Примеры решения матриц методом гаусса: Решение систем линейных уравнений методом Гаусса

Метод Гаусса, СЛАУ — понятие, примеры задач

Иоганн Карл Фридрих Гаусс (1777-1855) немецкий математик, физик, механик, геодезист и астроном. Его называют «королём математиков». Гаусс внес величайший вклад в науку. Во всех областях математики он провёл фундаментальные исследования: в алгебре, в теории вероятностей, в теории чисел, в теории функций комплексного переменного, в дифференциальной и неевклидовой геометрии, в математическом анализе, в аналитической и небесной механике, в астрономии, в физике и в геодезии. Но метод Гаусса не был им открыт. Он был известен за долго до рождения математика. Впервые этот метод упоминается в китайском трактате «Математика в девяти книгах», возраст которого датируется примерно с ІІ в. до н. э.

Иоганн Карл Фридрих Гаусс (1777-1855)

СЛАУ: определение, виды систем

Определение

Системой линейных алгебраических уравнений (СЛАУ), содержащей m линейных уравнений и n неизвестных, называется система вида

Число уравнений \[m\]  не обязательно совпадает с числом неизвестных n.  Особенности системы линейных алгебраических уравнений:

  • Уравнение не обязательно заранее на совместность.
  • Есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычисленных операций.
  • Можно решать такие системы уравнений, у которых определитель основной матрицы равняется нулю или количество уравнений не совпадает с числом неизвестных переменных.

Система линейных алгебраических уравнений может иметь:

  1. Одно решение;
  2. Много решений;
  3. Не имеет решений.

Если решений нет тогда СЛАУ называется несовместима, если есть — совместимой. Если решение одно, тогда система линейных алгебраических уравнений называется определённой, если решений несколько – неопределённой.

Метод Гаусса и метод последовательного исключения неизвестных

Определения

Метод Гаусса – это метод решение квадратных систем линейных алгебраических уравнений (СЛАУ), суть которого заключается в последовательном исключение неизвестных переменных с помощью элементарных преобразований строк.

Прямой ход метода Гаусса – это поочерёдное преобразования уравнений системы для последующего избавления от переменных неизвестных.

Обратный ход метода Гаусса – это вычисление переменных неизвестных от последнего уравнения к первому.

Решение уравнений методом Гаусса


Пример №1 решение уравнений методом Гаусса:

С первой строки определяем х. Сначала -2у переносим на другую сторону уравнения, а затем обе стороны делим на 4.

Теперь во второе уравнение системы подставляем значение

х. Находим у. 

Теперь когда у нас есть значение у, ми возвращаемся в первое уравнение и определяем х.

Ответ: \[x=-\frac{5}{4} ; \quad y=\frac{3}{2}\]


Пример №2.

Для упрощение перепишем уравнение так, чтобы на первом месте была строка с коэффициентом 1.

Теперь последовательно исключаем \[x_{1}\]с последующих строк.  Для исключения с второго уравнения обе части первого уравнение надо умножаем на -3, а затем сложить с вторым.

Так же и с третьим уравнением, только умножение на -4.

Теперь приводим уравнение к ступенчатому виду. Нужно сделать так, чтобы во второй строке возле \[x_{2}\] стала 1. Значит нам надо обе части уравнения умножить \[-\frac{1}{4}\]

Для того чтобы избавится от \[x_{2}\] в третьим уравнении, мы множим вторую строку на 5 и слаживаем её с третьей.

Теперь с третьей строки находим \[x_{3}\].

Мы закончили прямой ход метода Гаусса. Теперь приступаем к обратному ходу. Подставляем значение х3 во вторую строку и вычисляем \[x_{2}\]

Подставляем значение \[x_{2} и x_{3}\] в первое уравнение и вычисляем \[x_{1}\].

\[\left\{\begin{array}{l} x_{1}=1 \\ x_{2}=2 \\ x_{3}=3 \end{array}\right.\]

Ответ: \[x_{1}=1, x_{2}=2, x_{3}=3\]

Рассмотрим решение систем уравнений методом Гаусса.

Определение

Матрица системы уравнений – это та матрица, которая создаётся только с коэффициентов при переменных неизвестных.

Матрицей данной системы линейных алгебраических уравнений есть:

Вектор неизвестных – это вектор \[\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\], координатами которого являются неизвестные нашей системы.

Вектор \[\bar{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)\] – это вектор-столбец из свободных членов правых частей уравнений.

Расширенная матрица – та, в которой ещё записаны и свободные члены.

Если хотя бы одно из чисел \[b_{1}, b_{2}, \ldots, b_{m}\] не равно нулю, то система называется неоднородной. Если в правой части стоят только нули \[\left(b_{1}=b_{2}=\ldots=b_{m}=0\right)\], то такая система однородная.

Решение системы уравнений – это набор чисел \[x_{1}, x_{2} \ldots, x_{n}\], то есть вектор \[\bar{x}\].

Эквивалентными системами называются, когда каждое решение одной системы является решением другой, и на оборот.

Элементарные преобразования матрицы

:

Если в матрице две строки становятся идентичными, оставляем одну, а другую убираем. Рассмотрим, например, матрицу

В данной матрице второй и третий ряд одинаковые, а четвёртый (если разделить на 2) такой же, как и они. Значить нам достаточно оставить только одну строку. И теперь наша матрица будет выглядеть так:

Если в ходе работы с матрицей один из рядом имеет сплошные нули, его тоже нужно удалить.

В матрице строки и столбцы можно менять местами.

Матричную строку можно делить, умножать на любое число, не равное нулю.

В этом примере целесообразно первую строку разделить на 5, а вторую умножить на 2. И теперь матрица будет выглядеть так:

Данные преобразования не меняют совокупности решений системы линейных алгебраических уравнений, то есть новые системы эквивалентные прежней.

А теперь рассмотрим тот же пример системы линейных алгебраических уравнений, что рассматривали ранее, только теперь с помощью матрицы.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Пример №3:

Запишем матрицу.

Теперь так же само, как и в предыдущем варианте, надо 3 во втором ряду первом столбце превратить в 0. Каждое число первого ряда надо умножаем на -3, а затем сложить с числами второго.

Так же само 4 в третьем ряду первом столбце превращаем в 0. Каждое число первого ряда умножаем на -4, а затем сложить с числами третьего ряда.

Чтобы привести к ступенчатому виду, или как в научной и учебной литературе называется трапециевидный или треугольный вид. Нужно сделать так чтобы во второй строке во втором столбце место -4 стала 1. Умножаем на \[-\frac{1}{4}\]

В третьем ряду надо – 5 превратить в 0. Множим вторую строку на 5 и слаживаем её с третьей.

\[-\frac{7}{2}\] превращаем в 1. Третий ряд умножаем на \[-\frac{7}{2}\].

Теперь возвращаемся от матрицы к системе уравнений.

Конечный вариант выходит тот же.

\[ \left\{\begin{array}{l} x_{1}=1 \\ x_{2}=2 \\ x_{3}=3 \end{array}\right. \]

Ответ: \[x_{1}=1, x_{2}=2, x_{3}=3\].


Пример №4.

Записываем расширенную матрицу для данного СЛАУ.

\[ \left(\begin{array}{llrr} 3 & 2 & -5 \mid & -1 \\ 2 & -1 & 3 \mid & 13 \\ 1 & 2 & -1 & 9 \end{array}\right) \]

Переставляем третью строку на первое место.

\[ \left(\begin{array}{rrrr} 1 & 2 & -1 & 9 \\ 3 & 2 & -5 & -1 \\ 2 & -1 & 3 \mid & 13 \end{array}\right) \]

Убираем 3 с первого столбца второй строки. Первый ряд умножаем на -3 и складываем с вторым.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & -4 & -2 \mid & -28 \\ 2 & -1 & 3 \mid & 13 \end{array}\right) \]

Убираем 2 с первого столбца второй строки. Первый ряд умножаем на -2 и складываем с третьим.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & -4 & -2 \mid & -28 \\ 0 & -5 & 5 \mid & -5 \end{array}\right) \]

Превращаем -4 во втором столбце второй строки в 1. Умножаем второй ряд на -\[\frac{1}{4}\].

\[ \left(\begin{array}{cccc} 1 & 2 & -1 \mid & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & -5 & 5 \mid & -5 \end{array}\right) \]

Убираем -5 с второго столбца третьей строки. Второй ряд умножаем на 5 и складываем с третьим.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 \mid & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & 0 & \frac{15}{2} \mid & 30 \end{array}\right) \]

Превращаем \[\frac{15}{2}\] с третьего столбце третьей строки в 1. Умножаем третий ряд на \[\frac{2}{15}\]

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & 0 & 1 \mid & 4 \end{array}\right) \]

А теперь возвращаемся к системе линейных алгебраических уравнений.

\[ \left\{\begin{array}{c} x+2 y-z=9 \\ y+\frac{1}{2} z=7 \\ z=4 \end{array}\right. \]

Приступаем к обратному ходу методу Гаусса.

\[ \left\{\begin{array}{c} x+2 y-z=9 \\ y=5 \\ z=4 \end{array}\right. \]

\[ \left\{\begin{array}{l} x=3 \\ y=5 \\ z=4 \end{array}\right. \]

Ответ: х=3, у=5, z=4.


Пример №5.

Переводим в матричную систему и проводим элементарные преобразование.

В конечном результате исходная система свелась к ступенчатой.

\[\left\{\begin{array}{c} x_{1}-x_{2}-5 x_{3}=2 \\ x_{2}+13 x_{3}-5 x_{4}=-3 \end{array}\right.\]

Ответ: \[x_{2}=5 x_{4}-13 x_{3}-3 ; \quad x_{1}=5 x_{4}-8 x_{3}-1\]<span tabindex=”0″ data-mathml=”x2=5×4−13×3−3;x1=5×4−8×3−1″ role=»presentation» style=»font-size: 109%; text-align: center; position: relative;»>x2=5×4−13×3−3;x1=5×4−8×3−1×2=5×4−13×3−3;x1=5×4−8×3−1×2=5×4−13×3−3;x1=5×4−8×3−1

Примеры решения задач – Информатика

Самоучитель‎ > ‎лекция 7‎ > ‎

Примеры решения задач

Решение системы линейных алгебраических уравнений с n неизвестными.

Систему уравнений можно записать в виде матричного уравнения:

А × Х= В,  где А — матрица коэффициентов при переменных, или матрица системы, Х – матрица-столбец (вектор) неизвестных В — матрица-столбец (вектор) свободных членов:

Существует ряд методов решения системы, методы Крамера, Гаусса, обратной матрицы. С помощью MS Excel можно решить СЛАУ двумя методами: методом Крамера и обратной матрицы.

Суть метода Крамера заключается в следующем: если определитель ∆ системы n линейных алгебраических уравнений отличен от нуля ∆≠ 0, то эта система имеет единственное решение, которое находится по формулам Крамера:

– определители, образованные с заменой j-го столбца, столбцом свободных членов

Задача.

МТС оказывает услуги агротехсервиса: вспашку, культивацию, боронование и опрыскивание полей.

Данные за 4 дня работы занесены в таблицу.

 

Объем оказанных услуг за день

Выручка в день, руб

Вспашка, га

Культива-ция, га

Боронова-ние, га

Опрыскива-ние, га

1 день

31

16

112

330

97490

2 день

18

42

86

260

93130

3 день

34

28

64

180

85100

4 день

29

32

68

216

87682

 

Определить стоимость каждого вида услуг (за 1 га).

Пусть стоимость вспашки равна  х1, стоимость культивации х2 , стоимость боронования  х3 и стоимость  опрыскивания х4. Тогда можно сформировать следующую систему уравнений:

Систему можно представить как систему трех матриц:

Решение задачи методом Крамера.

Рассмотрим решение системы методом обратной матрицы. Будем считать, что квадратная матрица системы А является невырожденной, то есть ее определитель |А| ≠ 0. В этом случае существует обратная матрица А-1.

Умножая слева обе части матричного равенства на обратную матрицу А получим:  отсюда решением системы методом обратной матрицы будет матрица-столбец X=A-1× B.

Таким образом, для решения системы необходимо найти обратную матрицу коэффициентов и умножить ее справа на вектор свободных членов.

 Решение задачи методом обратной матрицы.

Оставить комментарий