Правило лопиталя калькулятор онлайн: Решение пределов онлайн, бесплатный калькулятор

Содержание

lim онлайн

Вы искали lim онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и бесконечный калькулятор, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели – у нас уже есть решение. Например, «lim онлайн».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как lim онлайн,бесконечный калькулятор,вычисление пределов онлайн с подробным решением бесплатно,вычислить предел последовательности онлайн,вычислить предел последовательности онлайн с подробным решением,вычислить предел числовой последовательности,вычислить пределы не пользуясь правилом лопиталя,замечательные пределы калькулятор онлайн,замечательный предел калькулятор онлайн,замечательный предел онлайн калькулятор,калькулятор онлайн замечательный предел,калькулятор онлайн пределы с подробным решением,калькулятор онлайн решение пределов с подробным решением,калькулятор пределы с подробным решением,калькулятор решение пределов с подробным решением,мти найдите предел,найдите предел мти,найти предел онлайн,найти предел последовательности онлайн,найти предел последовательности онлайн с решением,онлайн вычислить предел последовательности,онлайн калькулятор замечательные пределы,онлайн лимиты,онлайн решение последовательностей,онлайн решение пределов подробно,онлайн решение пределов с дробями,правило лопиталя онлайн калькулятор с подробным решением,предел числовой последовательности калькулятор онлайн,решение лимитов онлайн с подробным решением,решение онлайн млит,решение последовательностей онлайн,решение пределов онлайн бесплатно с подробным решением,решение пределов онлайн с дробями,решение пределов подробно онлайн,решение пределов последовательности онлайн,решение пределов с дробями онлайн,решение пределов с подробным решением онлайн калькулятор,решить онлайн лимит.

На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и lim онлайн. Просто введите задачу в окошко и нажмите «решить» здесь (например, вычисление пределов онлайн с подробным решением бесплатно).

Где можно решить любую задачу по математике, а так же lim онлайн Онлайн?

Решить задачу lim онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать – это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Онлайн-калькулятор вычисления пределов | СпецКласс

Как быстро решить предел? Воспользоваться любым онлайн-калькулятором, ибо их сейчас предоставляется невероятное множество. Но вот только не все онлайн калькуляторы вам с этим помогут.

Неделю назад меня попросили решить один простой пример, которые с помощью правила Лопиталя решался в 1 строчку. Как любой нормальный человек, я не стал решать его самостоятельно и решил найти онлайн-калькулятор, который сделает это за меня. Тем более, что пример был плёвый:

В итоге я нашел парочку онлайн-калькуляторов, которые посчитали мне правильный ответ примера, но к сожалению, содержали ошибки внутри самого решения. И вот как это у них получилось.

Есть классный математический сервис, который называется Wolframalpha. Это международная компания, которая выпускает серьезный софт для ученых: в частности Mathematica. У них есть онлайн-версия, которая позволяет получить ответы на множество вопросов, особенно если вы знаете английский. Виджет, взятый с их сайта, расположен ниже, и с его помощью вы можете получить ответ любого предела, который вам задали в институте.

Так вот, как работают многие онлайн-калькуляторы в Интернете? Сперва надо ввести ваш пример.

Для этого в калькуляторе есть поля ввода самого предела и поле для ввода значения, к которой стремится переменная в вашем пределе. В случае с виджетом от wolframalpha, в поле “limit of ” нужно ввести сам предел (используя правила написания формул, такие же как в LaTex), а в поле “as x approaches” ввести значение, к которому стремится переменная Х из вашего предела. Например:

  • если Х стремится к 2, то пишем просто ” 2 “.
  • если Х стремится к единице слева, пишем ” 1-0 “
  • если Х стремится к минус бесконечности, пишем ” – infinity “

Не волнуйтесь, если ошибетесь: виджет либо выдаст ошибку, либо сам исправит ваш запрос. В любом случае помимо ответа вы увидите, какой предел возьмет виджет и чему он будет равен?

А что делают онлайн-калькуляторы на других сайтах? Они “парсят” ваш предел, и с помощью LaTex записывают его в красивом виде. Дальше им нужно его решить, но раз вы ищите решение предела онлайн, или же просто вбили в поиске онлайн-калькулятор решения пределов, то скорее всего вы сами толком не знаете, как должно выглядеть правильное решение этого примера. Из распарсенного выражения на калькуляторе происходит несколько преобразований (либо нахождение производных, либо стандартные упрощения), а затем подставляется правильный ответ пример. Который получен, например,с помощью того самого виджета, который вы видите на этой странице.

Еще один минус в работе таких “онлайн-калькуляторов” состоит в том, что их решение может быть неоптимальным. Очень часто вас просят найти предел определенным способом. Калькуляторы же ищут решения стандартным способом, одинаковым для всех. Так что если вы учитесь в серьезном техническом вузе, или ваш преподаватель серьезно относится к проверке ваших занятий, то вас скорее всего раскусят). Единственный способ избежать этого – понимать, что написано в решении вашего примера. В видеоуроках я разбираю, как подходить к тем или иным примерам, и на что стоит обращать внимание. Ну а после того, как вы самостоятельно решите пару десятков примеров, у вас выработается собственная “чуйка”.


Mathway | Популярные задачи

1 Trovare la Derivata – d/dx натуральный логарифм x
2 Вычислим интеграл интеграл натурального логарифма x по x
3 Trovare la Derivata – d/dx e^x
4 Вычислим интеграл интеграл e^(2x) относительно x
5 Trovare la Derivata – d/dx 1/x
6 Trovare la Derivata – d/dx x^2
7 Trovare la Derivata – d/dx 1/(x^2)
8 Trovare la Derivata – d/dx sin(x)^2
9 Trovare la Derivata – d/dx sec(x)
10 Вычислим интеграл интеграл e^x относительно x
11 Вычислим интеграл интеграл x^2 относительно x
12 Вычислим интеграл интеграл квадратного корня x по x
13 Trovare la Derivata – d/dx cos(x)^2
14 Вычислим интеграл интеграл 1/x относительно x
15 Вычислим интеграл интеграл sin(x)^2 относительно x
16 Trovare la Derivata – d/dx x^3
17 Trovare la Derivata – d/dx sec(x)^2
18 Вычислим интеграл интеграл cos(x)^2 относительно x
19 Вычислим интеграл интеграл sec(x)^2 относительно x
20 Trovare la Derivata – d/dx e^(x^2)
21 Вычислим интеграл интеграл в пределах от 0 до 1 кубического корня 1+7x по x
22 Trovare la Derivata – d/dx sin(2x)
23 Trovare la Derivata – d/dx tan(x)^2
24 Вычислим интеграл интеграл 1/(x^2) относительно x
25 Trovare la Derivata – d/dx 2^x
26 График натуральный логарифм a
27 Trovare la Derivata – d/dx cos(2x)
28 Trovare la Derivata – d/dx xe^x
29 Вычислим интеграл интеграл 2x относительно x
30 Trovare la Derivata – d/dx ( натуральный логарифм x)^2
31 Trovare la Derivata – d/dx натуральный логарифм (x)^2
32 Trovare la Derivata – d/dx 3x^2
33 Вычислим интеграл интеграл xe^(2x) относительно x
34 Trovare la Derivata – d/dx 2e^x
35 Trovare la Derivata – d/dx натуральный логарифм 2x
36 Trovare la Derivata – d/dx -sin(x)
37 Trovare la Derivata – d/dx 4x^2-x+5
38 Trovare la Derivata – d/dx y=16 корень четвертой степени 4x^4+4
39 Trovare la Derivata – d/dx 2x^2
40 Вычислим интеграл интеграл e^(3x) относительно x
41 Вычислим интеграл интеграл cos(2x) относительно x
42 Trovare la Derivata – d/dx 1/( квадратный корень x)
43 Вычислим интеграл интеграл e^(x^2) относительно x
44 Вычислить e^infinity
45 Trovare la Derivata – d/dx x/2
46 Trovare la Derivata – d/dx -cos(x)
47 Trovare la Derivata – d/dx sin(3x)
48 Trovare la Derivata – d/dx 1/(x^3)
49 Вычислим интеграл интеграл tan(x)^2 относительно x
50 Вычислим интеграл интеграл 1 относительно x
51 Trovare la Derivata – d/dx x^x
52 Trovare la Derivata – d/dx x натуральный логарифм x
53 Trovare la Derivata – d/dx x^4
54 Оценить предел предел (3x-5)/(x-3), если x стремится к 3
55 Вычислим интеграл интеграл от x^2 натуральный логарифм x по x
56 Trovare la Derivata – d/dx f(x) = square root of x
57 Trovare la Derivata – d/dx x^2sin(x)
58 Вычислим интеграл интеграл sin(2x) относительно x
59 Trovare la Derivata – d/dx 3e^x
60 Вычислим интеграл интеграл xe^x относительно x
61 Trovare la Derivata – d/dx y=x^2
62 Trovare la Derivata – d/dx квадратный корень x^2+1
63 Trovare la Derivata – d/dx sin(x^2)
64 Вычислим интеграл интеграл e^(-2x) относительно x
65 Вычислим интеграл интеграл натурального логарифма квадратного корня x по x
66 Trovare la Derivata – d/dx e^2
67 Trovare la Derivata – d/dx x^2+1
68 Вычислим интеграл интеграл sin(x) относительно x
69 Trovare la Derivata – d/dx arcsin(x)
70 Оценить предел предел (sin(x))/x, если x стремится к 0
71 Вычислим интеграл интеграл e^(-x) относительно x
72 Trovare la Derivata – d/dx x^5
73 Trovare la Derivata – d/dx 2/x
74 Trovare la Derivata – d/dx натуральный логарифм 3x
75 Trovare la Derivata – d/dx x^(1/2)
76 Trovare la Derivata – d/[email protected] f(x) = square root of x
77 Trovare la Derivata – d/dx cos(x^2)
78 Trovare la Derivata – d/dx 1/(x^5)
79 Trovare la Derivata – d/dx кубический корень x^2
80 Вычислим интеграл интеграл cos(x) относительно x
81 Вычислим интеграл интеграл e^(-x^2) относительно x
82 Trovare la Derivata – d/[email protected] f(x)=x^3
83 Вычислим интеграл интеграл 4x^2+7 от 0 до 10 относительно x
84 Вычислим интеграл интеграл от ( натуральный логарифм x)^2 по x
85 Trovare la Derivata – d/dx логарифм x
86 Trovare la Derivata – d/dx arctan(x)
87 Trovare la Derivata – d/dx натуральный логарифм 5x
88 Trovare la Derivata – d/dx 5e^x
89 Trovare la Derivata – d/dx cos(3x)
90 Вычислим интеграл интеграл x^3 относительно x
91 Вычислим интеграл интеграл x^2e^x относительно x
92 Trovare la Derivata – d/dx 16 корень четвертой степени 4x^4+4
93 Trovare la Derivata – d/dx x/(e^x)
94 Оценить предел предел arctan(e^x), если x стремится к 3
95 Вычислим интеграл интеграл (e^x-e^(-x))/(e^x+e^(-x)) относительно x
96 Trovare la Derivata – d/dx 3^x
97 Вычислим интеграл интеграл xe^(x^2) относительно x
98 Trovare la Derivata – d/dx 2sin(x)
99 Вычислить sec(0)^2
100 Trovare la Derivata – d/dx натуральный логарифм x^2

Калькулятор Пределов – Решение Пределов Онлайн

Этот калькулятор пределов вычисляет положительные или отрицательные пределы для заданной функции в любой точке. Вы должны попробовать этот решатель пределов, чтобы определить, как легко решать пределы. Кроме того, калькулятор правил l’hopital помогает вычислять предельные задачи \ (\ frac {0} {0} \) и \ (\ frac {\ infty} {\ infty} \) и поддерживает вычисление пределов онлайн на положительной и отрицательной бесконечности. Что ж, читайте дальше, чтобы понять, как найти предел онлайн функции с помощью этого решение пределов онлайн. Начнем с основ!

Что такое предел (математика)?

Обозначение пределов представляет собой математическое понятие, основанное на идее близости. Его также можно определить как значение, к которому функция «приближается», когда вход «приближается» к некоторому значению. Необходимо оценить Предел в исчислении и математическом анализе, чтобы определить непрерывность, производные и интегралы. калькулятор пределов онлайн присваивает значения определенным функциям в точках, где значения не определены, таким образом, чтобы они согласовывались с ближайшими или близкими значениями. В большинстве курсов по исчислению мы работаем с пределом, что означает, что легко начать думать, что предел исчисления существует всегда. С другой стороны, это также помогает решить предел по правилу Лопиталя, согласно которому предел, когда мы делим одну функцию на другую, остается таким же после того, как мы берем производную каждой функции.

Что ж, пределы онлайн калькулятор производной – лучший способ вычислить предел производную функции по заданным значениям и показывает дифференцирование.

Что такое формула предела?

Формула предела будет следующей:

$$ \ lim_ {x \ to a} f (x) = L $$

Пример:

Если у вас есть функция «\ (\ frac {(x2 – 1)} {(x – 1)} \)», тогда необходимо найти пределы, когда \ (x \) равно \ (1 \), как деление по нулю не является законной математической операцией. С другой стороны, для любого другого значения \ (x \) числитель может быть учтен, а также разделен на \ ((x – 1) \), чтобы получить \ (x + 1 \). Таким образом, это частное будет равно \ (x + 1 \) для всех значений \ (x \), за исключением 1, которая не имеет значения. Хотя, 2 можно присвоить функции \ (\ frac {(x2 – 1)} {(x – 1)} \) как ее предел, когда \ (x \) приближается к 1. Если предел \ (x \) приближается к 0 или бесконечности, такие вычисление пределов онлайн упростить с помощью калькулятор пределов онлайн правил Лопиталя.

Для нахождения пределов существуют определенные законы и калькуляторы пределов, которые используют правило исчисления для определения предела функции. Кроме того, бесплатный пределы онлайн калькулятор интегралов позволяет вам определить интегралы функции, соответствующие задействованной переменной, и показать вам пошаговую работу.

Лимитные законы:

Для нахождения пределов существуют определенные законы и калькуляторы пределов, которые используют правило исчисления для определения предела функции. Эти законы можно использовать для оценки предела полиномиальной или рациональной функции. Кроме того, для некоторых правил существуют определенные условия, и если они не выполняются, то правило не может использоваться для проверки оценки лимита. Однако использование оценщика пределов – лучший способ оценить пределы функции в любой момент.
В следующей таблице приведены вычислить предел законы и некоторые основные свойства.

Предельный закон в символах Предел закон на словах
1  \( \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a}f(x) + \lim_{x \to a}g(x)\) Сумма Лимитов равна лимиту суммы.
2  \(\lim_{x \to a}[ f(x) – g(x)]= \lim_{x \to a} f(x) – \lim_{x \to a} g(x)\) Разница лимитов равна лимиту разницы.
3 \( \lim_{x \to a} cf (x) = c \lim_{x \to a} f (x) \) Постоянный предел функции равен пределу постоянного времени функции.
4  \(\lim_{x \to a}[ f(x)g(x)] = \lim_{x \to a} f(x) × \lim_{x \to a} g(x)]\) Произведение лимитов равно лимиту продукта.
 

5

\(\lim_{x \to a} \frac {f(x)} {g(x)} = \frac {\lim_{x \to a} f(x)} {\lim_{x \to a} g(x) }\) Частное пределов равно пределу частного. 2} $$

мы можем найти предел онлайн 0, Inf, -Inf или вычисление пределов онлайн коэффициентам.

Формальный метод:

Речь идет о доказательстве того, как мы можем максимально приблизиться к ответу, сделав «\ (y \)» близким к «\ (a \)».

Как калькулятор лимитов вычисляет лимиты?

Этот калькулятор лимитов позволяет вам оценить лимит данных переменных. Что ж, искатель решение пределов онлайн помогает найти пределы, выполнив следующие действия:

Вход:

  • Прежде всего введите уравнение или функцию.
  • В раскрывающемся списке выберите переменную, для которой необходимо оценить предел. Это может быть \ (x, y, z, a, b, c, \) или \ (n \).
  • Укажите число, по которому вы хотите рассчитать лимит. В этом поле вы также можете использовать простое выражение, например «\ (inf = ∞ \) или pi = \ (π \)».
  • Теперь выберите направление ограничения. Он может быть как положительным, так и отрицательным.
  • После того, как вы введете значения в указанные поля, калькулятор предоставит вам предварительный просмотр уравнения.
  • Нажмите кнопку “Рассчитать”.

Выход:

  • Прежде всего, он отобразит данный ввод.
  • Он покажет предельные значения для данного ввода.

Часто задаваемые вопросы:

Как узнать, что лимит не существует?

Чтобы найти предел на графике, если существует вертикальная асимптота, и одна сторона идет в сторону бесконечности, а другая – в направлении отрицательной бесконечности, тогда предел не существует. Точно так же, если на графике есть дыра при значении x c, то двусторонний предел не будет существовать. Тем не менее, поиск пределов может помочь вам более точно оценить пределы.

Каковы правильные обозначения пределов?

По сути, предельная запись – это способ сформулировать тонкую идею, чем просто сказать \ (x = 5 \) или \ (y = 3 \). \ (\ lim_ {x \ to a} f (x) = b \). С другой стороны, калькулятор пределов онлайн избавляет от беспокойства об обозначении пределов, поскольку он определяет пределы и указывает их неточное форматирование.

Можно ли применить правило L‘Hopital к каждому пределу?

Правило L’Hôpital используется с неопределенными пределами, имеющими форму \ (0/0 \) или бесконечность. Он не решает всех ограничений. Иногда даже повторяющиеся применения правила не могут помочь найти предел онлайн значения. Итак, для удобства калькулятор правил l’hopital – лучший способ решить бесконечные вычислить предел функций.

Может ли 0 быть пределом?

Если мы просто оцениваем уравнение, предел \ (0/0 \) будет неопределенным. Однако, если мы получим \ (0/0 \), то может быть серия ответов. Теперь единственный способ определить точный ответ – это использовать решатель пределов для точного определения проблем с предельными значениями.

Как используются лимиты в расчетах?

Пределы определяют, как функция будет действовать рядом с точкой, как альтернатива в этой точке. Эта идея лежит в основе исчисления. Например, предел «\ (f \)» при \ (x = 3 \) и \ (x = 3 x = 3 \) – это значение f по мере того, как мы приближаемся к \ (x = 3 \). .

Конечное примечание:

Этот пределы онлайн калькулятор пределов находит пределы и специально предназначен для определения пределов в отношении переменной. Пределы можно оценивать как с положительной, так и с отрицательной стороны. Он обслуживает все вычислить предел задачи, которые невозможно решить алгебраически. Таким образом, здорово помочь студентам и профессионалам решить и проверить ваши ограничения в мгновение ока.

Other Languages: Limit Calculator, Limit Hesaplama, Kalkulator Limit, Grenzwertrechner, Kalkulačka Limit, Calculadora De Limites, Calculateur De Limite, Calculadora De Limites, Calcolatore Limiti.

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Одной из основных теорем в математическом анализе является правило Лопиталя. Этот закон, предложенный французским учёным, используется для вычисления пределов функций, когда формулы Тейлора применить невозможно. Идейно он достаточно простой, однако его доказательство содержит технические тонкости, на которые следует обратить пристальное внимание.

Общие сведения

Важным понятием в высшей математике является определение бесконечности. Эта неопределённость обозначается символом ∞. Когда её упоминают, то имеют в виду как бесконечно малое число, так и большое. Для записи предела функций используется знак лимита, например, lim 0k (y). В нижней части указывается аргумент со стрелочкой, обозначающей, к чему именно стремится неопределённость. Если предел известный, то он называется конечным, в ином случае — бесконечным.

Когда нельзя установить, является ограничение бесконечным или конечным, то говорят, что предела для рассматриваемой функции не существует. Это возможно, например, когда ограничение тригонометрической функции стремится к бесконечности. Существует несколько способов вычисления пределов: правило Лопиталя, формулы Тейлера, графический метод, подставление неизвестного в функцию.Указанные способы можно применять для нахождения того или иного предела, но для неопределённости вида 0/0 или ∞/∞, а также вычисления отношений бесконечно малых или больших выражений лучше всего использовать закон Лопиталя.

Состоит он из двух правил:

  • Для бесконечно малых величин. Когда функции k (y) и d (y) можно дифференцировать в некоторой области точки, исключая саму её, при этом в этой окрестности производная выражения неравна нулю, а пределы этих функций равны нулю, то отношение ограничения этих функций будет равно пределу отношения их производных.
  • Для бесконечно больших значений. Если две функции k (y) и d (y) можно дифференцировать по окрестности взятой точки, но при этом её саму исключить, учитывая, что в рассматриваемой окрестности производная d (y) не равняется нулю, то когда функции в этой точке равны бесконечности, предел отношения этих выражений тождественен отношению их производных.

Другими словами, смысл теоремы Лопиталя заключается в том, что когда нужно найти ограничение для двух функций, отношение которых даёт неопределённость 0/0 или ∞/∞, то можно взять производные этих выражений и найти их отношение. Это действие приведёт к получению искомого ответа.

Метод позволяет упростить вычисление сложных показательных степенных функций. Его можно применять и при умножении неопределённостей или их вычитании. Например, 0 * ∞, ∞ — ∞.

Доказательство правила

Лопиталь после знакомства с Бернулли смог систематизировать метод Иоганна и издать в 1696 году книгу «Анализ бесконечно малых», где подробно изложил способы решения задач с неопределённостями. Математически его описание состоит из четырёх пунктов:

  • lim k (y) = lim d (y) = 0 (∞).
  • Графики k (y) и d (y) приближаются к линейному виду.
  • d (y)’ ≠ 0.
  • lim k (y)’ / d (y)’ = lim k (y) / d (y).

Пусть имеется два дифференцируемых выражения, при этом d (y) во всех точках имеет не нулевую производную. При y, стремящемся к a, d стремится к бесконечности. Если предел отношения производных конечного предела или бесконечного равняется числу L, тогда ограничение отношений производных этих функций также будет тождественно этому числу. То есть lim k (y) / d (y) = L, при y → a. Исходя из определения Гейне и Коши, рассматривать можно только монотонные последовательности, которые стремятся к a.

Взяв произвольный ряд, который может расти yn → a, верно утверждать, что в соответствии со следствием теоремы Дарбу и условием d (y)’ ≠ 0, рассматриваемая функция будет строго монотонной. А это означает, что последовательность d (yn) будет такой же. В тоже время из условия lim d (y) = ∞ следует, что d (yn) → ∞. При этом бесконечность может быть как со знаком минус, так и плюс.

Рассмотрим теорему Штольца, а именно отношение: (k (yn+1) — k (yn)) / (d (yn+1) — d (yn)) = k'(Cn) / d'(Cn) = L. Из неё следует, что k (y) / d (y) → L. То есть всегда найдётся такая точка Cn, которая будет принадлежать множеству (Yn+1,Yn). Так как множество стремится к L, то и точка, принадлежащая ему, тоже будет приближаться к L. Поэтому можно утверждать, что и выражение lim k (y) / d (y) → L.

Аналогичным образом первому доказывается и второй случай, когда lim k (y) = lim d (y) = 0. Если предел отношения производных будет L, то ограничения отношений функций будет также равняться этому числу. Из теоремы Дарбу и монотонности получим, что d (Yn) → 0, кроме того k (Yn) → 0. Используя правило Штольце, можно будет утверждать, что k (y) / d (y) → L.

Но на практике часто для решения примеров правило Лопиталя оказывается недостаточным. Это справедливо для заданий, в которых y стремится не к конечному числу, а к бесконечному. Поэтому для таких задач используется следствие из теоремы. Согласно ему, при k → 0 и d → 0, а y → + ∞. Тогда существует предел lim k'(y) / d'(y) = AЄR и предел отношений lim k (y) / d (y) = A. Этот вспомогательный закон очень важен и то же может быть доказан.

Следствие из утверждения

Перед доказательством следствия нужно условиться, что в выражении a будет всегда больше либо равно единице. Это возможно исходя из того, что если a будет меньше единицы, то доказывать нужно будет правило только от единицы до плюс бесконечности. Кроме этого, необходимо ввести замену вида t = 1/y. Она необходима, так как во многом облегчает сведение доказательства к теореме Лопиталя.

Пусть имеется функция K (t), равная k, и D (t), равная d. При этом аргумент последней будет 1/t. Так как по условию правила функции k и d определены на интервале от a до плюс бесконечности, то можно сказать, что функции K и D известны на интервале от нуля до единицы, делённом на a. Это верно из-за того, что если в исходной функции k и d икс подходил достаточно близко к плюс бесконечности, то в силу сделанной ранее замены t будет приближаться к нулю. Если же икс близок к a, то t будет приближаться к значению 1/a.

Так как a больше либо равняется единице, то интервал от нуля до единицы, делённой на a, будет определён корректно. Чтобы воспользоваться теоремой Лопиталя, нужно доказать, что предел lim K'(t) / D'(t) при t, стремящемся к нулю, равняется A. В силу того, что K (t) = k (1/t) и D (t) = d (1/t), можно написать: lim K'(t) / D'(t) = lim k'(1/t)’ / d'(1/t)’ .

Теперь нужно воспользоваться теоремой о производной композиции, условия которой выполнены. Вначале нужно взять производную внутренней функции, а затем внешней. Должно получиться следующее выражение: lim -1/ t 2 k ‘(1/ t) / (-1/ t 2) * d ‘ (1/ t) = lim K ‘(t) / D ‘(t) = lim k ‘(y)/ d (y) = A.

Отсюда можно утверждать, что предел отношений K'(t) / D'(t) будет равняться A. Все условия теоремы Лопиталя выполнены. А это значит, что существует предел отношения функций при t, стремящемся к нулю, равный A. Теперь можно снова применить теорему о пределе композиций и от переменной t перейти обратно к иксу: lim K (t)/D (t) = lim k (y)/(d (y) = A.

Таким образом можно сделать вывод, что требуемое утверждение верно. Использование правила и следствия позволяет выполнить быстрый расчёт неопределённости 0/0 или ∞/∞. При этом другого вида выражение можно свести к этой неопределённости. Это намного упрощает работу, особенно если необходимо логарифмировать или возводить в степень.

Решение примеров

Закрепить правило лучше всего на соответствующих примерах. Существуют типовые задания, чаще всего встречающиеся на контрольных работах. Например, требуется найти предел отношения натурального логарифма от тангенса икс к котангенсу два икс, когда неизвестное стремится к p /4. Помощь в решении окажет правило Лопиталя, которое при сравнении с альтернативными методами окажется на порядок проще.

Для того чтобы понять, какого вида неопределённость в задании, нужно в числитель и знаменатель подставить p/4. Тогда: ln td p /4 = ln 1 = 0 и ctd p /2 = 0. По правилу можно свести нахождение предела функций к вычислению их производных. Искомый предел: A = lim (lntdy ‘) / (ctd 2 y)’ = lim (ctdy * 1/ cos 2 y) / 2 (-1/ sin 2 2 y) = lim (-sin 2 y)(2 * siny * cosy) = (-½) * lim (sin 2 2 y / siny * cosy) = — ½ * 1/½ = -1. Таким образом, решение будет равняться минус единице.

Пусть есть выражение вида: lim y½ (p — 2 arctd √ y) = A. Нужно определить предел при иксе, стремящемся к плюс бесконечности. Чтобы воспользоваться правилом, исходное выражение нужно привести к дробному виду. Для этого выражение можно переписать как lim (p — 2 arctd √ y) / y½. В этом случае имеет место неопределённость 0/0. Поэтому можно рассматривать отношение производной делимого на делитель: A = lim (2 *(1/1+ y) * ½ * y ) / ½ * y -3/2 = lim 2y/(1+y) = 2 lin 1 /(1+ 1/ y) = 2.

Замечательным случаем является неопределённость вида ∞/∞. Например, требуется найти предел lim k (y) при иксе, стремящемся к бесконечности, где функция k (y) = y /ey. По теореме Лопиталя A = lim (y)’ / (ey)’, а это выражение есть не что иное, как lim 1/ey, равняющийся нулю. Теперь можно рассмотреть пример сложнее.

Пусть дано выражение нормальной функции со степенью: lim yy = A, где A = lim k (y). Проэкспоненцируя эту функцию, выражение можно привести к виду: yy = ey *lny. Если найти, к чему стремится показатель экспоненты, то это и будет решением рассматриваемого примера. Можно записать: lim y * lny = lim lny /1/ y = lim (1/ y)/(-1/ y 2 ) = 0. Если предел в показателе экспоненты стремится к нулю, то можно написать, что он будет равняться e0, то есть единице. А это и будет искомый предел: lim k (y) = 1 при иксе, стремящемся к плюс бесконечности.

Закон Лопиталя является хорошим помощником при вычислении особо экзотических пределов. При этом можно попробовать составить выражение, отвечающее условиям правила и из неявного вида функции. Для этого можно использовать раскрытие скобок, дополнительно умножить или разделить функцию на однородный многочлен.

Использование онлайн-калькулятора

Не всегда задания, попадающиеся на практике, довольно легко привести к условию, отвечающему правилу. Да и нередко сама функция настолько умудрённая, что для определения производной понадобится не только проявить внимание и усидчивость, но и затратить довольно много времени. Поэтому в таких случаях есть резон решать задания на онлайн-калькуляторе с подробным решением. Правило Лопиталя отлично поддаётся автоматизированному вычислению.

Такую услугу предлагают более десятка специализированных на математических расчётах сайтов. Доступ к вычислениям предоставляется полностью бесплатно. От пользователя даже не требуется регистрации и указания персональных данных. Работают они на основе алгоритмов, заложенных в программный код используемого онлайн-приложения. Пользователю нужно лишь только подключение к интернету и любой веб-обозреватель.

Все его действия сводятся к введению в предложенную форму условия примера и нажатия кнопки «Рассчитать». После этого программа автоматически вычислит ответ и выведет его на дисплей. При этом в большинстве случаев вместе с ответом приложение отобразит пошаговый расчёт с комментариями. Это позволит потребителю не просто получить готовый ответ, но и разобраться в решении.

Из наиболее популярных сайтов можно выделить следующую пятёрку:

  • Math.semestr.
  • Kontrolnaya-rabota
  • Planetcalc.
  • Math34.
  • Webmath.

Все эти сайты имеют интуитивно понятный интерфейс на русском языке. Кроме предоставления услуги онлайн-калькулятора, на их страницах содержится вся необходимая теория, помогающая понять, как происходит нахождение ответа. А также приведены несколько типовых примеров с подробным решением.

Пользоваться такими сайтами сможет даже пользователь, ничего не понимающий в математическом анализе. Но решая различные примеры, со временем он поймёт суть идеи правила и сможет самостоятельно вычислять пределы функций. При этом такие сайты являются отличным подспорьем как инженерам, проводящим сложные вычисления, так и студентам, проверяющим свои навыки.