По правилу левой руки определите направление силы ампера: Сформулируйте правило для определения направления силы Ампера

Электричество и магнетизм

Теперь мы готовы к обсуждению взаимодействия тока с магнитным полем.  

Ампер установил наличие силового взаимодействия между двумя проводниками, по которым текут электрические токи. Пусть имеются два длинных параллельных проводника (рис. 5.25-1).

Рис. 5.25. Опыт Ампера по исследованию взаимодействия параллельных токов:
1 —  схема установки; 2 —  отталкивание антипараллельных токов; 3 —  притяжение параллельных токов 

Если по ним пропускать токи, текущие в противоположных направлениях, то проводники будут отталкиваться друг от друга (см. рис. 5.25-2). Если же токи будут течь в одном направлении, то они будут притягиваться (см. рис. 5.25-3). 

Видео 5.4. Взаимодействие параллельных токов.

Эксперименты, проведенные Ампером, показали, что на проводник с током, помещенный в магнитное поле, действует сила. Откуда же она берется? Обсуждая эффект Холла, мы видели, что сила электрического поля

EХ  уравновешивает силу Лоренца, действующую на электроны. Но холловское поле EХ  действует также и на кристаллическую ионную решетку вещества. На рис. 5.23 поле EХ  направлено вверх, ортогонально току и магнитной индукции. Туда же будет направлена и сила, действующая на проводник. Найдем ее величину. Если поперечное сечение проводника равно S, а его длина (в направлении тока) — dl, то в данном объеме dV = dl · S сосредоточено dN = ndV = n · dl · S  электронов проводимости. Их полный заряд равен dQ = edN = en · dl
  · S. В силу нейтральности проводника в целом таков же по абсолютной величине и полный заряд ионов кристаллической решетки. Используя формулу (5.28), находим суммарную силу, действующую на остов кристаллической решетки рассматриваемой части проводника

              

(5. 30)

где мы выразили плотность тока через его силу

Обращаем внимание, что в эту формулу не вошли характеристики конкретных носителей заряда, но лишь полный ток через проводник. 

У нас внешнее магнитное поле было ортогонально току. В общем случае направление тока будем характеризовать вектором dl, имеющем длину dl и направленным вдоль течения тока. В холловскую напряженность электрического поля дает вклад только компонента магнитного поля, ортогональная вектору dl. Эта компонента равна по величине

где есть угол между векторами B и dl. Тогда для величины силы имеем

              

(5.31)

Учитывая направление этой силы (правило винта), можем записать ее в векторной форме

                       

(5. 32)

Выражение (5.32) носит название закона Ампера, а сила  называется силой Ампера (рис. 5.26).

Рис. 5.26. Сила Ампера, действующая на провод с током в поле постоянного магнита

Видео 5.5. Сила Ампера: выпрыгивание провода из магнита.

Мы получили выражение для силы, действующей на элемент проводника dl. Для определения полной силы, действующей на проводник, надо проинтегрировать (5.32) вдоль его длины, учитывая зависимость магнитного поля от положения элемента. Такое интегрирование становится тривиальным для прямолинейного проводника в однородном магнитном поле

                   

(5.33)

Направление силы Ампера определяется по

правилу левой руки (рис. 5.27): 

Если левую руку расположить таким образом, чтобы линии магнитной индукции входили в ладонь, а вытянутые пальцы были направлены в направлении тока, то отогнутый большой палец покажет направление действия силы Ампера, действующей на проводник.

 

 

Рис. 5.27. Определение направления силы Ампера 

Видео 5.6. Сила Ампера: тележка Эйхенвальда.

Действие силы Ампера на проводник с током демонстрируется в опыте, показанном на рис. 5.28. На торце вертикальной цилиндрической катушки положены горизонтальные проводящие рельсы, по которым может катиться алюминиевая трубка. После включения тока через катушку к рельсам прикладывается постоянное напряжение, и по трубке начинает течь ток. Под действием силы Ампера трубка катится по рельсам. При изменении направления тока в трубке она катится в противоположную сторону.

Рис. 5.28. Экспериментальное изучение силы Ампера 

В общем случае произвольного проводника и магнитного поля силы, действующие на различные элементы проводника, различаются как величиной, так и направлением (рис. 5.29).

Рис. 5.29. В общем случае силы, действующие на различные элементы проводника,
различаются как величиной, так и направлением

С помощью формулы (5.31) можно определить величину магнитной индукции по максимальной силе Ампера dFA (в этом случае  ), действующей на элемент dl проводника с током I

То есть величина магнитной индукции численно равна максимальной силе, действующей на единичный элемент тока.

Направление силы Ампера – кратко правило для определения направления действия

4.2

Средняя оценка: 4.2

Всего получено оценок: 250.

4.2

Средняя оценка: 4. 2

Всего получено оценок: 250.

Опыты показывают, что на проводник с током, помещенный в магнитное поле, со стороны этого поля действует сила, называемая силой Ампера (по имени физика, открывшего ее). Поговорим о направлении силы Ампера.

Закон и сила Ампера

После того как в середине XIX в. Х. Эрстед открыл, что вокруг проводника появляется магнитное поле, многие исследователи стали изучать это явление. Выяснилось, что магнитное поле оказывает силовое действие не только на стрелку компаса, но и на проводник с электрическим током. Однако направление силы, с которой поле действует на проводник, не совпадало по направлению ни с направлением тока в проводнике, ни с направлением вектора магнитной индукции.

Наиболее глубокое исследование силы взаимодействия магнитного поля с электрическим током провел А. Ампер.

Рис. 1. А. Ампер.

Он установил закон, впоследствии названный его именем:

$$F= I |\overrightarrow B| Δl sin \alpha,$$

где:

  • $F$ — модуль силы, действующей на проводник;
  • $Δl$ — длина проводника;
  • $I$ — величина тока в проводнике;
  • $\overrightarrow B$ — вектор магнитной индукции;
  • $\alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.

Сила, определяемая законом Ампера, также носит имя этого исследователя.

В дальнейшем оказалось, что в основе силы Ампера лежит действие магнитного поля на движущиеся заряды. Если носитель заряда двигается в магнитном поле, то со стороны этого поля на него начинает действовать сила Лоренца. В проводнике множество носителей заряда, и силы Лоренца, действующие на каждый из них, складываются в силу Ампера.

Правило левой руки

В отличие от кулоновских сил, которые направлены вдоль силовых линий поля, сила Ампера направлена иначе. Исследования показывают, что ее направление не совпадает ни с направлением линий магнитной индукции, ни с направлением тока в проводнике. Сила Ампера оказывается перпендикулярна обоим этим направлениям.

То есть, если ток в проводнике течет вперед, а магнитное поле направлено справа налево, то сила Ампера будет направлена вертикально вверх, перпендикулярно обоим направлениям. Если направить вектор магнитной индукции вверх (не меняя направление тока вперед), направление силы Ампера также изменится: она будет направлена слева направо. Наконец, если повернуть проводник так, чтобы ток двигался слева направо (вектор магнитной индукции оставить направленным вверх), то сила Ампера всё равно будет направлена перпендикулярно обоим направлениям, спереди назад.

Для определения направления силы Ампера вывели мнемоническое правило левой руки: если четыре вытянутых пальца левой руки указывают направление тока, а вектор магнитной индукции прокалывает ладонь (входит в ладонь), то отставленный большой палец укажет направление силы Ампера.

Рис. 2. Правило левой руки.

Действительно, отставленный большой палец всегда перпендикулярен как остальным четырем пальцам руки, так и направлению «прокола ладони».

При изменении направления движения тока на обратное сила Ампера также поменяет свое направление на обратное. Этим объясняется ориентирующее действие магнитного поля на рамку с током. В двух сторонах рамки ток течет вдоль одной прямой, но в разных направлениях. В результате сила Ампера, порожденная одним и тем же полем, будет также направлена вдоль одной прямой, но в разных направлениях. Следовательно, на рамку начнет действовать вращающий момент, и его действие прекратится лишь тогда, когда прямая действия силы Ампера не окажется в плоскости рамки.

Рис. 3. Ориентирующее действие магнитного поля на рамку.

Что мы узнали?

На проводник с током, помещенный в магнитное поле, действует сила Ампера. Ее величина зависит от силы тока, вектора индукции и определяется законом Ампера. Ее направление перпендикулярно и направлению тока в проводнике, и направлению вектора магнитной индукции. Оно определяется специальным мнемоническим правилом левой руки.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 250.


А какая ваша оценка?

Три правила правой руки электромагнетизма – Arbor Scientific

Джеймс Линкольн

Нажмите здесь, чтобы подписаться на нашу рассылку новостей CoolStuff и получать уведомления о выпуске следующего блога.

Преподавание электричества и магнетизма осложняется тем, что магнитные силы перпендикулярны движению частиц и токов. Для этого требуется трехмерная перспектива, которая может ввести переменную «неправильного» направления. Чтобы избежать ошибок, будем «правы» и воспользуемся правилом правой руки.

Кто-то скажет, что существует только одно правило правой руки, но я считаю, что соглашение о трех отдельных правилах для наиболее распространенных ситуаций очень удобно. Это для (1) длинных прямых проводов, (2) свободно движущихся зарядов в магнитных полях и (3) правила соленоида, которые представляют собой петли тока. Назвать эти правила правильнее. Это не законы природы, а условности человечества. Мы используем правила, чтобы помочь нам решить проблемы, законы должны быть основной причиной того, почему правила работают.

Электричество и Магнетизм — связанные явления, но под прямым углом друг к другу. Таким образом, мы используем соглашение правой руки, чтобы предсказать направление полей относительно друг друга.

Правило №1 – Закон Эрстеда

Наш рассказ начинается с демонстрации Эрстеда, которая впервые была проведена во время лекции в 1821 году. Что Эрстед впервые показал, что при прохождении провода с током стрелка компаса – которая является магнитом – стрелка отклоняется. Когда он находится под магнитом, он отклоняется в другую сторону. Направление, на которое указывает магнит, параллельно магнитному полю вокруг провода. И вы можете предсказать это с вашей правой рукой!

Датский физик и химик Ханс Кристиан Эрстед

Направьте большой палец правой руки вдоль течения тока, определяемого как течение положительного заряда. Теперь согните пальцы, как будто они обвивают проволоку. Направление, на которое указывают ваши пальцы, — это направление магнитного поля, создаваемого током. Иногда мне нравится называть это ПРАВОСТОРОННИМ ИЗОБРАЖЕНИЕМ или законом Ампера. Сам Ампер описал это как циферблат часов: если ток течет по циферблату часов, то магнитное поле будет вращаться по часовой стрелке.

Хороший способ продемонстрировать это явление — использовать набор Маленьких прозрачных компасов. Когда они намотаны на вертикальный провод без тока, все они изначально будут указывать на север. Но, если ток включен, компасы будут выравниваться по петле вокруг тока. Важно отметить, что компасы влияют друг на друга, поэтому определение правильного расстояния между ними может помочь сделать демонстрацию более драматичной.

Воспроизвести демонстрацию Эрстеда довольно легко. Я использую около 5 ампер.

Когда ток течет вверх, магнитное поле закручивается.

Обычно они просто указывают на север, но когда я включаю ток, мы видим, что все они указывают вокруг него, как мы предсказываем правой рукой.

Правило № 2. Сила Лоренца

Это второе правило правой руки обычно применяется к свободно движущимся зарядам, называемым катодными лучами, или иным образом для проталкивания электрических токов.

Экран компьютера с электронно-лучевой трубкой — один из ярких способов продемонстрировать силу Лоренца. Экран освещается движущимися электронами, а движущиеся заряды толкаются магнитными полями. Это неожиданно для многих людей, которые думают, что магниты воздействуют только на такие металлы, как железо и никель. (После использования ЭЛТ просто оставьте его отключенным на несколько минут, и это почти полностью восстановит исходный цвет экрана.)

Этот экран компьютера с электронно-лучевой трубкой изначально был полностью красным. Но эти магниты отклонили электроны от приземления на их правильные пиксели.

Поскольку электрический ток состоит из движущихся зарядов, мы также можем перемещать его с помощью магнитов. Один из способов показать это — с помощью электрического качающегося аппарата. Это подчеркнет, что ток, поле и сила находятся под прямым углом.

Используя правую руку, ток течет от плюса к минусу – большой палец. Магнитное поле – указательный палец – направлено с севера на юг (обычно это означает от красного к синему). Сила тока перпендикулярна обоим из них и определяется вашим средним пальцем 9.0007

Это правило 2 nd обычно называют силой Лоренца по имени Г. А. Лоренца, современника Эйнштейна, хотя его эффекты были известны еще во времена Майкла Фарадея.

Теперь некоторые люди и некоторые книги предпочитают использовать ладонь для представления силы, которая будет текущей силой поля (открытая ладонь).

Магнитное поле действует на ток в 3D.

Пальцы направлены по векторам правой рукой.

Еще один способ продемонстрировать это — демонстрация лампочки «Электричество и магнетизм». Когда есть переменный ток, провод вибрирует, но когда это постоянный ток, мы можем приложить усилие в определенном направлении. Используя правую руку, можно предсказать направление течения.

Нити накала лампы Эдисона отклоняются.

Для течения токов, представляющих собой воображаемый поток положительного заряда, уместно использовать правую руку. Но когда дело доходит до отрицательных токов, таких как электроны, уместно использовать левую руку, что дает результат, противоположный положительному заряду. Если кто-то хочет продемонстрировать силу Лоренца на ЭЛТ, полезно знать, чтобы подчеркнуть «использовать правило левой руки для отрицательных зарядов».

Правило №3 – Правило соленоида

Соленоид с воздушным сердечником может действовать как стержневой магнит. Отталкивая север и притягивая юг. На самом деле, если вы проследите магнитное поле с помощью компаса, вы увидите, что оно идеально соответствует поведению стержневого магнита.

Используя третье правило правой руки, мы можем предсказать, какая сторона катушки находится на севере.

Пусть ваши скрученные пальцы будут направлением течения. Он зацикливается. Тогда ваш большой палец будет СЕВЕРНЫМ концом электромагнита.

Соленоид ведет себя точно так же, как стержневой магнит с четко определенными северным и южным полюсами.

Северный конец соленоида отталкивает северный конец этого стержневого магнита.

Правило левой руки

Правило правой руки предполагает условный ток , то есть… ток течет от положительного к отрицательному. Все курсы в колледже соответствуют этой концепции. НЕ ВСЕ курсы физики в старших классах используют эту концепцию. Например, в некоторых средних школах используются правила «левой руки», потому что они имеют дело с ПОТОКОМ ЭЛЕКТРОНОВ, то есть… потоком тока от отрицательного к положительному (например, направление, в котором электроны текут от батареи).

Правила для рук работают одинаково, но они основаны на двух разных текущих концепциях. В этом блоге мы сосредоточились строго на правиле правой руки.

Нажмите здесь, чтобы подписаться на нашу рассылку новостей CoolStuff и получать уведомления о выпуске следующего блога.

13 апреля 2018 г. Джеймс Линкольн

Правило левой и правой руки Флеминга

Если проводник с током помещен в магнитное поле, на него действует сила, обусловленная магнитным полем. С другой стороны, если проводник движется в магнитном поле, в проводнике индуцируется ЭДС (закон электромагнитной индукции Фарадея).
Джон Амброуз Флеминг ввел два правила для определения направления движения (в двигателях) или направления индукционного тока (в генераторах). Правила называются правилом левой руки Флеминга (для двигателей) и правилом правой руки Флеминга (для генераторов).

Правило левой руки Флеминга

Всякий раз, когда проводник с током помещается в магнитное поле, на проводник действует сила, перпендикулярная как магнитному полю, так и направлению тока. Согласно Правило левой руки Флеминга , если большой, указательный и средний пальцы левой руки вытянуты перпендикулярно друг другу, как показано на рисунке слева, и если указательный палец представляет направление магнитного поля, средний палец представляет направление тока, тогда большой палец представляет направление силы. Правило левой руки Флеминга применимо к двигателям.

Как запомнить правило левой руки Флеминга?

Метод 1: Соотнесите большой палец с толчком, указательный палец с полем и средний палец с током, как описано ниже.

  • Th umb представляет направление Th ржавчины на проводнике (сила на проводнике).
  • Рудный палец F представляет направление магнитного поля F .
  • C введите палец (средний палец) в направлении тока C .

Метод 2: Свяжите правило левой руки Флеминга с ФБР (подождите! НЕ с Федеральным бюро расследований). Здесь F означает силу, B — символ плотности магнитного потока, а I — символ тока. Присвойте эти буквы F, B, I соответственно большому, указательному и среднему пальцам.

Правило правой руки Флеминга

[НЕ путать с правилом правой руки Максвелла]


Правило правой руки Флеминга применимо к электрическим генераторам. Согласно закону электромагнитной индукции Фарадея, всякий раз, когда проводник с силой перемещается в электромагнитном поле, в проводнике индуцируется ЭДС. Если проводник имеет замкнутый путь, то ЭДС индукции вызывает протекание тока. Согласно правилу правой руки Флеминга , большой, указательный и средний пальцы правой руки вытянуты перпендикулярно друг другу, как показано на иллюстрации справа, и если большой палец представляет направление движения проводника, то указательный палец представляет направление движения проводника. магнитное поле, тогда средний палец представляет направление индуцированного тока.

Оставить комментарий