Примеры решение пределов с корнями: Как решать пределы с корнями, примеры решений

6.2. Вычисление пределов функций, содержащих

При вычисление пределов вида в случае если числи-

Тель или знаменатель содержит выражение , стремящееся к нулю при часто бывает полезным избавиться от иррациональности в числителе или в знаменателе путём домножения числителя и знаменателя на соответствующий сопряжённый множитель .

Для разности таким множителем является , для выражения таким множителем является .

В самом деле

, где ,

,

Где .

В общем случае для разности сопряжённое выражение . В результате умножения получаем , т. е. . Для сокращения записи можно вычислить отдельно и если он конечен и не равен нулю, вынести за знак предела.

Пример 1

A =

Решение: Т. к. х8, то х-80. Выделим множитель в числителе и знаменателе. Умножим числитель и знаменатель дроби на множитель . Тогда в числителе мы получим

В знаменателе множитель будет стремиться к конечному пределу, не равному 0, а именно к 10 при х8, поэтому по теореме о пределе

Произведения множитель можно вынести за знак предела. Знаменатель представим в виде произведения х2 – 6х – 16 = (х – 8)(х + 2). Таким образом, вычисление данного предела сводиться к следующим действиям:

A =

Пример 2. Вычислить

Решение: Выделим в числителе и знаменателе множитель, стремящийся к нулю, т. е. х.

Числитель:

Знаменатель:

.

Таким образом, предел приобретает вид

A =

Пример 3.

A =

Решение: Выделим в числителе и знаменателе множитель, стремящийся к 0, т. е. (х – 2)

Числитель:

Знаменатель: .

Тогда A = .

Пример 3.

A =

Решение: Как и в предыдущем случае выделим множитель, стремящийся к 0, т. е. (х+1) в числителе и знаменателе. Тогда

Числитель: .

Знаменатель:

Таким образом

A =

При раскрытии неопределенностей вида нужно выполнить тождественные преобразования, позволяющие свести такую неопределенность к виду или . Например, в случае, если выражение содержит иррациональности с невысоким показателем корня, этого можно добиться путем умножения и деления данного выражения на «сопряженное».

Пример 5.

Пример 6.

(Сумма двух бесконечно больших одного знака есть величина бесконечно большая)

Пример 7.

Решение. Данный предел содержит корень с высоким показателем, поэтому умножение и деление на сопряженное выражение нецелесообразно. Преобразуем данное выражение следующим образом:

При выражение , т. е. является бесконечно малой величиной. Если воспользоваться следствием из 2-го замечательного предела , то выражение, стоящее в скобках, можно заменить эквивалентной величиной . Так как величина является бесконечно малой более высокого порядка, чем , то ее можно отбросить, поэтому данная дробь будет эквивалентна выражению

.

Следовательно,

Пример 8.

Решение. Выделим Главную часть в каждом из слагаемых. Очевидно, что при

;

.

Таким образом, оба радикала имеют одинаковую часть . Вычтем ее из каждого радикала. Тогда получим

=

.

Пример 9.

Решение. 1 Способ: Выделим главную часть числителя и знаменателя. Т. к. то главная часть числителя будет совпадать с Аналогично, поэтому главная часть знаменателя совпадает с

Тогда

2 способ: Вынесем из-под каждого корня старшую степень переменной.

При раскрытии неопределенностей вида можно также выделить главную часть числителя и знаменателя.

Пример 10.

Решение. 1 способ:Этот пример можно решить, воспользовавшись для выделения главной части эквивалентными бесконечно большими величинами, а именно:

Значит

2 способ: Этот же предел можно вычислить и непосредственно, а именно вынести за скобки старшую степень переменной в числителе и знаменателе.

Пример 11.

Решение: 1 способ: Как и в предыдущем примере, выделим главную часть числителя и знаменателя.

,

Тогда

2 способ: Вынесем в числителе и знаменателе за скобки старшую степень х.

< Предыдущая   Следующая >

2.13. Вычисление пределов функций. Раскрытие неопределенностей

Правило. Для вычисления предела функции в точкеили принадо применить теоремы о пределах и подставить предельное значение аргумента.

Для всех основных элементарных функций в любой точке их области определения имеет место равенство

.

Примеры

Найти пределы функций:

2. ;

3. ;

4. ;

5. .

При вычислении пределов функций формальная подстановка вместо х предельного значения часто приводит к неопределенным выражениям вида:,,,,,,.

Например, или.

Выражения вида ,,,,,,называютсянеопределенностями.

Вычисление предела функции в этих случаях называют раскрытием неопределенности.

Рассмотрим правила раскрытия таких неопределенностей.

Неопределенность вида

Если ипри(), то говорят, что их частноепредставляет собой неопределенность вида.

Правило. Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо и числитель и знаменатель разделить на самую высокую входящую в них степеньх.

Например,

.

Рассмотрим дробно−рациональную функцию

(),

представляющую собой отношение двух многочленов относительно х степеней m и n соответственно, и исследуем поведение этой функции при .

При нахождении предела данной функции при могут иметь место три варианта ответа:

1.

, если ;

2.

, если ;

3.

, если .

Из этого следует, что предел отношения двух многочленов при во всех случаях равен пределу отношения их старших членов.

Примеры

Найти пределы функций:

1. ;

2. ;

3. .

Неопределенность вида

Если требуется найти , гдеи− бесконечно малые функции при(), т.е., то в этом случае вычисление предела называют раскрытием неопределенности вида .

Рассмотрим возможные приемы раскрытия такой неопределенности.

Выделение критического множителя

Правило. Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо и в числителе и в знаменателе выделить критический множитель и сократить на него дробь.

Примеры

Найти пределы функций:

1. ;

2. ;

Преобразование иррациональных выражений

Правило. Чтобы раскрыть неопределенность вида , в которой числитель или знаменатель, или тот и другой иррациональны, надо:

− перенести иррациональность из числителя в знаменатель, или из знаменателя в числитель, домножив дробь на сопряженные выражения,

− либо сделать замену переменной.

Замечание.

Если под знаком предела делается замена переменной, то все величины, входящие под знак предела, должны быть выражены через эту новую переменную.

Из равенства, выражающего зависимость между старой переменной и новой, должен быть определен предел новой переменной.

Примеры

Найти пределы функций:

1.

;

2.

;

3.

;

4.

.

Применение первого замечательного предела

Правило. Для раскрытия неопределенности вида , содержащей тригонометрические выражения, используют первый замечательный предел:

или ,

где и.

Примеры

Найти пределы функций:

1. ;

2. ;

4. .

Применение эквивалентных бесконечно малых величин

Правило. Для раскрытия неопределенности вида можно и числитель и знаменатель заменить величинами им эквивалентными (п.2.12).

Примеры

Найти пределы функций:

1. ;

2. ;

3. ;

4.

.

Неопределенности вида и

Если ипри, то их разностьпредставляет собой неопределенность вида .

Если ипри, то их произведение− это неопределенность вида .

Правило. Неопределенности вида ираскрываются путем их преобразования и сведения к неопределенностям видаили.

Примеры

Найти пределы функций:

.

Неопределенности вида ,,

Пусть функция имеет вид:

.

Если при ,, а, то имеем неопределенность вида . Для раскрытия этой неопределенности применяют второй замечательный предел:

; ;

или

; .

Примеры

Найти пределы функций:

1. ;

2. ;

3. ;

Если при ,, а, то имеем неопределенность вида .

Если ипри, то имеет место неопределенность .

Для раскрытия неопределенностей вида иих преобразуют и сводят к неопределенности видаследующим образом:

.

Примеры

Найти пределы функций:

1. ;

2. ;

В заключение отметим, что в дальнейшем будут рассмотрены более эффективные методы вычисления пределов функций, основанные на использовании понятия производной.

Упражнения

Односторонние пределы. Найти пределы:

1. ; Ответ:;

; Ответ: ;

2. ; Ответь:;

; Ответ: 0.

Непосредственное вычисление пределов. Найти пределы:

3. ; Ответ: 15;

4. ; Ответ:.

5. ; Ответ: 0.

Раскрытие неопределенности . Найти пределы:

6. ; Ответ: 0;

7. ; Ответ: -2;

8. ; Ответ:;

9. ; Ответ:.

Раскрытие неопределенности . Найти пределы:

10. ; Ответ:;

11. ; Ответ: -2;

12. ; Ответ:;

13. ; Ответ:;

14. ; Ответ: -12;

15. ; Ответ:.

16. ; Ответ:;

17. ; Ответ:;

18. ; Ответ:;

19. ; Ответ:;

20. ; Ответ:.

Раскрытие неопределенностей . Найти пределы:

21. ; Ответ:;

22. ; Ответ:;

23. ; Ответ: 0;

24. ; Ответ: 1.

Раскрытие неопределенности. Найти пределы:

25. ; Ответ:;

26. ; Ответ:;

27. ; Ответ:;

28. ; Ответ:.

Математическое исчисление – Решение пределов с квадратными корнями

спросил

Изменено 7 лет, 3 месяца назад

Просмотрено 46 тысяч раз

$\begingroup$

Мне трудно понять, как преодолеть этот предел путем рационализации. 2+11}+6$, но я застрял. Это способ решить это? Если да, не могли бы вы рассказать мне об этом, чтобы я мог решить другие? 92+11} – 6}{y} = \frac{\frac{5}{6}y+ o(y)}{y} = \frac{5}{6} + o(1) \xrightarrow[y\ до 0]{} \frac{5}{6}.$$

$\endgroup$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

исчисление – Пределы функций с квадратными корнями в знаменателе

спросил

Изменено 6 лет, 5 месяцев назад

Просмотрено 18 тысяч раз

$\begingroup$

Для приведенной ниже функции покажите, что $\displaystyle\lim_{x \to -2} f(x) = 4$, и обоснуйте свой ответ. (без использования правила Лопиталя).

$$f(x)= \dfrac{x+2}{\sqrt{6+x}-2}$$

Моя попытка такова:

Так как $f(x)$ определяется при $6 +x>0$, т.е. пока $x>-6$, функция определена в окрестности $-2$ и предел действительно существует и можно продолжать…

(не знаю знаете, каким методом можно доказать этот предел, когда у нас есть квадратный корень). Какой подход вы бы использовали, чтобы показать это?

  • исчисление
  • реальный анализ
  • пределы 92 – 6 + 2}{т – 2}\ = & \lim_{t \to 2} \frac{(t + 2)(t – 2)}{t – 2} \\ = & \lim_{t \to 2} t + 2 \\ = & 4. \end{выравнивание}

    $\endgroup$

    $\begingroup$

    Подсказка Один из вариантов — распознать $\frac{1}{f(x)}$ как разностное частное для конкретной функции в конкретной точке и использовать определение производной.

    Второй вариант — умножить числитель и знаменатель на сопряженное число знаменателя, а именно $\sqrt{6 + x} + 2$, а затем упростить.

    $\endgroup$

    $\begingroup$

    Уверен, что умножение на сопряженное число знаменателя делает задачу простой, когда требуется только предел.

    Ради вашего любопытства позвольте мне показать вам еще один метод, который позволит решить проблему довольно простым способом.

Оставить комментарий