Примеры определенного интеграла с решением: Определенный интеграл, примеры решений

Содержание

Определенный интеграл, примеры решений

Определенный интеграл от функции на промежутке обозначается и равен разности двух значений первообразной функции, вычисленных при и (формула Ньютона-Лейбница):

   

Геометрический смысл определенного интеграла. Определенный интеграл есть площадь криволинейной трапеции ограниченной графиком функции , осью и прямыми и (рис. 1), то есть

   

Для вычисления определенных интегралов подходят все методы, которые используются для нахождения неопределенных интегралов.

Примеры

ПРИМЕР 1
Задание Вычислить интеграл

   

Решение Преобразуем подынтегральное выражение

   

Разобьем интеграл от суммы на сумму интегралов и вынесем за знак интеграла константы:

   

Полученные интегралы являются табличными, вычислим их:

   

   

   

Ответ
ПРИМЕР 2
Задание Вычислить интеграл

   

Решение Вынесем константу за знак интеграла и вычислим полученный табличный интеграл:

   

Ответ
ПРИМЕР 3
Задание Вычислить интеграл

   

Решение Сделаем замену , при этом пределы интегрирования изменятся: и . Подставляя все это в исходный интеграл, получим:

   

   

Ответ
ПРИМЕР 4
Задание Вычислить интеграл

   

Решение Внесем под знак дифференциала, тогда

   

Подставляя все в исходный интеграл, получим:

   

   

Ответ
ПРИМЕР 5
Задание Вычислить площадь криволинейной трапеции ограниченной функцией , осью и прямыми и .
Решение Сделаем рисунок (рис. 2).

По геометрическому смыслу определенного интеграла нахождение площади заданной криволинейной трапеции сводится к вычислению интеграла

   

Вычислим этот интеграл:

(кв. ед.)

Ответ

Вычисление определенного интеграла

Здравствуйте. Меня зовут Андрей Зварыч. Я онлайн-репетитор сайта Tutoronline по высшей математике. Очень часто ко мне обращаются студенты с просьбой помочь разобраться с вычислением определенных интегралов

. Сегодня я покажу несколько примеров решения. Надеюсь, моя статья будет полезной.

Итак, если F(x) – одна из первообразных непрерывной функции f(x) на [a,b], то справедлива формула Ньютона-Лейбница

Если функция f(x) непрерывна на отрезке [a,b], а функция x = φ(t) непрерывно дифференцирована на отрезке [t1,t2], причем a = φ(t1), b = φ(t2), то имеет место формула

Если функции u(x), v(x) и их производные u'(x), v'(x) непрерывны на отрезке [a,b], то справедлива формула интегрирования по частям

Пример 1. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 2. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 3. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 4 Вычислить интеграл

Решение.

На основании формулы произведения синусов, таблицы основных интегралов и формулы (1) имеем:

 

Пример 5. Вычислить интеграл

Решение.

Разложим подынтегральную функцию на сумму простых дробей,

 

Решив систему

Получим 

Тогда на основании таблицы основных интегралов и формулы (1) имеем

Пример 6. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Сделаем замену ex + 4 = t2, тогда ex= t24, edx = 2dt,  

Если x= ln5, то t = 3; если x= ln12, то t = 4. Тогда

Пример 7. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Пример 8. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Сделаем подстановку t = cosx

Если x = 0, то t = cos 0 = 1, если

Следовательно

Пример 9. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Найдем пределы по t:

Находим

Следовательно,

Пример 10. Вычислить интеграл

Решение.

Хороший метод решения интегралов, это метод занесения под дифференциал, его плюс состоит в том, что не требуется менять пределы интегрирования

Пример 11. Вычислить интеграл

Решение. На основании таблицы основных интегралов и формулы (3) имеем (интегрируем по частям)

Если у Вас остались вопросы или Вам нужна помощь в решении “ваших интегралов”, записывайтесь на мои занятия. Буду рад Вам помочь!

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

формулы, определения, примеры с решением по высшей математике

Вычисления определенного интеграла

Формула ньютона-лейбница

Простым и удобным методом вычисления определенного интеграла

от непрерывной функции является формула Ньютона-Лейбница:

Применяется этот метод во всех случаях, когда может быть найдена первообразная функции

для подынтегральной функции .

Например,

.

При вычислении определенных интегралов широко используется метод замены переменной и метод интегрирования по частям.

Интегрирование подстановкой (заменой переменной)

Пусть для вычисления интеграла

от непрерывной функции сделана подстановка .

Теорема 39.1. Если:

1) функция

и ее производная непрерывны при ;

2) множеством значений функции

при является отрезок ;

3)

и , то

Пусть

есть первообразная для на отрезке . Тогда по формуле Ньютона-Лейбница . Так как , то является первообразной для функции . Поэтому по формуле Ньютона-Лейбница имеем

Формула (39.1) называется формулой замены переменной в определенном интеграле.

Отметим, что:

1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;
2) часто вместо подстановки

применяют подстановку ;
3) не следует забывать менять пределы интегрирования при замене переменных!
Пример №39.1.

Вычислить

.

Решение:

Положим

, тогда . Если , то ; если , то . Поэтому

Интегрирование по частям

Теорема 39.2. Если функции

и имеют непрерывные производные на отрезке , то имеет место формула

На отрезке

имеет место равенстве) . Следовательно, функция есть первообразная для непрерывной функции . Тогда по формуле Ньютона-Лейбница имеем:

Следовательно,

Формула (39.2) называется формулой интегрирования по частям для определенного интеграла.

Пример №39.2.

Вычислить

.

Решение:

Положим

Применяя формулу (39.2), получаем

Дополнительный пример №39.3.

Дополнительная лекция: Интегрирование четных и нечетных функций в симметричных пределах

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

Другие темы по высшей математике возможно вам они будут полезны:

Как решать ⚠️ интегралы: формулы, примеры с объяснением

Одно из самых значимых понятий в математике — интеграл. Термин часто можно встретить при решении задач по математике и физике. С помощью интеграла существенно упрощается поиск площади под кривой, пройденного пути объекта, движущегося неравномерно, массы неоднородного тела, функции по производной.

Что такое интеграл — понятие и определение

Интеграл представляет собой аналог суммы для бесконечного числа бесконечно малых слагаемых.

Интеграл является эффективным инструментом для решения задач из математического анализа. Слово «интеграл» происходит от латинского «integer», то есть «целый». Впервые это понятие ввел Иоганн Бернулли.

Разобраться в определении интеграла можно, если рассмотреть понятный график функции:

Источник: avatars.mds.yandex.net

Исходя из графика, можно сделать вывод, что интегралом является сумма малых частей, которые составляют в целом рассматриваемый объект. Компоненты складываются в какую-то геометрическую фигуру. При сложении этих частей можно определить, какова ее площадь. Таким образом, пояснение для интеграла заключается в следующем: интеграл является площадью какой-то фигуры, расположенной под линией функции.

Данное понятие относится к определенному интегралу. Он определен на отрезке между точками а и b.{b}{f(x)dx}\)

где f(x) является той самой функцией, график которой ограничивает фигуру в верхней части;

a и b представляют собой пределы;

x соответствует направлению, вдоль которого построены столбцы на графике.

Процесс интегрирования является обратным дифференцированию. В том случае, когда требуется определить минимальный промежуток заданной функции, целесообразно взять от нее производную. Это объясняется тем, что производная или дифференциал являются быстрым методом поиска части чего-либо. Можно наглядно определить с помощью рисунка, что минимальная фигура, которая является частью целого, при таком числе составляющих компонентов не повторяет форму кривой функции. Таким образом, требуется уменьшить габариты таких частей, чтобы они максимально точно совпадали с графиком. Площадь наименьшего компонента фигуры будет стремиться к нулевому значению. Точность повышается с уменьшением размеров рассматриваемой части. Площадь геометрической фигуры состоит из суммы таких частей, которые стремятся к нулю. Записать это можно с помощью уравнения:

\(P=\lim_{\Delta x_{i}\rightarrow 0}\sum{y_{i}\Delta x_{i}}\)

Подробно полученное выражение можно рассмотреть на графике:

Источник: avatars.mds.yandex.net

Площадь малой части фигуры определяется так же, как площадь прямоугольника. Значение Y нужно помножить на значение ΔХ. Так как фигура представляет собой совокупность малых частей, то их требуется сложить. Следует учитывать, что каждый компонент фигуры ΔХ стремится к нулевому значению. Поэтому формула, которая представлена выше, включает это условие и позволяет определить результат максимально точно.

Если обозначить количество частей ΔХ, стремящихся к бесконечности, то можно определить, что существует предел интегральной суммы, которая состоит из таких компонентов, стремящихся к нулю и к бесконечности по числу таких частей. Таким образом, правая граница фигуры, изображенной на графике, является пределом. В этом выражается геометрический смысл определенного интеграла.

Физический смысл интеграла состоит в том, что это сумма бесконечно малых величин на бесконечно большом интервале. Исходя из этого, можно определить любую величину, которая изменяется, согласно функции. К примеру, рассчитать общий путь по закону изменения скорости. Необходимость в интеграле возникла, когда потребовалось рассчитать площади каких-либо фигур и объем любых тел, выбранных произвольно.

В том случае, когда расчеты подразумевают наличие постоянной характеристики, к примеру, скорости, найти путь можно с помощью произведения этой постоянной скорости и времени. Этот же момент можно проверить при вычислении интеграла от такой функции и записи уравнения прямой. Но скорость в процессе движения может меняться. Данное изменение можно представить в виде зависимости. Тогда следует вписать граничные условия, например, в случае пути — это время, в интеграл скорости по времени. Полученное выражение будет равно площади трапеции, которая расположена под функцией скорости, что является физическим смыслом определенного интеграла.{c_{3}} f(x) dx\)

Термин «неопределенный интеграл» применим в ситуациях, когда требует найти площадь криволинейной трапеции, путь в соответствии с известной скоростью тела, которое движется неравномерно, и для решения других подобных задач.

Свойства, которыми характеризуется неопределенный интеграл:

  1. Константу можно выносить за знак интеграла: \(\int kf(x) dx = k\int f(x) dx\)
  2. Интеграл разности или суммы функций соответствует разности или сумме интегралов от этих функций: \(\int ( f(x) \pm g(x) ) dx = \int f(x) dx \pm \int g(x) dx\)
  3. Производная интеграла определяется как выражение, находящееся под знаком интеграла: \(\bigg (\int f(x) dx \bigg )’ = f(x)\)
  4. Интеграл от производной функции равен сумме этой функции и постоянной: \(\int F'(x) dx = F(x) + C\)
  5. Интеграл дифференциала функции равен сумме этой функции и постоянной интегрирования: \(\int df(x) dx = f(x) + C\)