебниках часто встречаются задания следующего содержания: найдите значение выражения x + 10, при x = 5. Такие задания как раз и требуют, чтобы вместо переменной подставили её значение. Давайте выполним это задание. Значение переменной x равно 5. Подставляем эту пятёрку в исходное выражение + 10 и получаем 5 + 10 = 15.

Значение переменной x подставляется в выражение x + 10

Переменная это своего рода контейнер, где хранится значение. Переменные удобны тем, что они позволяют, не приводя примеров доказывать теоремы, записывать различные формулы и законы.

Вспомните второй урок «Основные операции». Чтобы понять, что такое сложение, мы привели пример 5 + 2 = 7, и сказали, что числа 5 и 2 являются слагаемыми, а число 7 — суммой. Но мы могли бы понять эту тему и без примера, если бы воспользовались буквенным выражением. Обозначили бы слагаемые любыми буквами, например a и b, а сумму обозначили бы как с. Тогда у нас получилось бы выражение с тремя переменными a + b = c, и мы бы сказали, что a и b — это слагаемые, c — сумма.

И вот, имея выражение a + b = c, можно пользоваться им, подставляя вместо переменных a и b любые числа. А переменная c будет получать своё значение автоматически, в зависимости от того, какие числа мы подставим вместо a и b

В качестве практики можете выполнить следующее задание. Дано выражение a + b = c. Найдите его значение, если = 10, = 6. Переменная c получит своё значение автоматически. Ответ запишите следующим образом: при = 10 и = 6, переменная c равна такому-то числу.

Решение:

a + b = c

10 + 6 = 16

Ответ: при a = 10 и b = 6, переменная c равна 16.


Значение выражения

Фраза «выполнить действие» означает выполнить одну из операций действия. В учебниках младших классов часто можно встретить задания следующего содержания: выполнить действия, и далее перечисляются примеры, которые нужно решить. Когда перед вами подобное задание, вы сразу должны понимать, что от вас требуют решить пример. В народе это звучит как «решить пример«, но если быть более  грамотным, то надо говорить «найти значение выражения». Решить пример и найти значение выражения это фактически одно и то же.

Например, дано выражение 10 + 6, и от нас требуют найти значение этого выражения. Это означает, что нам нужно решить данный пример. Поставить знак равенства = и записать ответ:

10 + 6 = 16

Сумма 16, которая получилась в результате и называется значением выражения 10 + 6.

Значение выражения — это результат выполнения действий, содержащихся в выражении.

Рассмотрим еще примеры:

  • 16 это значение выражения 4 × 4, поскольку 4 × 4 = 16
  • 20 это значение выражения 10 + 10, поскольку 10 + 10 = 20
  • 5 это значение выражения 10 ÷ 2, поскольку 10 ÷ 2 = 5

Задания для самостоятельного решения

Задание 1. Найдите значение выражения 5 + x при = 4

Задание 2. Найдите значение выражения + 3 при = 7

Задание 3. Найдите значение выражения a + a + a при = 10

Задание 4. Найдите значение выражения a + b при = 10 и = 20

Задание 5. Найдите значение выражения b + b + b при = 5


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

13 ресурсов, чтобы выучить математику

Среди разработчиков часто возникают споры о том, необходимо ли изучать математику. Если вас мучает ее незнание, то скорее читайте нашу статью.

Одни утверждают, что знать математику совсем не нужно и что и без нее все будет прекрасно. Другие же напротив считают, что фундаментальные знания математики – основа осваивания ремесла программиста.

Как бы то ни было, некоторые области ИТ требуют определённых опыта и навыков. Например, криптография. Ее изучение будет максимально сложным и практически невозможным, если вы не имеете никакого представления о царице наук.
Теперь возникает другой вопрос: как учить то, чего не знаешь? С чего лучше начать? Пользователи toster.ru ответили на этот вопрос, а мы собрали все воедино в нашей статье.

Курсы по математике от Khan academy помогут вам изучить математику, даже если у вас нет никаких, даже базовых знаний.

Курсы по школьной программе математики.

  1. Наращивайте мощность постепенно. Начните с элементарных, базовых вещей. Например, научитесь оперировать простыми числами, изучите способы вычисления суммы натуральных чисел, разберитесь с тем как находятся степени чисел и прочее.
  2. Подберите для себя связку: теория, справочник, задачник. Теория поможет вам обрести знания, справочник – освежить информацию, найти нужную формулу, задачник поможет отработать все то, что вы уже изучили.
  3. Не бойтесь если что-то не ясно. Эта ситуация абсолютно естественна. Если вы не понимаете какое-то предложение, формулировку, то постарайтесь ее перечитать, разбить на части. Можно так же перейти к чему-то другому, но затем обязательно вернитесь назад. В случае, если ничего не поможет, задайте вопрос на форуме или портале подходящей тематики.
  4. Применяйте приобретенные знания на практике. Так уж устроен наш мозг, что некоторые вещи мы постепенно забываем. Поэтому следует закреплять определенные темы после того, как вы их прошли. Придумывайте для себя задачи, пытайтесь доказывать какие-либо теоремы самостоятельно.
  5. Производите вычисления самостоятельно, без помощи калькулятора. Конечно звучит немного нецелесообразно, но поверьте, вам это обязательно поможет.
  6. Делайте перерывы. После окончания темы, главы, раздела делайте паузу и проверяйте себя.

Как понять, что вы на верном пути? Если вы при виде задачи можете легко определить алгоритм ее решения, то все идет как надо.

Книга от одного из самых лучших преподавателей мира об основах математики. После прочтения вы начнете видеть математику не только в учебниках, но и во всем что вас окружает.

Автор, увлеченный красотой математики, погрузит вас в этот мир с головой. Самое главное, что вам это понравится и вы узнаете, что математика окружает нас абсолютно везде.

В этой книге легко и понятно рассказано как об элементарных понятиях математики, так и о важных, сложных областях науки.

Книги Владимира Левшина

Книги выдающегося математика и педагога, которые написаны в стиле «математических сказок» расскажет о математике совершено, с другой стороны.

Книги Якова Перельмана

Еще один выдающийся математик, который внес свою лепту в популяризацию точных наук. Его работы пробудили любовь к математике ни у одного поколения.

Книги Мартина Гарднера

После прочтения книг Гарднера вы перестанете думать, что математика — это скучно.
Евклидово окно. История геометрии от параллельных прямых до гиперпространства, Леонард Млодинов
Вас ожидает путешествие в тысячелетнюю историю математической мысли. Вы узнаете о том, как устроено пространство, о том, как от камешков и палочек на теплом песке люди добрались до энтропии черных дыр

Книга о величайших математических задачах, которые до сих пор терзают величайшие умы человечества.

Великий математик откроет вам дверь в мир, который позволит вам понять законы Вселенной.

Книга расскажет о том, как в математике появляются новые идеи. Большое внимание уделено анализу задач.

Эта книга прольет свет на процесс математического творчества. Расскажет о том, как появляются новые теории и гипотезы и о том, как их принимать.

Книга откроет новые миры, где музыка Баха, картины Эшера, физика математика, биология психология, нейропсихология и дзен буддизм связаны между собой.

Другие материалы для того, чтобы изучить математику

4 книги, которые разбудят в вас математика

Как понять математику? или Математика для чайников

Разобраться в математике, порой, действительно становится непросто. Кто-то упустил её ещё в школе, кто-то давным-давно позабыл то, что понимал когда-то, и в университете становится крайне сложно справляться с заданиями по высшей математике. «Горы» формул, интегралы, вычисление производной и прочие «прелести» программы повергают нас в ужас. Разбираясь в этом, зачастую можно почувствовать себя полным «чайником».

Во многих случаях работает метод «списать у соседа». Но здесь есть 2 «но»: 1. одногруппники и одноклассники, зачастую, сами не знают, как решить задания, поэтому списывать оказывается не у кого; 2. это не поможет вам на экзамене и контрольной, ведь там у вас будет свой личный билет с заданиями, которые предстоит решать.

Что же делать?

Самый первый совет, если вы учитесь в университете, посещайте лекции и записывайте. Даже если вы ничего не поймёте на самой лекции, записанные темы и формулы дадут вам шанс разобраться дома, или, как минимум, предъявить конспект на экзамене лектору. Поверьте, наличие конспекта значительно повышает ваши шансы сдать экзамен, даже если знаете вы предельно мало.

В случае, если дома, глядя в учебник по математике и тетрадь, вы также чувствуете, себя «чайником», самым правильным решением будет обратиться к репетитору, лучше – к онлайн-репетитору. Т.к. во-первых, это дешевле, во-вторых, вам смогут объяснить темы и как решать отдельные задания практически в любое время суток, а это очень удобно. Опытных онлайн-репетиторов по вышмату, теории вероятностей и математической статистике вы найдёте здесь. Если нужна помощь по школьному курсу математики, то советуем перейти сразу сюда.

Но самый важный совет, который точно поможет вам в сложной ситуацией с математикой – освойте минимум! Если вы на экзамене не сможете дать правильный ответ на вопрос «Чему равна сумма квадратов катетов прямоугольного треугольника» (а она равна квадрату гипотенузы), то скорее всего, дальше вас даже «тянуть» не станут. Поэтому важно запомнить основные правила, алгоритмы и формулы, которые преподаватели спрашивают на экзамене, либо дают на контрольных. Освоить необходимый минимум вам также легко поможет хороший репетитор по математике, либо, в случае студентов, высшей математике.

Из основного, давайте вспомним правила раскрытия скобок:

…+ (-a+b+c-d) = -a+b+c-d –  Если перед скобками стоит знак плюс, то мы можем просто опустить скобку и оставить каждое значение с тем же знаком, с которым оно стоит.

…- (-a+b+c-d) =  a-b-c+d– Если перед скобками стоит знак минус, то опуская скобки, мы меняем знак каждого значения (был «минус», значит после раскрытия скобки на его месте будет «плюс», и наоборот).

Даже если вы вдруг перепутаете это в письменном экзаменационном задании, а экзаменатор укажет вам на ошибку, вы можете быстро озвучить правило и сказать, что вы просто переволновались и неправильно написали. Это гораздо лучше, чем промолчать, опустив глаза, когда у вас спрашивают «Где здесь допущена ошибка?».

Такое же правило действительно и для умножения.

a(b-c) =ab-ac– Перед «а» нет минуса, а значит знаки сохраняются.

-a(b-c)= ab+ac– Перед «a» есть знак минуса, а значит при раскрытии скобок мы должны поменять знак.

В целом, важно помнить, что ДВА МИНУСА ДАЮТ ПЛЮС, а ТРИ МИНУСА – ДАЮТ МИНУС. Главное не запутаться в этом при решении задач по высшей или даже школьной математике.

Далее рассмотрим приведение подобных слогаемых.

Сталкиваясь с подобными примерами важно помнить, что вы можете вычитать и складывать только те значения, у которых одинаковые переменные и степени. Т.е. от 5ax можно вычесть 9 ax, но нельзя просто вычесть 9ax2 (т.к. у х другая степень), либо нельзя прибавить 9yz, т.к здесь участвуют другие переменные.

Кстати, о степенях. Очень многие напрасно их пугаются, ведь на деле это обычное умножение числа на самого себя.

Как решать дроби?

На самом деле, с ними тоже довольно просто разобраться. Важно запомнить простое правило, что складывать и вычитать дроби можно только с одинаковым знаменателем.

Правило приведения дробей к общему знаменателю:

Например:

Очень важно помнить, что СНАЧАЛА делаем УМНОЖЕНИЕ или ДЕЛЕНИЕ, а ПОТОМ – ВЫЧИТАНИЕ и СЛОЖЕНИЕ. Т.е. в нашем примере будет крайне грубой ошибкой умножить 5 на 8 и сразу прибавить 7. Правильно сначала умножить 5 на 8, затем умножить 7 на 6. И только потом сложить полученные результаты!

Умножаются все дроби по принципу: числитель умножаем на числитель, знаменатель умножаем на знаменатель.

Например:

Как решать задачи на проценты можно посмотреть здесь.

Конечно, весь необходимый минимум в одной статье охватить сложно, поэтому лучше взять хотя бы пару уроков с репетитором, особенно перед тестами и контрольными. Освоение базового материала, безусловно, поможет постепенно освоить математику, успешно написать контрольные и сдать экзамены.

© blog. tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математика для чайников, 2-е издание


Многие школьники на этапе перехода от арифметики к алгебре почему-то начинают испытывать страх перед математикой. Эта книга поможет вам разобраться с любыми математическими трудностями. Здесь вы найдете все необходимое для освоения школьного курса математики и перехода к изучению алгебры и геометрии. Начав со знакомства с числами, дробями и процентами, вы затем освоите более сложные темы, такие как единицы измерения, множества и алгебраические уравнения.

В книге:

  • Множители, делители и кратные
  • Обыкновенные дроби, десятичные дроби и проценты
  • Основные геометрические фигуры и тела
  • Диаграммы и графики
  • Экспоненциальная запись числа, единицы измерения, статистика и множества
  • Введение в алгебру

Марк Зегарелли — учитель математики, автор восьми книг серии . ..для чайников. Получил ученую степень по математике и английской филологии в Ратгерском университете.


Расскажи про книгу своим друзьям и коллегам:

Твитнуть


Нравится

Оглавление к книге Математика для чайников, 2-е издание

Оглавление
Введение 19
Часть 1. Введение в арифметику 23
Глава 1. Игра в числа 25
Глава 2. Счет на пальцах: цифры и разряды 43
Глава 3. Большая четверка: сложение, вычитание, умножение и деление 51
Часть 2. Операции с целыми числами 73
Глава 4. Арифметические операции 75
Глава 5. Вычисление арифметических выражений 91
Глава 6. Решение текстовых задач 105
Глава 7. Делимость чисел 119
Глава 8. Множители, делители и кратные 129
Часть 3. Дроби и проценты 145
Глава 9. Дробные числа 147
Глава 10. Арифметические операции с дробями 163
Глава 11. Десятичные дроби 189
Глава 12. Проценты 213
Глава 13. Текстовые задачи на вычисление дробей и процентов 225
Часть 4. Графики, единицы измерения и немного статистики 237
Глава 14. Экспоненциальная запись числа 239
Глава 15. Единицы измерения 249
Глава 16. Основы геометрии 261
Глава 17. Графическое представление числовых данных 283
Глава 18. Текстовые задачи по геометрии
и на преобразование единиц измерения 293
Глава 19. Теория вероятностей и математическая статистика 305
Глава 20. Основы теории множеств 317
Часть 5. Введение в алгебру 325
Глава 21. Элементарная алгебра: алгебраические выражения 327
Глава 22. Алгебраические уравнения 345
Глава 23. Текстовые задачи, решаемые алгебраическими методами 357
Часть 6. Великолепные десятки 367
Глава 24. Десять полезных правил и советов 369
Глава 25. Десять основных числовых множеств 375
Предметный указатель 383

Как научить себя математике

Немногие предметы вызывают столько воспоминаний о боли и тревоге, сколько уроки математики. Запутанные символы, сложные процедуры и ужасающие графики и диаграммы.

Некоторые люди сейчас даже предполагают, что изучение математики может быть травмирующим опытом, что-то пережитое, а не усвоенное.

Жаль, что у многих людей была болезненная история с математикой, потому что математика невероятно полезна. Многие из лучших профессий происходят из областей науки, науки и техники, и полагаются на понимание математики.Понимание новостей и мировых событий все чаще становится уроком статистики. Наконец, математика, если ее правильно понимать, позволяет решать многие ваши собственные проблемы.

В этой статье я хотел бы объяснить, как можно научиться любой математике, будь то статистика, алгебра или алгоритмы.

Шаг первый: начните с объяснения

Первый шаг к изучению любой математики – получить предварительное объяснение темы.

Есть много мест, где вы можете получить эту информацию.Вот несколько хороших ресурсов, охватывающих широкий круг тем:

  • KhanAcademy – Огромные бесплатные ресурсы видео почти по каждой математической теме
  • MIT OCW – Начинаются с университетского уровня, но обрабатывают много сложной математики.
  • Coursera – много уроков по математике

Кроме того, есть еще и специализированные ресурсы. Они, как правило, не охватывают все мыслимые темы, но часто более интересны, интуитивно понятны и полезны для тех, кто занимается:

  • BetterExplained – отличные статьи, дающие интуитивное понимание исчисления, алгебры, экспонент и многого другого
  • 3Blue1Brown – Отличные видеоролики на YouTube, в которых подробно рассматриваются математические концепции.
  • Numberphile – Беседы с математиками на интересные математические темы

Где бы вы ни получили свое объяснение, ваш первый шаг – это посмотреть его один раз, чтобы вы почувствовали, что понимаете основы того, как это работает.

Что делать, если я не понимаю объяснения?

Если вы посмотрите объяснение, но не поняли его, есть две возможные проблемы:

  1. У вас отсутствуют некоторые предпосылки для понимания этой части математики . Это означает, что вам нужно сделать резервную копию и пройти через это снова. Если вам кажется, что это «пошло слишком быстро» или вы не знаете, что делает учитель, вам, возможно, придется вернуться на несколько уроков и выучить их лучше, прежде чем продолжить.
  2. Вы слишком много пытаетесь охватить, не переходя на тренировку .Хороший образец – просмотреть отрывок объяснения, а затем попробовать его самостоятельно. Если вы только смотрите, но никогда не тренируетесь, это все равно что смотреть видео о лыжах и никогда не кататься на склонах. В конце концов, объяснения потеряют смысл, потому что у вас не будет личного опыта.

Попробуйте следующее: посмотрите объяснение один раз полностью в качестве отправной точки.

Шаг второй: практические задачи

Математика – это не то, что вы смотрите и запоминаете, а то, что вы делаете.

Если вы проводите все свое время за просмотром видео, а затем решаете ряд задач, вам может быть очень трудно применить свои математические знания. Это может привести к ощущению, что вы «плохо разбираетесь в математике», даже если проблема только в том, что вы используете паршивый метод для ее изучения.

Вы можете исправить это, приступив к решению проблем как можно скорее. Хорошая проблема должна казаться сложной, но не невозможной. Если вы видите решение и даже не понимаете, как оно было получено, скорее всего, вы слишком быстро двигаетесь – вернитесь назад и изучите некоторые основы, прежде чем двигаться дальше.

Что делать, если у меня нет проблем, которые нужно решать?

Если у вас нет указанных проблем, вы можете сделать несколько вещей:

  • Работа над проблемами выполняется в объяснении, но не глядя на ответ.
  • Создавайте собственные проблемы и пытайтесь их решить.
  • Попробуйте доказать концепции в классе. Это продвинутая техника, но она необходима для истинного понимания более сложной математики.

Попробуйте следующее: после просмотра вашего объяснения решите достаточно задач, чтобы чувствовать себя комфортно и понимать процедуру.

Шаг третий: узнайте, почему математика работает

Интуитивное понимание очень важно для математики в отличие от других предметов. Хотя интуиция словарного запаса слов на иностранном языке может помочь, их все же необходимо запомнить. Однако запоминание математики может быть опасным, если из-за этого вы изучаете ее, не понимая.

Следующий шаг – убедить себя в том, что вы знаете, почему математика работает. Моя любимая техника для этого – техника Фейнмана, которую я демонстрирую здесь:

Техника Фейнмана требует времени, поэтому вам не нужно полностью применять ее к каждому аспекту каждой математической задачи, с которой вы сталкиваетесь.Скорее применяйте его выборочно к наиболее важным концепциям и тем, которые кажутся вам запутанными, несмотря на достаточную практику.

Попробуйте следующее: определите основные концепции математики, которую вы изучаете, и используйте технику Фейнмана, чтобы убедить себя, что вы их понимаете.

Шаг четвертый: поиграйте с математикой

Практика – это хорошо, понимание лучше, но лучше всего играть с математикой.

После того, как вы ответили на несколько заданных вам вопросов и убедились, что понимаете их, естественным продолжением будет попытка поиграть с математикой, которую вам предложили.Как все меняется, когда вы пытаетесь изменить числа или применить это к другим задачам?

Например, предположим, что вы совсем недавно научились рассчитывать сложные проценты. Вы можете самостоятельно произвести простой расчет процентов и понять, почему они работают. Как вы могли играть с этой математикой?

  • Вы могли видеть, что происходит, когда увеличивается скорость начисления сложных процентов.
  • Что бы произошло, если бы процент был отрицательным?
  • Вы можете попытаться подсчитать свои собственные сбережения, если бы вложили их по разным ставкам.
  • Попробуйте представить, какую часть ипотечного кредита вы платите в виде процентов по сравнению с основной суммой.

Excel – хороший способ поиграть с математикой, поскольку вы можете вводить формулы напрямую, без необходимости выполнять столько алгебры или повторения вычислений.

Попробуйте следующее: возьмите тему математики, которую вы недавно изучили, и посмотрите, как вы можете изменять переменные, применять их к разным вещам и изменять формулы.

Шаг пятый: применение математики вне класса

В конечном счете, целью изучения математики должно быть ее использование, а не просто сдача теста.Однако для этого вам нужно освободить свое понимание от примеров из учебника и применить его к ситуациям реального мира.

Это сложнее, чем просто решить проблему. Когда вы решите проблему, вы начнете запоминать схему решения. Это часто позволяет решать проблемы, не понимая принципов их работы.

Применение математики к реальной жизни, напротив, требует распознавания ситуации, перевода ее в математику и затем решения созданной вами проблемы.Это строго сложнее, чем решать проблемы, поэтому, если вы хотите действительно использовать то, что вы узнали, вам нужно попрактиковаться в этом.

Попробуйте следующее: возьмите тему, которую вы недавно изучили по математике, и попытайтесь найти реальную ситуацию, в которой вы могли бы ее вычислить, используя свои собственные числа или оценки, если они недоступны.

Все это звучит как слишком много работы!

Выполнение всех этих пяти шагов по каждому предмету, который вы изучаете по математике, займет много времени.Это нормально, вам не нужно делать это для каждой мелочи, которую вам нужно изучить.

Считайте это индикатором выполнения. Каждая математическая концепция, которую вы изучаете, может проходить от первого до пятого шагов, с каждым разом углубляя ваши знания и повышая полезность математики. Некоторые концепции будут настолько важны, что вы захотите применить их полностью. Другие будут достаточно редки, чтобы просто посмотреть объяснение – это все, что вы можете сэкономить.

В частности, вы должны попытаться сосредоточить внимание на наиболее важных концепциях для каждой идеи.Математика имеет тенденцию быть глубокой, поэтому часто на занятиях в течение всего семестра может быть только горстка действительно больших идей, а все остальные идеи являются просто различными проявлениями этой основной концепции.

Большинство курсов по математике первого года обучения, например, все сосредоточены вокруг концепции производной, причем все, что преподается, является просто различными расширениями и приложениями этой основной идеи. Если вы действительно понимаете, что такое производная и как она работает, эти другие части будет намного легче изучить.

Базовые математические навыки: определения, примеры и способы их улучшения

Математические навыки являются важной частью повседневной жизни – от расчета финансовых операций до измерения пространств и предметов. Улучшение ваших базовых математических навыков может помочь вам получить работу, добиться более высоких результатов на нынешней должности и упростить управление личной жизнью. В этой статье мы обсуждаем основные математические навыки, как их можно улучшить и как базовые математические навыки могут улучшить ваш поиск работы.

Что такое базовые математические навыки?

Базовые математические навыки – это навыки, связанные с вычислением сумм, размеров или других измерений.Основные концепции, такие как сложение, вычитание, умножение и деление, обеспечивают основу для изучения и использования более сложных математических концепций. Владение базовыми математическими навыками поможет вам как на рабочем месте, так и в повседневной жизни.

Связано: Математические навыки: определение, примеры и способы их развития

Сложение, вычитание, умножение и деление

Чтобы делать что-либо, связанное с математикой, вам нужно знать, как складывать, вычитать, умножать и делить основные числа.Знание этих основ очень полезно, особенно когда вы имеете дело с деньгами. Например:

Дополнение: Вы и двое ваших коллег платите по 5 долларов за пиццу за 15 долларов: 5 долларов + 5 долларов + 5 долларов = 15 долларов.

Вычитание: Вы и двое сотрудников делите пиццу за 15 долларов. Вы и один ваш коллега платите и хотите определить, сколько должен третий сотрудник: 15–5 долларов + 5 долларов = 5 доллара.

Умножение: У вас и двух сотрудников есть по 5 долларов, каждый из которых вы можете потратить на пиццу, и вы хотите знать, по какой цене вы можете себе позволить пиццу: 5 долларов x 3 = 15 долларов.

Подразделение: Вы и двое сотрудников делите пиццу за 15 долларов на обед, и каждый человек хочет заплатить свою долю. Вы можете использовать деление, чтобы вычислить стоимость: 15/3 = 5 долларов за штуку.

Подробнее: Навыки счета: определение и примеры

Проценты

Процент – это часть целого, на 100. Вам понадобятся проценты для таких задач, как определение суммы чаевых, расчет налога с продаж или решить, насколько сократить вашу рабочую силу.Например, вы пригласили делового партнера на обед, и счет составил 50 долларов плюс 8 долларов на налоги. Вы хотите оставить 20% чаевых за хорошее обслуживание. В этом случае это будет 10 долларов США из расчета 50 долларов США.

Связано: Как рассчитать процент

Дроби и десятичные дроби

Дроби – это часть целого числа, а десятичная дробь – это числовое представление этой дроби. Например, 1 доллар можно разбить на четверти (дробь, представленная здесь как 1/4) или 25 центов.В другом примере коробка содержит 12 виджетов, но покупатель хочет только шесть или половину коробки. Весь пакет будет равен 1,0 в десятичных дробях, а половина – 0,5. Дополнительные базовые навыки, связанные с десятичными дробями, включают округление до ближайших десятых или сотых и мысленное вычисление количеств.

Связано: Как разделить дроби: советы и методы использования

Визуальное представление данных

Часто числа представлены в визуальных форматах. Базовый математический навык, который необходимо изучить, – это читать и понимать диаграммы и графики.Возможность считывать оси, линии тренда и точки данных поможет вам глубже понять основные данные. Это также поможет вам составить графики и диаграммы, чтобы лучше проиллюстрировать ваши взгляды.

Связанный: Типы графиков и диаграмм

Решение для неизвестного

Решение для неизвестной переменной является основной задачей алгебры. Алгебра – это часть математики, в которой буквы и другие символы используются для представления чисел и величин в формуле или уравнении.Переменная – это буквенный символ (A, B и т. Д.), Представляющий число в уравнении. Решение неизвестного может быть таким же простым: B = 20 + 20. Неизвестная переменная (B) – это сумма двух чисел, или 40.

Например, Хуану нужно заработать 600 долларов в этом месяце и зарабатывает 20 долларов каждый раз, когда он выгуливает собаку для одного из своих соседей. «Неизвестная переменная», которую Хуан хочет решить, – это то, сколько прогулок с собакой ему нужно, чтобы заработать требуемую сумму. Обладая базовыми навыками алгебры, Хуан сможет создать простую формулу для этого уравнения (20 x Y = 600) и найти неизвестную переменную Y.

Связанные: 50 заданий, использующих алгебру

Как улучшить базовые математические навыки

Есть четыре основных способа улучшить свои базовые математические навыки:

1. Используйте рабочие тетради

Учебные пособия по математике предоставляют образцы математические задачи, которые нужно решить, и это отличный способ попрактиковать свои базовые математические навыки. Часто рабочие тетради по математике содержат инструкции и советы о том, как решать задачи, а также ответы, чтобы вы могли проверить свою работу.Если в математике есть какая-то конкретная тема, которую вы считаете сложной, поищите учебное пособие по математике, в котором основное внимание уделяется этому математическому навыку.

2. Пройдите курс

Базовые занятия по математике предлагаются как онлайн, так и обычно лично в местных колледжах и учебных центрах и могут быть чрезвычайно полезны для углубления вашего понимания основных математических концепций. . Уроки математики дают преимущество в виде более подробных инструкций и возможности задавать вопросы, если вы не уверены в какой-либо теме.

3. Обратиться за помощью

Если вы знаете кого-то, у кого есть сильные математические навыки, попросите его о помощи. Сообщите им, какие области вы считаете сложными, и посмотрите, есть ли у них какие-либо советы. Друзья, члены семьи и коллеги могут предложить новую точку зрения или, возможно, объяснить вещи более понятными терминами, чем это мог бы сделать официальный инструктор.
Вы также можете нанять репетитора, который уделит вам индивидуальное внимание лично или онлайн. Они могут дать вам примеры задач, которые помогут укрепить ваши навыки, и ответят на любые конкретные вопросы, которые могут у вас возникнуть.

4. Практика

Лучший способ улучшить свои базовые математические навыки – это практика. Последовательное использование своих навыков может гарантировать, что вы сохраните свои профессиональные навыки. Старайтесь не использовать калькулятор для решения каждой задачи, с которой вы сталкиваетесь, и не просите кого-нибудь вычислить математическую задачу за вас. Используйте любую возможность, чтобы применить свои базовые математические навыки, и со временем они станут сильнее. Более того, многие отрасли и профессии требуют, чтобы тестирование по математике перед приемом на работу проводилось на должностях, поэтому всегда рекомендуется сохранять сильные математические навыки.

Базовые математические навыки на рабочем месте

Вот лишь несколько примеров того, как вы можете использовать базовые математические навыки на рабочем месте:

Расчет налогов

Знание того, как рассчитывать налоги, жизненно важно для обеспечения финансовой стабильности бизнес. Вам нужно будет знать, как рассчитать налог с продаж, налог на прибыль, налог на имущество и многое другое. Хотя существуют инструменты, которые помогут вам рассчитать различные налоги, знание того, как получить эти цифры, поможет вам более полно понять финансовую ситуацию и избежать финансовых ошибок.

Проведение презентаций

Бизнес-лидеры часто принимают решения на основе данных. Если вы делаете презентацию, вы должны иметь возможность подкрепить свои утверждения фактами и цифрами. Знание того, как создавать различные графики, диаграммы и диаграммы для объяснения и представления ваших численных результатов, а также как понимать их в присутствии других, является обычным требованием на рабочем месте.

Подробнее: 6 типов презентаций для использования на рабочем месте

Расчет заработной платы и надбавок

Как физическое лицо, если ваша зарплата составляет 60 000 долларов в год, вы захотите узнать, сколько будет выплачиваться еженедельная зарплата. быть.Кроме того, если ваш начальник повысит вам зарплату на 10%, вы захотите узнать, какой это дополнительный доход. Возможность подсчитать наиболее важные для вас числа поможет вам принимать более правильные решения о том, где работать и сколько вы можете позволить себе потратить в своей личной жизни.

Связано: Как рассчитать валовую заработную плату на примерах

Определение оценок времени

Вы можете использовать свои базовые математические навыки, чтобы выполнять задачи по расписанию. Например, у вас есть проект, состоящий из 10 равных частей.Вы уже выполнили три части за девять дней. Когда ваш менеджер спросит, сколько времени займет остальная часть проекта, вы можете использовать базовые математические навыки, чтобы дать им оценку трех дней на задачу или 18 рабочих дней в целом.

Подробнее: 6 способов оптимизировать ежедневный график

Как выделить базовые математические навыки

Вот как выделить свои математические навыки при приеме на работу:

В вашем резюме

Чтобы выделить свои базовые математические навыки в резюме, приведите реальные примеры.Например, если вы кассир, вместо того, чтобы сказать, что вы хорошо умеете складывать и вычитать, вы можете сказать:

  • Умею быстро вычислить в голове сдачу, которую должен получить покупатель.

Вы также можете указать свои базовые математические навыки при описании своих должностных обязанностей. Например, маркетинговый аналитик может написать:

  • Произведены четкие визуализации данных для демонстрации эффективности различных маркетинговых кампаний.

Цель состоит в том, чтобы подчеркнуть использование вами базовых математических навыков, а не прямо заявить о них. Вы можете сделать это в любом разделе, например о вашем опыте работы, специальных навыках или даже в сопроводительном письме.

Связанные: Лучшие рабочие навыки, чтобы ваше резюме выделялось

На собеседовании

Во время собеседования вас могут попросить продемонстрировать некоторые из ваших основных математических навыков. Например, кто-то, нанимающий кассира, может задать кандидату несколько типовых вопросов, например, сколько что-то должно стоить, если на него действует скидка 10%.Чтобы подготовиться к собеседованию, заранее потренируйтесь в своих основных математических навыках и работайте над решением задач в уме.

Если работодатель не проверяет ваши базовые математические навыки, вам следует найти способ упомянуть их. Как и в случае с вашим резюме, вы должны привести реальные примеры того, как вы ранее использовали основную математику. Если это ваша первая работа, вы также можете упомянуть некоторые курсы математики, которые вы прошли, вместе с тем, что вы узнали.

По теме: вопросы на собеседовании по математике (с примерами ответов)

Как изучать математику: алгебра

Урок алгебры – одно из немногих мест, где люди могут купить 64 арбуза, и никто не задается вопросом, почему.

Это также предмет, с которым сталкиваются многие студенты.

Одна из главных причин этой борьбы – они пытаются запомнить. Но когда проблема меняется, меняются и шаги, и ученики остаются в замешательстве. Ключ к успеху в алгебре – понимать, зачем вы делаете каждый шаг. Другими словами, речь идет не только о x , но и о , почему именно .

Мы знаем, о чем вы думаете: если бы только было легко понять алгебру. Что ж, с правильным объяснением, несколькими полезными советами и небольшой работой вы сможете!

Ниже приведены 14 советов по изучению и распространенных ошибок, которых следует избегать, чтобы добиться успеха в алгебре.

1. Знайте свою арифметику

Чтобы выучить алгебру, вы должны, ДОЛЖНЫ, ДОЛЖНЫ знать основы своей арифметики. Да, это включает в себя сложение, вычитание, умножение и деление. Мы знаем, что это математика в начальной школе. Но важно овладеть этими понятиями.

Мы не имеем в виду, что вам нужно запоминать таблицу умножения. Что важно для , так это то, что вы понимаете основную концепцию каждой операции. Например, умножение 3 и 4 на самом деле добавляет 3 вместе 4 раза:

Или что сложение 2 и 5 похоже на то, как если взять стопку из 2 яблок и положить туда еще 5, чтобы получить в сумме 7.

Это может показаться простым, но знание смысла базовой арифметики будет чрезвычайно полезным при изучении алгебры.

Так что не забудьте продумать эти четыре операции, даже если вам придется думать в терминах яблок!

2. Помните PEMDAS

Ой, порядок операций. Вы узнаете это. Пройди тест. Затем удалите его из памяти, думая, что он больше не появится.

Вы и не подозревали, что будете сидеть в классе алгебры и смотреть на сложное уравнение, думая: «Как, черт возьми, я собираюсь решить для x

Вот где вам пригодится PEMDAS.Некоторые запоминают это с помощью мнемоники «Пожалуйста, извините, дорогая тетя Салли», или, другими словами:

P arentheses, E xponents, M ultiplication, D ivision, A ddition, S ubtraction

Это ваш план решения более простой проблемы. Не знаете с чего начать? Начнем со скобок. Опять заблудиться? Попробуйте разобраться с экспонентами! Далее займитесь умножением и делением. И, наконец, вы складываете и вычитаете.Вуаля, проблема, похожая на ту, которую вы знаете!

Вот одна вещь, на которую следует обратить внимание при использовании PEMDAS, которую многие люди упускают:

После того, как вы позаботитесь о скобках и показателях степени, вы выполните умножение и деление в порядке слева направо. Затем, когда вы переходите к сложению и вычитанию, вы также выполняете их в порядке слева направо.

Вот пример проблемы, которая сначала может показаться сложной, но становится полностью решаемой с помощью PEMDAS:

5 + (6 ÷ 2 x 5) 2 -2 + 3

Используя PEMDAS, мы начинаем с выражения в круглых скобках.Внутри скобок нет показателей, поэтому мы переходим к умножению и делению, работая слева направо. Это означает, что вы сначала сделаете деление:

5 + (3 x 5) 2 – 2 + 3

Теперь умножаем в скобках:

5 + (15) 2 -2 + 3

После того, как вы закончите со скобками, следующим шагом будет обработка экспоненты в (15) 2 :

5 + 225 – 2 +3

На данный момент нет никакого умножения или деления слева, поэтому мы можем пропустить справа шаги сложения и вычитания слева направо:

230 – 2 + 3

228 + 3 = 231

Теперь рассуждая в терминах алгебры, вот пример с использованием переменных:

3.Позитивно комфортно с отрицательными числами

Отрицательные числа похожи на числа, которые вы знаете и любите, но, в общем, отрицательные. Не позволяйте этому крошечному знаку минус перед вами сбить с толку.

Обязательно освоите основные операции с отрицательными числами. То есть сложение, вычитание, умножение и деление двух отрицательных чисел И положительного и отрицательного числа. Это будет очень полезно в будущем! (Ха… ха… понял… числовая строка…? Да, плохой каламбур. Знай свои негативы.)

Вот несколько примеров и правил, которые следует запомнить:

а. Если числа имеют одинаковый знак, сложите их и сохраните исходный знак.

-3-5 = -3 + (-5) = -8

г. Если числа имеют разные знаки, сложите их и сохраните знак «большего» числа или числа с наибольшим расстоянием от нуля.

-10 + 7 = -3

г. Отрицательный разделенный на отрицательный – положительный.

-4 ÷ -2 = 2

г. Отрицательное, умноженное на положительное, становится отрицательным.

-15 x 3 = -45

4. Покажите свою работу

Многие студенты пытаются быстро решить задачи по алгебре. Но если вы потратите время на то, чтобы показать все свои шаги, это не только поможет вам оставаться организованным и избежать мелких ошибок, но вы даже можете получить частичную оценку за неправильный ответ, если ваш инструктор увидит, что вы были на правильном пути.

Мы знаем: чтобы записать все свои шаги, потребуется немного больше времени. Но одна маленькая ошибка в задаче по алгебре может в итоге привести к большой головной боли.

Вот пример того, что мы подразумеваем, показывая все ваши шаги:

5. Не позволяйте буквам пугать вас

На протяжении большей части своей ранней математической карьеры вы знали, что математика – это все о числах. Но затем алгебра бросила вам x , y , а иногда даже z . Будьте уверены, они не так плохи, как выглядят! Эти буквы называются переменными , и они на самом деле тоже числа.

Да, сначала это может сбивать с толку, но становится лучше! Математики используют буквы в качестве переменных, обозначающих то, что они хотят найти.

Подумайте о простой задаче: «Сколько будет дважды три?» Часть «что» – это переменная. В этом нет необходимости, но мы могли бы написать такую ​​же задачу, как:

х = 2 х 3

где то «что» мы хотим решить.

Если проблема имеет более одной переменной, это означает, что есть еще кое-что, что нужно найти! В таких случаях не спешите. Найдите по одной переменной за раз.

6. Формулы – твои друзья

Думайте о формулах как о команде полезных помощников, особенно когда дело касается текстовых задач.В зависимости от вашего класса вам нужно будет запомнить и уметь использовать ряд формул.

Важно знать, что простое запоминание формулы не обязательно означает, что вы будете знать, что с ней делать! Убедитесь, что вы знаете, что означает каждая переменная в формуле, чтобы вы могли расшифровать, какой номер какой переменной присвоен.

Вот некоторые из распространенных формул, которые вы увидите:

7. Обязательно ответьте на правильный вопрос

Не обводите свой ответ и не называйте его днем, пока вы дважды не проверите, что у вас есть то, о чем проблема.Вам может быть интересно, почему это вообще подсказка. Но это же обычная ошибка в алгебре!

Например, при выполнении некоторых задач может потребоваться определить размеры коробки, а вы нашли только длину. Тот факт, что у вас есть нижняя часть листа, не означает, что у вас есть ответ.

Перечитайте формулировку проблемы, просмотрите, что означают ваши переменные, и убедитесь, что вы получили то, о чем просили!

8. Проблемы производственной практики

Последний совет для учебы: решайте столько задач, что у вас устает рука.Это относится ко всем математическим предметам, но особенно относится к алгебре. Способ усовершенствовать свою способность решать проблемы – это практиковаться, практиковаться, практиковаться!

Вы слышали это раньше миллион раз, но мы повторим еще раз: практика ведет к совершенству! Так что внимательно выполняйте домашнюю работу и переделывайте примеры из своих заметок. Запишите все свои шаги, и если вы допустите небольшую ошибку, поймите, что пошло не так, чтобы вы могли знать об этом в следующий раз!

9. Учитесь на своих ошибках

Не бойтесь ошибаться! Они являются частью учебного процесса.Их делают даже опытные математики. Когда вы совершаете ошибку, главное – научиться распознавать проблему, определять свою ошибку и затем исправлять ее. Вот где происходит настоящее обучение.

И, говоря об ошибках, в следующих нескольких советах мы рассмотрим некоторые понятия алгебры, которые обычно сбивают с толку студентов, чтобы вы сами смогли избежать этих ошибок.

10. Не делить на ноль

Вы не можете этого сделать. Вы никогда не сможете этого сделать.Так что не делай этого. Это одно из первых правил Священной книги математики: «Не дели себя на ноль».

Когда вы действительно думаете о том, что значит делить, это правило имеет смысл.

Совершите короткую поездку с нами в начальную школу, где мы узнали, что деление – это вычисление того, сколько раз одно число содержится в другом. То есть, допустим, у нас есть 4 блока. Затем «4 разделить на 2» задается вопрос: «На сколько групп по 2 вы можете разделить 4 блока?» Таким же образом «4 разделить на 0» спрашивает: «На сколько групп по 0 вы можете разделить 4 блока?»

Но 0 – это ничего.Группы из 0 означает, что в группе нет блоков. Так как же разделить 4 блока на группы, в которые не может быть блоков? Мы этого не делаем. Мораль истории: не делить на 0.

11. Помните о скобках

Скобки важны, хотя могут показаться, что это не так. Очень важно .

Они много говорят вам о проблеме, например, что делать в первую очередь или что объединить.

Например, рассмотрим (-3) 2 и -3 2

(-3) 2 говорит: возьмите все число в скобках, -3, и умножьте его на себя:

(-3) 2 = -3x – 3 = 9

Но -3 2 без круглых скобок говорит: возьмите число 3, умножьте его на само себя и поставьте перед ним отрицательный знак:

-3 2 = – (3 x 3) = -9

Как видите, мы получаем два разных ответа.Так что не забывайте следить за скобками! Не воспринимайте их важность как должное.

12. Следите за своим распределением

Вот одна из самых распространенных ошибок в алгебре:

Проблема:

Развернуть (x + y) 2

Общее студенческое решение:

x 2 + y 2 => НЕПРАВИЛЬНО!

Если за пределами круглых скобок стоит показатель степени, а внутри скобок – сложение или вычитание , ВЫ НЕ МОЖЕТЕ РАСПРЕДЕЛИТЬ ЭКСПОНЕНТ.

Действительно. Не делай этого.

Попробуйте подставить несколько цифр, чтобы убедиться в этом. Например:

(3 + 2) 2

Используя PEMDAS сверху, мы бы сначала добавили в скобках, чтобы получить:

5 2

Затем обработайте экспоненту, чтобы получить 5 × 5 = 25.

Но использование ошибочного метода даст нам 3 2 + 2 2 = 9 + 4 = 13, неправильный ответ.

Математически (x + y) 2 говорит: возьмите выражение (x + y) и умножьте его на себя, что требует использования метода FOIL.Когда вы это сделаете, вы получите x 2 + 2xy + y 2 , что не соответствует приведенному выше ответу.

13. Только коэффициенты отмены

Отмена может быть трудной для понимания концепцией, но запомнить это поможет:

Можно только отменить множитель числителя с множителем знаменателя, если они точно такие же.

Очень важной частью этого предложения является слово фактор . Чтобы отменить условия, они должны быть факторами .Член – это коэффициент , если он умножается на все в выражении.

Вот небольшой пример.

В этом примере множители числителя, которые также являются множителями знаменателя, равны 3x и (x – 1). Отмена их оставляет нам все, что осталось:

Прежде чем двигаться дальше, обратите внимание еще на одну вещь. В приведенном выше рациональном выражении мы видим, что и в числителе, и в знаменателе стоит x. Однако перед тем, как отменить их, запомните правило: отменить можно только факторы!

Здесь в числителе прибавляется к 3 (, а не умножается), а в знаменателе – до 2 (, а не умноженное).Таким образом, x не является фактором и поэтому не может быть отменен.

14. Не забывайте раздавать

Еще одна скорая вещь перед отъездом! Если перед скобками стоит x, внутри которых есть сложение или вычитание, то x необходимо умножить на КАЖДЫЙ член внутри скобок. Если впереди стоит отрицательный знак, его нужно распределить таким же образом!

Например:

Обладая всей этой информацией, вы готовы заняться алгеброй! Мы считаем, что если вы будете придерживаться этих советов, вы добьетесь больших успехов в этом классе.Главное, запомните: понимайте, а не запоминайте! А если вам нужна дополнительная помощь, наши репетиторы по алгебре Chegg всегда доступны 24/7!

Объяснение элементарной математики

Поделитесь этой страницей!

Этот сайт для вас, если

  • Вы хотите помочь своему ребенку выучить математику, даже не беспокоясь о нем. если вы думаете, что у вас плохо получается или вам это никогда не нравилось в школе
  • Вы хотите, чтобы ваши ученики усвоили концепции, навыки и применение математических концепций
  • Вы думаете, что математика – это больше, чем просто выполнение вычислений; что это важно понимать причины истинности вещей

Вы МОЖЕТЕ научить вашего ребенка математике…. даже если вы ненавидите это


Родители играют важную роль в жизни своих детей. Мы являемся первыми наставниками для наших детей. Мы их учим как ходить, говорить и так, почему мы не можем научить их элементарной математике? Из Конечно, не все родители увлекаются математикой, но, тем не менее, нет ничего плохого в том, чтобы пытаться научить этому своего ребенка, даже если вы ненавидите Это. В конце концов, если вы можете преодолеть свой страх перед математикой, они тоже смогут.

У нас есть все необходимое научить вашего ребенка элементарной математике.Итак, хочу быть учителем математики в своем ребенок дома? Вы определенно сможете это сделать с нашей помощью!

Подсчет 1-100

Использование разряда

Номер строки


Сравнение чисел

Номера для заказа

Округление


Пример рабочего листа FUN Math.


Общие сведения о дополнении

Использование числовой строки

Чертежи моделей


Использование числовых облигаций

Составление дополнительного заявления

Веселая практика

Лучший способ обучения детей – это короткие регулярные занятия с большим количеством повторений. Это лучший способ научиться чему-либо без стресса.Сделайте учебу семейным делом.

Наша цель – сделать базовую математику простой для понимания и увлекательной как для вас, так и для вашего ребенка.

Что такое вычитание

Количество облигаций и вычитания

Математические модели и вычитание


Заявление о вычитании

Числовая строка и вычитание

Вычесть большие числа

Understanding Division

Длинный дивизион


Что такое дроби

Виды дробей

Практика фракционирования


Сложить дроби

Вычесть дроби

Смешанные фракции


Модель Метод

Вопрос

Эрик делает домашнее задание по математике.Он сложил 2 четырехзначных числа и получил ответ 7467. Затем он вычел меньшее из большего и получил ответ 1351. Что это за 2 числа?

Решение:

Вопрос

Чарли и Джеймс собирают камешки. Чарли собрал на две трети меньше камешков, чем Джеймс. После того, как Джеймс выбросил 16 камешков, у него осталось на 3 камня меньше, чем у Чарли. Сколько камешков поднял Чарли?

Решение:

Вопрос

Марла закончила читать свою книгу через 3 года. дней.В первый день она прочитала 40% от общего количества страниц. Соотношение количества страниц, прочитанных на 2-й день к 3-му, составляет 3: 5.

Если она прочитает на 18 страниц на 3-й день больше, чем на 2-й, сколько всего страниц в книге?

Подробнее о сингапурской математике


Basic-Math-Explained.com создан, чтобы помочь вам учиться Основные понятия математики. Темы расположены в логическом заказ, чтобы вы могли узнать, что вам нужно. Каждая тема написана ясными, простыми словами и упорядочена от базового до передовой.

Существует множество бесплатных и увлекательных математических ресурсов и игр, которые вы можете использовать.

Если вы ищете не только учебники, контрольные книги и рабочие листы, то это место для вас! Этот сайт предназначен для всех, кто хочет получить более четкое представление о математике в начальной школе.

Объяснения сложных математических понятий разбиты для облегчения обучения.

Каждая элементарная математическая концепция объясняется по-разному, чтобы ваш ребенок мог понять ее так, как ему или ей.

У детей слишком много письменной работы в школе, поэтому я включил множество обучающих игр для вашего ребенка, чтобы он мог практиковать то, что он узнал.

Ваша поддержка снижает стресс вашего ребенка.

Игры – это хороший способ для семьи и друзей общаться во время обучения.

Отметьте, сколько усилий прилагает ваш ребенок, и результаты будут. Успех в математике наступит только тогда, когда ваш ребенок будет уверен в своих силах, будет получать удовольствие от решения проблем и будет целеустремленно стремиться овладеть математическими концепциями.

Содержание

Бабушки и дедушки, няни, друзья, тети, дяди также могут наслаждаться этими играми вместе со своим ребенком. Взрослые также могут посчитать игры немного сложными. Это не так просто, как кажется!

Игра на память

Найдите сумму

Вы также можете использовать найденные здесь карточки и игры, чтобы организовывать математические клубы с детьми из вашего района.

Лучший способ научить вашего ребенка – это систематически просматривать темы в том виде, в каком они появляются в навигации слева.Каждая тема закладывает основу для более сложных концепций.

Даже если ваш ребенок уже хорошо разбирается в математике, рекомендуется пройти все темы, чтобы заполнить пробелы, которые у него могут быть, или укрепить его или ее понимание.

Дети любят много поощрения. Всегда просите ребенка объяснить, как он пришел к ответу.

Это показывает вашему ребенку, что вы обращаете на него внимание и что его усилия в размере того стоят .

Объяснение также помогает детям улучшить свои мыслительные способности и прояснить свое мышление.

Нажмите на картинку, чтобы увидеть несколько забавных математических вопросов

Позвольте мне дать Вам краткий обзор этого сайта. Это незавершенная работа, поэтому добавьте ее в закладки. страницу и возвращайтесь за новыми советами и стратегиями. Не забудьте обновить страницу, чтобы увидеть изменения.

Вы можете щелкнуть темы на панели навигации в левой части страницы (внизу, если вы используете свой мобильный телефон или планшет), или вы можете прочитать описания некоторых из тем ниже.

Вы также можете использовать поле поиска для поиска определенной темы.

Распечатайте эти бесплатные карточки, показанные ниже, чтобы поиграть со своим ребенком.

От логики и математики к коду. Для чайников. Часть I: Основы | Автор Роман Кривцов

Мы привыкли думать, что разработка программного обеспечения – это своего рода точная наука. По крайней мере, мы верим в это. Как еще мы собираемся доказать нашим клиентам, что наше программное обеспечение работает? Но на самом деле все обычно не так однозначно (ответ «почему» будет в конце 3-й части).

Конечная цель программирования – перевести бизнес-требования из предложения на естественном языке в конкретные команды процессора, которые заставят машину делать то, что мы действительно хотим. Проблема в том, что неформальную логику и естественный язык очень трудно приспособить к формальным системам, если вообще возможно полностью. Видимо, потому, что эволюционно наш разум и сознание были построены по другим законам.

Но как-то переводим и иногда даже более-менее правильно. Но, может быть, когда-нибудь мы сможем это сделать автоматически?

Больше не нужны разработчики! Ура!

Подобные мысли волнуют многих футуристов и журналистов.Недавно Microsoft даже создала нейронную сеть, которая может писать код самостоятельно, используя более неформальные инструкции от людей.

Но принципиально , взаимосвязь между неформальной и формальной логикой еще не ясна, полная обработка естественного языка еще не решена, и не забывайте, что требования в неформальной логике могут легко иметь ошибки, которые могут быть незаметными.

Итак, давайте представим ситуацию на доске фрилансеров:
Предпосылка : Боб – программист
Предпосылка : Программист разрабатывает программное обеспечение
Предпосылка : Facebook – это программное обеспечение
Заключение : Боб может разработать Facebook

Фрилансер попросит клиента объяснить, что означает «Facebook», чтобы написать реализацию наиболее правильно, он или она должны были бы разработать формальную логическую систему, описывающую сущность «Facebook».

В идеале такое описание должно выглядеть как величайшая попытка человечества построить логически обоснованные определения: «Элементы» Евклида или «Этика» Спинозы , где окончательные определения (геометрия и этика) выводятся из таких атомарных понятий, как точка, линия, круг, бог, природа и сознание.

Кроме того, все утверждения должны быть доказаны правильно, быть верными, полными и согласованными с другими известными теоремами. И даже тогда у вас могут возникнуть проблемы, например, из-за теоремы Гёделя о неполноте , которая гласит, что даже в формальной полной системе вы можете столкнуться с недоказуемыми утверждениями (например,g Парадокс лжеца).
Вероятно, клиент тогда подумает, что вы сошли с ума, и найдет кого-то еще для создания какой-то социальной сети.

Так что мы не будем рассматривать перспективы замены разработчиков нейронными сетями, вместо этого, шаг за шагом, рассмотрим магию перехода от формальной логики к коду . Итак, начнем.

Первым, кто ввел понятие формальной логики (или аналитики, как ее тогда называли) и описал ее основы, был великий парень – Аристотель.Он открыл 3 из 4 законов логики (здесь и далее я буду использовать логические операторы C ++, которые знакомы каждому разработчику, вместо математических):

  • Закон тождества (A == A)
  • Закон непротиворечивости (A &&! A == false)
  • Закон исключенного среднего (! A || A == true)

Вам это кажется знакомым?

Именно так! Булева алгебра, которая рассматривает значения только как значения истинности и расширяет правила формальной логики.
Четвертое правило было открыто другим великим логиком – Лейбницем, и оно названо «Принцип достаточного основания» .Кстати, именно он представил 1 и 0 как true и false .
Это правило не так хорошо формализовано, как правила Аристотеля, но должно использоваться для вынесения любых суждений. Другими словами, мы должны сначала как-то доказать, что наши истинные / ложные ценности действительно таковы, чтобы иметь возможность делать какие-либо выводы.

Но что мы можем сделать в реальной жизни с такой низкоуровневой логикой? В принципе ничего. Нам нужны некоторые правила, чтобы строить более абстрактные предложения.
И вот Исчисление высказываний ! Этот парень позволяет нам анализировать логическую структуру действительно сложных предложений, с которыми мы имеем дело в реальной жизни.

Итак, мы идем: Часть II: Логика высшего порядка

Найдите меня в Twitter

Как быстро выучить математику

Обновлено 27 ноября 2018 г.

Ли Джонсон

Математика – один из самых недолюбимых предметов есть, но в той или иной степени он нужен почти каждому.Даже если вы не занимаетесь математикой, знание того, как рассчитать 15 процентов счета, чтобы вы могли давать чаевые официантам, или умение рассчитать НДС при покупке за границей, является жизненно важным навыком в повседневной жизни. По правде говоря, у математики плохая репутация, которой она не заслуживает. Сосредоточение внимания на быстром вычислении, механическом запоминании и абстрактных задачах заставляет многих людей думать, что математика – это скучно или просто не то, что им когда-либо понадобится.

Но что, если вы ранее решили, что вам, вероятно, не понадобится математика, но теперь оказались в зависимости от нее в вашей работе? Как лучше всего выучить математику, если у вас мало знаний по этому предмету? Хотя конкретный путь, который вы выберете, во многом зависит от того, для чего вам нужна математика, есть несколько полезных советов и советов, которые могут направить вас на правильный путь.

Занимайтесь предметом

У вас будет гораздо больше шансов выучить математику быстро, если вы будете заниматься предметом и получать от него как можно больше удовольствия. Вам не нужно с нетерпением ждать каждого нового «Numberphile» видео или решать дифференциальные уравнения в свободное время, но чем больше вы действительно будете получать удовольствие от предмета, а не рассматривать его как рутинную работу, тем лучше. Будьте любознательны, когда узнаете что-то странное или противоречащее интуиции, используйте аналогии и юмор, чтобы сделать основные идеи более яркими, и тщательно обдумайте концепции, лежащие в основе этих идей, а не сосредотачивайтесь только на том, как рассчитывать вещи или решать проблемы.

На самом деле, может быть более практичным было бы просто попытаться избежать главных вещей, которые заставляют людей ненавидеть математику, вместо того, чтобы пытаться получать удовольствие, если это не то, что вам раньше нравилось. Доктор Джо Боулер, профессор математического образования в Стэнфорде, пишет, что сосредоточение внимания на «быстрой математике», механическое запоминание и тестирование в условиях ограничений по времени являются основными препятствиями, с которыми люди сталкиваются при изучении математики.

Может показаться, что это не очень быстрый метод обучения, но быстрое изучение математики означает хорошее владение основами.Если вы поймете, как это работает, вы интуитивно уловите новые идеи и увидите связи между ними, вместо того, чтобы просто вспоминать, казалось бы, бесконечный поток очевидно не связанных между собой фактов.

Начинайте с основ

Более сложные математические темы в значительной степени основаны на более простых, поэтому вам нужно начинать с основ – даже если вы чувствуете, что хорошо разбираетесь в них, – прежде чем переходить к чему-то более сложному . Например, если вы надеетесь изучить математику, вы ничего не добьетесь быстро, если не будете хорошо разбираться в основах алгебры и немного тригонометрии.Перед тем как бегать, вам нужно ходить, и тот же самый базовый совет применим и к изучению математики.

Развивайте чувство числа вместо запоминания

Запоминание таблицы умножения менее важно, чем способность решать незнакомую задачу полусистемным способом. Например, вы могли запомнить, что 9 × 9 = 81, но если вы находитесь в тяжелой или стрессовой ситуации, такие факты легко забыть. «Чувство числа» – это возможность решить эту проблему с нуля простым способом.Например, умножение на 10 намного проще, поэтому вы можете решить это, вычислив 9 × 10 = 90, а затем вычтя лишние «9», которые вы включили в это вычисление (потому что вместо этого вы разработали 10 групп по девять из девяти групп по девять), чтобы получить 81.

Таким же образом, столкнувшись с проблемой типа 13 × 8, которую вы, вероятно, не запомнили, вы можете либо работать с 12 × 8 = 96, а затем добавить дополнительный восемь, или вы даже можете отметить, что 13 × 8 = 13 × 2 × 2 × 2, поэтому удвоение 13 три раза приведет вас к правильному ответу (дважды 13 равно 26, дважды это 52 и дважды это 104).

Стратегии этого типа – и подобные им – помогут вам с базовыми вычислениями гораздо больше, чем запоминание.

Помните о цели

Если вам нужны только базовые навыки, такие как работа с десятичными знаками и процентами, не нужно ставить себе задачу изучить геометрию или даже тригонометрию. Но если вы надеетесь заняться физикой, вам потребуются базовые знания по многим другим темам, включая алгебру, исчисление, векторы и многое другое. Лучший способ быстро выучить математику – выбрать кратчайший путь по нужному предмету, чтобы достичь желаемого.Убедитесь, что вы освоили все основы, но если вы спешите, вы можете позволить себе специализироваться после этого.

Ответы на практические вопросы имеют решающее значение

Математика – странный предмет, потому что, как правило, вы учитесь намного быстрее, выполняя ее. Читать книги и смотреть примеры полезно, но это не заменяет собственно самостоятельного решения вопросов. Поэтому не пропускайте практические вопросы, включенные в вашу книгу или на веб-сайт, который вы используете: проработайте их, и если вы ошиблись, посмотрите, что вы сделали, и попытайтесь понять, почему вы ошиблись.Ошибки случаются в математике – так что не расстраивайтесь – но они могут указывать на пробелы в ваших знаниях, и вам следует попытаться понять, почему они произошли и что вы не совсем поняли. Если вам это нужно, просмотрите соответствующие разделы книги еще раз, пока не поймете свою ошибку.

Следите за математическим словарным запасом

Такие слова, как коэффициент и квадратичный коэффициент, появляются постоянно, когда вы изучаете математику, но вам нужно понимать, что они означают, чтобы действительно добиться чего-то в чтении.Если вы спешите, лучший совет – записать ключевые определения и термины в блокнот, чтобы их было легче найти. Вы можете использовать онлайн-версию (см. Ресурсы), но написание определений своими словами также помогает в обучении.

Уловки и подсказки для легкого изучения математики

Развитие «чувства числа» на самом деле связано с изучением ряда стратегий для выполнения вычислений. Помимо двух, упомянутых ранее, есть много советов, которые помогут легко выучить математику, которые стоит усвоить. Например, двухэтапное сложение помогает решить задачи сложения, сначала добавляя то, что легко, а затем добавляете остальное.Так что, если вы столкнулись с 93 + 69, вы можете бороться стандартным методом (добавление 9 + 3, перенос единицы на «десятки» и т. Д.) Или обратите внимание, что 93 + 7 = 100. Итак. отнимите 7 от 69, чтобы получить 62, и прибавьте 7 к 93. Это упрощает задачу: 93 + 69 = 100 + 62 = 162. То же самое можно сделать и с вычитанием.

Есть много других подобных советов. Если у вас есть сложная задача умножения, например 45 × 28, если одно из чисел четное, вы можете упростить ее, разделив четное число на два и умножив второе на два.Так что вы можете написать:

Эту проблему решить немного проще. Имея немного смысла в числах, вы можете разбить это умножение на части, отметив, что:

90 × 14 = (90 × 10) + (90 × 4)

Другими словами, 14 групп по 90 равны 10. группы по 90 плюс 4 группы по 90. Понимая основы процесса умножения, вы можете найти способы упростить и решить даже, казалось бы, сложные задачи. Вы можете изучить множество подобных приемов (см. Раздел “Ресурсы”), и они очень полезны, если вам понадобится немного опыта в быстрых вычислениях без калькулятора.

Мастер решения проблем

Задачи – ключевая часть математики, и изучение некоторых стратегий их решения может помочь вам в большинстве ситуаций. Основные советы при решении проблемы – сосредоточиться на том, что вам сказали (то есть на том, что вы знаете), какая информация вам нужна и что вы хотите найти в конце проблемы. Исключение этих ключевых фрагментов информации часто указывает вам правильное направление, когда дело доходит до уравнения для использования или общего подхода.

Это также помогает найти термины, которые намекают на то, что вам нужно делать. Например, «когда значение y уменьшается на x . . . » означает «когда x вычитается из y . . . »; «Путем вычисления отношения x к y . . . » означает «путем деления x на y . . . »; и так далее.

Конечно, чем больше практических вопросов вы решите, тем лучше вы будете выполнять, но эти базовые советы действительно могут помочь вам встать на правильный путь даже при решении незнакомых проблем.

index-of.es/

 Название Размер
 Android / -
 Галерея искусств/                  -
 Атаки / -
 Переполнение буфера / -
 C ++ / -
 CSS / -
 Компьютер / -
 Конференции / -
 Растрескивание / -
 Криптография / -
 Базы данных / -
 Глубокая сеть / -
 Отказ в обслуживании/            -
 Электронные книги / -
 Перечисление / -
 Эксплойт / -
 Техники неудачной атаки / -
 Судебная экспертиза / -
 Галерея / -
 HTML / -
 Взломать / -
 Взлом-веб-сервер / -
 Взлом беспроводных сетей / -
 Взлом / -
 Генератор хешей / -
 JS / -
 Ява/                         -
 Linux / -
 Отмыкание/                  -
 Журналы / -
 Вредоносное ПО / -
 Метасплоит / -
 Разное / -
 Разное / -
 Протоколы сетевой безопасности / -
 Сеть / -
 ОПЕРАЦИОННЫЕ СИСТЕМЫ/                           -
 Другое / -
 PHP / -
 Perl / -
 Программирование / -
 Python / -
 RSS / -
 Rdbms / -
 Разобрать механизм с целью понять, как это работает/          -
 Рубин/                         -
 Сканирование сетей / -
 Безопасность/                     -
 Захват сеанса / -
 Снифферы / -
 Социальная инженерия/           -
 Поддерживает / -
 Системный взлом / -
 Инструменты/                        -
 Учебники / -
 UTF8 / -
 Unix / -
 Вариос-2 / -
 Варианты / -
 Видео/                       -
 Вирусы / -
 Окна / -
 Беспроводная связь / -
 Xml / -
 z0ro-Репозиторий-2 / -
 z0ro-Репозиторий-3 / -
 
.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *