ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

2 – 4x + 7 $$

{\large\bf ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ}

Рассмотрим Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y=f(x) , Π·Π°Π΄Π°Π½Π½ΡƒΡŽ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a, b) . ΠŸΡƒΡΡ‚ΡŒ x – любоС фиксированная Ρ‚ΠΎΡ‡ΠΊΠ° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° (a, b) , Π° Ξ”x – ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число, Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x+Ξ”x Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ (a, b) . Π­Ρ‚ΠΎ число Ξ”x Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x , ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , Π½Π°Π·ΠΎΠ²Π΅ΠΌ число

Ξ”y = f(x+Ξ”x) – f(x) .

Π‘Ρ‡ΠΈΡ‚Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ξ”x β‰  0 . Рассмотрим Π² Π΄Π°Π½Π½ΠΎΠΉ фиксированной Ρ‚ΠΎΡ‡ΠΊΠ΅ x ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x

Π­Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ разностным ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x ΠΌΡ‹ считаСм фиксированным, разностноС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ прСдставляСт собой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x . Π­Ρ‚Π° функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ достаточно ΠΌΠ°Π»ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ

Ξ”x=0 , Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ самой Ρ‚ΠΎΡ‡ΠΊΠΈ Ξ”x=0 . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ ΠΏΡ€Π°Π²ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ вопрос ΠΎ сущСствовании ΠΏΡ€Π΅Π΄Π΅Π»Π° ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ Ξ”x β†’ 0 .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ фиксированной Ρ‚ΠΎΡ‡ΠΊΠ΅ x называСтся ΠΏΡ€Π΅Π΄Π΅Π» ΠΏΡ€ΠΈ Ξ”x β†’ 0 разностного ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

ΠŸΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ этот ΠΏΡ€Π΅Π΄Π΅Π» сущСствуСт.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ . yβ€²(x) ΠΈΠ»ΠΈ fβ€²(x) .

ГСомСтричСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ : ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ осью Ox ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅:

fβ€²(x 0) = \tgΞ± .

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ : ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ ΠΏΡƒΡ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°Π²Π½Π° скорости прямолинСйного двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π»ΠΈΠ½ΠΈΠΈ y=f(x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ M 0 (x 0 ,y 0) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄

y-y 0 = fβ€²(x 0) (x-x 0) .

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΡŽ ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅Π΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ называСтся пСрпСндикуляр ΠΊ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅. Если fβ€²(x 0)β‰  0 , Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ Π»ΠΈΠ½ΠΈΠΈ y=f(x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ M 0 (x 0 ,y 0) записываСтся Ρ‚Π°ΠΊ:

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡƒΡΡ‚ΡŒ функция y=f(x) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a, b) , x – Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ фиксированноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΈΠ· этого ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, Ξ”x – любоС ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°

x+Ξ”x ∈ (a, b) .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . Ѐункция y=f(x) называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x , Ссли ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ξ”y этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x , ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставимо Π² Π²ΠΈΠ΄Π΅

Ξ”y = A Ξ”x +Ξ±Ξ”x ,

Π³Π΄Π΅ A – Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ число, Π½Π΅ зависящСС ΠΎΡ‚ Ξ”x , Π° Ξ± – функция Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , ΡΠ²Π»ΡΡŽΡ‰Π°Ρ бСсконСчно ΠΌΠ°Π»ΠΎΠΉ ΠΏΡ€ΠΈ Ξ”xβ†’ 0 .

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ξ±Ξ”x являСтся бСсконСчно ΠΌΠ°Π»ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ высокого порядка, Ρ‡Π΅ΠΌ

Ξ”x (свойство 3 бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ), Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

Ξ”y = A Ξ”x +o(Ξ”x) .

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° . Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ функция y=f(x) являлась Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x , Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½Π° ΠΈΠΌΠ΅Π»Π° Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. ΠŸΡ€ΠΈ этом A=fβ€²(x) , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Ξ”y = fβ€²(x) Ξ”x +o(Ξ”x) .

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° . Если функция y=f(x) x , Ρ‚ΠΎ ΠΎΠ½Π° Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ . Из нСпрСрывности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

y=f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x , Π²ΠΎΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅. НапримСр, функция y=|x| – Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x=0 , Π½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) называСтся ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x :

dy = yβ€² Ξ”x, df(x) = fβ€²(x) Ξ”x .

Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=x ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ dy=dx=xβ€²Ξ”x = 1Β· Ξ”x= Ξ”x , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ dx=Ξ”x – Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ

dy = yβ€² dx, df(x) = fβ€²(x) dx

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» dy ΠΈ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅

Ξ”y Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x , ΠΎΠ±Π° ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , Π²ΠΎΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

ГСомСтричСский смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° : Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ξ”x .

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° . Если каТдая ΠΈΠ· Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ u(x) ΠΈ v(x) Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x , Ρ‚ΠΎ сумма, Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ частноС этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (частноС ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ v(x)β‰  0 ) Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΈΠΌΠ΅ΡŽΡ‚ мСсто Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹:

Рассмотрим ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y=f(Ο†(x))≑ F(x) , Π³Π΄Π΅ y=f(u) , u=Ο†(x) . Π’ этом случаС u Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ , x нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ .

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° . Если y=f(u) ΠΈ u=Ο†(x) – Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ своих Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ‚ΠΎ производная слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(Ο†(x)) сущСствуСт ΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ‚. Π΅.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ . Для слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ супСрпозициСй Ρ‚Ρ€Π΅Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

y=F(f(Ο†(x))) , ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄

yβ€² x = yβ€² u uβ€² v vβ€² x ,

Π³Π΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ v=Ο†(x) , u=f(v) ΠΈ y=F(u) – Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ своих Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ².

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° . ΠŸΡƒΡΡ‚ΡŒ функция y=f(x) возрастаСт (ΠΈΠ»ΠΈ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚) ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ x 0 . ΠŸΡƒΡΡ‚ΡŒ, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, эта функция Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ x 0 ΠΈ Π΅Π΅ производная Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ fβ€²(x 0) β‰  0 . Π’ΠΎΠ³Π΄Π° Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ y 0 =f(x 0) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° обратная для y=f(x) функция x=f -1 (y) , ΠΏΡ€ΠΈΡ‡Π΅ΠΌ указанная обратная функция Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅

y 0 =f(x 0) ΠΈ для Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ y справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°

Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…

Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°

Рассмотрим Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Если y=f(x) , x=Ο†(t) – Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ своих Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ‚ΠΎ производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(Ο†(t)) выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ

yβ€² t = yβ€² x xβ€² t .

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ dy=yβ€² t dt , Ρ‚ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

dy = yβ€² t dt = yβ€² x Β· xβ€² t dt = yβ€² x (xβ€² t dt) = yβ€² x dx ,

dy = yβ€² x dx .

Π˜Ρ‚Π°ΠΊ, Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ,

Бвойство инвариантности Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

: ΠΊΠ°ΠΊ Π² случаС, ΠΊΠΎΠ³Π΄Π° Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ x являСтся нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ Π² случаС, ΠΊΠΎΠ³Π΄Π° Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ x сам являСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» dy Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° dx .

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… вычислСниях

ΠœΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» dy Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) , Π²ΠΎΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Ξ”y этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ бСсконСчно ΠΌΠ°Π»ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ высокого порядка малости, Ρ‡Π΅ΠΌ Ξ”x , справСдливо ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ равСнство

Ξ”y β‰ˆ dy .

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ равСнства этого равСнства. Π’Π°ΠΊ ΠΊΠ°ΠΊ Ξ”y-dy=o(Ξ”x) , Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ равСнства становится ΠΊΠ°ΠΊ ΡƒΠ³ΠΎΠ΄Π½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΠΏΡ€ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ

|Ξ”Ρ…| .

Учитывая, Ρ‡Ρ‚ΠΎ Ξ”y=f(x+Ξ΄ x)-f(x) , dy=fβ€²(x)Ξ”x , ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ f(x+Ξ΄ x)-f(x) β‰ˆ fβ€²(x)Ξ”x ΠΈΠ»ΠΈ

f(x+Ξ΄ x) β‰ˆ f(x) + fβ€²(x)Ξ”x .

Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ равСнство позволяСт с ошибкой o(Ξ”x) Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ f(x) Π² ΠΌΠ°Π»ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ x (Ρ‚.Π΅. для ΠΌΠ°Π»Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ξ”x ) Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”x , стоящСй Π² ΠΏΡ€Π°Π²ΠΎΠΉ части.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) называСтся производная ΠΎΡ‚ Π΅Π΅ ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

y=f(x) :

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ . Если функция y=f(x) описываСт Π·Π°ΠΊΠΎΠ½ двиТСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ прямой Π»ΠΈΠ½ΠΈΠΈ, Ρ‚ΠΎ вторая производная fβ€³(x) Ρ€Π°Π²Π½Π° ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ x .

Аналогично опрСдСляСтся Ρ‚Ρ€Π΅Ρ‚ΡŒΡ, чСтвСртая производная.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . n -ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ n -Π³ΠΎ порядка) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) называСтся производная ΠΎΡ‚ Π΅Π΅ n-1 -ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

y (n) =(y (n-1))β€², f (n) (x)=(f (n-1) (x))β€² .

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ:

yβ€³β€² , y IV , y V ΠΈ Ρ‚.Π΄.

Π Π΅ΡˆΠ°Ρ‚ΡŒ физичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… Π΅Π΅ вычислСния. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ – ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… понятий матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°. Π­Ρ‚ΠΎΠΉ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅ΠΌΠ΅ ΠΌΡ‹ ΠΈ Ρ€Π΅ΡˆΠΈΠ»ΠΈ ΠΏΠΎΡΠ²ΡΡ‚ΠΈΡ‚ΡŒ сСгодняшнюю ΡΡ‚Π°Ρ‚ΡŒΡŽ. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная, ΠΊΠ°ΠΊΠΎΠ² Π΅Π΅ физичСский ΠΈ гСомСтричСский смысл, ΠΊΠ°ΠΊ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ? ВсС эти вопросы ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Π² ΠΎΠ΄ΠΈΠ½: ΠΊΠ°ΠΊ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ?

ГСомСтричСский ΠΈ физичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

ΠŸΡƒΡΡ‚ΡŒ Π΅ΡΡ‚ΡŒ функция f(x) , заданная Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a, b) . Π’ΠΎΡ‡ΠΊΠΈ Ρ… ΠΈ Ρ…0 ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ этому ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ. ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ… мСняСтся ΠΈ сама функция. ИзмСнСниС Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° – Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ…-Ρ…0 . Π­Ρ‚Π° Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ записываСтся ΠΊΠ°ΠΊ Π΄Π΅Π»ΡŒΡ‚Π° икс ΠΈ называСтся ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ИзмСнСниСм ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ – ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΊΠΎΠ³Π΄Π° послСднСС стрСмится ΠΊ Π½ΡƒΠ»ΡŽ.

Π˜Π½Π°Ρ‡Π΅ это ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

Какой смысл Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°? А Π²ΠΎΡ‚ ΠΊΠ°ΠΊΠΎΠΉ:

производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ осью OX ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.


ЀизичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: производная ΠΏΡƒΡ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°Π²Π½Π° скорости прямолинСйного двиТСния.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π΅Ρ‰Π΅ со ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½ всСм извСстно, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это частноС ΠΏΡƒΡ‚ΠΈ x=f(t) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t . БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t0 Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π»:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠ΅: выносим константу

ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρƒ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ – это Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²ΠΎΠ·ΡŒΠΌΠΈΡ‚Π΅ Π·Π° ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ – Ссли ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°ΠΉΡ‚Π΅ .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Вычислим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅: производная суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ΠΎ ΠΆΠ΅ самоС справСдливо ΠΈ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ разности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

НС Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, Π° Π»ΡƒΡ‡ΡˆΠ΅ рассмотрим практичСский ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅: производная произвСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

РСшСниС:

Π—Π΄Π΅ΡΡŒ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

Π’ Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ встрСчаСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ – 8Ρ… Π² пятой стСпСни. Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΎΠ³ΠΎ выраТСния сначала считаСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ внСшнСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ нСпосрСдствСнно самого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ΅: производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

ΠœΡ‹ ΠΏΠΎΡΡ‚Π°Ρ€Π°Π»ΠΈΡΡŒ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² с нуля. Π­Ρ‚Π° Ρ‚Π΅ΠΌΠ° Π½Π΅ Ρ‚Π°ΠΊ проста, ΠΊΠ°ΠΊ каТСтся, поэтому ΠΏΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π°Π΅ΠΌ: Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π±ΡƒΠ΄ΡŒΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

Π‘ Π»ΡŽΠ±Ρ‹ΠΌ вопросом ΠΏΠΎ этой ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ‚Π΅ΠΌΠ°ΠΌ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ Π² студСнчСский сСрвис . Π—Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ срок ΠΌΡ‹ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ°ΠΌΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ с заданиями, Π΄Π°ΠΆΠ΅ Ссли Π²Ρ‹ Π½ΠΈΠΊΠΎΠ³Π΄Π° Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ занимались вычислСниСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

На этом занятии ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ I , Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ 4, 2 ΠΈ 1 . ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. РСшаСм Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 3.

y’=3βˆ™6x 5 -2=18x 5 -2.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ I , Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ 3, 5 ΠΈ 6 ΠΈ 1.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ IV , Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ 5 ΠΈ 1 .

Π’ пятом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ I производная суммы Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ 1-Π³ΠΎ слагаСмого ΠΌΡ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ (ΠΏΡ€ΠΈΠΌΠ΅Ρ€ 4 ), поэтому, Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ 2-Π³ΠΎ ΠΈ 3-Π³ΠΎ слагаСмых, Π° для 1-Π³ΠΎ слагаСмого ΠΌΠΎΠΆΠ΅ΠΌ сразу ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚.

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ 2-ΠΎΠ΅ ΠΈ 3-Π΅ слагаСмыС ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ 4 . Для этого ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ ΠΊΠΎΡ€Π½ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСнСй Π² знамСнатСлях ΠΊ стСпСням с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ показатСлями, Π° Π·Π°Ρ‚Π΅ΠΌ, ΠΏΠΎ 4 Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ стСпСнСй.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Π£Π»ΠΎΠ²ΠΈΠ»ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ? Π₯ΠΎΡ€ΠΎΡˆΠΎ. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π½ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΌΠΎΠΆΠ΅ΠΌ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ Π΅Π΅ Π² Π½Π°ΡˆΡƒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

РСшим ΡˆΠ΅ΡΡ‚ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΈ Π²Ρ‹Π²Π΅Π΄Π΅ΠΌ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ IV ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 4 . ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΠ΅ΡΡ Π΄Ρ€ΠΎΠ±ΠΈ сократим.

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΠΌ Π½Π° Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ Π½Π° Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. Π’Ρ‹, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, поняли Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΈ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ Π½Π°Π·Π²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π£Ρ‡ΠΈΠΌ Π½ΠΎΠ²Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹.

1. Найти ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΈ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=x 2 , Ссли Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π±Ρ‹Π»ΠΎ Ρ€Π°Π²Π½ΠΎ 4 , Π° Π½ΠΎΠ²ΠΎΠ΅ –4,01 .

РСшСниС.

НовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ…=Ρ… 0 +Ξ”x . ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π΄Π°Π½Π½Ρ‹Π΅: 4,01=4+Ξ”Ρ…, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”Ρ… =4,01-4=0,01. ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Ρ€Π°Π²Π½ΠΎ разности ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΎΠ²Ρ‹ΠΌ ΠΈ ΠΏΡ€Π΅ΠΆΠ½ΠΈΠΌ значСниями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚.Π΅. Ξ”y=f (Ρ… 0 +Ξ”Ρ…) – f (x 0). Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ нас функция y=x 2 , Ρ‚ΠΎ Ξ”Ρƒ =(Ρ… 0 +Ξ”x) 2 β€” (Ρ… 0) 2 =(Ρ… 0) 2 +2x 0 Β· Ξ”x+(Ξ”x) 2 β€” (Ρ… 0) 2 =2x 0 Β· Ξ”x+(Ξ”x) 2 =

2 Β· 4 Β· 0,01+(0,01) 2 =0,08+0,0001=0,0801.

ΠžΡ‚Π²Π΅Ρ‚: ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ξ”Ρ… =0,01; ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ξ”Ρƒ =0,0801.

МоТно Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ: Ξ”y =y (Ρ… 0 +Ξ”x) -y (Ρ… 0)=Ρƒ(4,01) -Ρƒ(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f (x) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… 0 , Ссли f “(Ρ… 0) = 1 .

РСшСниС.

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ касания Ρ… 0 ΠΈ Π΅ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ тангСнса ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ (гСомСтричСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ). ИмССм: f “(Ρ… 0) = tgΞ± = 1 β†’ Ξ± = 45Β°, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ tg45Β°=1.

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси ΠžΡ… ΡƒΠ³ΠΎΠ», Ρ€Π°Π²Π½Ρ‹ΠΉ 45Β° .

3. ВывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=x n .

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ β€” это дСйствиС нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Π²Ρ‹Π²Π΅Π΄Π΅Π½Ρ‹ Π½Π° основании опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΌΡ‹ Π²Ρ‹Π²Π΅Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ стСпСни: (x n)” = nx n-1 .

Π’ΠΎΡ‚ эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹.

Π’Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π»Π΅Π³Ρ‡Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°ΡƒΡ‡ΠΈΡ‚ΡŒ, проговаривая словСсныС Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ:

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ постоянной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

2. Икс ΡˆΡ‚Ρ€ΠΈΡ… Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅.

3. ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ стСпСни Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ показатСля этой стСпСни Π½Π° ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ с Ρ‚Π΅ΠΌ ΠΆΠ΅ основаниСм, Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ мСньшС.

5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ корня Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π²Π° Ρ‚Π°ΠΊΠΈΡ… ΠΆΠ΅ корня.

6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° икс Ρ€Π°Π²Π½Π° минус Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° икс Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅.

7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ синуса Ρ€Π°Π²Π½Π° косинусу.

8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ косинуса Ρ€Π°Π²Π½Π° минус синусу.

9. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ тангСнса Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ косинуса.

10. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ котангСнса Ρ€Π°Π²Π½Π° минус Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ синуса.

Π£Ρ‡ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования .

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ алгСбраичСской суммы Ρ€Π°Π²Π½Π° алгСбраичСской суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слагаСмых.

2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ мноТитСля Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ плюс ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ мноТитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Β«ΡƒΒ», Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° «вэ» Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Π² числитСлС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ “Ρƒ ΡˆΡ‚Ρ€ΠΈΡ… ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π½Π° «вэ» минус Β«Ρƒ, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π½Π° вэ ΡˆΡ‚Ρ€ΠΈΡ…Β», Π° Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ β€” «вэ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅Β».

4. Частный случай Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ 3.

Π£Ρ‡ΠΈΠΌ вмСстС!

Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 1 ΠΈΠ· 1 1

ВычислСниС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ – ΠΎΠ΄Π½Π° ΠΈΠ· самых Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ исчислСнии. НиТС приводится Ρ‚Π°Π±Π»ΠΈΡ†Π° нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π‘ΠΎΠ»Π΅Π΅ слоТныС ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования смотритС Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡƒΡ€ΠΎΠΊΠ°Ρ…:

  • Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ логарифмичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ΠΊΠ°ΠΊ справочныС значСния. Они ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π·Π°Π΄Π°Ρ‡. На ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅, Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° “ΡˆΠΏΠ°Ρ€Π³Π°Π»ΠΊΠ°” основных случаСв нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² понятном для примСнСния Π²ΠΈΠ΄Π΅, рядом с Π½ΠΈΠΌ Π΄Π°Π½Ρ‹ пояснСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ случая.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ числа Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ
с´ = 0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
5Β΄ = 0

ПояснСниС :
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ число Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ мСняСтся Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ измСнСния всСгда Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅
xΒ΄ = 1

ПояснСниС :
ΠŸΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (Ρ…) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° вычислСний) увСличиваСтся Π½Π° эту ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½Π° скорости измСнСния значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.

3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ мноТитСля Ρ€Π°Π²Π½Π° этому ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŽ
сx´ = с
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(3x)Β΄ = 3
(2x)Β΄ = 2
ПояснСниС :
Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС, ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ… ) Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ (y) растСт Π² с Ρ€Π°Π·. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ скорости измСнСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ с .

ΠžΡ‚ΠΊΡƒΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ
(cx + b)” = c
Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=kx+b Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΌΡƒ коэффициСнту Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой (k).

4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Ρ€Π°Π²Π½Π° частному этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊ Π΅Π΅ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ
|x|” = x / |x| ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ… β‰  0
ПояснСниС :
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ (см. Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 2) Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚ΠΎ производная модуля отличаСтся лишь Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡ€ΠΈ пСрСсСчСнии Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |x| ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ Π² этом сами. ИмСнно Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ x / |x| . Когда x 0 – Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ… ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… – Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, возрастаСт, Π½ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ Π½Π° Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ числа этой стСпСни ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ
(x c)”= cx c-1 , ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ x c ΠΈ сx c-1 ,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π° с β‰  0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(x 2)” = 2x
(x 3)” = 3x 2
Для запоминания Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ :
БнСситС ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ “Π²Π½ΠΈΠ·” ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚Π΅ саму ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ. НапримСр, для x 2 – Π΄Π²ΠΎΠΉΠΊΠ° оказалась Π²ΠΏΠ΅Ρ€Π΅Π΄ΠΈ икса, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Π°Ρ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ (2-1=1) просто Π΄Π°Π»Π° Π½Π°ΠΌ 2Ρ…. Π’ΠΎ ΠΆΠ΅ самоС ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ для x 3 – Ρ‚Ρ€ΠΎΠΉΠΊΡƒ “спускаСм Π²Π½ΠΈΠ·”, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΈ вмСсто ΠΊΡƒΠ±Π° ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 3x 2 . НСмного “Π½Π΅ Π½Π°ΡƒΡ‡Π½ΠΎ”, Π½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ просто Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ.

6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ 1/Ρ…
(1/Ρ…)” = – 1 / x 2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Ρ€ΠΎΠ±ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ
(1/x)” = (x -1)” , Ρ‚ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5 Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…
(x -1)” = -1x -2 = – 1 / Ρ… 2

7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅
(1 / x c)” = – c / x c+1
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(1 / x 2)” = – 2 / x 3

8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ корня (производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΌ)
(√x)” = 1 / (2√x) ΠΈΠ»ΠΈ 1/2 Ρ… -1/2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(√x)” = (Ρ… 1/2)” Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5
(Ρ… 1/2)” = 1/2 Ρ… -1/2 = 1 / (2βˆšΡ…)

9. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни
(n √x)” = 1 / (n n √x n-1)

РСшСниС нСравСнств Β· ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Онлайн Β· с ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ

Π£Ρ‡ΠΈΡ‚Π΅Π»ΡŒ ΠΎΡ‡Π΅Π½ΡŒ удивится ΡƒΠ²ΠΈΠ΄Π΅Π² Ρ‚Π²ΠΎΡ‘ Π²Π΅Ρ€Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅πŸ˜‰

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ нСравСнств

  • ΠœΠ΅Ρ‚ΠΎΠ΄ разлоТСния Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ
  • ΠœΠ΅Ρ‚ΠΎΠ΄ ввСдСния Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ
  • Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-графичСский ΠΌΠ΅Ρ‚ΠΎΠ΄
  • ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ

Π¨Π°Π³ 1.

2
Ѐункция – ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ x
ctg(x)
Ѐункция – ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ ΠΎΡ‚ x
arcctg(x)
Ѐункция – АрккотангСнс ΠΎΡ‚ x
arcctgh(x)
Ѐункция – ГипСрболичСский арккотангСнс ΠΎΡ‚ x
tg(x)
Ѐункция – ВангСнс ΠΎΡ‚ x
tgh(x)
Ѐункция – ВангСнс гипСрболичСский ΠΎΡ‚ x
cbrt(x)
Ѐункция – кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· x
gamma(x)
Π“Π°ΠΌΠΌΠ°-функция
LambertW(x)
Ѐункция Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π°
x! ΠΈΠ»ΠΈ factorial(x)
Π€Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ°Π» ΠΎΡ‚ x
DiracDelta(x)
Π”Π΅Π»ΡŒΡ‚Π°-функция Π”ΠΈΡ€Π°ΠΊΠ°
Heaviside(x)
Ѐункция Π₯Свисайда

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Si(x)
Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ синус ΠΎΡ‚ x
Ci(x)
Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ косинус ΠΎΡ‚ x
Shi(x)
Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ гипСрболичСский синус ΠΎΡ‚ x
Chi(x)
Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ гипСрболичСский косинус ΠΎΡ‚ x

Π’ выраТСниях ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ:

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа
Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ 7. 3
– Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ
x + 7
– слоТСниС
x – 6
– Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅
15/7
– Π΄Ρ€ΠΎΠ±ΡŒ

Π”Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

asec(x)
Ѐункция – арксСканс ΠΎΡ‚ x
acsc(x)
Ѐункция – арккосСканс ΠΎΡ‚ x
sec(x)
Ѐункция – сСканс ΠΎΡ‚ x
csc(x)
Ѐункция – косСканс ΠΎΡ‚ x
floor(x)
Ѐункция – ΠΎΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠ΅ x Π² ΠΌΠ΅Π½ΡŒΡˆΡƒΡŽ сторону (ΠΏΡ€ΠΈΠΌΠ΅Ρ€ floor(4.5)==4.0)
ceiling(x)
Ѐункция – ΠΎΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠ΅ x Π² Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ сторону (ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ceiling(4.5)==5.0)
sign(x)
Ѐункция – Π—Π½Π°ΠΊ x
erf(x)
Ѐункция ошибок (ΠΈΠ»ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» вСроятности)
laplace(x)
Ѐункция Лапласа
asech(x)
Ѐункция – гипСрболичСский арксСканс ΠΎΡ‚ x
csch(x)
Ѐункция – гипСрболичСский косСканс ΠΎΡ‚ x
sech(x)
Ѐункция – гипСрболичСский сСканс ΠΎΡ‚ x
acsch(x)
Ѐункция – гипСрболичСский арккосСканс ΠΎΡ‚ x

ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½Ρ‹Π΅:

pi
Число “Пи”, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ€Π°Π²Π½ΠΎ ~3. 14159..
e
Число e – основаниС Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ€Π°Π²Π½ΠΎ ~2,7183..
i
КомплСксная Π΅Π΄ΠΈΠ½ΠΈΡ†Π°
oo
Π‘ΠΈΠΌΠ²ΠΎΠ» бСсконСчности – Π·Π½Π°ΠΊ для бСсконСчности

Π·Π°Π΄Π°Ρ‡ с Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ | Π˜ΡΡ‡ΠΈΡΠ»Π΅Π½ΠΈΠ΅ I

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ обучСния

  • ИспользованиС антидиффСрСнцирования для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ простых Π·Π°Π΄Π°Ρ‡ с Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ значСниями

ΠœΡ‹ рассмотрим ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ большого количСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… произвСдСния, частныС ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ, Π΄Π°Π»Π΅Π΅ Π² тСкстС. Π—Π΄Π΅ΡΡŒ ΠΌΡ‹ обратимся ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ распространСнному использованию ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ часто встрСчаСтся Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… прилоТСниях: Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ ΠΎΠ΄Π½Ρƒ ΠΈΠ»ΠΈ нСсколько Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅

[латСкс]\frac{dy}{dx}=f(x)[/latex]

Β 

β€” простой ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния. РСшСниС этого уравнСния ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ [latex]y[/latex] с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ [latex]f[/latex]. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ [latex]\frac{dy}{dx}[/latex] ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ [latex]f[/latex]. Если [латСкс]F[/латСкс] являСтся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ [латСкс]f[/латСкс], каТдая функция Π²ΠΈΠ΄Π° [латСкс]y=F(x)+C[/латСкс] являСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ этого Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния. НапримСр, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ 93+C[/latex]

Β 

Иногда нас интСрСсуСт, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π»ΠΈ конкрСтная кривая Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ [latex](x_0,y_0)[/latex], Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ [latex]y(x_0) =y_0[/латСкс]. Π—Π°Π΄Π°Ρ‡Π° нахоТдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ [latex]y[/latex], ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π΅ΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

[latex]\frac{dy}{dx}=f(x)[/latex]

Β 

с Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ условиСм

[latex]y(x_0)=y_0[/latex]

являСтся ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ с Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ 9{-2}, \,\,\, y(1)=2[/латСкс].

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ Π²ΠΈΠ΄Π΅ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°: Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ с Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π²Ρ‹ΡˆΠ΅. ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅.

Π‘ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ субтитры ΠΈ Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠ° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для Π²ΠΈΠ΄Π΅ΠΎ

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅

Π’ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… прилоТСниях Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ с Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ. Π”Π°Π»Π΅Π΅ рассмотрим Π·Π°Π΄Π°Ρ‡Ρƒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒ Π½Π°ΠΆΠΈΠΌΠ°Π΅Ρ‚ Π½Π° Ρ‚ΠΎΡ€ΠΌΠΎΠ· автомобиля. Нас интСрСсуСт, Ρ‡Π΅Ρ€Π΅Π· ΠΊΠ°ΠΊΠΎΠ΅ врСмя Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ остановится. Напомним, Ρ‡Ρ‚ΠΎ функция скорости [latex]v(t)[/latex] являСтся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ полоТСния [latex]s(t)[/latex], Π° ускорСниС [latex]a(t)[/latex] Ρ€Π°Π²Π½ΠΎ производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ скорости. Π’ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… Π² тСкстС ΠΌΡ‹ ΠΌΠΎΠ³Π»ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎ полоТСнию, Π° Π·Π°Ρ‚Π΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ускорСниС ΠΏΠΎ скорости. Π’ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚. Учитывая Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ускорСния, ΠΌΡ‹ вычисляСм Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ скорости. Π—Π°Ρ‚Π΅ΠΌ ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ скорости для опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ полоТСния.

ΠžΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ