Примеры с производной с решением: Как найти производную функции, примеры решения

Физический смысл производной функции. Задачи на физический смысл производной: примеры решения

Математические задачи находят своё применение во многих науках. К таковым следует отнести не только физику, химию, технику и экономику, но также медицину, экологию и прочие дисциплины. Одним из важных понятий, которое следует освоить, чтобы находить решения важных дилемм, является производная функции. Физический смысл её объяснить совсем не так сложно, как может показаться непосвящённому в суть вопроса. Достаточно лишь найти подходящие примеры тому в реальной жизни и обычных бытовых ситуациях. На самом деле любой автомобилист справляется с подобной задачей каждый день, когда смотрит на спидометр, определяя скорость своей машины в конкретное мгновение фиксированного времени. Ведь именно в этом параметре заключена суть физического смысла производной.

Как найти скорость

Определить скорость движения человека по дороге, зная пройденное расстояние и время в пути, с лёгкостью может любой пятиклассник. Для этого следует первую из заданных величин разделить на вторую. Но не каждый из юных математиков знает о том, что в данный момент находит отношение приращений функции и аргумента. Действительно, если представить движение в виде графика, откладывая по оси ординат путь, а по абсциссе – время, это будет именно так.

Однако скорость пешехода или любого другого объекта, которую мы определяем на большом участке пути, считая движение равномерным, вполне может меняться. В физике известно множество форм движения. Оно может совершаться не только с постоянным ускорением, но замедляться и возрастать произвольным образом. Следует обратить внимание, что в данном случае линией, описывающей перемещение, будет уже не прямая. Графически она может принимать самые сложные конфигурации. Но для любой из точек графика мы всегда можем провести касательную, представленную линейной функцией.

Для уточнения параметра изменения перемещения в зависимости от времени приходится сокращать измеряемые отрезки. Когда же они станут бесконечно малыми, вычисляемая скорость окажется мгновенной. Данный опыт помогает нам дать определение производной. Физический смысл её также логически вытекает из подобных рассуждений.

С точки зрения геометрии

Известно, что чем больше скорость тела, тем круче график зависимости перемещения от времени, а значит, и угол наклона касательной к графику в какой-то определённой точке. Показателем подобных изменений может стать тангенс угла между осью абсцисс и линией касательной. Как раз он определяет значение производной и вычисляется отношением длин противолежащего к прилежащему катету в прямоугольном треугольнике, образованном перпендикуляром, опущенным из некоторой точки на ось абсцисс.

В этом заключается геометрический смысл первой производной. Физический же раскрывается в том, что величина противолежащего катета в нашем случае представляет собой пройденный путь, а прилежащего – время. При этом отношением их является скорость. И снова мы приходим к выводу, что мгновенная скорость, определяемая при стремлении обоих промежутков к бесконечно малому, и является сутью понятия производной, указывая на её физический смысл. Второй производной в данном примере будет ускорение тела, демонстрирующее, в свою очередь, степень изменения скорости.

Примеры нахождения производных в физике

Производная – это показатель скорости изменения любой функции, даже когда речь не идёт о движении в прямом смысле слова. Чтобы наглядно продемонстрировать это, приведём несколько конкретных примеров. Допустим, сила тока, завися от времени, изменяется согласно следующему закону: I = 0,4t2. Требуется найти значение скорости, с которой происходит изменение этого параметра в конце 8-й секунды процесса. Заметим, что сама искомая величина, как можно судить из уравнения, постоянно возрастает.

Для решения требуется найти первую производную, физический смысл которой был рассмотрен ранее. Здесь dI/dt = 0,8t. Далее найдём оную при t=8, получим, что скорость, с которой происходит изменение силы тока, равна 6,4 A/c. Здесь считается, что сила тока измеряется в амперах, а время, соответственно, в секундах.

Всё изменчиво

Видимый окружающий мир, состоящий из материи, постоянно претерпевает изменения, находясь в движении протекающих в нём разнообразных процессов. Для описания их можно использовать самые разные параметры. Если они объединены зависимостью, то математически записываются в виде функции, наглядно показывающей их изменения. А где есть движение (в каком бы виде оно ни выражалось), там существует и производная, физический смысл которой мы и рассматриваем в настоящий момент.

По этому поводу следующий пример. Допустим, температура тела изменяется по закону T=0,2t2. Следует найти скорость его нагревания в конце 10-й секунды. Решение задачи производится способом, аналогичным описанному в предыдущем случае. То есть мы находим производную и подставляем в неё значение для t = 10, получаем T = 0,4t = 4. Значит, окончательным ответом считается 4 градуса за секунду, то есть процесс нагревания и изменение температуры, измеряемой в градусах, происходит именно с такой скоростью.

Решение практических задач

Конечно, в реальной жизни всё бывает гораздо сложнее, чем в теоретических задачах. На практике значение величин определяется обычно в ходе эксперимента. При этом используются приборы, которые выдают показания при измерениях с определённой погрешностью. Поэтому при вычислениях приходится иметь дело с приближёнными значениями параметров и прибегать к округлениям неудобных чисел, а также другим упрощениям. Приняв это ко вниманию, снова приступим к задачам на физический смысл производной, учитывая, что они являются лишь некоей математической моделью происходящих в природе сложнейших процессов.

Извержение вулкана

Представим, что происходит извержение вулкана. Насколько он может быть опасен? Для выяснения этого вопроса необходимо рассмотреть множество факторов. Мы постараемся учесть один из них.

Из жерла “огненного чудовища” выбрасываются вертикально вверх камни, имеющие начальную скорость с момента выхода наружу 120 м/с. Необходимо просчитать, какой они могут достигнуть максимальной высоты.

Для нахождения искомого значения составим уравнение зависимости высоты H, измеряемой в метрах, от прочих величин. К таковым относятся начальная скорость и время. Значение ускорения считаем известным и приблизительно равным 10 м/с2.

Частная производная

Рассмотрим теперь физический смысл производной функции немного с другой стороны, ведь само уравнение может содержать не одну, а несколько переменных. К примеру, в предыдущей задаче зависимость высоты подъёма камней, выбрасываемых из жерла вулкана, определялась не только изменением временных характеристик, но и значением начальной скорости. Последняя считалась постоянной, фиксированной величиной. Но в других задачах с совершенно иными условиями всё могло быть иначе. Если величин, от которых зависит сложная функция, несколько, расчёты производятся согласно указанным ниже формулам.

Физический смысл частой производной следует определять, как и в обычном случае. Это скорость изменения функции в некоторой определённой точке при росте параметра переменной. Она вычисляется таким образом, что все остальные составляющие принимаются за постоянные, лишь только один рассматривается как переменная. Далее всё происходит по обычным правилам.

Незаменимый советник по многим вопросам

Понимая физический смысл производной, примеры решения запутанных и сложных проблем, ответ в которых позволяют найти подобные знания, привести несложно. Если у нас есть функция, описывающая расход горючего в зависимости от скорости автомобиля, можем рассчитать, при каких параметрах последней расход бензина будет наименьшим.

В медицине можно предвидеть, каким образом будет реагировать человеческий организм на прописанное врачом лекарство. Приём препарата сказывается на самых разных физиологических показателях. К ним относятся изменения артериального давления, пульса, температуры тела и многого другого. Все они зависят от дозы принимаемого лекарственного средства. Данные расчёты помогают предвидеть ход лечения, как в благоприятных проявлениях, так и в нежелательных случайностях, способных фатальным образом отразиться на изменениях в организме больного.

Несомненно, важным оказывается понимание физического смысла производной в технических вопросах, в частности в электротехнике, электронике, конструировании и строительстве.

Тормозной путь

Рассмотрим очередную задачу. Двигаясь с постоянной скоростью, автомобиль, приближаясь к мосту, за 10 секунд до въезда вынужден был затормозить, так как водитель заметил дорожный знак, запрещающий движение со скоростью более 36 км/час. Не нарушил ли правила шофёр, если тормозной путь его можно описать формулой S = 26t – t2?

Вычислив первую производную, найдём формулу для скорости, получим v = 28 – 2t. Далее подставим в указанное выражение значение t=10.

Так как эта величина была выражена в секундах, скорость оказывается равной 8 м/с, а значит, 28,8 км/час. Это даёт возможность понять, что шофёр начал тормозить вовремя и не нарушил правила движения, а значит, и предел указанной на знаке скорости.

Подобное доказывает важность физического смысла производной. Пример решения данной задачи демонстрирует широту использования этого понятия в самых разных сферах жизни. В том числе и в бытовых ситуациях.

Производная в экономике

До XIX столетия экономисты в основном оперировали средними величинами, будь то производительность труда или цена на выпускаемую продукцию. Но с некоторого момента для составления эффективных прогнозов в данной области больше стали необходимы предельные величины. К таковым можно отнести предельную полезность, доход или издержки. Понимание этого дало толчок к созданию совершенно нового инструмента в экономических исследованиях, который существует и развивается вот уже более ста лет.

Для составления подобных расчётов, где главенствуют такие понятия, как минимум и максимум, просто необходимо понимание геометрического и физического смысла производной. Среди создателей теоретической основы указанных дисциплин можно назвать таких видных английских и австрийских экономистов, как У. С. Джевонс, К. Менгер и других. Конечно, предельные величины в экономических выкладках не всегда использовать удобно. А, к примеру, квартальные отчёты не обязательно укладываются в существующую схему, но всё же применение подобной теории во многих случаях бывает полезно и эффективно.

определение, как найти, примеры решений

В этом уроке мы продолжаем изучать производные функций и переходим к более сложной теме, а именно, к производным произведения и частного. Если вы смотрели предыдущий урок, то наверняка поняли, что мы рассматривали лишь самые простые конструкции, а именно, производную степенной функции, суммы и разности. В частности, мы узнали, что производная суммы равна их сумме, а производная разности равна, соответственно, их разности. К сожалению, в случае с производными частного и произведения формулы будут гораздо сложнее. Начнем мы именно с формулы производной произведения функций. {\prime }}=1\cdot \left(\sqrt{x}-1 \right)+x\frac{1}{3\sqrt{x}}= \\& =\sqrt{x}-1+\sqrt{x}\cdot \frac{1}{3}=\frac{4}{3}\sqrt{x}-1 \\\end{align}\]

Ответ найден.

Зачем раскладывать производные на множители?

Только что мы использовали несколько очень важных математических фактов, которые сами по себе не имеют отношения к производным, однако без их знания все дальнейшее изучение этой темы просто не имеет смысла.

Во-первых, решая самую первую задачу и, уже избавившись от всех знаков производных, мы зачем-то начали раскладывать это выражение на множители.

Во-вторых, решая следующую задачу, мы несколько раз переходили от корня к степени с рациональным показателем и обратно, при этом используя формулу 8-9-го класса, которую стоило бы повторить отдельно.

По поводу разложения на множители ― зачем вообще нужны все эти дополнительные усилия и преобразования? На самом деле, если в задаче просто сказано «найти производную функции», то эти дополнительные действия не требуются. Однако в реальных задачах, которые ждут вас на всевозможных экзаменах и зачетах, просто найти производную зачастую недостаточно. Дело в том, что производная является лишь инструментом, с помощью которой можно узнать, например, возрастание или убывание функции, а для этого требуется решать уравнение, раскладывать его на множители. И вот здесь этот прием будет очень уместен. Да и вообще, с функцией, разложенной на множители, гораздо удобней и приятней работать в дальнейшем, если требуются какие-то преобразования. Поэтому правило № 1: если производную можно разложить на множители, именно так и стоит поступать. И сразу правило № 2 (по сути, это материал 8-9-го класса): если в задаче встречается корень

n -ной степени, причем, корень явно больше двух, то этот корень можно заменить обычной степенью с рациональным показателем, причем в показателе появится дробь, где
n
― та самая степень ― окажется в знаменателе этой дроби.

Разумеется, если под корнем присутствует какая-то степень (в нашем случае это степень k ), то она никуда не девается, а просто оказывается в числителе этой самой степени. {2}}}\]

Мы нашли ответ. Как и предполагалось, объем вычисления оказался существенно меньше, чем для первой функции.

В чем разница между обозначениями?

У внимательных учеников наверняка уже возник вопрос: почему в одних случаях мы обозначаем функцию как $f\left(x \right)$, а в других случаях пишем просто $y$? На самом деле, с точки зрения математики нет абсолютно никакой разницы ― вы вправе использовать как первое обозначение, так и второе, при этом никаких штрафных санкций на экзаменах и зачетах не последует. Для тех, кому все-таки интересно, поясню, почему авторы учебников и задач в одних случаях пишут $f\left(x \right)$, а в других (гораздо более частых) ― просто $y$. Дело в том, что записывая функцию в виде\, мы неявно намекаем тому, кто будет читать наши выкладки, что речь идет именно об алгебраической интерпретации функциональной зависимости. Т. е., есть некая переменная $x$, мы рассматриваем зависимость от этой переменной и обозначаем ее $f\left(x \right)$. При этом, увидев вот такое обозначение, тот, кто будет читать ваши выкладки, например, проверяющий, будет подсознательно ожидать, что в дальнейшем его ждут лишь алгебраические преобразования ― никаких графиков и никакой геометрии.

С другой стороны, используя обозначения вида\, т. е., обозначая переменную одной единственной буквой, мы сразу даем понять, что в дальнейшем нас интересует именно геометрическая интерпретация функции, т. е., нас интересует, в первую очередь, ее график. Соответственно, столкнувшись с записью вида\, читатель вправе ожидать графических выкладок, т. е., графиков, построений и т. д., но, ни в коем случае, не аналитических преобразований.

Еще хотел бы обратить ваше внимание на одну особенность оформления задач, которые мы сегодня рассматриваем. Многие ученики считают, что я привожу слишком подробные выкладки, и многие из них можно было бы пропустить или просто решить в уме. Однако именно такая подробная запись позволит вам избавится от обидных ошибок и значительно увеличит процент правильно решенных задач, например, в случае самостоятельной подготовки к контрольным или экзаменам. Поэтому если вы еще неуверенны в своих силах, если вы только начинаете изучать данную тему, не спешите ― подробно расписывайте каждый шаг, выписывайте каждый множитель, каждый штрих, и очень скоро вы научитесь решать такие примеры лучше, чем многие школьные учителя. {2}}x} \\\end{align}\]

Теперь, если мы сравним полученный результат с тем, что мы получили ранее, при вычислении по другому пути, то мы убедимся, что получили одно и то же выражение. Таким образом, каким бы путем мы не шли при вычислении производной, если все посчитано верно, то ответ будет одним и тем же.

Важные нюансы при решении задач

В заключении хотел бы рассказать вам еще одну тонкость, связанную с вычислением производной частного. То, что я вам сейчас расскажу, не было в изначальном сценарии видеоурока. Однако за пару часов до съемок я занимался с одним из своих учеников, и мы как раз разбирали тему производных частного. И, как выяснилось, этот момент многие ученики не понимают. Итак, допустим, нам нужно посчитать снять штрих следующей функции:

В принципе, ничего сверхъестественного на первый взгляд в ней нет. Однако в процессе вычисления мы можем допустить много глупых и обидных ошибок, которые я бы хотел сейчас разобрать.

Итак, считаем эту производную. {\prime }}$ можно рассматривать и как производную частного, и как производную степенной функции. При этом если все вычисления выполнены верно, то ответ всегда получится одним и тем же. Во-вторых, при вычислении производных, содержащих и переменную, и константу, принципиально важным является то, где находится переменная ― в числителе или в знаменателе. В первом случае, когда переменная находится в числителе, мы получаем простую линейную функцию, которая элементарно считается. А в случае, если переменная стоит в знаменателе, то мы получаем более сложное выражение с сопутствующими выкладками, приведенными ранее.

На этом урок можно считать законченным, поэтому если вам что-то непонятно по производным частного или произведения, да и вообще, если у вас есть любые вопросы по этой теме, не стесняйтесь ― заходите на мой сайт, пишите, звоните, и я обязательно постараюсь вам помочь.

Сами по себе производные ― тема отнюдь не сложная, но очень объемная, и то, что мы сейчас изучаем, будет использоваться в будущем при решении более сложных задач. Именно поэтому все недопонимания, связанные с вычислениями производных частного или произведения, лучше выявить немедленно, прямо сейчас. Не когда они представляют собой огромный снежный ком недопонимания, а когда представляют собой маленький теннисный шарик, с которым легко разобраться.

Совместимость Водолей (женщина) — Весы (мужчина)

К чему снится шуба во сне?

Простые примеры использования цепного правила

Цепное правило — это формула для вычисления производной композиции функций. Как только вы поймете основную идею цепного правила, следующий шаг — попробовать свои силы на нескольких примерах.

Пример 1

Пусть $f(x)=6x + 3$ и $g(x)=-2x+5$. Используйте цепное правило для вычисления $h'(x)$, где $h(x)=f(g(x))$.

Решение : Производные от $f$ и $g$ равны \начать{выравнивать*} f'(x)&=6\\ g'(x)&=-2. \конец{выравнивание*} Согласно цепному правилу, \начать{выравнивать*} h'(x) &= f'(g(x)) g'(x)\\ &= f'(-2x +5) (-2)\\ &= 6 (-2)=-12.

\конец{выравнивание*}

Поскольку функции были линейными, этот пример был тривиален. Несмотря на то, что нам пришлось оценивать $f’$ при $g(x)=-2x+5$, это не имело значения, поскольку $f’=6$ не имеет значения, каковы его входные данные. Перемещение, в этом случае, если мы вычисляем $h(x)$, \начать{выравнивать*} ч (х) &= е (г (х)) \\ &= f(-2x+5)\\ &= 6(-2x+5)+3\\ &= -12x+30+3 = -12x + 33, \конец{выравнивание*} тогда мы можем довольно легко вычислить его производную напрямую и получить, что $h'(x)=-12$.

92(4х+1) \конец{выравнивание*}

Дополнительные примеры см. на странице правил цепочки из Calculus Refresher.

Производные инструменты Легкий способ

Производные инструменты Легкий способ

 Постоянное правило и степенное правило

Мы видели следующие производные:

  1. Если f(x) = c, то f ‘(х) = 0

  2. Если f(x) = x, то f ‘(х) = 1

  3. Если f(x) = x 2 , то f ‘(х) = 2х

  4. Если f(x) = x 3 , то f'(x) = 3x 2

  5. Если f(x) = x 4 , то f'(x) = 4x 3

Это приводит нас к предположению следующей теоремы.

Теорема

д
х n   =  nx n-1
дх


Доказательство:


У нас есть



приложений

Пример

Найдите производные следующих функций:

  1. f(x) = 4x 3 – 2x 100

  2. f(x) = 3x 5 + 4x 8 – x + 2

  3. f(x) = (x 3 – 2) 2

Решение  

Мы используем наши новые производные правила, чтобы найти

  1. 12x 2 – 200x 99

  2. 15x 3 +32x 7 -1

  3. Сначала мы ФОЛЬГА, чтобы получить

    6 – 4х 3 + 4] ‘ 

    Теперь используйте производное правило для степеней

    .

Оставить комментарий