Полевые транзисторы для чайников: Полевые транзисторы. For dummies / Хабр

MOSFET транзисторы. Устройство, принцип работы и разновидности.

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n – переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел – полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик – полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов – IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому “+”), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал “обогащается” электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы.

На приборной панели автомобильного ресивера можно встретить надпись «Power MOSFET» или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому – напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы.

Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Биполярный транзистор.

  • Устройство и принцип работы геркона.

 

Лекция 5 Полевые транзисторы и принцип их работы

1.5. Полевые транзисторы, принцип их работы

Наряду с биполярными транзисторами нашли применение полевые транзисторы, в которых рабочие носители заряда переносятся по каналу, формируемому в полупроводнике n или p типа таким образом, что они не проходят через границы p и n слоев. По способу формирования канала эти приборы подразделяются на транзисторы с p-n переходом, со встроенным каналом и индуцируемым каналом. Два последних типа относятся к МДП-транзисторам.

В отличие от биполярного транзистора, где происходит токовое управление потоком рабочих носителей заряда, в полевом транзисторе управление потоком осуществляется электрическим полем, что и дало наименование прибору. Преимуществом полевых транзисторов является весьма малый уровень мощности, который потребляется для управления потоком, поскольку ток входной цепи практически равен нулю. Однако эти транзисторы уступают биполярным по уровню выходной мощности.

Рис.1.11. Структура полевого транзистора

с pn переходом

Структура транзистора с p-n переходом схематически представлена на рис.1.11. Прибор имеет три электрода: исток (аналог эмиттера в биполярном транзисторе), сток (аналог коллектора) и затвор (аналог базе).

На рис.1.11 показано включение этого транзистора по схеме с общим истоком, аналогичной схеме ОЭ включения биполярного транзистора. Канал протекания рабочих носителей заряда (в рассматриваемом случае электронов), формируемый в полупроводнике n-типа, заключен между двумя p-n переходами. Канал с двух сторон снабжен двумя электродами: истоком, с которого носители заряда начинают движение, и стоком, где это движение заканчивается. Третий электрод, затвор, соединен с p-слоями. Между истоком и стоком приложено напряжение U, обеспечивающее перенос носителей заряда между этими электродами. Управляющим (входным) напряжением является U. На затвор подается “минус” относительно истока. Таким образом, p-n
переход находится в закрытом состоянии, что обусловливает малую величину тока в цепи затвора. При увеличении отрицательного значения напряжения U происходит увеличение ширины p-n перехода за счет n- слоя канала, а тем самым уменьшение ширины канала (см. рис.1.12,а). В результате происходит увеличение сопротивления канала, что и обеспечивает управление потоком электронов.

Рис.1.12. Сужение канала полевого транзистора с pn переходом при приложении напряжений: а – U, б – U

Напряжение U также изменяет ширину канала за счет изменения ширины p-n перехода. Однако, поскольку оно равномерно приложено по длине канала, то его ширина уменьшается по мере приближения к стоку, к которому подведен “плюс” (см. рис.1.12,б). Очевидно, степень уменьшения ширины канала, а, следовательно, его сопротивление будет увеличиваться при увеличении напряжения U. Этим объясняется вид выходной, стоковой характеристики, приведенной на рис.1.13. При малых значениях напряжения U обусловленное этим напряжением уменьшение ширины канала не существенно. В данных условиях на движения носителей заряда в канале оказывает влияние только напряжение между стоком и истоком, в результате чего ток стока I резко увеличивается с ростом U. При больших значениях напряжения U ток носителей заряда находится под влиянием двух противодействующих факторов. С увеличением напряжения, с одной стороны, увеличивается скорость переноса носителей заряда от истока к стоку, а с другой стороны, – увеличивается сопротивление канала. В результате величина тока стока лишь немного растет при увеличении напряжения U, в приборе устанавливается режим насыщения, ограничивающийся сверху пробивным напряжением Uси проб. Режимы пробоя на рис.1.13 (а также на рис.1.15) не указаны. Увеличение отрицательного напряжения U увеличивает сопротивление канала, что обусловливает смещение вольт-амперной характеристики в область малых значений тока I. При этом также уменьшается величина напряжения пробоя.

Рис.1.13. Стоковая характеристика полевого

транзистора с pn переходом

Наименование МДП-транзисторы (“металл – диэлектрик – проводник”) связано с конструктивными особенностями этих приборов. Они отражены на рис.1.14, на котором приведена схема конструкции транзистора с встроенным каналом. На поверхности подложки, которая выполнена из полупроводника типа p, создается канал n -типа с областями истока и стока. Полупроводник покрыт окисной пленкой, на которую наносится металлическая пленка, выполняющая функцию затвора. Таким образом, канал оказывается изолированным от затвора диэлектрической, окисной пленкой. В общем случае МДП-транзистор имеет четыре электрода. Четвертый электрод соединен с подложкой. Схема включения такого транзистора показана на рис.1.14.

Рис.1.14. Структура МДП-транзистора

Технология изготовления МДП-транзисторов с индуцированным каналом обусловила их широкое применение в составе микросхем. В таких транзисторах специально канал не создается. Он формируется (индуцируется) на поверхности подложки при положительном напряжении затвор- исток, когда электрическое поле затвора вытягивает из подложки электроны, за счет которых создается канал протекания тока стока. Очевидно, в МДП-транзисторе с индуцированным каналом при нулевом напряжении U ток стока отсутствует, а с увеличением напряжения затвор-исток увеличивается ток стока, что иллюстрируется рис.1.15, на котором приведена стоковая характеристика такого прибора.

Рис.1.15. Стоковые характеристики МДП-транзистора

с индуцированным каналом

Следует отметить, что в биполярном транзисторе ток коллектора также увеличивается с увеличением входного напряжения (см. рис.1.8 и 1.9). Однако, начальные участки вольт-амперных характеристик выходных цепей биполярных и полевых транзисторов отличаются. Если в биполярном транзисторе в области малых напряжений UКЭ наклон вольт-амперных характеристик не зависит от тока базы, т.е. от входного напряжения, то в полевом транзисторе, как видно из рис.1.15, эта зависимость существенна. Принципы работы МДП-транзисторов были рассмотрены на примере приборов с n-каналом. Аналогичным образом функционируют и транзисторы с p-каналом, в которых рабочими носителями заряда являются дырки, а подложка выполнена из полупроводникового материала n-типа. В таких приборах направление токов и полярность напряжений будут противоположны тем, которые имеются у приборов с n-каналом. На рис.1.16 приведены схемные обозначения полевых транзисторов.

Рис.1.16. Схемные обозначения полевых транзисторов:

1 – транзистор с pn переходом: с n-каналом,

2 – транзистор с pn переходом и с p-каналом,

3 – МДП-транзистор с встроенным n-каналом,

4 – МДП-транзистор с встроенным p– каналом,

5 – МДП-транзистор с индуцированным n-каналом,

6 – МДП-транзистор с индуцированным p– каналом

Входное и выходное сопротивления полевых транзисторов, в отличие от биполярных, имеют существенную емкостную компоненту. Это учитывается схемой замещения для переменных токов и напряжений. Наиболее распространенная схема замещения полевого транзистора приведена на рис.1.17, в которой отражено наличие трех межэлектронных емкостей: Сзи – затвор – исток, Сси – сток – исток, Сзс – затвор – сток. Первые две обусловлены, в основном, барьерной емкостью закрытого p-n- перехода, примыкающего как к истоку, так и к стоку. Поэтому их величины, составляющие 10 – 40 пФ, в три – пять раз превышают величину емкости сток – исток.

Рис.1.17. Схема замещения полевого транзистора

Наличие в схеме источника тока Suвх отражает зависимость выходного тока от входного напряжения, где S – крутизна передаточной характеристики, определяемая соотношением

S =.

Зависимость выходного тока от напряжения сток – исток учитывается сопротивлением ri, величина которого определяется как

ri = .

Величины параметров S и ri рассчитываются с использованием стоковой характеристики транзистора.

Полевые транзисторы (современные)


В В 1945 году у Шокли возникла идея создать твердотельное устройство. полупроводников. Он предположил, что сильное электрическое поле может вызвать поток электричества в близлежащем полупроводнике. Он попытался построить один, а затем попросил Уолтера Браттейна попытаться построить его, но это не сработало.

Три года спустя Браттейн и Бардин построили первый работающий транзистор, германиевый транзистор с точечным контактом, который производился как серия «А». Шокли тогда сконструировал переходной (сэндвич) транзистор, который был изготовлен в течение нескольких лет после этого. Но в 1960 Bell ученый Джон Аталла разработал новую конструкцию, основанную на оригинальных теориях полевого эффекта Шокли. К концу 1960-х годов производители перешли от интегральные схемы переходного типа к устройствам с полевым эффектом. Сегодня, большинство транзисторов являются полевыми транзисторами. Вы используете миллионы из них сейчас.

МОП-транзисторы

Большинство современных транзисторов представляют собой полевые МОП-транзисторы. или металлооксидные полупроводниковые полевые транзисторы. Они были разрабатывались в основном Bell Labs, Fairchild Semiconductor и сотнями Кремниевой долины, японских и других компаний, производящих электронику.

Полевые транзисторы названы так потому, что слабый электрический сигнал, поступающий через один электрод, создает электрическое поле через остальную часть транзистора. Это поле переключается с положительного на отрицательное, когда входящий сигнал делает и управляет вторым током, проходящим через остальные транзистора. Поле модулирует второй ток, чтобы имитировать первый – но он может быть существенно больше.

Как это работает

Подробнее о том, как Полевые транзисторы работают

На днище транзистора П-образный разрез (хотя это более плоско, чем настоящая буква «U») из полупроводника N-типа. с избытком электронов. В центре буквы U находится секция, известная как «основание», изготовлена ​​из P-типа (положительно заряжена) полупроводник с малым количеством электронов. (На самом деле N- и P-типы можно перевернуть, и устройство будет работать точно так же, за исключением того, что дырки, а не электроны, будут вызывать ток. )

Три электрода прикреплены к верхней части этого полупроводниковый кристалл: один к среднему положительному сечению и по одному на каждое плечо U. Подавая напряжение на электроды на U, ток будет течь через него. Сторона, где электроны приходят называется источником, а сторона, где электроны выходит называется сток.

Если ничего не произойдет, ток будет течь от с одной стороны на другую. Из-за того, как электроны ведут себя при соединение между полупроводниками N- и P-типа, однако ток не будет течь особенно близко к базе. Он путешествует только через тонкий канал по середине U.

Также к основанию прикреплен электрод, клин из полупроводника P-типа посередине, отделенный от остальная часть транзистора тонким слоем оксида металла, такого как диоксид кремния (который играет роль изолятора). Этот электрод называется «воротом». Слабое электрическое сигнал, который мы хотели бы усилить, подается через гейт. Если заряд, проходящий через затвор, отрицателен, он добавляет больше электронов к базе. Поскольку электроны отталкиваются друг от друга, электроны в U двигайтесь как можно дальше от базы. Это создает обедненная зона вокруг базы целая область, где электроны не может путешествовать. Канал посередине U через ток, который может течь, становится еще тоньше. Добавить достаточно отрицательный заряд на базу и канал полностью отщипнется, остановка всего тока. Это как наступить на садовый шланг чтобы остановить поток воды. (Ранее транзисторы управлялись эту зону обеднения, используя то, как электроны движутся, когда два полупроводниковые пластины помещаются рядом друг с другом, создавая то, что называется соединением P-N. В полевых МОП-транзисторах PN-переход заменен оксидом металла, что Оказалось, что массовое производство микрочипов проще.)

А теперь представьте, если заряд проходит через ворота положительный. Положительное основание притягивает много электронов внезапно территория вокруг базы, которая раньше была нейтральной зоной открывается. Канал для тока через U становится больше, чем было изначально, и может протекать гораздо больше электричества. через.

Переменный заряд на базе, следовательно, изменения сколько тока проходит через U. Входящий ток может использоваться в качестве крана для включения или выключения тока, когда он проходит через остальная часть транзистора.

С другой стороны, транзистор можно использовать в и более сложным образом – как усилитель. Текущий путешествие по U становится больше или меньше в идеальной синхронизации с зарядом, поступающим в базу, т. е. имеет одинаковую паттерн как исходный слабый сигнал. И, начиная со второго ток подключен к другому источнику напряжения, он может быть сделано, чтобы быть больше. Ток, проходящий через U, представляет собой идеальная копия оригинала, только усиленная. Транзистор используется таким образом для усиления стереозвука в динамиках и микрофонах, а также для усиления телефонных сигналов, когда они путешествуют по мир.

Сноска по Шокли

Шокли наблюдал за ростом Силиконовой долины, но мог не похоже, чтобы войти в Землю Обетованную, которую он предвидел. Он никогда удалось сделать полевые транзисторы, в то время как другие компании проектировался, рос и процветал. Фред Зейтц называл Шокли «The Моисей из Силиконовой долины».

Другие типы транзисторов:
— с точечным контактом Транзистор
— Перекресток (“Сэндвич”) Транзистор

Ресурсы: 
The Way Things Work Дэвида Маколея
Научная энциклопедия Ван Ностранда
— Полевой транзистор
– Интервью с Уолтером Брауном, 3 мая 1999 г.


-PBS Online- -Сайт Кредиты- -Фото Кредиты- -Отзыв-

Авторское право 1999, ScienCentral, Inc и Американский институт физики. Нет часть этого веб-сайта может быть воспроизведена без письменного разрешения. Все права защищены.

FET: полевой транзистор с примерами

Содержание

1

Знакомство с полевыми транзисторами

транзистор, состоит из трех выводов (подобно вакуумным лампам), в которых ток управляется с помощью электрического поля. Другими словами, основной ток (между истоком и стоком) полевого транзистора (полевого транзистора) управляется за счет эффекта электрического поля, вызванного напряжением, подаваемым между истоком и затвором. Вот почему это называется эффектом поля.

Основное различие между транзистором и электронной лампой заключается в том, что транзистор управляется током, тогда как электронная лампа управляется напряжением. Помимо полевых транзисторов, остальные транзисторы являются усилителями тока. Этот конкретный компонент является усилителем управления напряжением. Выводы обычного транзистора известны как эмиттер, база и коллектор, а три вывода полевого транзистора известны как исток, затвор и сток соответственно. На затвор полевого транзистора подаются напряжения. За счет изменения напряжения затвора заряд обеспечивается изменением сопротивления между истоком и стоком. Входное сопротивление затвора FET (полевого транзистора) очень велико, поэтому через его затвор проходит очень малый ток.

Помните, что работа полевого транзистора (FET) зависит от движения только одного носителя заряда (дырок или электронов), из-за чего они называются транзисторами с униполярным переходом (UJT). В то время как работа биполярных транзисторов (BJT) зависит от движения обоих носителей заряда (то есть дырок и электронов).

Следует запомнить следующие термины, касающиеся «FET (полевой транзистор)».

Источник

Терминал, через который проходит большинство перевозчиков. Другими словами, это терминал, через который носители заряда проникают в швеллер. Он напоминает эмиттер BJT.

Слив

Это терминал, через который выходит большинство перевозчиков. Напряжение сток-исток (V DS ) управляет током стока (I D ). Другими словами, это такая клемма, с помощью которой ток выходит из канала. Этот терминал FET напоминает коллектор BJT.

Затвор

Это управляющая клемма полевого транзистора, который генерирует электрическое поле. Варьируя его, можно модулировать проводимость канала. Другими словами, это электрод, который управляет проводимостью канала между истоком и стоком. Затвор представляет собой две соединенные между собой сильнолегированные области, образующие два P-N перехода. Напряжение источника затвора (В GS ) изменяет смещение ворот. Напряжение входного сигнала подается на затвор. Этот терминальный переход напоминает базу переходного транзистора.

Канал

Это свободное пространство между двумя затворами, через которое проходит большинство носителей от истока к стоку (подача напряжения V DS от стока к истоку) или токопроводящий путь полупроводника, находящийся между истоком и сток, который называется каналом.

Строительство и работа полевого транзистора:

На рисунке 5.1 изображена конструкция полевого транзистора (FET) и его символы. С конструктивной точки зрения это N или P каналы, как видно из символов. Материал N-типа диффундирует в изолирующую полупроводниковую область или подложку P-типа, благодаря чему формируется относительно узкий канал. После этого между истоком и стоком образуется затвор из P-материала. Конструкция полевого транзистора зависит от большинства носителей. Согласно диаграмме электроны действуют как основной носитель между истоком и стоком, поэтому ток показан стрелкой на диаграмме 5.2

Рисунок 5.1

Мы знаем, что когда PN-переход смещен в обратном направлении, ширина его обедненной области увеличивается. Точно так же, когда затворный переход смещен в обратном направлении относительно истока и стока полевого транзистора, его площадь обеднения также увеличивается. Таким образом, канал проводимости между истоком и стоком сужается, и ток стока уменьшается. Если на затвор подать отрицательное напряжение, ток между истоком и стоком прекратится. Напряжения, подаваемые на затвор, благодаря которым прекращается протекание тока, называются напряжениями отсечки. Во время нормальной работы ворота не смещаются вперед.

Рисунок 5.2

N-канальный полевой транзистор

На рисунке 5.4 представлена ​​схема, в которой N-канальный полевой транзистор (полевой транзистор) (сделанный путем ввода материала P-типа с обеих сторон блока) имеет был использован. На обоих концах блока N напечатаны S (исток) и D (сток), в ряду которых установлена ​​нагрузка RL. Параллельно с FET (полевым транзистором) появляется напряжение (V DS ) (между D и S). На диаграмме также показан ток нагрузки I D , который проходит из канала блока N. Ворота пронизаны на обоих концах блока N.

Как видно на диаграмме 5.5, напряжение (V GS ) вызывает отрицательное смещение (т. е. сеть подключена с отрицательным напряжением смещения), поэтому, пока G более отрицательное по сравнению с S, ток не может проходить через ворота.

Рисунок 5.4

На рисунке (b) показано, что этот конкретный полевой транзистор (полевой транзистор) проводит ток при прохождении тока около 8 мА через его канал N, когда значение V GS равно нулю. Однако если значение V GS изменить на -4 вольта, I D уменьшается до 2 мА. Изменения в D s имеют незначительное влияние на эти текущие величины. Как эти напряжения, подаваемые на затвор G, контролируют количество тока I D , проходящего через R L (без передачи какого-либо тока от G). Он был разработан ниже. На рисунке 5.6 показано, что при увеличении обратного смещения увеличивается ширина области истощения. В отсутствие смещения, кроме ряда (+) дырок, обнаруживается также некоторое количество (-) электронов. Когда подается очень низкое обратное смещение (рисунок b), все дырки движутся в сторону P, а все электроны — в сторону N. Таким образом, между P и N образуется небольшая обедненная область, через которую ток проводит/проходит. Когда обратное смещение увеличивается (рисунок c), электроны очень быстро текут от N к положительной клемме батареи. Электроны, испускаемые с отрицательной клеммы аккумулятора, объединяются с дырками после входа в область P. Таким образом, ширина непроводящей области или обедненной области увеличивается.

 

Рисунок 5.6

P-канальный полевой транзистор

На рисунке 5.7 показана схема P-канального полевого транзистора и его характеристики. FET (полевой транзистор) состоит из сильно легированного затвора, который проникает через оба конца блока каналов типа P. Согласно рисунку 5.4, обе батареи полевого транзистора P-канала смещены в обратном направлении по сравнению со схемой FET N. Основной ток состоит из потока дырок, катящихся по Р-каналу. Когда затвор G становится еще более положительным для увеличения обратного смещения и площади обеднения, поток тока уменьшается. За счет увеличения V GS смещает дальше, достигается точка, в которой часть проводимости (через которую проходит ток) канала становится настолько узкой, что все потоки истощаются/останавливаются. Это значение V GS называется напряжением отсечки. Наоборот, если значение V GS изменяется более чем на -5 В, затвор работает благодаря прямому смещению. Таким образом, все полевые усиления прекращаются. Если ток затвора не ограничивается установкой резистора, это может привести к повреждению полевого транзистора. Поддержание стандартных условий, если сток и затвор положительны по отношению к истоку и все обычные токи проходят через FET (полевой транзистор). Отношения, которые развиваются между V DS и I D описаны на рис. (b)

рис. 5.7

Сравнение полевых транзисторов и биполярных транзисторов
Полевой транзистор Биполярный переходной транзистор
1 Его работа зависит только от потока большинства носителей (дырок и электронов), поэтому его называют биполярным устройством. Его работа зависит от потока основных и неосновных носителей (дырок и электронов), поэтому его называют биполярным устройством.
2 Их довольно легко изготовить, и они занимают относительно мало места. Именно поэтому они наиболее подходят для применения в антигранд-схемах. Его изготовление несколько сложнее и занимает больше места по сравнению с полевыми транзисторами. Вот почему их широкое применение в ИС не является предпочтительным
3 Обычно менее чувствительны к температуре. Очень чувствительны к температуре
4 Его входное сопротивление довольно высокое (обычно 100 МОм или даже больше) Его выходное сопротивление относительно низкое
5 Его клеммы обычно называются истоком, затвором и стоком соответственно Его клеммы обычно называются эмиттером, базой и коллектором
6 Относительно безопаснее против радиации Чувствителен к радиации
7 При использовании в качестве усилителя их коэффициент усиления по напряжению меньше и вызывает большие искажения сигналов Обеспечивает относительно более высокий коэффициент усиления по напряжению при использовании в качестве усилителя и вызывает меньшее искажение сигнала
8 Обеспечивает низкий уровень шума при использовании в качестве усилителя Производит сильный шум. (Помните, что в электрических терминах шум означает неравномерное колебание электрических сигналов из-за движения электрона в полупроводниковой структуре. Шум обычно возникает на ненужных и неприятных сигналах на выходе усилителя, которые сочетаются с полезным сигналом)
9 Это устройство, состоящее из трех клемм Это устройство, состоящее из трех клемм
10 Напряжения усилители Токовые усилители
11 При использовании в качестве переключателя или прерывателя они не способны к напряжению смещения Обеспечьте напряжения смещения
12 Их номинальная мощность низкая Их номинальная мощность высока
13 Низкая скорость переключения Высокая скорость переключения

Типы полевых транзисторов

Существует два типа полевых транзисторов

1).

Оставить комментарий