На главную страницу || Карта сайта
| ||||||||
От составителя:В справочник по мощным транзисторам вошла как документация из
изданных еще при СССР каталогов, так и информация из справочных
листков и документация с сайтов производителей. Основой является таблица, где приведено наименование транзистора, аналоги, тип проводимости, тип корпуса, максимально допустимые ток и напряжения и коэффициент усиления,
то есть основные параметры, по которым выбирается транзистор.
Руководствуясь этой таблицей, можно значительно сузить область поиска.
Если транзистор по этим данным подходит, можно просмотреть
краткий справочный листок (только для распространенных приборов, например,
КТ502, КТ503,
КТ814, КТ815,
КТ816, КТ817,
КТ818, КТ819,
КТ825,
КТ827, КТ829,
КТ837,
КТ838, КТ846,
КТ940,
КТ961, КТ972,
КТ973,
КТ8101, КТ8102), где приведены только основные параметры транзисторов (которых, впрочем, достаточно для грубых расчетов), фото с цоколевкой,
аналоги и производители. Для более детального изучения характеристик
нужно открыть datasheet, где уже есть графики зависимостей параметров и редко требующиеся характеристики.
Всего в справочнике приведено подробное описание более 140 отечественных мощных транзисторов и более 100 их импортных аналогов. | ||||||||
Фильтр параметров: n-p-n p-n-p Составные транзисторы Высоковольтные Показать все | ||||||||
Типы корпусов | ||||||||
Наименование | Аналог | Корпус | Тип | Imax, A | Umax, В | h31e max | ||
КТ501(А-Е) | BC212 | TO-18 | pnp | 0,3 | 30 | 240 | КТ501 предназначен для применения в усилителях низкой частоты. Справочные данные транзистора КТ501 содержатся в даташит. | |
КТ502(А-Е) | MPSA56 | TO-92 | | pnp | 0,15 | 90 | 240 | Транзистор КТ502(А-Е) в корпусе ТО-92, предназначен для применения в усилителях низкой частоты. Подробные параметры КТ502 и цоколевка приведены в даташит. Аналог КТ502 – MPSA56. Комплементарная пара КТ503. |
КТ503(А-Е) | 2SC2240 | TO-92 | | npn | 0,15 | 100 | 240 | Универсальный транзистор КТ503(А-Е) в корпусе TO-92, предназначен для работы в усилителях НЧ. Подробные характеристики, графики зависимостей параметров и цоколевка КТ503 приведены в datasheet. Аналог КТ503 – 2SC2240. Комплементарная пара (транзистор обратной проводимости с близкими параметрами) – КТ502. |
КТ504(А,Б,В) | BSS73 | TO-39 | npn | 1 | 350 | 100 | КТ504(А-В) в металлическом корпусе, для применения в преобразователях. Цоколевка и характеристики КТ504 содержатся в datasheet. Импортный аналог КТ504 – BSS73. | |
KТ505(А,Б) | BSS76 | TO-39 | pnp | 1 | 300 | 100 | КТ505(А,Б) в металлическом корпусе предназначен для применения в источниках вторичного электропитания (ИВЭП). Параметры и характеристики приведены в справочном листке. | |
КТ506(А,Б) | BUX54 | TO-39 | npn | 2 | 800 | 30 | КТ506А и КТ506Б для переключающих устройств. Импортным аналогом КТ506 является BUX54. | |
2Т509А | TO-39 | pnp | 0,02 | 450 | 60 | 2Т509 для высоковольтных стабилизаторов напряжения | ||
КТ520(А,Б) | MPSA42 | TO-92 DPAK | npn | 0.5 | 300 | 40 | Высоковольтный транзистор КТ520 используется в выходных каскадах видеоусилителей и высоковольтных переключательных схемах. | |
КТ521(А,Б) | MPSA92 | TO-92 | pnp | 0.5 | 300 | 40 | Высоковольтный транзистор КТ521 является комплиментарной парой для КТ520. | |
КТ529А | TO-92 | pnp | 1 | 60 | 250 | КТ529,
его параметры
рассчитаны под схемы с низким напряжением насыщения | ||
КТ530А | TO-92 | npn | 1 | 60 | 250 | Описание транзистора КТ530. Его характеристики аналогичны КТ529, является его комплементарной парой. | ||
КТ538А | MJE13001 | TO-92 | npn | 0.5 | 600 | 90 | Высоковольтный КТ538 используется в высоковольтных переключательных схемах. Подробно параметры описаны в справочном листке. | |
КТ704(А-В) | MJE18002 | npn | 2,5 | 500 | 100 | КТ704, предназначен для применения в | ||
ГТ705(А-Д) | npn | 3,5 | 30 | 250 | ГТ705 предназначен для применения в усилителях мощности НЧ. | |||
2Т708(А-В) | 2SB678 | TO-39 | pnp | 2,5 | 100 | 1500 | составной транзистор 2Т708 предназначен для применения в усилителях и переключательных устройствах. | |
2Т709(А-В) | BDX86 | TO-3 | pnp | 10 | 100 | 2000 | мощный составной транзистор 2Т709 для усилителей и переключательных устройств | |
КТ710А | TO-3 | npn | 5 | 3000 | 40 | КТ710А для применения в высоковольтных стабилизаторах и переключающих устройствах. | ||
КТ712(А,Б) | BU806 | TO-220 | pnp | 10 | 200 | 1000 | мощные составные транзисторы КТ712А и КТ712Б. Характеристики заточены для применения в источниках вторичного электропитания и стабилизаторах. | |
2Т713А | TO-3 | npn | 3 | 2500 | 20 | 2Т713, параметры адаптированы для применения в | ||
2Т716 (А-В) | 2SD472H | TO-3 | npn | 10 | 100 | 750 | 2Т716 для применения в усилителях и переключающих устройствах. | |
2Т716 (А1-В1) | BDX33 | TO-220 | npn | 10 | 100 | 750 | составной 2Т716А1 в пластиковом корпусе. Параметры аналогичны 2Т716. | |
КТ719А | BD139 | TO-126 | npn | 1,5 | 120 | 70 | КТ719А для применения в линейных и переключающих схемах. Подробные характеристики и описание КТ719 приведено в справочном листке. | |
КТ720А | BD140 | pnp | 1,5 | 100 | ||||
КТ721А | BD237 | npn | 1,5 | 100 | BD237, импортный аналог КТ721А | |||
КТ722А | BD238 | pnp | 1,5 | 100 | Справочные данные BD238, аналога КТ722А | |||
КТ723А | MJE15028 | npn | 10 | 100 | Справочные данные MJE15028, импортного аналога КТ723 | |||
КТ724А | MJE15029 | pnp | 10 | 100 | Справочные данные MJE15029, аналога КТ724А | |||
КТ729 | npn | 30 | 60 | Параметры 2N3771, аналога КТ729 | ||||
КТ730 | 2N3773 | npn | 16 | 140 | Характеристики 2N3773, аналога КТ730 | |||
КТ732А | MJE4343 | TO-218 | npn | 16 | 160 | 15 | КТ732 используется в преобразователях напряжения. | |
КТ733А | MJE4353 | TO-218 | pnp | 16 | 160 | 15 | КТ733 – Комплементарная пара для КТ732, их характеристики идентичны. | |
КТ738А | TIP3055 | TO-218 | npn | 15 | 70 | 70 | КТ738 используется в усилителях и ключевых схемах. | |
КТ739А | TIP2955 | TO-218 | pnp | 15 | 70 | 70 | КТ739 – Комплементарная пара для КТ738. | |
КТ740А,А1 | MJE4343 | TO-220 TO-218 | npn | 20 | 160 | 30 | КТ740 предназначен для применения в регуляторах и преобразователях напряжения. Импортный аналог КТ740 – MJE4343 | |
КТ805(А-ВМ) | KSD363 BD243 | TO-220 | | npn | 5 | 160 | 15 | КТ805АМ, КТ805БМ, КТ805ВМ в корпусе ТО-220 предназначен для применения в выходных каскадах строчной развертки и переключающих устройствах. Подробные характеристики транзистора КТ805 приведены в datasheet. Транзисторы КТ805А, КТ805Б с аналогичными параметрами выпускаются в металлостеклянном корпусе. Импортные аналоги для КТ805 – транзисторы BD243 и KSD363. По характеристикам в качестве комплиментарной пары для КТ805 подходит транзистор КТ837. |
КТ807(А-БМ) | npn | 0,5 | 100 | 150 | КТ807 для строчной и кадровой разверток, усилителей НЧ и ИВЭП (ИВЭП – источник вторичного электропитания) | |||
КТ808(А-ГМ) | TO-3 | npn | 10 | 130 | 50 | КТ808 для кадровой и строчной разверток | ||
КТ812(А-В) | TO-3 | npn | 10 | 700 | 30 | КТ812 для применения в импульсных устройствах. Цоколевка приведена в справочном листке. | ||
КТ814(А-Г) | BD140 ZTX753 | TO-126 DPAK | | pnp | 1,5 | 100 | 100 | Транзистор КТ814. предназначен для усилителей НЧ, импульсных устройств. Подробные характеристики КТ814 и цоколевка приведены в datasheet. Там же
графики: входной характеристики, зависимости h31e от тока эмиттера, напряжения насыщения от тока коллектора и другие. Импортный аналог КТ814 – транзистор BD140. Комплементарная пара для КТ814 (транзистор обратной проводимости с близкими характеристиками) – КТ815. |
КТ815(А-Г) | BD139 ZTX653 | TO-126 DPAK | | npn | 1,5 | 100 | 100 | КТ815 является комплиментарной парой для КТ814. Транзисторы КТ815А, КТ815Б, КТ815В, КТ815 параметрами отличаются по напряжению. КТ815 предназначен для усилителей НЧ и ключевых схем. Подробные характеристики КТ815 и цоколевку см. в datasheet. Приведена входная характеристика КТ815, график зависимости h31e от тока, график для напряжения насыщения. Импортным аналогом КТ815 является транзистор BD139. |
КТ816(А-Г) | BD238 MJE172 | TO-126 DPAK | | pnp | 3 | 80 | 100 | КТ816 в два раза мощнее по току, чем КТ814, предназначены для применения в ключевых и линейных схемах. Транзисторы КТ816А, КТ816Б, КТ816В, КТ816Г отличаются по предельному напряжению. Подробные характеристики КТ816 и цоколевка приведены в datasheet. Там же график входной характеристики КТ816, зависимости усиления от тока, графики для напряжения насыщения. Импортным аналогом КТ816 является транзистор BD238. Комплементарная пара – КТ817. |
КТ817(А-Г) | BD237 MJE182 | TO-126 DPAK | | npn | 3 | 80 | 100 | КТ817 в два раза мощнее по току, чем КТ815. Применяются в ключевых и линейных схемах. Транзисторы КТ817А, КТ817Б, КТ817В, КТ817 параметрами отличаются по Uкэ(max). Подробные характеристики КТ817 и цоколевка даны в datasheet. Кроме характеристик по постоянному току приведены графики входной характеристики, зависимости параметра h31e от тока, взаимосвязи параметров Uкэнас и Iк . Аналоги КТ817Б – транзисторы BD233 и MJE180. Аналоги КТ817В – BD235 и MJE181, импортные аналоги КТ817Г – BD237 и MJE182. Комплементарная пара – КТ816. |
КТ818(А-ГМ) | BDW22 BD912 | TO-220 TO-3 | | pnp | 10 15 | 100 | 100 | Мощный транзистор КТ818 предназначен для применения в усилителях. КТ818А, КТ818Б, КТ818В и КТ818Г в корпусе TO-220, а КТ818АМ, КТ818БМ, КТ818ВМ и КТ818ГМ в металлическом корпусе. Подробные характеристики КТ818 и цоколевка приведены в datasheet. Там же графики зависимостей параметров, входная и выходная характеристика. Импортные аналоги КТ818 – BDW22 и BD912. Комплементарная пара – транзистор КТ819. |
КТ819(А-ГМ) | BDW51 BD911 | TO-220 TO-3 | | npn | 10 15 | 100 | 100 | Транзистор КТ819 является комплементарной парой для КТ818 и предназначен для применения в усилителях. Транзисторы КТ819А, КТ819Б, КТ819В и КТ819Г в корпусе TO-220, а КТ819АМ, КТ819БМ, КТ819ВМ и КТ819ГМ в корпусе TO-3. Подробные параметры КТ819 и цоколевка приведены в datasheet. Там же графики зависимостей, входная и выходная характеристика. Импортные аналоги КТ819 – BDW51 и BD911. |
КТ825(Г-Е) | 2Т6050 | TO-220 TO-3 | pnp | 15 20 | 100 | 18000 | Мощный составной pnp транзистор КТ825 для применения в усилителях и переключающих устройствах. 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д и КТ825Е в металлическом корпусе. Подробные характеристики приведены в datasheet. Различие в параметрах по напряжению. Комплементарная пара для КТ825 – транзистор КТ827. Импортный аналог – 2T6050. | |
КТ826(А-В) | TO-3 | npn | 1 | 700 | 120 | Биполярный транзистор КТ826 для применения в преобразователях и высоковольтных стабилизаторах. Описание КТ826 и характеристики приведены в документации. | ||
КТ827(А-В) | 2N6057 BDX87 | TO-3 | npn | 20 | 100 | 18000 | Мощный составной npn транзистор КТ827 для применения в усилителях, стабилизаторах тока, устройствах автоматики. В металлическом корпусе. Подробные характеристики КТ827А, КТ827Б, КТ827В приведены в даташит. Различаются параметрами по напряжению. Комплементарная пара для КТ827 – транзистор КТ825. Импортный аналог – 2N6057. | |
КТ828(А-Г) | BU207 | TO-3 | npn | 5 | 800 | 15 | характеристики КТ828, графики и параметры см. в даташит | |
КТ829(А-Г) | TIP122 2N6045 | TO-220 | npn | 8 | 100 | 3000 | Составной транзистор КТ829 для применения в усилителях НЧ и переключательных устройствах. Графики входных характеристик. Подробные характеристики транзисторов КТ829А, КТ829Б, КТ829В,КТ829Г в datasheet . Аналоги КТ829 – транзисторы TIP122 и 2N6045. | |
2Т830(А-Г) | 2N5781 | TO-39 | pnp | 2 | 90 | 160 | транзистор 2Т830 для применения в усилителях мощности и ИВЭП. Аналог 2Т830 – 2N5781. | |
2Т831(А-В) | 2N4300 | TO-39 | npn | 2 | 50 | 200 | 2Т831 для усилителей НЧ и преобразователей. | |
КТ834(А-В) | BU323 | TO-3 | npn | 15 | 500 | 3000 | составной транзистор КТ834 для источников тока и напряжения. | |
КТ835(А,Б) | 2N6111 | TO-220 | pnp | 7,5 | 30 | 100 | транзистор КТ835 для усилителей и преобразователей. Аналог КТ835 – импортный 2N6111 | |
2Т836(А-В) | BD180 | TO-39 | pnp | 3 | 90 | 100 | 2Т836 для усилителей мощности и ИВЭП. | |
КТ837(А-Ф) | 2N6108 2N6111 | TO-220 | | pnp | 8 | 70 | 200 | pnp транзистор КТ837 предназначен для применения в усилителях и переключающих устройствах. Корпус пластмассовый TO-220. Подробные параметры КТ837А, КТ837Б, КТ837В, КТ837Г, КТ837Д, КТ837Е-Ф указаны в файле. Аналог для КТ837 – транзистор 2N6108 с близкими характеристиками. |
КТ838А | 2SD1554 BU208 | TO-3 | npn | 5 | 1500 | 14 | Высоковольтный транзистор КТ838А для строчной развертки телевизоров . Характеристики КТ838А приведены в файле. Импортные аналоги – 2SD1554 и BU208. | |
КТ839А | 2SC1172 MJ16212 | TO-3 | npn | 10 | 1500 | 12 | Характеристики и параметры КТ839 аналогичны транзистору КТ838, но круче по току. | |
КТ840(А,Б) | BUX97 | TO-3 | npn | 6 | 400 | 100 | Биполярный транзисторы КТ840А и КТ840Б для применения в переключающих устройствах. Подробные параметры приведены в файле. | |
КТ841(А-В) | MJ413 2N3442 | TO-3 | npn | 10 | 600 | 35 | Мощный биполярный транзистор КТ841 для применения в мощных преобразователях. Подробные параметры транзисторов КТ841А, КТ841Б, КТ841В в даташит. | |
КТ842(А,Б) | 2SB506 | TO-3 | pnp | 5 | 300 | 30 | Биполярный транзистор КТ842 для применения в мощных преобразователях и линейных стабилизаторах напряжения. | |
КТ844А | MJ15011 | TO-3 | npn | 10 | 250 | 60 | КТ844 предназначен для импульсных устройств, подробное описание приведено в datasheet | |
КТ845А | TO-3 | npn | 5 | 400 | 100 | КТ845А разработан для применения в импульсных устройствах. | ||
КТ846А | BU208 | TO-3 | | npn | 5 | 1500 | 15 | Высоковольтный биполярный транзистор КТ846А, входные характеристики, графики приведены в datasheet. |
КТ847А | BUX48 2N6678 | TO-3 | npn | 15 | 650 | 100 | Подробное описание КТ847А, входные и выходные характеристики. Аналогом для КТ847 является BUX48. | |
КТ848А | BUX37 | TO-3 | npn | 15 | 400 | 1000 | Составной транзистор КТ848А для систем электронного зажигания. Характеристики КТ848 в прикрепленном файле. Аналог КТ848 – BUX37. | |
КТ850(А-В) | 2SD401 | TO-220 | npn | 2 | 250 | 200 | КТ850 заточен для применения в усилителях мощности и переключающих устройствах. Подробное описание КТ850А, КТ850Б, КТ850В и графики приведены в datasheet . | |
КТ851(А-В) | 2SB546 | TO-220 | pnp | 2 | 200 | 200 | КТ851 для усилителей НЧ и переключающих устройств. Параметры КТ851А, КТ851Б, КТ851В см. в файле pdf | |
КТ852(А-Г) | TIP117 | TO-220 | pnp | 2 | 100 | 1500 | Составной КТ852 для усилителей и переключающих устройств. Параметры КТ852А в даташит. | |
КТ853(А-Г) | TIP127 2N6042 | TO-220 | pnp | 8 | 100 | 750 | Составной pnp транзистор КТ853. Предназначен для применения в усилительных схемах. Параметры КТ853А, КТ853Б, КТ853В, КТ853Г см. в pdf файле. | |
КТ854(А,Б) | MJE13006 | TO-220 | npn | 10 | 500 | 50 | КТ854 для применения в преобразователях и линейных стабилизаторах. Справочные данные приведены в datasheet. | |
КТ855(А-В) | MJE9780 | TO-220 | pnp | 5 | 250 | 100 | КТ855 для применения в преобразователях, линейных стабилизаторах. Аналог с близкими характеристиками – MJE9780. | |
2Т856(А-В) | BUX48 | TO-3 | npn | 10 | 950 | 60 | 2Т856 для переключательных устройств. Аналог – BUX48. | |
КТ856(А1,Б1) | BUV48 | TO-218 | npn | 10 | 600 | 60 | КТ856 для применения в усилителях и переключающих устройствах. Справочные данные КТ856А1, КТ856Б1 см. в datasheet . | |
КТ857А | BU408 | TO-220 | npn | 7 | 250 | 50 | КТ857 для применения в усилителях и переключающих устройствах. Аналог – BU408. | |
КТ858А | BU406 | TO-220 | npn | 7 | 400 | 60 | транзистор КТ858 предназначен для применения в переключающих устройствах. Аналог – BU406. Подробное описание смотри в datasheet . | |
КТ859А | MJE13005 | TO-220 | npn | 3 | 800 | 60 | Высоковольтный КТ859 заточен для переключающих устройств. Параметры и цоколевка КТ859 приведены в datasheet. Импортный аналог с близкими характеристиками – MJE13005. | |
2Т860(А-В) | TO-39 | pnp | 2 | 90 | 100 | 2Т860 предназначен для усилителей мощности и преобразователей. | ||
2Т862(А-Г) | TO-3 | npn | 15 | 400 | 100 | 2Т862 для применения в импульсных модуляторах и переключающих устройствах. | ||
КТ863Б,В | D44Vh20 | TO-220 | npn | 10 | 160 | 300 | Транзистор КТ863 предназначен для применения в преобразователях, фотовспышках. Справочные характеристики см. в datasheet. Аналог КТ863 – D44Vh20. | |
КТ863БС | D44Vh20 | TO-220 TO-263 | npn | 12 | 160 | 300 | КТ863БС – более свежая разработка. Модификация КТ863БС1 предназначена для поверхностного монтажа. | |
КТ864А | 2N3442 | TO-3 | npn | 10 | 200 | 100 | КТ864 для применения в ИВЭП, усилителях и стабилизаторах. | |
КТ865А | 2SA1073 | TO-3 | pnp | 10 | 200 | 60 | Область применения транзистора КТ865 та же, что и у КТ864. | |
КТ867А | TIP35 | TO-3 | npn | 25 | 200 | 100 | КТ867 для применения в ИВЭП. В описании транзистора приведены графики зависимости коэффициента усиления от тока и график области максимальных режимов. | |
КТ868(А,Б) | BU426 | pnp | 6 | 400 | 60 | КТ868 предназначен для применения в источниках питания телевизоров. Подробные характеристики см. в datasheet. Функциональный аналог КТ868 – BU426. | ||
КТ872(А-В) | BU508 MJW16212 | TO-218 | | npn | 8 | 700 | 16 | Высоковольтный npn транзистор КТ872 для применения в строчной развертке телевизоров. Подробное описание КТ872 приведено в справочном листе. Аналоги КТ872 – транзисторы BU508 и MJV16212. |
2Т875(А-Г) | 2SD1940 | TO-3 | npn | 10 | 90 | 200 | 2Т875 для применения в усилителях и переключающих устройствах. | |
2Т876(А-Г) | MJE2955 | TO-3 | pnp | 10 | 90 | 140 | 2Т876 для применения в усилителях и переключающих устройствах. | |
2Т877(А-В) | 2N6285 | TO-3 | pnp | 20 | 80 | 10000 | Составной транзистор 2Т877 для применения в усилителях и переключающих устройствах. | |
КТ878(А-В) | BUX98 | TO-3 | npn | 30 | 900 | 50 | КТ878 для применения в переключающих устройствах, ИВЭП. | |
КТ879 | npn | 50 | 200 | 25 | КТ879 для применения в переключающих устройствах. | |||
2Т880(А-В) | 2N6730 | pnp | 2 | 100 | 140 | 2Т880 – для усилителей и переключательных устройств. | ||
2Т881(А-Г) | 2N5150 | npn | 2 | 100 | 200 | 2Т881 – применение аналогично 2Т880 | ||
2Т882(А-В) | TO-220 | npn | 1 | 300 | 100 | 2Т882 в корпусе ТО-220 для применения в усилителях и переключающих устройствах. Цоколевка и характеристики приведены в pdf. | ||
2Т883(А,Б) | TO-220 | pnp | 1 | 300 | 100 | 2Т883 для усилителей и переключающих устройств. Корпус ТО-220. | ||
2Т884(А,Б) | TO-220 | npn | 2 | 800 | 40 | 2Т884 для применения в усилителях и переключающих устройствах. Подробные параметры см. в datasheet . | ||
2Т885(А,Б) | TO-3 | npn | 40 | 500 | 12 | мощный транзистор 2Т885 предназначен для применения в ИВЭП. | ||
КТ886(А1,Б1) | MJW16212 | TO-218 | npn | 10 | 1400 | 25 | Высоковольтный транзистор КТ886 для применения в строчной развертке и ИВЭП. Характеристики см. в файле pdf. Аналог для КТ886 – MJW16212. | |
КТ887 А,Б | TO-3 | pnp | 2 | 700 | 120 | КТ887 для переключательных схем, стабилизаторов напряжения. | ||
КТ888 А,Б | TO-39 | pnp | 0,1 | 900 | 120 | Высоковольтный транзистор КТ888 для применения в преобразователях и стабилизаторах напряжения ИВЭП. | ||
КТ890(А-В) | BU323 | TO-218 | npn | 20 | 350 | 700 | Составной транзистор КТ890 предназначен для применения в схемах зажигания авто. Подробные характеристики КТ890А, КТ890Б и КТ890В приведены в pdf. Аналогом для КТ890 является BU323. | |
КТ892(А-В) | BU323A | TO-3 | npn | 15 | 400 | 300 | мощный транзистор КТ892 предназначен для применения в схемах зажигания авто и других схемах с индуктивной нагрузкой. | |
КТ896 (А,Б) | BDW84 | TO-218 | pnp | 20 | 80 | 10000 | Составной мощный транзистор КТ896 для применения в линейных и переключающих схемах. Характеристики КТ896А и КТ896Б см. в datasheet файле. Аналог для КТ896 – BDW84. | |
КТ897(А,Б) | BU931Z | TO-3 | npn | 20 | 350 | 4000 | Составной транзистор КТ897 для схем зажигания авто и других схем с индуктивной нагрузкой. Аналог для КТ897 – BU931. | |
КТ898 (А,Б) | BU931P | TO-218 | npn | 20 | 350 | 1500 | Составной транзистор КТ898 для применения в ИВЭП. Параметры оптимизированы для работы на индуктивную нагрузку. Аналог КТ898 – BU931. Подробные характеристики КТ898А и КТ898Б см. в datasheet. | |
КТ899А | BU806 | TO-220 | npn | 8 | 150 | 1000 | Составной транзистор КТ899 для применения в усилительных и переключательных устройствах. Аналог с близкими характеристиками – BU806. | |
КТ8101(А,Б) | MJE4343 2SC3281 | TO-218 | npn | 16 | 200 | 100 | мощный транзистор КТ8101 предназначен для применения в усилителях НЧ, стабилизаторах и преобразователях. Подробные характеристики КТ8101А и КТ8101Б см. в datasheet. Аналог для КТ8101 – транзистор MJE4343. Комплементарная пара – КТ8102. | |
КТ8102(А,Б) | MJE4353 2SA1302 | TO-218 | | pnp | 16 | 200 | 100 | Мощный транзистор КТ8102, область применения аналогична КТ8101, являющемуся его комплиментарной парой. Характеристики КТ8102А, КТ8102Б приведены в datasheet . Импортный аналог для КТ8102 – MJE4353. |
КТ8106 (А,Б) | MJH6286 | TO-218 | npn | 20 | 80 | 3000 | Составной транзистор КТ8106 для применения в усилителях мощности и переключающих схемах. Аналог для КТ8106 – MJH6286. | |
КТ8107(А-В) | BU208 | TO-218 | npn | 8 | 700 | 12 | КТ8107 для применения в каскадах строчной развертки, ИВЭП, высоковольтных схемах. Подробные параметры в datasheet. Импортный аналог для КТ8107 – BU208. | |
КТ8109 | TIP151 | TO-220 | npn | 7 | 350 | 150 | Составной транзистор КТ8109 для схем зажигания авто. Справочные данные см. в datasheet. | |
КТ8110 (А-В) | BUT11 | npn | 7 | 400 | 30 | Справочные данные BUT11, импортного аналога КТ8110. | ||
КТ8111(А9-Б9) | BDV67 | TO-218 | npn | 20 | 100 | 750 | Составной мощный транзистор КТ8111 для применения в усилителях НЧ, стабилизаторах тока и напряжения, переключателях. Аналог – BDV67. | |
КТ8115(А-В) | BD650 TIP127 | TO-220 | pnp | 8 5 | 100 | 1000 | Составной pnp транзистор
КТ8115А для применения в усилительных и преобразователях напряжения. Аналог для
КТ8115 – BD650. Комплементарная пара – КТ8116. | |
КТ8116(А-В) | TIP132 | TO-220 DPAK | | npn | 8 5 | 100 | 1000 | Составной транзистор КТ8116, область применения аналогична КТ8115, являющимся его комплементарной парой. |
КТ8117А | BUV48 | TO-218 | npn | 10 | 400 | 10 | мощный транзистор КТ8117 предназначен для ИВЭП, управления двигателями, стабилизаторов тока. | |
КТ8118А | MJE8503 | TO-220 | npn | 3 | 800 | 40 | КТ8118 для высоковольтных переключательных схем, усилителей постоянного тока. | |
КТ8120А | TO-220 | npn | 8 | 450 | 10 | КТ8120 для ИВЭП, схем управления электродвигателями. | ||
КТ8121А,Б | TO-220 | npn | 4 | 400 | 60 | КТ8121 для высоковольтных переключающих схем, преобразователей | ||
КТ8123А | TO-220 | npn | 2 | 150 | 40 | КТ8123 для схем вертикальной развертки ТВ, усилителей. | ||
КТ8124(А-В) | TO-220 | npn | 10 | 400 | 7 | Справочные данные КТ8124, предназначенного для применения в горизонтальной развертке ТВ, переключательных схемах. | ||
КТ8126(А1,Б1) | MJE13007 | TO-220 | | npn | 8 | 400 | 30 | мощный транзистор КТ8126 для применения в горизонтальной развертке ТВ, преобразователях. Справочные данные приведены в datasheet . |
КТ8130 (А-В) | BD676 | pnp | 4 | 80 | 15000 | |||
КТ8131 (А,Б) | BD677 | npn | 4 | 80 | 15000 | |||
КТ8133 (А,Б) | npn | 8 | 240 | 3000 | ||||
КТ8137А | MJE13003 | TO-126 | npn | 1,5 | 700 | 40 | Для применения в строчной развертке ТВ, управления двигателями. | |
КТ8141 (А-Г) | npn | 8 | 100 | 750 | ||||
КТ8143 (А-Ш) | КТ-9М | npn | 80 | 300 | 15 | биполярный мощный высоковольтный n-p-n транзистор с диодом КТ8143 для низковольтных источников питания бортовой аппаратуры | ||
КТ8144(А,Б) | TO-3 | npn | 25 | 800 | 55 | |||
КТ8146(А,Б) КТ8154(А,Б) КТ8155(А-Г) | ТО-3 | | npn | 15 30 50 | 800 600 600 | мощный высоковольтный транзистор для применения в источниках питания | ||
КТ8156(А,Б) | BU807 | TO-220 | npn | 8 | 200 | 1000 | КТ8156 предназначен для применения в горизонтальных развертках малогабаритных ЭЛТ. | |
КТ8157(А-В) | TO-218 | npn | 15 | 1500 | 8 | для строчных разверток ТВ с увеличенной диагональю экрана | ||
КТ8158(А-В) | BDV65 | TO-218 | npn | 12 | 100 | 1000 | КТ8158, параметры заточены для применения в усилителях НЧ, в ключевых и линейных схемах. | |
КТ8159(А,Б,В) | BDV64 | TO-218 | pnp | 12 | 100 | 1000 | КТ8159, Комплементарная пара для КТ8158, параметры и область применения аналогичные. | |
КТ8163А | npn | 7 | 500 | 40 | ||||
КТ8164(А,Б) | MJE13005 | TO-220 | npn | 4 | 400 | 60 | Высоковольтный транзистор КТ8164 для импульсных источников питания. | |
КТ8167 (А-Г) | pnp | 2 | 80 | 250 | ||||
КТ8168 (А-Г) | npn | 2 | 80 | 250 | ||||
КТ8170(А1,Б1) | MJE13003 | TO-126 | npn | 1.5 | 400 | 40 | Высоковольтный транзистор КТ8170 для применения в импульсных источниках питания. | |
КТ8171 (А,Б) | npn | 20 | 350 | 10000 | ||||
КТ8176(А,Б,В) | TIP31 | TO-220 | npn | 3 | 100 | 50 | КТ8176 для усилителей и переключательных схем. | |
КТ8177(А,Б,В) | TIP32 | TO-220 | pnp | 3 | 100 | 50 | КТ8177 для усилителей и переключательных схем. Комплементарная пара для КТ8176. | |
КТ8192 (А-В) | ISOTOP | npn | 75 | 1500 | 10 | мощный npn транзистор КТ8192 для применения в электроприводе | ||
КТ8196 (А-В) | npn | 10 | 350 | 400 | ||||
КТ8212(А,Б,В) | TIP41 | TO-220 | npn | 6 | 100 | 75 | КТ8212 для линейных и ключевых схем. | |
КТ8213(А,Б,В) | TIP42 | TO-220 | pnp | 6 | 100 | 75 | Комплементарная пара для КТ8212. | |
КТ8214(А,Б,В) | TIP112 | TO-220 | npn | 2 | 100 | 1000 | Составной транзистор КТ8214 предназначен для применения в ключевых и линейных схемах. | |
КТ8215(А,Б,В) | TIP117 | TO-220 | pnp | 2 | 100 | 1000 | Составной транзистор КТ8215 – Комплементарная пара КТ8214. | |
КТ8216 (А-Г) | MJD31B | npn | 2 | 800 | 275 | |||
КТ8217 (А-Г) | MJD32B | pnp | 10 | 100 | 275 | |||
КТ8218 (А-Г) | npn | 4 | 100 | 750 | ||||
КТ8219 (А-Г) | pnp | 4 | 40 | 750 | ||||
КТ8224(А,Б) | BU2508 | TO-218 | npn | 8 | 700 | 7 | Высоковольтный транзистор КТ8224 для применения в высоковольтных схемах ТВ приемников. Аналог – BU2508. Интегральный демпфирующий диод и резистор база-эмиттер. | |
КТ8228(А,Б) | BU2525 | TO-218 | npn | 12 | 800 | 10 | Высоковольтный транзистор КТ8228 для применения в высоковольтных схемах ТВ приемников. Белорусский аналог BU2525. Диод между коллектором э эмиттером, резистор между базой-эмиттером. | |
КТ8229А | TIP35F | TO-218 | npn | 25 | 180 | 75 | КТ8229 для линейных и ключевых схем. | |
КТ8230А | TIP36F | TO-218 | pnp | 25 | 180 | 75 | КТ8230 -Комплементарная пара для КТ8229. | |
КТ8231А | BU941 | npn | 15 | 500 | 300 | datasheet на транзистор BU941 | ||
КТ8232 (А,Б) | BU941ZP | TO-218 | npn | 20 | 350 | 300 | КТ8232 для применения в переключательных и импульсных схемах, параметры оптимизированы для схем зажигания. | |
КТ8246(А-Г) | КТ829 | TO-220 | npn | 15 | 150 | 9000 | Составной транзистор КТ8246 для применения в автотракторных регуляторах напряжения. | |
КТ8247А | BUL45D | TO-220 | npn | 5 | 700 | 22 | Высоковольтный транзистор КТ8247 для применения в преобразователях напряжения. Аналог – BUL45. Интегральный демпфирующий диод и резистор база-эмиттер. | |
КТ8248А | BU2506 | TO-218 | npn | 5 | 1500 | 60 | Высоковольтный транзистор КТ8247 для применения в строчных развертках ТВ. Аналог – BU2506. Интегральный демпфирующий диод и резистор база-эмиттер. | |
КТ8251А | BDV65 | TO-218 | npn | 10 | 180 | 1000 | Составной npn транзистор КТ8251 для применения в линейных усилителях и ключевых преобразователях напряжения. | |
КТД8252(А-Г) | BU323Z | TO-220 TO-218 | npn | 15 | 350 | 2000 | для работы на индуктивную нагрузку | |
КТ8254А | npn | 2 | 800 | 30 | ||||
КТ8255А | BU407 | TO-220 | npn | 7 | 330 | 200 | КТ8255 для применения линейных и ключевых схемах. | |
КТД8257(А-В) | SGSD96 | TO-220 | npn | 20 | 180 | 1000 | для применения в усилителях НЧ и переключающих устройствах. | |
КТ8258(А,Б) | MJE 13004 | TO-220 | npn | 4 | 400 | 80 | для использования в преобразователях, в линейных и ключевых схемах, аналог транзистора 13004 | |
КТ8259(А,Б) | MJE13007 13007 | TO-220 | npn | 8 | 400 | 80 | для использования в преобразователях, в линейных и ключевых схемах, отечественный аналог импортного транзистора 13007 | |
КТ8260(А-В) | MJE13008 | TO-220 | npn | 15 | 500 | 15 | для ИВЭП, преобразователей, аналог транзистора 13008. | |
КТ8261А | BUL44 | TO-126 | npn | 2 | 400 | 20 | КТ8261 для применения в преобразователях напряжения. | |
КТД8262(А-В) | SEC80 | TO-220 | npn | 7 | 350 | 300 | Для систем зажигания автотракторной техники | |
КТ8270А | MJE13001 | TO-126 | npn | 0.5 | 600 | 90 | КТ8270 для использования в преобразователях напряжения. Подробные справочные данные приведены в datasheet. | |
КТ8271(А,Б,В) | BD136 | TO-126 | pnp | 1.5 | 80 | 250 | КТ8271 для преобразователей напряжения. Подробные параметры приведены в datasheet. | |
КТ8272(А,Б,В) | BD135 | TO-126 | npn | 1.5 | 80 | 250 | КТ8272 для линейных усилителей и преобразователей напряжения.
Комплементарная пара для КТ8271 | |
КТД8278(А-В1) | SGSD93ST | TO-220 | npn | 20 | 180 | 1000 | Для усилителей НЧ, переключательных устройств. | |
КТД8279(А-В) | 2SD1071 | TO-220 TO-218 | npn | 10 | 350 | 300 | для работы на индуктивную нагрузку, в системах зажигания. | |
КТД8280(А-В) | TO-218 | npn | 60 | 120 | 1000 | Составной транзистор КТД8280 для преобразователей напряжения, схем управления двигателями, источников бесперебойного питания. | ||
КТД8281(А-В) | TO-218 | pnp | 60 | 120 | 1000 | Составной транзистор КТД8281 для преобразователей напряжения, схем управления двигателями. | ||
КТ8283(А-В) | TO-218 | pnp | 60 | 120 | 100 | для преобразователей, схем управления двигателями. Параметры описаны в даташит. | ||
КТ8284(А-В) | КТ829 | TO-220 | npn | 12 | 100 | 500 | для автотракторных регуляторов напряжения, линейных схем. | |
КТ8285(А-В) | BUF410 | TO-218 TO-3 | npn | 30 | 450 | 40 | для преобразователей напряжения, ИВЭП. Характеристики описаны в даташит. | |
КТ8286(А-В) | 2SC1413 | TO-218 TO-3 | npn | 5 | 800 | 40 | для усилителей низкой частоты, переключающих устройствах, мощных регуляторах напряжения. Подробные характеристики см. в datasheet | |
КТ8290А | BUh200 | TO-220 | npn | 10 | 700 | 15 | Высоковольтный биполярный транзистор КТ8290 для использования в импульсных источниках питания. | |
КТ8296(А-Г) | KSD882 | TO-126 | npn | 3 | 30 | 400 | КТ8296 для использования в импульсных источниках питания, ключевых схемах и линейных усилителях. | |
КТ8297(А-Г) | KSD772 | TO-126 | pnp | 3 | 30 | 400 | КТ8297 –
Комплементарная пара (транзистор с близкими характеристиками, но обратной проводимости) для КТ8296. | |
КТ8304А,Б | TO-220 D2PAK | npn | 8 | 160 | 250 | КТ8304 с демпферным диодом для автомобильных регуляторов напряжения. | ||
ПИЛОН-3 | TIP122 | TO-220 | npn | 15 | 100 | 1000 | для применения в переключающих схемах и преобразователях напряжения. Импортный аналог с близкими характеристиками – транзистор TIP122. | |
ПИР-1 | BUV48 | TO-218 | npn | 20 | 450 | 8 | ПИР-1 для ключевых схем с индуктивной нагрузкой и усилителей с высокой линейностью. | |
ПИР-2 | MJE4343 | TO-220 TO-218 | npn | 20 | 160 | 30 | ПИР-2 для линейных усилителей и ключевых схем. | |
Справочник составлен в 2007 году, затем дополнялся и дорабатывался вплоть до 2015г. Соавторы: WWW и Ко | ||||||||
Транзистор – популярный полупроводниковый прибор, выполняющий в электросхемах функции формирования, усиления или преобразования электросигналов и переключения электроимпульсов. Выделяют три типа этих приборов:
Домашним мастерам, специалистам по ремонту радиоаппаратуры, конструкторам часто требуется подобрать отечественный аналог импортных приборов или наоборот. В некоторых случаях это необходимо для экономии средств – российская продукция гораздо дешевле импортной. Это можно сделать несколькими способами:
В нашем каталоге транзисторов вы можете подобрать и купить отечественные аналоги зарубежных транзисторов. Таблицы зарубежных аналогов транзисторовЕсли вы нашли неточность в таблицах аналогов или хотите дополнить их – напишите об этом в комментариях внизу страницы! Таблица аналогов биполярных транзисторов
Биполярные транзисторы до 40 В
Биполярные транзисторы до 60 В
Биполярные транзисторы до 70 В
Биполярные транзисторы до 80 В
Биполярные транзисторы до 130 В
Биполярные транзисторы до 160 В
Биполярные транзисторы до 200 В
Биполярные транзисторы до 250 В
Биполярные транзисторы до 300 В
Биполярные транзисторы до 400 В
Биполярные транзисторы до 500 В
Биполярные транзисторы до 600 В
Биполярные транзисторы до 700 В
Биполярные транзисторы до 800 В
Биполярные транзисторы до 900 В
Биполярные транзисторы до 1500 В
Биполярные транзисторы свыше 2000 В
Однопереходные транзисторы
Мощные полевые транзисторы
Слабые полевые транзисторы
Была ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Другие материалы по темеАнатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Все картинки в новостях кликабельные, то есть при нажатии они увеличиваются. Транзисторы германиевые сплавные p-n-p универсальные низкочастотные мощные. Транзисторы кремниевые эпитаксиально-планарные структуры p-n-p переключательные. Предназначены для применения в мощных преобразователях, линейных стабилизаторах напряжения. ГТ322А, ГТ322Б, ГТ322В Транзисторы германиевые диффузионно-сплавные p-n-p усилительные с нормированным коэффициентом шума высокочастотные маломощные. Предназначены для работы в усилителях промежуточной и высокой частот. Транзисторы германиевые диффузионно-сплавные p-n-p усилительные с нормированным коэффициентом шума высокочастотные маломощные. Предназначены для работы в усилителях высокой частоты. КТ639А, КТ639Б, КТ639В, КТ639Г, КТ639Д, КТ639Е, КТ639Ж, КТ639И Транзисторы кремниевые эпитаксиально-планарные структуры p-n-p универсальные, предназначены для применения в каскадах предварительного усиления и в переключающих устройствах. Транзисторы кремниевые эпитаксиально-планарные p-n-p универсальные низкочастотные маломощные. Предназначены для работы в усилителях низкой частоты, операционных и дифференциальных усилителях, преобразователях, импульсных схемах. Транзисторы германиевые сплавные p-n-p универсальные низкочастотные мощные. Предназначены для применения в схемах переключения, выходных каскадах усилителей низкой частоты, преобразователях постоянного напряжения. Транзисторы германиевые сплавные p-n-p универсальные низкочастотные маломощные. Предназначены для усиления и переключения сигналов низкой частоты. Транзисторы кремниевые меза-эпитаксиально-планарные p-n-p универсальные низкочастотные мощные. Предназначены для применения в усилителях низкой частоты, операционных и дифференциальных усилителях, преобразователях и импульсных схемах. Транзисторы кремниевые эпитаксиально-планарные p-n-p усилительные мощные. Предназначены для работы в широкополосных усилителях мощности и автогенераторах. |
Качество мощные транзисторы кремния pnp для электронных проектов
Alibaba.com предлагает большой выбор. мощные транзисторы кремния pnp на выбор в соответствии с вашими потребностями. мощные транзисторы кремния pnp являются жизненно важными частями практически любого электронного компонента. Их можно использовать для создания материнских плат, калькуляторов, радиоприемников, телевизоров и многого другого. Выбирая правильно. мощные транзисторы кремния pnp, вы можете быть уверены, что создаваемый вами продукт будет высокого качества и очень хорошо работает. Ключевые факторы выбора продуктов включают предполагаемое применение, материал и тип, среди прочего.мощные транзисторы кремния pnp состоят из полупроводниковых материалов и обычно имеют не менее трех клеммы, которые можно использовать для подключения к внешней цепи. Эти устройства работают как усилители или переключатели в большинстве электрических цепей. мощные транзисторы кремния pnp охватывают два типа областей, которые возникают из-за включения примесей в процессе легирования. В качестве усилителей. мощные транзисторы кремния pnp скрывают низкий входной ток в большую выходную энергию, и они направляют небольшой ток для управления огромными приложениями, работающими как переключатели.
Изучите прилагаемые таблицы данных вашего. мощные транзисторы кремния pnp для определения опорных ног, эмиттера и коллектора для безопасного и надежного соединения. Файл. мощные транзисторы кремния pnp на сайте Alibaba.com используют кремний в качестве первичной полупроводниковой подложки благодаря их превосходным свойствам и желаемому напряжению перехода 0,6 В. Основные параметры для. мощные транзисторы кремния pnp для любого проекта включает в себя рабочие токи, рассеиваемую мощность и напряжение источника.
Откройте для себя удивительно доступный. мощные транзисторы кремния pnp на Alibaba.com для всех ваших потребностей и предпочтений. Доступны различные материалы и стили для безопасной и удобной установки и эксплуатации. Некоторые аккредитованные продавцы также предлагают послепродажное обслуживание и техническую поддержку.
Биполярные транзисторы. Характеристики и схемы соединений
Открытие полупроводников позволило создать не только диоды и тиристоры, но и тоже не менее популярные усилительные устройства – транзисторы. Они активно применяются в электронике и схемотехнике, а также современный прогресс позволил применять их и в силовой электронике. Более подробно мы рассмотрим биполярные транзисторы в этой статье.
Содержание:
Структура и принцип работы транзистора
В отличии от тиристоров и диодов, транзистор имеет двух переходную структуру. Она может быть двух видов – p-n-p проводимость, в которой по средине расположен полупроводник с электронной проводимостью, а по бокам с дырочной. Схема ниже:
Или же n-p-n:
Каждый из этих переходов имеет особенности обычных диодов. Если к левому переходу приложить напряжение в прямом направлении (положительный потенциал к р-полупроводнику, а негативный к n-полупроводнику), то в левом переходе появится прямой ток. Основные носители начнут переходить с левого полупроводника в средний, где они станут уже не основными. Если же к правому переходу приложить напряжение обратной полярности, то основные носители не будут создавать ток. При этом будет существовать только ток, который создается неосновными носителями. Но если в средней зоне появится значительное количество неосновных носителей за счет диффузии через левый переход, то и в правом переходе ток возрастет. Таким образом можно регулировать ток правого перехода, изменением его в левом переходе. Средний полупроводник зовут базой (на схеме Б), тот, к которому напряжение приложено в прямом направлении – эмиттером (на схеме Е), а в обратном – коллектором (К). На рисунках выше показаны обозначение транзисторов на принципиальных схемах. Вывод эмиттера показан стрелкой. Поскольку в работе транзистора принимают участия носители обеих знаков – его называют биполярным.
Основные носители эмиттера, что проникают в базу, создают ток коллектора Iк, но некоторая их часть (примерно 1-2%) отправляется в базу. Все три тока подчиняются первому закону Кирхгофа IE =Iб+Iк. если такое выражение справедливо для токов, то оно будет справедливо и для его приращений ∆IE =∆Iб+∆Iк.
Схемы соединения транзисторов
Существует три схемы соединения транзистора: с общей базой, с общим эмиттером и коллектором соответственно. Рассмотрим детальней каждую из них.
Общая база
Схема будет выглядеть так:
В данном случае входным током будет IЕ, а выходным IК. Коэффициентом усиления называют зависимость приращения тока коллектора от тока эмиттера и он имеет вид h21б= ∆Iк/∆IE. Поскольку ∆IE =∆Iб+∆Iк, то h21б<1. Обычно h21б= 0,98÷0,99, поскольку Iб составляет 1-2% от IE.
Вольт-амперная характеристика транзистора при отсутствии тока эмиттера представляет собой обратную характеристику диода (между коллектором и базой напряжение обратной полярности). Если создать ток между эмиттером и базой, возрастет ток (будем обозначать далее как I) коллектора. При различных значениях IЕ будут различные значения вольт-амперных характеристик транзистора, которые создают, так называемое семейство характеристик транзистора, которые приведены ниже:
Зависимость I от приложенного между ним и базой напряжения (входная характеристика транзистора) представляет собой ничто иное как прямую ветку характеристику диода. Также на I эмиттера оказывает влияние и напряжение между коллектором и базой и чем оно выше, тем сильнее характеристика смещается влево, как показано на рисунке ниже:
Но данное смещение наблюдается только в промежутке от 0 до 10 В, при увеличении напряжений характеристики смещаться не будут. Поскольку большинство транзисторов работают при UК>10 В, то входную характеристику считают независимой от входного напряжения.
Схема с общим эмиттером
Такая схема включения дает реальное усиление выходного тока I. Схема ниже:
Коэффициент усиления это как и раньше отношение выходного I к входному, но теперь входным будет IБ, так что получим:
Если учесть что h21б= 0,98÷0,99; имеем h21Е= 50÷98, что значительно выше единицы. Это главное преимущество этой схемы.
Вольтамперные характеристики схемы с общим эмиттером ОЭ напоминают те, что соответствуют схеме с общей базой ОБ, но расположены в первом квадранте и показаны ниже:
Здесь имеем два p-n перехода с потенциальным барьером, электрические поля в которых направлены встречно и взаимно компенсируются, поэтому при UК=0, коллекторный I не возникает. Характеристики будут смещаться относительно IБ, который в данном случае будет входным.
Входная характеристика практически такая же, как и для схемы с ОБ, так как соответствует одному и тому же переходу, но из-за того, что полярность входного напряжения относительно коллекторного в этой схеме противоположная, характеристика при росте UК смещается вправо и показана ниже:
И здесь она при UК>10 В от дальнейшего возрастания UК не зависит.
Для расчета и анализа усилителей необходимо использовать эквивалентную схему транзистора. Ее можно создать исходя из эквивалентной схемы диода. Поскольку транзистор являет собой два диода, совмещенных в одном корпусе, то эмиттерный переход будет находится под прямым напряжением. Чтоб учесть смещение входной характеристики в зависимости от входного напряжения коллектора, источник Е выразим как h12БUК, пропорциональным UK. Сопротивление эмиттерного перехода обозначим как h11Б. схема будет иметь следующий вид:
Схема с общим коллектором
Эта схема практически ничем не отличается от эмиттерной и ее эквивалентная схема может быть такой же. Но тому, что выходные (вольтамперные) характеристики практически горизонтальные, их пересечения с горизонтальной осью найти практически невозможно. Как известно из курса электротехники последовательное включение резистора с источником напряжения можно заменить на параллельное соединение резистора с источником тока, величина которого найдется как ордината точки пересечения характеристики с осью токов. Поскольку выходная характеристика будет смещаться относительно IЕ, учтем это путем введения источника тока h21БIЕ, пропорционально входному IЕ. Наклон выходной характеристики определит нам проводимость коллекторного перехода, которая имеет обозначение h22Б. Построенная таким образом схема будет полностью соответствовать эквивалентной схеме транзистора:
Буква Б в данном случае указывает на то, что данная схема соответствует соединению с общей базой ОБ.
Применив к левой части второй закон Кирхгофа, а к правой первый, получим:
Оба эти уравнения создают так называемую систему гибридных параметров, чем и обосновывается буква h. Если выписать все коэффициенты уравнений (параметры) в таблицу (определитель), то первый цифровой индекс будет указывать на номер строки, а второй на номер столбца. При этом двое из этих параметров – коэффициент усиления тока h21Б и коэффициент обратной связи по напряжению h21Б размерности не имеют. Входное сопротивление h11Б, измеряется в омах, а выходная проводимость h22Б в сименсах.
Также для схемы с ОЭ существует такая же система параметров и подобная эквивалентная схема:
Различие между схемами состоит в том, что вместо буквы Б использована буква Е. Уравнения для этой системы будут иметь вид:
На практике считается что h12Б= h12Э=0, поскольку при UК>10 В смена коллекторного напряжения на выходную характеристику не влияет. Между параметрами различных схем соединений существуют следующие зависимости:
Мощность транзисторов
Все изготовляемые транзисторы разделяют на три основных группы по мощности, которая может быть выделена на коллекторе и равна произведению тока на напряжение, что приложено к коллектору:
- Транзисторы малой мощности, их мощность лежит в пределах 0<PK<0,3 Вт;
- Транзисторы средней мощности – их пределы 0,3 Вт< PK< 1,5 Вт;
- Мощные транзисторы РК больше 1,5 В.
Мощность ограничивается граничной температурой, при превышении которой может произойти тепловой пробой.
Конструктивные особенности биполярных транзисторов
На самом деле конструктивное оформление биполярных транзисторов довольно разнообразно. Давайте рассмотрим конструкцию этих элементов на примере транзистора, показанного ниже:
На массивном металлическом основании 4 размещают кристалл полупроводника 1, который имеет, к примеру, электронную проводимость. На противоположной стороне кристалла относительно грани сделаны две напайки 2 и 3 например с индию, под которым будут создаваться зоны с дырочной проводимостью. Один из этих элементов будет коллектором, а второй эмиттером – сам кристалл базой. Для всех элементов реализованы выводы, а вся конструкция накрыта корпусом во избежание механических повреждений и попадания влажности. Металлическая основа 4 отводит тепло от устройства. В более мощных устройствах могут применять радиаторы, для более высокой теплоотдачи.
Биполярные транзисторы. For dummies / Хабр
Предисловие
Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.
Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
- Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.
Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.
Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .
Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru
Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Npn и pnp транзистор отличия
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока (“внутрь” для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют “комплементарные”, или “согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока (“внутрь” для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют “комплементарные”, или “согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Рекомендуем к прочтению
2N5194 – Силовые кремниевые PNP транзисторы
% PDF-1.4 % 1 0 obj > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > поток BroadVision, Inc.2020-10-07T14: 28: 29 + 02: 002013-12-11T14: 02: 10 + 01: 002020-10-07T14: 28: 29 + 02: 00application / pdf
2N6107 Распиновка транзистора, спецификации, схема и техническое описание
2N6107 Силовой транзистор PNP
2N6107 Силовой транзистор PNP
2N6107 Силовой транзистор PNP
Распиновка транзистора 2N6107
нажмите на картинку для увеличения
Конфигурация контактов
Контактный № | Имя контакта | Описание |
1 | База | Управляет смещением транзистора, используется для включения или выключения транзистора |
2 | Коллектор | Ток протекает через коллектор, обычно подключенный к нагрузке |
3 | Излучатель | Ток утекает через эмиттер, обычно соединенный с землей |
Характеристики и характеристики
- TO − 220 Компактный корпус
- 2N6017 – силовой транзистор PNP
- В CBO Напряжение базы коллектора 80 В постоянного тока
- В CEO Напряжение коллектора-эмиттера 70 В постоянного тока
- В EB Напряжение эмиттер-база 5 В постоянного тока
- Максимальный базовый ток IB 3.0 А
- Ток коллектора – постоянный I C 7,0 A
- Ток коллектора – пик I CM 10 A
- Общая рассеиваемая мощность P D -40 Вт
- Усиление высокого постоянного тока
- Усиление по высокому току – продукт на полосу пропускания
эквивалент
NTE197 (PNP), 2N6110 (PNP).
Кратко о транзисторе 2N61072N6107 представляет собой PNP-транзистор и имеет значение усиления от 30 до 150; это значение определяет усилительную способность транзистора.Максимальный ток, который может протекать через вывод коллектора, составляет 7А, поэтому мы не можем подключать нагрузки, потребляющие более 7А, с помощью этого транзистора. Для смещения транзистора мы должны подать ток на вывод базы, этот ток (I B ) должен быть ограничен до 3 А, а напряжение на выводе база-эмиттер должно быть 5 В.
Когда этот транзистор полностью смещен, он может позволить току максимум 7А через коллектор и эмиттер. Напряжение включения база-эмиттер V BE (ВКЛ) при условии, что ток коллектора I C составляет 7 А, а напряжение коллектор-эмиттер V CE составляет 4 В постоянного тока, максимум 3 В постоянного тока.2N6107 поставляется с компактным корпусом TO-220, который имеет металлический язычок, который действует как штырь электрического коллектора, а также действует как отвод тепла для диапазона высокой мощности транзистора.
2N6017 можно использовать как усилители мощности и коммутационные устройства.
Как использовать транзистор PNP?Основной принцип работы PNP-транзистора заключается в том, что ток присутствует на базе PNP-транзистора, а затем транзистор остается выключенным.Когда нет тока на базе транзистора, транзистор включается.
Ток втекает в транзистор PNP, а ток течет от эмиттера к коллектору, и это основное различие между транзисторами NPN и PNP. Чтобы включить PNP-транзистор, вам необходимо, чтобы базовое напряжение было меньше напряжения эмиттера. Это связано с тем, что базовый вывод состоит из полупроводника n-типа, а эмиттер – из полупроводника p-типа.
Следовательно, в приведенной выше схеме напряжение эмиттера поддерживается выше, чем напряжение базы, путем подключения положительной клеммы источника питания (батарея 9 В постоянного тока) к эмиттеру, а ее отрицательной клеммы к базе.
Диод подключается к стороне эмиттера или заземляющей клемме транзистора. Он включается, когда базовое напряжение меньше напряжения эмиттера или равно 0 В, и остается выключенным, когда базовое напряжение выше, чем напряжение эмиттера.
Высокая нагрузка может быть заменена светодиодом, а 2N6107 может использоваться для эффективной работы сильноточных нагрузок благодаря своей высокой мощности.
Приложения- Драйверные модули, такие как драйвер реле, драйвер светодиода и т. Д.
- Модули усилителя, такие как усилители звука, усилители сигнала и т. Д.
- Дарлингтон пара
, работа, применение
В этом руководстве мы попытаемся понять основы Tansistor PNP. Мы плохо знакомы с его работой, контактами, базовой схемой, идентификацией клемм, примером и несколькими приложениями.
ВведениеPNP-транзистор – это еще один тип биполярного переходного транзистора (BJT).Структура транзистора PNP полностью отличается от транзистора NPN. Два диода с PN-переходом в структуре транзистора PNP перевернуты по отношению к транзистору NPN, например, два легированных полупроводниковых материала P-типа разделены тонким слоем легированного полупроводникового материала N-типа.
В транзисторе PNP основными носителями тока являются дырки, а неосновными носителями тока являются электроны. Все полярности напряжения питания, приложенного к транзистору PNP, поменяны местами.В PNP ток поступает на базовый терминал. Малый базовый ток в PNP имеет возможность управлять большим током эмиттер-коллектор, потому что это устройство, управляемое током.
Стрелка для BJT-транзисторов всегда находится на выводе эмиттера, а также указывает направление обычного тока. В транзисторе PNP эта стрелка обозначается как «указывающая внутрь», а направление тока в транзисторе PNP полностью противоположно направлению тока транзистора NPN. Структура транзистора PNP полностью противоположна транзистору NPN.Но характеристики и работа транзистора PNP практически такая же, как у транзистора NPN с небольшими отличиями. Символ и структура транзистора PNP показаны ниже.
На рисунке выше показаны структура и обозначение транзистора PNP. Этот транзистор в основном состоит из 3 выводов: эмиттера (E), коллектора (C) и базы (B). Здесь, если вы заметили, ток базы течет из базы, в отличие от транзистора NPN. Напряжение эмиттера положительно относительно базы и коллектора.
ВЕРНУТЬСЯ В НАЧАЛО
Рабочий транзистор PNPСхема подключения транзистора PNP с напряжением питания приведена ниже. Здесь вывод базы имеет отрицательное смещение относительно эмиттера, а вывод эмиттера имеет положительное напряжение смещения относительно как базы, так и коллектора из-за транзистора PNP.
Полярность и направление тока здесь противоположны по сравнению с NPN-транзистором. Если транзистор подключен ко всем источникам напряжения, как показано выше, то базовый ток протекает через транзистор, но здесь базовое напряжение должно быть более отрицательным по отношению к эмиттеру для работы транзистора.Здесь переход база-эмиттер действует как диод. Небольшой ток в базе управляет протеканием большого тока через эмиттер в область коллектора. Базовое напряжение обычно составляет 0,7 В для Si и 0,3 В для германиевых устройств.
Здесь клемма базы действует как вход, а область эмиттер-коллектор действует как выход. Напряжение питания V CC подключено к выводу эмиттера, а нагрузочный резистор (R L ) подключен к выводу коллектора. Этот нагрузочный резистор (R L ) используется для ограничения максимального тока, протекающего через устройство.Еще один резистор (R B ) подключен к клемме базы, которая используется для ограничения максимального тока, протекающего через клемму базы, а также на клемму базы подается отрицательное напряжение. Здесь ток коллектора всегда равен вычитанию тока базы из тока эмиттера. Подобно транзистору NPN, транзистор PNP также имеет значение усиления по току β. Теперь давайте посмотрим, как связаны токи и коэффициент усиления по току β.
Коллекторный ток (I C ) определяется как,
I C = I E – I B
Коэффициент усиления постоянного тока (β) для транзистора PNP такой же, как у транзистора NPN. .
Коэффициент усиления постоянного тока = β = Выходной ток / Входной ток
Здесь выходной ток – это ток коллектора, а входной ток – базовый ток.
β = I C / I B
Из этого уравнения получаем
I B = I C / β
I C = β I B
А также мы определяем коэффициент усиления по току как,
Коэффициент усиления по току = ток коллектора / ток эмиттера (в транзисторе с общей базой)
α = I C / I E
Соотношение между α и β определяется как β = α / (1- α) и α = β / (β + 1)
Ток коллектора в транзисторе PNP определяется выражением,
I C = – α I E + I CBO где I CBO – ток насыщения.
Так как I E = – (I C + I B )
I C = – α (- (I C + I B )) + I CBO
I C – α I C = α I B + I CBO
I C (1- α) = α I B + I CBO
I C = (α / (1- α)) I B + I CBO / (1- α)
Поскольку β = α / (1- α)
Теперь мы получаем уравнение для тока коллектора
I C = β I B + (1+ β) I CBO
Выходные характеристики транзистора PNP такие же, как характеристики транзистора NPN.Небольшая разница в том, что характеристическая кривая PNP-транзистора поворачивается на 180 0 для вычисления значений напряжения и тока обратной полярности. Линия динамической нагрузки также присутствует на характеристической кривой для расчета значения Q-точки. Транзисторы PNP также используются в схемах переключения и усиления, таких как транзисторы NPN.
ВЕРНУТЬСЯ В НАЧАЛО
Пример транзистора PNPРассмотрим транзистор PNP, который включен в цепь с напряжениями питания V B = 1.5V, V E = 2V, + V CC = 10V и –V CC = -10V. А также эта схема соединена с резисторами R B = 200 кОм и R E = R C (или R L ) = 5 кОм. Теперь рассчитайте текущие значения усиления (α, β) транзистора PNP.
Здесь
В B = 1,5 В
В E = 2 В
+ V CC = 10 В и –В CC = -10 В
R B = 200 кОм
E = R C (или R L ) = 5 кОмБазовый ток,
I B = V B / R B = 1.5 / (200 * 10 3 ) = 7,5 мкА.
Ток эмиттера,
I E = V E / R E = (10-2) / (5 * 10 3 ) = 8 / (5 * 10 3 ) = 1,6 мА .
Ток коллектора,
I C = I E – I B = 1,6 * 10 -3 -7,5 * 10 -6 = 1,59 мА.
Теперь нам нужно вычислить значения α и β,
α = I C / I E = 1,59 * 10 -3 / 1,6 * 10 -3 = 0.995
β = I C / I B = 1,59 * 10 -3 /7,5 * 10 -6 = 212
Наконец, мы получаем текущие значения усиления рассматриваемого транзистора PNP:
α = 0,995 и β = 212
НАЗАД В начало
Согласование транзисторов BJTСогласование транзисторов – это не что иное, как соединение транзисторов NPN и PNP в единой конструкции для генерации высокой мощности. Эта структура также называется «согласованной парой».Транзисторы NPN и PNP называются дополнительными транзисторами. В основном эти согласованные парные схемы используются в усилителях мощности, таких как усилители класса B. Если мы подключим дополнительные транзисторы, которые имеют одинаковые характеристики, то будет очень полезно управлять выходными каскадами в двигателях и крупногабаритном оборудовании, непрерывно производя высокую мощность.
Транзистор NPN проводит только в положительном полупериоде сигнала, а транзистор PNP проводит только в отрицательном полупериоде сигнала, поэтому устройство работает непрерывно.Эта непрерывная работа очень полезна в силовых двигателях для выработки постоянной мощности. Дополнительные транзисторы должны иметь одинаковое значение коэффициента усиления по постоянному току (β). Эти согласованные парные схемы используются в системах управления двигателями, робототехнике и усилителях мощности.
НАЗАД В начало
Идентификация транзисторов PNPОбычно мы идентифицируем транзисторы PNP по их структуре. У нас есть некоторые различия в структурах транзисторов NPN и PNP при сравнении.Еще одна вещь для идентификации транзистора PNP: обычно транзистор PNP находится в выключенном состоянии для положительного напряжения и во включенном состоянии при небольшом выходном токе и отрицательном напряжении на его базе по отношению к эмиттеру. Но чтобы идентифицировать их наиболее эффективно, мы используем другую технику, вычисляя сопротивление между тремя выводами, такими как база, эмиттер и коллектор.
У нас есть несколько стандартных значений сопротивления для идентификации транзисторов NPN и PNP. Необходимо проверить каждую пару клемм в обоих направлениях на значения сопротивления, поэтому всего требуется шесть тестов.Этот процесс очень полезен для простой идентификации транзистора PNP. Теперь мы видим, как работает каждая пара терминалов.
- Клеммы эмиттер-база: Область эмиттер-база действует как диод, но проводит только в одном направлении.
- Клеммы коллектор-база: Область коллектор-база также действует как диод, который проводит ток только в одном направлении.
- Клеммы эмиттер-коллектор: Область эмиттер-коллектор выглядит как диод, но он не будет проводить ни в одном направлении.
Теперь давайте посмотрим на таблицу значений сопротивления, чтобы идентифицировать как NPN-, так и PNP-транзисторы, как показано в следующей таблице.
НАЗАД К НАЧАЛУ
Транзистор PNP как переключательСхема на приведенном выше рисунке показывает транзистор PNP как переключатель. Работа этой схемы очень проста, если входной контакт транзистора (база) подключен к земле (то есть отрицательное напряжение), тогда транзистор PNP находится в состоянии «ВКЛ», теперь напряжение питания на эмиттере проходит, а выходной контакт подтягивается. к большему напряжению.Если входной вывод подключен к высокому напряжению (то есть положительному напряжению), тогда транзистор находится в состоянии «ВЫКЛ», поэтому выходное напряжение должно быть низким (нулем). Эта операция показывает условия переключения транзистора PNP из-за их состояний ВКЛ и ВЫКЛ.
ВЕРНУТЬСЯ В НАЧАЛО
Приложения- PNP-транзисторы используются для источника тока, т. Е. Ток течет из коллектора. Транзисторы
- PNP используются в качестве переключателей.
- Используются в схемах усиления. Транзисторы
- PNP используются, когда нам нужно что-то выключить нажатием кнопки. т.е. аварийное отключение.
- Используется в парных схемах Дарлингтона.
- Используется в схемах согласованных пар для обеспечения непрерывной мощности.
- Используется в тяжелых двигателях для управления током.
- Используется в роботизированных приложениях.
ВЕРНУТЬСЯ В НАЧАЛО
ПРЕДЫДУЩИЙ – ТРАНЗИСТОР NPN
СЛЕДУЮЩИЙ – КОНФИГУРАЦИИ ТРАНЗИСТОРА
4 лучших транзистора для хранения в комплекте деталей
Если вашему проекту нужен транзистор, есть множество вариантов.Что заставляет ответить на вопрос «Какой транзистор мне использовать или купить?» непростая задача. Не бойтесь, прежде чем разбирать спецификации за спецификациями, рассмотрите один из этих четырех транзисторов общего назначения. В ящике с инструментами каждого инженера-электронщика должно быть несколько таких инструментов.
Транзисторы – один из самых универсальных дискретных компонентов в электронике. В цифровых схемах они включаются и выключаются, а в аналоговых схемах они используются для усиления сигналов. В большинстве проектов они используются для включения нагрузки, которая убила бы вывод ввода-вывода микроконтроллера или микропроцессора.Для большинства схем можно использовать либо BJT, либо MOSFET, в зависимости от тока нагрузки, который необходимо переключить.
[Edit Note] Ян (комментарий ниже) указывает, что есть европейские эквиваленты, которые могут быть более доступными для тех, кто находится в этой части мира. Для NPN проверьте BC547, для PNP – BC557.
Вот еще несколько подробностей по каждому из них.
Лучшие транзисторы: БЮЦ
Биполярные транзисторыпоставляются в небольших корпусах, могут управляться напрямую с помощью выводов ввода-вывода и стоят ОЧЕНЬ дешево.Есть два варианта: NPN и PNP. Эти маленькие ребята являются рабочими лошадками большинства схем управления для приложений с малым током. В 3-контактном корпусе в стиле TO-92 вы обычно найдете детали со сквозным отверстием.
# 1 НПН – 2Н3904
Чаще всего NPN-транзисторы можно встретить в схемах переключателей низкого уровня. Эта конфигурация означает, что все, что вы хотите контролировать, подключено между «высоким» напряжением и коллектором транзистора. Прочтите этот пост для получения дополнительной информации о low-side vs.переключатели верхнего плеча.
Обычно я использую транзистор 2N3904. Вы можете легко переключать большие нагрузки, например, более 12 вольт, с максимальным номиналом этого транзистора 40 вольт. Его номинальный ток составляет всего 200 мА, но этого достаточно для большинства реле.
2N3904 от Mouser
№ 2 ПНП – 2Н3906
Для цепей переключателя верхнего плеча необходим BJT типа PNP. В цепи высокого напряжения нагрузка находится между коллектором транзистора и землей цепи. Его эмиттер подключается к «высоковольтному».«Поскольку я рекомендовал 2N3904 для NPN, я предлагаю его дополнение: 2n3906. Как и NPN, он имеет такое же максимальное напряжение и ток: 40 В и 200 мА. Прочтите этот пост для получения дополнительной информации о переключателях низкого и высокого уровня.
2N3906 от Mouser
# 3 Питание – TIP120
Одним из преимуществ BJT является то, что они легко управляются от вывода ввода-вывода Arduino или Raspberry Pi. Когда они сконфигурированы как «пара Дарлингтона», они могут обеспечивать значительно более высокие токи, чем одиночные транзисторы.TIP120 – это пара Дарлингтона, которая может выдерживать до 5 ампер в корпусе TO-220. Иногда можно увидеть тот же корпус, который используется для линейных регуляторов LM7805. Если вы хотите получить такой большой ток, не забудьте радиатор!
TIP120 от Mouser
Лучшие транзисторы: МОП-транзисторы
Когда вам нужно управлять большим количеством ампер тока, полевые МОП-транзисторы – это просто фантастика. Однако большинство из них не работают на «логических уровнях», то есть им обычно требуется от 10 до 15 вольт для их правильного включения.Такое высокое напряжение трудно достичь 5-вольтовому контакту ввода-вывода Arduino, не говоря уже о Beaglebone или Raspberry Pi.
Если вы новичок в MOSFET, ознакомьтесь с моим видеоуроком по MOSFET (прокрутите вниз) и этой статьей о развенчании мифов о MOSFET.
# 4 N-канал (логический уровень) – FQP30N06L
Эти транзисторы «рабочая лошадка» рассчитаны на максимальное напряжение 60 В и 30 А. Не в миллиамперах. Амперы! (Хотя вам понадобится радиатор!) Они стоят почти в 2 раза больше, чем стоит TIP120, но они обеспечивают намного больший ток.Лучшая часть? Имея Vgs-threshold, совместимый с «логическим уровнем», Arduino может легко управлять ими с помощью своего выходного вывода 5,0 В. Благодаря этим свойствам я держу под рукой стопку FQP30N06.
FQP30N06L от Mouser
FPQ30N06L с Amazon
Заключение
Эти четыре транзистора общего назначения предназначены для широкого диапазона применений. Наличие пары каждого из них в коробке пригодится практически для любого проекта. Оставьте комментарий ниже, какие транзисторы вы держите под рукой.
Обновление : я добавил небольшую заметку о европейских альтернативах для NPN и PNP BJT.
Различия между транзисторами NPN и PNP и их создание
Как p-n-p, так и n-p-n транзисторы являются основными транзисторами, которые подпадают под категорию транзисторов с биполярным переходом. Они используются в различных схемах усиления и схемах модуляции. Наиболее частым из его применений является режим полного включения и выключения, называемый переключателем.
Транзисторы NPN и PNP представляют собой транзисторы с биполярным переходом и являются основным электрическим и электронным компонентом, который используется для создания многих электрических и электронных проектов. В работе этих транзисторов участвуют как электроны, так и дырки. Транзисторы PNP и NPN допускают усиление тока. Эти транзисторы используются как переключатели, усилители или генераторы. Транзисторы с биполярным переходом можно найти в большом количестве в виде частей интегральных схем или в виде дискретных компонентов.В транзисторах PNP основными носителями заряда являются дырки, тогда как в транзисторах NPN электроны являются основными носителями заряда. Но полевые транзисторы имеют только один тип носителя заряда.
В основе формирования этих транзисторов лежат диоды с p-n переходом. Как и в транзисторах n-p-n, n-типы являются в большинстве своем, поэтому они включают избыточное количество электронов в качестве носителей заряда. В p-n-p транзисторах есть два p-типа, в результате чего большинство носителей заряда представляют собой дырки.
Основное различие между транзисторами NPN и PNP заключается в том, что транзистор NPN включается, когда ток течет через базу транзистора. В этом типе транзистора ток течет от коллектора (C) к эмиттеру (E). Транзистор PNP включается, когда на базе транзистора нет тока. В этом транзисторе ток течет от эмиттера (E) к коллектору (C). Таким образом, зная это, транзистор PNP включается низким сигналом (земля), а транзистор NPN включается высоким сигналом (током). .
Разница между транзисторами NPN и PNP и их изготовлениеТранзистор PNP
Транзистор PNP – это транзистор с биполярным переходом; В транзисторе PNP первая буква P указывает полярность напряжения, необходимого для эмиттера; вторая буква N указывает полярность цоколя. Работа транзистора PNP прямо противоположна работе транзистора NPN. В транзисторах этого типа большинство носителей заряда – дырки. По сути, этот транзистор работает так же, как транзистор NPN.Материалы, которые используются для изготовления выводов эмиттера, базы и коллектора в транзисторе PNP, отличаются от материалов, используемых в транзисторе NPN. Схема смещения транзистора PNP показана на рисунке ниже. Клеммы база-коллектор PNP-транзистора всегда имеют обратное смещение, поэтому для коллектора необходимо использовать отрицательное напряжение. Следовательно, вывод базы PNP-транзистора должен быть отрицательным по отношению к выводу эмиттера, а коллектор должен быть отрицательным, чем база.
Изготовление транзистора PNP
Конфигурация транзистора PNP показана ниже. Характеристики транзисторов PNP и NPN аналогичны, за исключением того, что смещение направления напряжения и тока меняются местами для любой из трех возможных конфигураций, таких как общая база (CB), общий эмиттер (CE) и общий коллектор (CC). .Напряжение между базой и выводом эмиттера VBE отрицательное на выводе базы и положительное на выводе эмиттера, потому что для транзистора PNP вывод базы всегда смещен отрицательно по отношению к эмиттеру.Кроме того, напряжение эмиттера положительно по отношению к коллектору (VCE).
Источники напряжения подключены к транзистору PNP, который показан на рисунке. Эмиттер подключен к Vcc с помощью RL, этот резистор ограничивает максимальный ток, протекающий через устройство, которое подключено к клемме коллектора. Базовое напряжение VB подключено к базовому резистору RB, который смещен отрицательно по отношению к эмиттеру. Чтобы ток базы протекал через PNP-транзистор, клемма базы должна быть более отрицательной, чем клемма эмиттера, примерно на 2,8%.0,7 В или устройство Si.
Основное различие между PNP и PN-транзисторами заключается в правильном смещении переходов транзистора; направления тока и полярности напряжения всегда противоположны друг другу.
Основы P-N-P
Транзисторы p-n-p сформированы с n-типом, присутствующим между p-типами. Большинство носителей, ответственных за генерацию тока, в этом транзисторе являются дырками. Рабочая операция аналогична работе n-p-n.Но приложения напряжений или токов с точки зрения полярности различаются.
Транзистор NPN
Транзистор NPN представляет собой транзистор с биполярным переходом. В транзисторе NPN первая буква N указывает на отрицательно заряженный слой материала, а P указывает на положительно заряженный слой. Эти транзисторы имеют положительный слой, который расположен между двумя отрицательными слоями. Транзисторы NPN обычно используются в схемах для переключения, усиления электрических сигналов, которые проходят через них.Эти транзисторы содержат три вывода, а именно базу, коллектор и эмиттер, и эти выводы соединяют транзистор с печатной платой. Когда ток протекает через NPN-транзистор, клемма базы транзистора получает электрический сигнал, коллектор создает более сильный электрический ток, чем тот, который проходит через базу, и эмиттер передает этот более сильный ток на остальную часть схемы. В этом транзисторе ток течет через вывод коллектора к эмиттеру.
Обычно этот транзистор используется потому, что его очень легко изготовить. Для правильной работы NPN-транзистора он должен быть сформирован из полупроводникового материала, который пропускает электрический ток, но не в максимальном количестве, как у очень проводящих материалов, таких как металл. «Si» – один из наиболее часто используемых полупроводников, а транзисторы NPN – самые простые транзисторы, которые можно сделать из кремния. Применение транзистора NPN находится на печатной плате компьютера. Компьютеры нуждаются в том, чтобы вся их информация была переведена в двоичный код, и этот процесс достигается с помощью множества маленьких переключателей на печатных платах компьютеров.Для этих переключателей можно использовать транзисторы NPN. Мощный электрический сигнал включает переключатель, а отсутствие сигнала выключает его.
Изготовление NPN-транзистора
Конструкция NPN-транзистора показана ниже. Напряжение на выводе базы положительное, а на выводе эмиттера – отрицательное из-за транзистора NPN. Вывод базы всегда положительный по отношению к выводу эмиттера, а также напряжение питания коллектора положительно относительно вывода эмиттера.В NPN-транзисторе коллектор подключен к VCC через нагрузочный резистор RL. Этот нагрузочный резистор ограничивает ток, протекающий через максимальный ток базы. В этом транзисторе движение электронов через вывод базы, составляющее действие транзистора. Основная особенность действия транзистора – связь между входными и выходными цепями. Потому что усилительные свойства транзистора проистекают из последующего управления, которое база применяет к коллектору для эмиттерного тока.
Транзистор – это устройство, работающее от тока. Когда транзистор включен, большой ток IC протекает между коллектором и эмиттером внутри транзистора. Однако это происходит только тогда, когда через базовый вывод транзистора протекает небольшой ток смещения Ib. Это биполярный транзистор NPN; ток – это отношение этих двух токов (Ic / Ib), которое называется коэффициентом усиления постоянного тока устройства и обозначается символом «hfe» или в настоящее время beta. Значение бета может быть большим, вплоть до 200 для стандартных транзисторов, и именно это соотношение между Ic и Ib делает транзистор полезным усилителем.Когда этот транзистор используется в активной области, то Ib обеспечивает вход, а Ic обеспечивает выход. Бета не имеет единиц, так как это соотношение.
Коэффициент усиления транзистора по току от коллектора до эмиттера называется альфа, то есть Ic / Ie, и он является функцией самого транзистора. Поскольку ток эмиттера Ie является суммой небольшого тока базы и большого тока коллектора, значение альфа очень близко к единице, а для типичного сигнального транзистора малой мощности это значение находится в диапазоне примерно от 0.950 до 0,999.
Разница между NPN и PNP транзисторами:
Транзисторы с биполярным переходом представляют собой трехполюсные устройства, изготовленные из легированных материалов, часто используемых в приложениях для усиления и переключения. По сути, в каждом BJT есть пара диодов с PN переходом. Когда пара диодов соединяется, образуется сэндвич, который помещает полупроводник между двумя этими типами. Таким образом, существует только два типа биполярных сэндвичей, а именно PNP и NPN.В полупроводниках NPN имеют характерно более высокую подвижность электронов по сравнению с подвижностью дырок. Следовательно, он пропускает большой ток и работает очень быстро. Кроме того, этот транзистор легко сделать из кремния.
- Транзисторы PNP и NPN состоят из разных материалов, и ток в этих транзисторах также отличается.
- В транзисторе NPN ток течет от коллектора (C) к эмиттеру (E), тогда как в транзисторе PNP ток течет от эмиттера к коллектору.
- Транзисторы PNP состоят из двух слоев материала P с прослоенным слоем из N. Транзисторы NPN состоят из двух слоев материала N и зажаты одним слоем материала P.
- В NPN-транзисторе положительное напряжение подается на вывод коллектора, чтобы создать ток от коллектора к PNP-транзистору, положительное напряжение подается на вывод эмиттера, чтобы создать ток от эмиттера к коллектору.
- Принцип работы NPN-транзистора таков, что когда вы увеличиваете ток на клемме базы, транзистор включается, и он полностью проводит от коллектора к эмиттеру.Когда вы уменьшаете ток на клемме базы, транзистор включается меньше, и пока ток не станет настолько низким, транзистор больше не будет проводить через коллектор к эмиттеру и выключится.
- Принцип работы PNP-транзистора таков, что когда на базовом выводе транзистора присутствует ток, транзистор закрывается. Когда на клемме базы транзистора PNP нет тока, транзистор включается.
Это все о разнице между транзисторами NPN и PNP, которые используются для создания многих электрических и электронных проектов.Кроме того, любые вопросы, касающиеся этой темы или проектов в области электротехники и электроники, вы можете оставить, оставив комментарий в разделе комментариев ниже.
Сравнение транзисторов N-P-N и P-N-P
1). В этом присутствует большинство n-типов.
1). В нем присутствует большинство материалов p-типа.
2). Большинство концентраций носителей – электроны.
2). Большинство концентраций носителей в транзисторах этого типа – дырочные.
3). В этом случае, если на клеммную базу подается повышенный ток, транзистор переключается в режим ВКЛ.
3). В этом случае при малых значениях токов транзистор включен. В противном случае при больших значениях токов транзисторы выключены.
4). Символьное представление транзистора n-p-n:
Символ транзистора N-P-N
4). Символьное представление транзистора p-n-p:
Символ транзистора P-N-P
5).В транзисторе n-p-n протекание тока очевидно от коллектора к выводам эмиттера.
5). В p-n-p-транзисторе поток тока можно увидеть от выводов эмиттера к коллектору.
6). В этом транзисторе стрелка указывает.
6). В этом транзисторе стрелка всегда указывает внутрь.
Стрелки на транзисторах n-p-n и p-n-p показывают основные различия между транзисторами. Стрелка в n-p-n направлена в сторону эмиттера, тогда как для p-n-p стрелка направлена в обратном направлении.В обоих случаях стрелка указывает направление потока тока.
Следовательно, конструкция n-p-n и p-n-p проста. Управление будет таким же, но полярности смещения будут разными. Теперь, после обсуждения основ n-p-n и p-n-p, можете ли вы сказать, какой из них предпочтительнее во время амплификации и почему?
Фото:
- Транзистор NPN и PNP от ggpht
- Транзистор PNP от wikimedia
- Создание транзистора PNP с помощью electronics-tutorials
Транзистор PNP – как это работает?
Транзистор PNP для многих является загадкой.Но этого не должно быть. Если вы хотите разрабатывать схемы с транзисторами, действительно стоит знать об этом типе транзисторов.
Например: Хотите, чтобы свет автоматически включался, когда стемнеет? Транзистор PNP облегчит вам задачу.
В своей статье, как работают транзисторы, я объяснил, как работает стандартный транзистор NPN . Если вы еще этого не сделали, я действительно настоятельно рекомендую вам сначала прочитать эту статью.
Если вы разбираетесь в транзисторе NPN , вам будет легче понять транзистор PNP .Они работают примерно одинаково, с одним существенным отличием: токи в транзисторе PNP протекают в направлении, противоположном токам в транзисторе NPN.
Примечание. Этот раздел намного проще, если вы понимаете, какие токи протекают и какие напряжения.
Как работают транзисторы PNP
Транзистор PNP имеет те же названия ножек, что и NPN:
PNP-транзистор «включается», когда у вас есть небольшой ток, идущий от эмиттера к базе транзистора.Когда я говорю «включить», я имею в виду, что транзистор открывает канал между эмиттером и коллектором. И этот канал может нести гораздо больший ток.
Для обеспечения протекания тока от эмиттера к базе необходима разница напряжений около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна быть на 0,7 В ниже, чем эмиттер.
Устанавливая базовое напряжение PNP-транзистора на 0,7 В ниже, чем у эмиттера, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.
Я знаю, что это может показаться немного запутанным, поэтому читайте дальше, чтобы узнать, как можно разработать схему с транзистором PNP.
Пример: схема транзистора PNP
Давайте посмотрим, как создать простую схему на транзисторе PNP. С помощью этой схемы вы можете использовать для включения светодиода, когда он темнеет.
Шаг 1. Излучатель
Прежде всего, чтобы включить транзистор PNP, вам необходимо, чтобы напряжение на базе было на ниже , чем на эмиттере. Для такой простой схемы обычно подключают эмиттер к плюсу источника питания.Таким образом, вы будете знать, какое напряжение у вас на эмиттере.
Шаг 2. Что вы хотите контролировать
Когда транзистор включается, ток может течь от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: светодиод. Поскольку к светодиоду всегда должен быть включен резистор, давайте добавим резистор.
Вы можете заменить светодиод и резистор на все, что хотите.
Шаг 3. Транзисторный вход
Для включения светодиода нужно включить транзистор, чтобы открылся канал от эмиттера к коллектору.Чтобы включить транзистор, вам нужно, чтобы напряжение на базе было на 0,7 В ниже, чем на эмиттере, что составляет 9 В – 0,7 В = 8,3 В.
Например, теперь вы можете включить светодиод, когда он темнеет, используя фоторезистор и стандартный резистор, настроенный как делитель напряжения.
Напряжение на базе не будет вести себя точно так, как вам говорит формула делителя напряжения. Это связано с тем, что транзистор тоже влияет на напряжение.
Но в целом, когда номинал фоторезистора большой (нет света), напряжение будет близко к 8.3V и транзистор включен (что включает светодиод). Когда номинал фоторезистора низок (присутствует много света), напряжение будет близко к 9 В и отключит транзистор (который отключает светодиод).
Что контролирует базовое напряжение?
Вы можете спросить: «Как фоторезистор и резистор на базе волшебным образом создали правильное напряжение 8,3 В в темноте?»
Отчасти потому, что эмиттер и база составляют диод. И диод всегда пытается накапливать напряжение на своем диоде.Этот конкретный диод имеет диодное напряжение около 0,7 В. А 8,3 В на 0,7 В меньше 9 В.
Но это также отчасти потому, что размер фоторезистора и резистора на базе устанавливает напряжение в правильном диапазоне.
Проверьте мою схему
Вот видео схемы в действии:
В этом видео я использовал транзистор BC557 PNP. Это один из транзисторов, который Джеймс Льюис рекомендует в своей статье о 4 лучших транзисторах, которые следует держать в комплекте деталей.
Фоторезистор, который я использовал, имеет сопротивление около 10 кОм, когда он светлый, и 1 МОм, когда он темный. Резистор на базе транзистора представляет собой резистор 100 кОм. Светодиод является стандартным выходным светодиодом. И резистор, включенный последовательно со светодиодом, составляет 470 Ом.
Если у вас есть какие-либо вопросы или комментарии, дайте мне знать в поле для комментариев ниже!
Что такое транзистор PNP? – Определение, символ, конструкция и работа
Определение: Транзистор, в котором один материал n-типа легирован двумя материалами p-типа, такого типа транзистор, известен как транзистор PNP.Это устройство, управляемое током. Небольшая величина базового тока контролировала как эмиттерный, так и коллекторный ток. Транзистор PNP имеет два кристаллических диода, соединенных спина к спине. Левая сторона диода известна как диод эмиттер-база, а правая сторона диода известна как диод коллектор-база.
Отверстие является основным носителем транзисторов PNP, которые составляют в нем ток. Ток внутри транзистора формируется из-за изменения положения отверстий, а в выводах транзистора – из-за потока электронов.Транзистор PNP включается, когда через базу протекает небольшой ток. Направление тока в транзисторе PNP – от эмиттера к коллектору.
Буква PNP-транзистора указывает напряжение, требуемое для эмиттера, коллектора и базы транзистора. База PNP-транзистора всегда была отрицательной по отношению к эмиттеру и коллектору. В транзисторе PNP электроны отбираются с клеммы базы. Ток, который входит в базу, усиливается на концах коллектора.
Обозначение транзистора PNP
Обозначение транзистора PNP показано на рисунке ниже. Стрелка внутрь показывает, что направление тока в транзисторе PNP – от эмиттера к коллектору.
Конструкция транзистора PNP
Конструкция транзистора PNP показана на рисунке ниже. Переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением. Эмиттер, который подключен в прямом смещении, притягивает электроны к батарее и, следовательно, составляет ток, протекающий от эмиттера к коллектору.
База транзистора всегда положительна по отношению к коллектору, так что отверстие от коллекторного перехода не может войти в базу. И база-эмиттер удерживается впереди, благодаря чему отверстия из области эмиттера входят в базу, а затем в область коллектора, пересекая область истощения.
Работа транзистора PNP
Переход эмиттер-база соединен с прямым смещением, из-за чего эмиттер проталкивает отверстия в области базы.Эти отверстия составляют эмиттерный ток. Когда эти электроны перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и очень слабо легированная.