Устройство и принцип работы биполярного транзистора.
Aveal
Всем доброго времени суток, в сегодняшней статье мы положим начало обсуждению очень важной и обширной темы, посвященной транзисторам. Разберем теоретические аспекты, устройство, виды, рассмотрим принцип работы на практических примерах, методику расчета схем, в общем, постараемся затронуть по максимуму.
Чтобы обсуждение было максимально структурированным и понятным, материал будет разбит на четкие разделы и разные статьи. А, поскольку транзисторы сразу же можно разделить на два крупных класса, а именно – биполярные и полевые, то так и поступим – начнем с подробного разбора биполярных и, изучив их полностью, перейдем к полевым.
Устройство биполярного транзистора.
И для начала мы рассмотрим устройство биполярного транзистора и химические процессы, протекающие в нем. В этом нам очень поможет статья о p-n переходе (ссылка), поскольку ключевые понятия мы будем использовать те же самые. Ведь транзистор есть ни что иное как три полупроводниковые области, которые формируют между собой два p-n перехода.
Кстати транзистор называется биполярным, потому что в переносе заряда участвуют и дырки, и электроны.
Итак, биполярный транзистор состоит из 3-х полупроводниковых областей. Причем тип примесной проводимости у этих областей чередуется:
- p-n-p или
- n-p-n
То есть мы получаем два вида биполярных транзисторов – n-p-n и p-n-p. Давайте дальше все обсуждение строить на примере n-p-n транзисторов, суть для p-n-p будет такой же:
Называются эти три полупроводниковые области:
- эмиттер
- база
- коллектор
Тип проводимости эмиттера и коллектора одинаковый, но технологически они отличаются довольно значительно. Во-первых, общая область перехода база-эмиттер намного меньше общей области перехода база-коллектор. Зачем так сделано мы разберемся чуть позже. И, во-вторых, область коллектора содержит намного меньше примесей, чем область эмиттера.
Принцип работы биполярного транзистора.
Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь:
В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.
Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.
Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.
В результате получается, что ток коллектора приблизительно равен току эмиттера:
I_к = \alpha I_э
Коэффициент \alpha численно равен 0.9…0.99. В то же время:
I_э = I_б + I_к
А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:
I_э = \frac{I_к}{\alpha}
\frac{I_к}{\alpha} = I_б + I_к
Выражаем ток коллектора через ток базы:
I_к = \frac{\alpha}{1 - \alpha} I_б = \beta I_б
Коэффициент \beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом по сути и заключается принцип работы биполярного транзистора.
Коэффициент, связывающий величину тока коллектора с величиной тока базы, называют коэффициентом усиления по току и обозначают h_{21}. Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.
Режимы работы.
Итак, мы рассмотрели активный режим работы транзистора (переход эмиттер-база открыт, переход коллектор-база закрыт), не обойдем вниманием и другие.
Режим отсечки
В данном режиме переходы сильно обеднены свободными носителями заряда и протекание тока практически полностью прекращается. Исключение составляют только малые побочные токи переходов. В идеальном случае (без токов утечки) транзистор в режиме отсечки эквивалентен обрыву цепи.
Режим насыщения. Оба перехода открыты, и в результате основные носители заряда активно перемещаются из коллектора и эмиттера в базу. В базе возникает избыток носителей заряда, ее сопротивление и сопротивление p-n переходов уменьшается и между эмиттером и коллектором начинает течь ток. В идеальном случае транзистор в таком режиме эквивалентен замыканию цепи.
Барьерный режим. Его мы обязательно еще разберем подробнее, вкратце, идея заключается в том, что база напрямую или через небольшое сопротивление соединена с коллектором. Это эквивалентно использованию диода с последовательно подключенным сопротивлением.
Вот и все основные режимы работы биполярного транзистора. Еще очень многое предстоит обсудить в рамках изучения транзисторов, а на сегодня заканчиваем статью. Спасибо за внимание и ждем вас на нашем сайте снова 🤝
Принцип работы транзистора
В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.
- Устройство
- Принцип действия
- Классификация устройств
- Устройство транзисторов
- Принцип работы транзистора
- Как работает транзистор – видео
- Принцип работы биполярного транзистора
- Типы полевых транзисторов
- Режимы работы
Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.
Устройство
Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок.
Принцип действия
Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером.
Биполярный прибор бывает двух типов:
- p-n-p;
- n-p-n.
Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.
Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале.
Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.
Классификация устройств
В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы.
Основное разделение приборов происходит по следующим признакам:
- Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
- Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
- По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
- По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
- По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.
Устройство транзисторов
Наиболее популярный вид полупроводникового транзистора – биполярный.
В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.
- Б – база, очень тонкий внутренний слой;
- Э – эмиттер, предназначается для переноса заряженных частиц в базу;
- К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.
Типы проводимости:
- n-типа – носителями зарядов являются электроны.
- p-типа – носители зарядов – положительно заряженные «дырки».
Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла.
Принцип работы транзистора
Транзистор работает в режимах «Открыто» и «Закрыто».
В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.
Простое изложение принципа работы биполярного транзистора:
- Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
- Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
- При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.
Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.
Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.
Как работает транзистор – видео
Принцип работы биполярного транзистора
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
- Коллектор имеет более положительный потенциал , чем эмиттер
- Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
- Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
- В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
-коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
- Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
- Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
- Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
- Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
Чтож, теперь давайте попробуем рассчитать значение базового резистора.
На сколько мы знаем, что значение тока это характеристика нагрузки.
Т.е. I=U/R
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет
Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Типы полевых транзисторов
1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.
2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.
Внешне они очень похожи на биполярные, что подтверждает фото ниже.
Режимы работы
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):
UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 9 чел.
Средний рейтинг: 4.3 из 5.
NPN | Электротехническая Академия
Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.
Ученые Джон Бардин и Уолтер Браттейн изобрели транзистор с точечным контактом. У него было два провода, тщательно сплавленных на кристалле германия. Уильям Шокли последовал этим изобретениям, создав биполярный транзистор. Эти изобретения положили начало микроэлектронике.
Транзистор обеспечивает мгновенную работу схемы и исключает время прогрева, необходимое для ламповой схемы.
Кроме того, для транзистора не требовалось большого количества энергии. Транзистор был и остается известным благодаря своим небольшим размерам, долгому сроку службы и легкому весу.
Транзисторы являются ключевыми устройствами в электронике по нескольким причинам :
- Они способны усиливать ток.
- Они могут создавать сигналы переменного тока на желаемых частотах. №
- Их также можно использовать в качестве коммутационных устройств. Это делает их важными в компьютерных схемах.
Биполярный переходной транзистор (BJT) состоит из трех слоев нечистых полупроводниковых кристаллов. Этот транзистор имеет два перехода. Есть два типа биполярных транзисторов, NPN и PNP. Блоки и схематические обозначения для них показаны на рисунке 1.
Рисунок 1. Блок-схемы и символы для транзисторов NPN и PNP.
Биполярный транзистор NPN имеет тонкий слой кристалла P-типа, помещенный между двумя кристаллами N-типа, Рисунок 2a . Биполярный транзистор PNP имеет тонкий слой кристаллов N-типа, помещенных между двумя кристаллами P-типа, Рисунок 2b .
В обоих типах первый кристалл называется излучателем . Центральная часть называется 9.0011 база . Третий кристалл называется коллектором .
Рисунок 2а. Транзистор NPN.
Рисунок 2б. Транзистор NPN.
Обозначения транзисторов NPN и PNPНа схематических обозначениях на рис. 1 обратите внимание на направление стрелки . Это указывает, является ли это транзистором NPN или PNP.
Стрелка всегда указывает на материал N-типа. Это поможет вам определить правильную полярность при подключении к цепи. Направление, в котором указывает стрелка эмиттера для NPN-транзистора, можно легко вспомнить, произнеся «Never Points iN».
Смещение транзистораНа рис. 3 показаны диаграммы смещения для пяти транзисторов. Обратите особое внимание на тот факт, что база не всегда совпадает с расположением выводов на транзисторах. Никогда не предполагайте правильные соединения. Всегда будьте уверены, сначала проверив номер детали транзистора в каталоге или листе спецификаций продукта.
Рис. 3. Диаграммы смещения для пяти транзисторов. (DIGI-KEY)
Рабочий транзистор NPNТеория работы транзистора NPN показана на рис. 4.
- Для упрощения теории работы используются две батареи. Для большинства приложений требуется один источник напряжения. Отрицательная клемма батареи подключена к N-эмиттеру.
- Положительная клемма той же батареи подключена к основанию P-типа. Следовательно, цепь эмиттер-база смещена в прямом направлении.
Рис. 4. Ток в NPN-транзисторе
- В коллекторной цепи N-коллектор подключен к плюсовой клемме аккумуляторной батареи. База P подключена к отрицательной клемме.
- Цепь коллектор-база смещена в обратном направлении.
- Электроны входят в эмиттер из источника отрицательной батареи и текут к переходу. Прямое смещение уменьшило потенциальный барьер первого перехода.
- Затем электроны объединяются с дырочными носителями в базе, образуя цепь эмиттер-база. Однако основание представляет собой очень тонкую секцию, около 0,001 дюйма.
- Большая часть электронов проходит через коллектор. Этому потоку электронов способствует низкий потенциальный барьер второго PN-перехода.
Приблизительно от 95 до 98 процентов тока через транзистор идет от эмиттера к коллектору. Между эмиттером и базой проходит от двух до пяти процентов тока.
Небольшое изменение напряжения смещения эмиттер-база вызывает несколько большее изменение тока эмиттер-коллектор. Именно это позволяет использовать транзисторы в качестве усилителей . Однако изменение тока эмиттер-база довольно мало.
Транзистор PNPТранзистор PNP имеет материал P-типа для эмиттера, материал N-типа для базы и материал P-типа для коллектора. См. рис. 5.
Источник питания или батарея должны быть подключены в обратном порядке, как NPN-транзистор. Подобно NPN-транзистору, схема эмиттер-база имеет прямое смещение, а схема коллектор-база — обратное. В транзисторе PNP большинство носителей на участке эмиттер-коллектор представляют собой дырки.
Рис. 5. Ток в транзисторе PNP.
Вы нашли apk для андроида? Вы можете найти новые бесплатные игры и приложения для Android.
Что такое транзистор NPN? – Определение, конструкция, работа и применение
Определение: NPN-транзистор представляет собой управляемую током схему , которая состоит из трех выводов: эмиттера, базы и коллектора. Он формируется путем прослоения слоя материала N-типа между двумя слоями материала P-типа. Он действует как источник тока , поскольку обеспечивает ток через клемму базы. Транзистор NPN полностью противоположен транзистору PNP.
Транзистор NPN можно понимать как транзистор «Отрицательный-Положительный-Отрицательный» . Это связано с тем, что слой полупроводника N-типа состоит из электронов в качестве основного носителя. Поскольку NPN-транзистор состоит из эмиттера N-типа, то основными носителями заряда в NPN-транзисторе являются электроны.
Эти электроны при движении от перехода с низким сопротивлением, т.е. перехода эмиттер-база, к переходу, состоящему из области высокого сопротивления, т.е. переходу коллектор-база, создают ток.
NPN-транзистор предпочтительнее PNP-транзистора, поскольку подвижность электронов больше, чем подвижность дырок. В транзисторах NPN основными носителями являются электроны, а в транзисторах PNP основными носителями являются дырки. Таким образом, подвижность носителей заряда в NPN будет больше, чем в PNP.
Символ, используемый для обозначения NPN-транзистора в электронных схемах, показан на схеме ниже.
Конструкция
NPN-транзистор образован с помощью трех слоев, два из которых являются полупроводниковыми N-типа, а другой – полупроводниковыми P-типа. Часто говорят, что транзистор формируется путем соединения двух диодов встречно-параллельно. Но это не так, это просто для представления конструкции.
Если он сформирован путем соединения двух диодов встречно-параллельно, то полученная структура будет иметь четыре легированные области, так как каждый из диодов имеет 2 легированные области. В этом случае база, образованная встречным соединением, не будет иметь однородного легирования, что является необходимым условием для транзистора.
Таким образом, он всегда образован тремя слоями, у которых один слаболегированный, т.е. базовый, второй сильнолегированный, т. е. эмиттерный и последний коллекторный, умеренно легированный. База P-типа зажата между эмиттером и коллектором N-типа. Это приводит к образованию полупроводника N-типа.
Эмиттер и коллектор взаимозаменяемы?
Область эмиттера и коллектора не взаимозаменяемы, так как размер эмиттера меньше размера коллектора. Коллектор выполнен большего размера по сравнению с эмиттером, потому что, если размер коллектора большой, он будет собирать все больше и больше носителей заряда, и тепло также может легко рассеиваться через переход большей площади.
Рабочий
Переход база-эмиттер должен быть смещен в прямом направлении, а переход коллектор-база должен быть смещен в обратном направлении. Следовательно, N-вывод перехода эмиттер-база соединен с отрицательным выводом V BE, и P-клемма аккумулятора подключается к плюсовой клемме V BE .
Для обратного смещения перехода коллектор-база клемма N подключается к положительной клемме V CB , а клемма P подключается к отрицательной клемме аккумулятора V CE . Это сделает широкий слой обеднения на переходе коллектор-база и узкий слой обеднения на переходе эмиттер-база.
Когда к переходу эмиттер-база приложено прямое смещение, электроны в N-области будут отталкиваться от отрицательной клеммы батареи и двигаться в сторону базы. Базовая область очень мала по сравнению с областью эмиттера и коллектора. Кроме того, интенсивность легирования основания самая низкая. Таким образом, он состоит из меньшего количества отверстий.
Из-за небольшого количества дырок в базовой области только несколько электронов будут рекомбинировать с дырками. Остальные электроны, которые еще не рекомбинировали, будут двигаться в сторону области коллектора. Это и будет ток в цепи. Размер коллектора велик, поэтому он может собирать больше носителей заряда и рассеивать тепло.
Ток в транзисторе NPN обусловлен электронами, поскольку электроны являются основными носителями заряда в транзисторе NPN.
Ток эмиттера в транзисторе NPN равен сумме токов базы и коллектора.