{\large\bf ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ}
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) , Π·Π°Π΄Π°Π½Π½ΡΡ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) . ΠΡΡΡΡ x – Π»ΡΠ±ΠΎΠ΅ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΎΡΠΊΠ° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° (a, b) , Π° Ξx – ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x+Ξx ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ (a, b) . ΠΡΠΎ ΡΠΈΡΠ»ΠΎ Ξx Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) Π² ΡΠΎΡΠΊΠ΅ x , ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx , Π½Π°Π·ΠΎΠ²Π΅ΠΌ ΡΠΈΡΠ»ΠΎ
Ξy = f(x+Ξx) – f(x) .
Π‘ΡΠΈΡΠ°Π΅ΠΌ, ΡΡΠΎ Ξx β 0 . Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΌΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx
ΠΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅ΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°Π·Π½ΠΎΡΡΠ½ΡΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x ΠΌΡ ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ, ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx . ΠΡΠ° ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx , ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ

ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π» ΠΏΡΠΈ Ξx β 0 ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ
ΠΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ ΡΡΠΎΡ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ . yβ²(x) ΠΈΠ»ΠΈ fβ²(x) .
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ : ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΡ Ox ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠ΅:
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ : ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΠΏΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π»ΠΈΠ½ΠΈΠΈ y=f(x) Π² ΡΠΎΡΠΊΠ΅ M 0 (x 0 ,y 0) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄
y-y 0 = fβ²(x 0) (x-x 0) .
ΠΠΎΡΠΌΠ°Π»ΡΡ ΠΊ ΠΊΡΠΈΠ²ΠΎΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ Π΅Π΅ ΡΠΎΡΠΊΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ ΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π² ΡΠΎΠΉ ΠΆΠ΅ ΡΠΎΡΠΊΠ΅. ΠΡΠ»ΠΈ fβ²(x 0)β 0 , ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡΠΌΠ°Π»ΠΈ ΠΊ Π»ΠΈΠ½ΠΈΠΈ y=f(x) Π² ΡΠΎΡΠΊΠ΅ M 0 (x 0 ,y 0) Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊ:
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) , x – Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°, Ξx – Π»ΡΠ±ΠΎΠ΅ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°

ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . Π€ΡΠ½ΠΊΡΠΈΡ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x , Π΅ΡΠ»ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Ξy ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ x , ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx , ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌΠΎ Π² Π²ΠΈΠ΄Π΅
Ξy = A Ξx +Ξ±Ξx ,
Π³Π΄Π΅ A – Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π½Π΅ Π·Π°Π²ΠΈΡΡΡΠ΅Π΅ ΠΎΡ Ξx , Π° Ξ± – ΡΡΠ½ΠΊΡΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx , ΡΠ²Π»ΡΡΡΠ°Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΠΏΡΠΈ Ξxβ 0 .
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Ξ±Ξx ΡΠ²Π»ΡΠ΅ΡΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΡΠ΅ΠΌ
Ξy = A Ξx +o(Ξx) .
Π’Π΅ΠΎΡΠ΅ΠΌΠ° . ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) ΡΠ²Π»ΡΠ»Π°ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x , Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΡΡΠΎΠ±Ρ ΠΎΠ½Π° ΠΈΠΌΠ΅Π»Π° Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ. ΠΡΠΈ ΡΡΠΎΠΌ A=fβ²(x) , ΡΠΎ Π΅ΡΡΡ
Ξy = fβ²(x) Ξx +o(Ξx) .
ΠΠΏΠ΅ΡΠ°ΡΠΈΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±ΡΡΠ½ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° . ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) x , ΡΠΎ ΠΎΠ½Π° Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠ°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ . ΠΠ· Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x :
dy = yβ² Ξx, df(x) = fβ²(x) Ξx .
ΠΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ y=x ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ dy=dx=xβ²Ξx = 1Β· Ξx= Ξx , ΡΠΎ Π΅ΡΡΡ dx=Ξx – Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π²Π΅Π½ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°ΡΡ
dy = yβ² dx, df(x) = fβ²(x) dx
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» dy ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅

ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° : ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Ξx .
ΠΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
Π’Π΅ΠΎΡΠ΅ΠΌΠ° . ΠΡΠ»ΠΈ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΉ u(x) ΠΈ v(x) Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠ° Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x , ΡΠΎ ΡΡΠΌΠΌΠ°, ΡΠ°Π·Π½ΠΎΡΡΡ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ΅ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ (ΡΠ°ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ v(x)β 0 ) ΡΠ°ΠΊΠΆΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅, ΠΏΡΠΈΡΠ΅ΠΌ ΠΈΠΌΠ΅ΡΡ ΠΌΠ΅ΡΡΠΎ ΡΠΎΡΠΌΡΠ»Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ y=f(Ο(x))β‘ F(x) , Π³Π΄Π΅ y=f(u) , u=Ο(x) . Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ u Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ , x – Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ .
Π’Π΅ΠΎΡΠ΅ΠΌΠ° . ΠΡΠ»ΠΈ y=f(u) ΠΈ u=Ο(x) – Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²ΠΎΠΈΡ
Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(Ο(x)) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ. Π΅.
ΠΠ°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ . ΠΠ»Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ ΡΡΠΏΠ΅ΡΠΏΠΎΠ·ΠΈΡΠΈΠ΅ΠΉ ΡΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΠΉ
yβ² x = yβ² u uβ² v vβ² x ,
Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ v=Ο(x) , u=f(v) ΠΈ y=F(u) – Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²ΠΎΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ².
Π’Π΅ΠΎΡΠ΅ΠΌΠ° . ΠΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ (ΠΈΠ»ΠΈ ΡΠ±ΡΠ²Π°Π΅Ρ) ΠΈ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ x 0 . ΠΡΡΡΡ, ΠΊΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠ° ΡΡΠ½ΠΊΡΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠ° Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x 0 ΠΈ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ fβ²(x 0) β 0 . Π’ΠΎΠ³Π΄Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ y 0 =f(x 0) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ Π΄Π»Ρ y=f(x) ΡΡΠ½ΠΊΡΠΈΡ x=f -1 (y) , ΠΏΡΠΈΡΠ΅ΠΌ ΡΠΊΠ°Π·Π°Π½Π½Π°Ρ ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠ° Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠ΅
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠ»ΠΈ y=f(x) , x=Ο(t) – Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²ΠΎΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ y=f(Ο(t)) Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ
yβ² t = yβ² x xβ² t .
ΠΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ dy=yβ² t dt , ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ
dy = yβ² t dt = yβ² x Β· xβ² t dt = yβ² x (xβ² t dt) = yβ² x dx ,
dy = yβ² x dx .
ΠΡΠ°ΠΊ, Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ,
Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΌΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Π² ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ
ΠΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» dy ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) , Π²ΠΎΠΎΠ±ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π½Π΅ ΡΠ°Π²Π΅Π½ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Ξy ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Ρ ΡΠΎΡΠ½ΠΎΡΡΡΡ Π΄ΠΎ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΌΠ°Π»ΠΎΡΡΠΈ, ΡΠ΅ΠΌ Ξx , ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
Ξy β dy .
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΡΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. Π’Π°ΠΊ ΠΊΠ°ΠΊ Ξy-dy=o(Ξx) , ΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΊΠ°ΠΊ ΡΠ³ΠΎΠ΄Π½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΠΏΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ

Π£ΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ Ξy=f(x+Ξ΄ x)-f(x) , dy=fβ²(x)Ξx , ΠΏΠΎΠ»ΡΡΠΈΠΌ f(x+Ξ΄ x)-f(x) β fβ²(x)Ξx ΠΈΠ»ΠΈ
f(x+Ξ΄ x) β f(x) + fβ²(x)Ξx .
ΠΡΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Ρ ΠΎΡΠΈΠ±ΠΊΠΎΠΉ o(Ξx) Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π² ΠΌΠ°Π»ΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ x (Ρ.Π΅. Π΄Π»Ρ ΠΌΠ°Π»ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Ξx ) Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx , ΡΡΠΎΡΡΠ΅ΠΉ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ²
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . ΠΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°) ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ Π΅Π΅ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ . ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ y=f(x) ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ Π·Π°ΠΊΠΎΠ½ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π²ΡΠΎΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ fβ³(x) ΡΠ°Π²Π½Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ x .
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠ΅ΡΡΡ, ΡΠ΅ΡΠ²Π΅ΡΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ . n -ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ n -Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°) ΡΡΠ½ΠΊΡΠΈΠΈ y=f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ Π΅Π΅ n-1 -ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
y (n) =(y (n-1))β², f (n) (x)=(f (n-1) (x))β² .
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ:
Π Π΅ΡΠ°ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΈΠ»ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°Ρ Π΅Π΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ – ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΡΠΎΠΉ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ΅ ΠΌΡ ΠΈ ΡΠ΅ΡΠΈΠ»ΠΈ ΠΏΠΎΡΠ²ΡΡΠΈΡΡ ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΡΡ ΡΡΠ°ΡΡΡ. Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, ΠΊΠ°ΠΊΠΎΠ² Π΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ», ΠΊΠ°ΠΊ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ? ΠΡΠ΅ ΡΡΠΈ Π²ΠΎΠΏΡΠΎΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ Π² ΠΎΠ΄ΠΈΠ½: ΠΊΠ°ΠΊ ΠΏΠΎΠ½ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ?
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
ΠΡΡΡΡ Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ f(x) , Π·Π°Π΄Π°Π½Π½Π°Ρ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) . Π’ΠΎΡΠΊΠΈ Ρ ΠΈ Ρ 0 ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΡΡΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ. ΠΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΈ ΡΠ°ΠΌΠ° ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° β ΡΠ°Π·Π½ΠΎΡΡΡ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Ρ -Ρ 0 . ΠΡΠ° ΡΠ°Π·Π½ΠΎΡΡΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ Π΄Π΅Π»ΡΡΠ° ΠΈΠΊΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π²ΡΡ ΡΠΎΡΠΊΠ°Ρ . ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ β ΠΏΡΠ΅Π΄Π΅Π» ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΠ³Π΄Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ.
ΠΠ½Π°ΡΠ΅ ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊΠΎΠΉ ΡΠΌΡΡΠ» Π² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°? Π Π²ΠΎΡ ΠΊΠ°ΠΊΠΎΠΉ:
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΡ OX ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, Π΅ΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ Π²ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΡΠ°ΡΡΠ½ΠΎΠ΅ ΠΏΡΡΠΈ x=f(t) ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t . Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t0 Π½ΡΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠ΅Π΄Π΅Π»:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ΅: Π²ΡΠ½ΠΎΡΠΈΠΌ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ
ΠΠΎΠ½ΡΡΠ°Π½ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ – ΡΡΠΎ Π½ΡΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ. ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π²ΠΎΠ·ΡΠΌΠΈΡΠ΅ Π·Π° ΠΏΡΠ°Π²ΠΈΠ»ΠΎ – Π΅ΡΠ»ΠΈ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΠ°ΠΉΡΠ΅ .
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΡΠΈΡΠ»ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ Π²ΡΠΎΡΠΎΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΡΡΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. Π’ΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΈ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΠ΅ Π±ΡΠ΄Π΅ΠΌ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠ΅ΠΌΡ, Π° Π»ΡΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ.
ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΡΡΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠΈΠΌΠ΅Ρ: Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ΄Π΅ΡΡ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ ΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΌΡ Π²ΡΡΡΠ΅ΡΠ°Π΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ β 8Ρ
Π² ΠΏΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ½Π°ΡΠ°Π»Π° ΡΡΠΈΡΠ°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°ΠΌΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ΅ΡΠ²Π΅ΡΡΠΎΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΡ ΠΏΠΎΡΡΠ°ΡΠ°Π»ΠΈΡΡ ΡΠ°ΡΡΠΊΠ°Π·Π°ΡΡ ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄Π»Ρ ΡΠ°ΠΉΠ½ΠΈΠΊΠΎΠ² Ρ Π½ΡΠ»Ρ. ΠΡΠ° ΡΠ΅ΠΌΠ° Π½Π΅ ΡΠ°ΠΊ ΠΏΡΠΎΡΡΠ°, ΠΊΠ°ΠΊ ΠΊΠ°ΠΆΠ΅ΡΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠ΅Π΄ΡΠΏΡΠ΅ΠΆΠ΄Π°Π΅ΠΌ: Π² ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π»ΠΎΠ²ΡΡΠΊΠΈ, ΡΠ°ΠΊ ΡΡΠΎ Π±ΡΠ΄ΡΡΠ΅ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½Ρ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
Π‘ Π»ΡΠ±ΡΠΌ Π²ΠΎΠΏΡΠΎΡΠΎΠΌ ΠΏΠΎ ΡΡΠΎΠΉ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ ΡΠ΅ΠΌΠ°ΠΌ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ Π² ΡΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ²ΠΈΡ . ΠΠ° ΠΊΠΎΡΠΎΡΠΊΠΈΠΉ ΡΡΠΎΠΊ ΠΌΡ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΌΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ ΠΈ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Ρ Π·Π°Π΄Π°Π½ΠΈΡΠΌΠΈ, Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Π²Ρ Π½ΠΈΠΊΠΎΠ³Π΄Π° ΡΠ°Π½ΡΡΠ΅ Π½Π΅ Π·Π°Π½ΠΈΠΌΠ°Π»ΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
ΠΠ° ΡΡΠΎΠΌ Π·Π°Π½ΡΡΠΈΠΈ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΠΈΠΌΠ΅ΡΡ. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ.
1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ I , ΡΠΎΡΠΌΡΠ»Ρ 4, 2 ΠΈ 1 . ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ:
yβ=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.
2. y=3x 6 -2x+5. Π Π΅ΡΠ°Π΅ΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ ΠΆΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠΎΡΠΌΡΠ»Ρ 3.
yβ=3β6x 5 -2=18x 5 -2.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ I , ΡΠΎΡΠΌΡΠ»Ρ 3, 5 ΠΈ 6 ΠΈ 1.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ IV , ΡΠΎΡΠΌΡΠ»Ρ 5 ΠΈ 1 .
Π ΠΏΡΡΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ I ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ 1-Π³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΠΈ (ΠΏΡΠΈΠΌΠ΅Ρ 4 ), ΠΏΠΎΡΡΠΎΠΌΡ, Π±ΡΠ΄Π΅ΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ 2-Π³ΠΎ ΠΈ 3-Π³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ , Π° Π΄Π»Ρ 1-Π³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΡΡΠ°Π·Ρ ΠΏΠΈΡΠ°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ 2-ΠΎΠ΅ ΠΈ 3-Π΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 4 . ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΉ ΠΈ ΡΠ΅ΡΠ²Π΅ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΡ ΠΊ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ, Π° Π·Π°ΡΠ΅ΠΌ, ΠΏΠΎ 4 ΡΠΎΡΠΌΡΠ»Π΅, Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ.
ΠΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° Π΄Π°Π½Π½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. Π£Π»ΠΎΠ²ΠΈΠ»ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ? Π₯ΠΎΡΠΎΡΠΎ. ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π½ΠΎΠ²ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΠΌΠΎΠΆΠ΅ΠΌ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π΅ Π² Π½Π°ΡΡ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
Π Π΅ΡΠΈΠΌ ΡΠ΅ΡΡΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΈ Π²ΡΠ²Π΅Π΄Π΅ΠΌ Π΅ΡΠ΅ ΠΎΠ΄Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ.
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ IV ΠΈ ΡΠΎΡΠΌΡΠ»Ρ 4 . ΠΠΎΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ Π΄ΡΠΎΠ±ΠΈ ΡΠΎΠΊΡΠ°ΡΠΈΠΌ.
Π‘ΠΌΠΎΡΡΠΈΠΌ Π½Π° Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ Π½Π° Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ. ΠΡ, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ, ΠΏΠΎΠ½ΡΠ»ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΈ Π³ΠΎΡΠΎΠ²Ρ Π½Π°Π·Π²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π£ΡΠΈΠΌ Π½ΠΎΠ²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ!
ΠΡΠΈΠΌΠ΅ΡΡ.
1. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ y=x 2 , Π΅ΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π±ΡΠ»ΠΎ ΡΠ°Π²Π½ΠΎ 4 , Π° Π½ΠΎΠ²ΠΎΠ΅ –4,01 .
Π Π΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ρ =Ρ 0 +Ξx . ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π΄Π°Π½Π½ΡΠ΅: 4,01=4+ΞΡ , ΠΎΡΡΡΠ΄Π° ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΞΡ =4,01-4=0,01. ΠΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠ°Π²Π½ΠΎ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΎΠ²ΡΠΌ ΠΈ ΠΏΡΠ΅ΠΆΠ½ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ, Ρ.Π΅. Ξy=f (Ρ 0 +ΞΡ ) – f (x 0). Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ y=x 2 , ΡΠΎ ΞΡ =(Ρ 0 +Ξx) 2 β (Ρ 0) 2 =(Ρ 0) 2 +2x 0 Β· Ξx+(Ξx) 2 β (Ρ 0) 2 =2x 0 Β· Ξx+(Ξx) 2 =
2 Β· 4 Β· 0,01+(0,01) 2 =0,08+0,0001=0,0801.
ΠΡΠ²Π΅Ρ: ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΞΡ =0,01; ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΞΡ =0,0801.
ΠΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΠΉΡΠΈ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ: Ξy =y (Ρ
0 +Ξx) -y (Ρ
0)=Ρ(4,01) -Ρ(4)=4,01 2 -4 2 =16,0801-16=0,0801.
2. ΠΠ°ΠΉΡΠΈ ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ y=f (x) Π² ΡΠΎΡΠΊΠ΅ Ρ 0 , Π΅ΡΠ»ΠΈ f “(Ρ 0) = 1 .
Π Π΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ ΠΊΠ°ΡΠ°Π½ΠΈΡ Ρ 0 ΠΈ Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ (Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ). ΠΠΌΠ΅Π΅ΠΌ: f “(Ρ 0) = tgΞ± = 1 β Ξ± = 45Β°, ΡΠ°ΠΊ ΠΊΠ°ΠΊ tg45Β°=1.
ΠΡΠ²Π΅Ρ: ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠΈ ΠΡ ΡΠ³ΠΎΠ», ΡΠ°Π²Π½ΡΠΉ 45Β° .
3. ΠΡΠ²Π΅ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=x n .
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΌΡ Π²ΡΠ²Π΅Π»ΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ: (x n)” = nx n-1 .
ΠΠΎΡ ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ.
Π’Π°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π»Π΅Π³ΡΠ΅ Π±ΡΠ΄Π΅Ρ Π·Π°ΡΡΠΈΡΡ, ΠΏΡΠΎΠ³ΠΎΠ²Π°ΡΠΈΠ²Π°Ρ ΡΠ»ΠΎΠ²Π΅ΡΠ½ΡΠ΅ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ:
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
2. ΠΠΊΡ ΡΡΡΠΈΡ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
3. ΠΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
4. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π½Π° ΡΡΠ΅ΠΏΠ΅Π½Ρ Ρ ΡΠ΅ΠΌ ΠΆΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΌΠ΅Π½ΡΡΠ΅.
5. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠ½Ρ ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° Π΄Π²Π° ΡΠ°ΠΊΠΈΡ ΠΆΠ΅ ΠΊΠΎΡΠ½Ρ.
6. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΡ, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΈΠΊΡ ΡΠ°Π²Π½Π° ΠΌΠΈΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΈΠΊΡ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅.
7. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡΡ.
8. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½Π° ΠΌΠΈΠ½ΡΡ ΡΠΈΠ½ΡΡΡ.
9. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΊΠ²Π°Π΄ΡΠ°Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ°.
10. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ°Π²Π½Π° ΠΌΠΈΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠΈΠ½ΡΡΠ°.
Π£ΡΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ .
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΡ ΡΠ°Π²Π½Π° Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ .
2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π° Π²ΡΠΎΡΠΎΠΉ ΠΏΠ»ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ.
3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Β«ΡΒ», Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Β«Π²ΡΒ» ΡΠ°Π²Π½Π° Π΄ΡΠΎΠ±ΠΈ, Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ “Ρ ΡΡΡΠΈΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΠΉ Π½Π° Β«Π²ΡΒ» ΠΌΠΈΠ½ΡΡ Β«Ρ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΠΉ Π½Π° Π²Ρ ΡΡΡΠΈΡ Β», Π° Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ β Β«Π²Ρ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅Β».
4. Π§Π°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ ΡΠΎΡΠΌΡΠ»Ρ 3.
Π£ΡΠΈΠΌ Π²ΠΌΠ΅ΡΡΠ΅!
Π‘ΡΡΠ°Π½ΠΈΡΠ° 1 ΠΈΠ· 1 1
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ – ΠΎΠ΄Π½Π° ΠΈΠ· ΡΠ°ΠΌΡΡ Π²Π°ΠΆΠ½ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ Π² Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ. ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠ°Π±Π»ΠΈΡΠ° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΌΠΎΡΡΠΈΡΠ΅ Π² Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΠΊΠ°Ρ :
- Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΠΊΠ°ΠΊ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠ½ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π·Π°Π΄Π°Ρ. ΠΠ° ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅, Π² ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π° “ΡΠΏΠ°ΡΠ³Π°Π»ΠΊΠ°” ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ»ΡΡΠ°Π΅Π² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΠΏΠΎΠ½ΡΡΠ½ΠΎΠΌ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π΅, ΡΡΠ΄ΠΎΠΌ Ρ Π½ΠΈΠΌ Π΄Π°Π½Ρ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΠΈΡΠ»Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ
ΡΒ΄ = 0
ΠΡΠΈΠΌΠ΅Ρ:
5Β΄ = 0
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΈΡΠ»ΠΎ Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½ΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
– ΡΠΊΠΎΡΠΎΡΡΡ Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΡΠ΅Π³Π΄Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅
xΒ΄ = 1
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° (Ρ
) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ) ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΡΡ ΠΆΠ΅ ΡΠ°ΠΌΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠΎΡΠ½ΠΎ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°.
3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΠ°Π²Π½Π° ΡΡΠΎΠΌΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ
ΡxΒ΄ = Ρ
ΠΡΠΈΠΌΠ΅Ρ:
(3x)Β΄ = 3
(2x)Β΄ = 2
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΏΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠ½ΠΊΡΠΈΠΈ (Ρ
) Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ (y) ΡΠ°ΡΡΠ΅Ρ Π² Ρ ΡΠ°Π·. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ Ρ .
ΠΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
(cx + b)” = c
ΡΠΎ Π΅ΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=kx+b ΡΠ°Π²Π΅Π½ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ (k).
4. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°Π²Π½Π° ΡΠ°ΡΡΠ½ΠΎΠΌΡ ΡΡΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊ Π΅Π΅ ΠΌΠΎΠ΄ΡΠ»Ρ
|x|” = x / |x| ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Ρ
β 0
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ (ΡΠΌ. ΡΠΎΡΠΌΡΠ»Ρ 2) ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ Π»ΠΈΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = |x| ΠΈ ΡΠ±Π΅Π΄ΠΈΡΠ΅ΡΡ Π² ΡΡΠΎΠΌ ΡΠ°ΠΌΠΈ. ΠΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ x / |x| . ΠΠΎΠ³Π΄Π° x 0 – Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π’ΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ
ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ
ΠΏΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π½Π° ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π° ΠΏΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
– Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π½ΠΎ ΡΠΎΡΠ½ΠΎ Π½Π° ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
5. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΈΡΠ»Π° ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ
(x c)”= cx c-1 , ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ x c ΠΈ Ρx c-1 ,ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π° Ρ β 0
ΠΡΠΈΠΌΠ΅Ρ:
(x 2)” = 2x
(x 3)” = 3x 2
ΠΠ»Ρ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ :
Π‘Π½Π΅ΡΠΈΡΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ “Π²Π½ΠΈΠ·” ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠΈΡΠ΅ ΡΠ°ΠΌΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ x 2 – Π΄Π²ΠΎΠΉΠΊΠ° ΠΎΠΊΠ°Π·Π°Π»Π°ΡΡ Π²ΠΏΠ΅ΡΠ΅Π΄ΠΈ ΠΈΠΊΡΠ°, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ (2-1=1) ΠΏΡΠΎΡΡΠΎ Π΄Π°Π»Π° Π½Π°ΠΌ 2Ρ
. Π’ΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ Π΄Π»Ρ x 3 – ΡΡΠΎΠΉΠΊΡ “ΡΠΏΡΡΠΊΠ°Π΅ΠΌ Π²Π½ΠΈΠ·”, ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ Π²ΠΌΠ΅ΡΡΠΎ ΠΊΡΠ±Π° ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°Ρ, ΡΠΎ Π΅ΡΡΡ 3x 2 . ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ “Π½Π΅ Π½Π°ΡΡΠ½ΠΎ”, Π½ΠΎ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ.
6. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄ΡΠΎΠ±ΠΈ 1/Ρ
(1/Ρ
)” = – 1 / x 2
ΠΡΠΈΠΌΠ΅Ρ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΡΠΎΠ±Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠ°ΠΊ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ
(1/x)” = (x -1)” , ΡΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ· ΠΏΡΠ°Π²ΠΈΠ»Π° 5 ΡΠ°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
(x -1)” = -1x -2 = – 1 / Ρ
2
7. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅
(1 / x c)” = – c / x c+1
ΠΡΠΈΠΌΠ΅Ρ:
(1 / x 2)” = – 2 / x 3
8. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠ½Ρ (ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΠΊΠΎΡΠ½Π΅ΠΌ)
(βx)” = 1 / (2βx) ΠΈΠ»ΠΈ 1/2 Ρ
-1/2
ΠΡΠΈΠΌΠ΅Ρ:
(βx)” = (Ρ
1/2)” Π·Π½Π°ΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ· ΠΏΡΠ°Π²ΠΈΠ»Π° 5
(Ρ
1/2)” = 1/2 Ρ
-1/2 = 1 / (2βΡ
)
9. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
(n βx)” = 1 / (n n βx n-1)
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Β· ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΠ½Π»Π°ΠΉΠ½ Β· Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ
Π£ΡΠΈΡΠ΅Π»Ρ ΠΎΡΠ΅Π½Ρ ΡΠ΄ΠΈΠ²ΠΈΡΡΡ ΡΠ²ΠΈΠ΄Π΅Π² ΡΠ²ΠΎΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅π
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²
- ΠΠ΅ΡΠΎΠ΄ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
- ΠΠ΅ΡΠΎΠ΄ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ
- Π€ΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ-Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄
- ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
Π¨Π°Π³ 1.

ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ:
- Si(x)
- ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΈΠ½ΡΡ ΠΎΡ x
- Ci(x)
- ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
- Shi(x)
- ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΠ½ΡΡ ΠΎΡ x
- Chi(x)
- ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
Π Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ:
- ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°
- Π²Π²ΠΎΠ΄ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅ 7.
3
- – Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ
- x + 7
- – ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅
- x – 6
- – Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅
- 15/7
- – Π΄ΡΠΎΠ±Ρ
ΠΡΡΠ³ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ:
- asec(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π°ΡΠΊΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- acsc(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π°ΡΠΊΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- sec(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- csc(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- floor(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΎΠΊΡΡΠ³Π»Π΅Π½ΠΈΠ΅ x Π² ΠΌΠ΅Π½ΡΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ (ΠΏΡΠΈΠΌΠ΅Ρ floor(4.5)==4.0)
- ceiling(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΎΠΊΡΡΠ³Π»Π΅Π½ΠΈΠ΅ x Π² Π±ΠΎΠ»ΡΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ (ΠΏΡΠΈΠΌΠ΅Ρ ceiling(4.5)==5.0)
- sign(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΠ½Π°ΠΊ x
- erf(x)
- Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΡΠΈΠ±ΠΎΠΊ (ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ)
- laplace(x)
- Π€ΡΠ½ΠΊΡΠΈΡ ΠΠ°ΠΏΠ»Π°ΡΠ°
- asech(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΡΠΊΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- csch(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- sech(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
- acsch(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΡΠΊΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΎΡ x
ΠΠΎΡΡΠΎΡΠ½Π½ΡΠ΅:
- pi
- Π§ΠΈΡΠ»ΠΎ “ΠΠΈ”, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ ~3.
14159..
- e
- Π§ΠΈΡΠ»ΠΎ e – ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°, ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ ~2,7183..
- i
- ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ°
- oo
- Π‘ΠΈΠΌΠ²ΠΎΠ» Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ – Π·Π½Π°ΠΊ Π΄Π»Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ
Π·Π°Π΄Π°Ρ Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ | ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ I
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
- ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π½ΡΠΈΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΡΡΡ Π·Π°Π΄Π°Ρ Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ
ΠΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, ΡΠ°ΡΡΠ½ΡΠ΅ ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ, Π΄Π°Π»Π΅Π΅ Π² ΡΠ΅ΠΊΡΡΠ΅. ΠΠ΄Π΅ΡΡ ΠΌΡ ΠΎΠ±ΡΠ°ΡΠΈΠΌΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΠΎΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ , ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ : ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠ΅Π΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ ΠΎΠ΄Π½Ρ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
[Π»Π°ΡΠ΅ΠΊΡ]\frac{dy}{dx}=f(x)[/latex]
Β
β ΠΏΡΠΎΡΡΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ [latex]y[/latex] Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ [latex]f[/latex]. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅ΡΠ΅Π½ΠΈΡ [latex]\frac{dy}{dx}[/latex] ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠΌΠΈ [latex]f[/latex]. ΠΡΠ»ΠΈ [Π»Π°ΡΠ΅ΠΊΡ]F[/Π»Π°ΡΠ΅ΠΊΡ] ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ [Π»Π°ΡΠ΅ΠΊΡ]f[/Π»Π°ΡΠ΅ΠΊΡ], ΠΊΠ°ΠΆΠ΄Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° [Π»Π°ΡΠ΅ΠΊΡ]y=F(x)+C[/Π»Π°ΡΠ΅ΠΊΡ] ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ΅ΡΠ΅Π½ΠΈΡ 93+C[/latex]
Β
ΠΠ½ΠΎΠ³Π΄Π° Π½Π°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ, ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π»ΠΈ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½Π°Ρ ΠΊΡΠΈΠ²Π°Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΠΎΡΠΊΡ [latex](x_0,y_0)[/latex], ΡΠΎ Π΅ΡΡΡ [latex]y(x_0) =y_0[/Π»Π°ΡΠ΅ΠΊΡ]. ΠΠ°Π΄Π°ΡΠ° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ [latex]y[/latex], ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡΠ΅ΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
[latex]\frac{dy}{dx}=f(x)[/latex]
Β
Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ
[latex]y(x_0)=y_0[/latex]
ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΌ Π·Π°Π΄Π°ΡΠΈ Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ 9{-2}, \,\,\, y(1)=2[/Π»Π°ΡΠ΅ΠΊΡ].
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΠΈΠ΄Π΅ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΠ°Π±ΠΎΡΠ°ΡΡΠ΅Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ°: ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ Π²ΡΡΠ΅. ΠΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅.
Π‘ΠΊΡΡΡΡΠ΅ ΡΡΠ±ΡΠΈΡΡΡ ΠΈ ΡΠ°ΡΡΠΈΡΡΠΎΠ²ΠΊΠ° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π΄Π»Ρ Π²ΠΈΠ΄Π΅ΠΎ
ΠΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅
ΠΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Ρ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ. ΠΠ°Π»Π΅Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΠΎΠ΄ΠΈΡΠ΅Π»Ρ Π½Π°ΠΆΠΈΠΌΠ°Π΅Ρ Π½Π° ΡΠΎΡΠΌΠΎΠ· Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ. ΠΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ, ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΊΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ [latex]v(t)[/latex] ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ [latex]s(t)[/latex], Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ [latex]a(t)[/latex] ΡΠ°Π²Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
Π² ΡΠ΅ΠΊΡΡΠ΅ ΠΌΡ ΠΌΠΎΠ³Π»ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, Π° Π·Π°ΡΠ΅ΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΌΡ ΡΠ°Π±ΠΎΡΠ°Π΅ΠΌ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ. Π£ΡΠΈΡΡΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, ΠΌΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠ°ΡΠ΅ΠΌ ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ.