Производная от скорости по времени – Когда говорят: “производная по времени – скорость. Производная по скорости

Скорость как производная – GrandKid

Скорость как производная.   Процедура, которую мы только что выполнили, настолько часто встречается в математике, что для величин ε и х было придумано специальное обозначение: ε обозначается как ∆t, а х — как ∆s. Величина ∆t означает «небольшой добавок к t», причем подразумевается, что этот добавок можно делать меньше. Значок ∆ ни в коем случае не означает умножение на какую-то величину, точно так же как sin θ не означает s·i·n·0. Это просто некоторый добавок ко времени, причем значок ∆ напоминает нам о его особом характере. Ну, а если ∆ не множитель, то его нельзя сократить в отношении ∆s/∆t. Это все равно, что в выражении sin θ/sin 2θ сократить все буквы и получить 1/2. В этих новых обозначениях скорость равна пределу отношения ∆s/∆t при ∆t, стремящемся к нулю, т. е.

Это по существу формула (8.3), но теперь яснее видно, что здесь все изменяется, а, кроме того, она напоминает, какие именно величины изменяются.
Существует еще один закон, который выполняется с хорошей точностью. Он гласит: изменение расстояния равно скорости, умноженной на интервал времени, за которое это изменение произошло, т. е. ∆s = υ∆t. Это правило строго справедливо только тогда, когда скорость не изменяется в течение интервала ∆t, а это, вообще говоря, происходит, только когда ∆t достаточно мало. В таких случаях обычно пишут ds = υdt, где под dt подразумевают интервал времени ∆t при условии, что он сколь угодно мал. Если интервал ∆t достаточно велик, то скорость за это время может измениться и выражение ∆s = υ∆t будет уже приближенным. Однако если мы пишем dt, то при этом подразумевается, что интервал времени неограниченно мал и в этом смысле выражение ds = υdt точное. В новых обозначениях выражение (8.5) имеет вид

Величина ds/dt называется «производной s по t» (такое название напоминает о том, что изменяется), а сложный процесс нахождения производной называется, кроме того; дифференцированием. Если же ds и dt появляются отдельно, а не в виде отношения ds/dt, то они носят названия дифференциалов. Чтобы получше познакомить вас с новой терминологией, скажу еще, что в предыдущем параграфе мы нашли производную от функции 5t

2, или просто производную от 5t2. Она оказалась равной 10t. Когда вы больше привыкнете к новым словам, вам станет более понятна сама мысль. Для тренировки давайте найдем производную более сложной функции. Рассмотрим выражение s = At3 + Bt + С, которое может описывать движение точки. Буквы А, В, С, так же как и в обычном квадратном уравнении, обозначают постоянные числа. Нам нужно найти скорость движения, описываемого этой формулой в любой момент времени t. Рассмотрим для этого момент t + ∆t, причем к s прибавится некоторая добавка ∆s, и найдем, как выражается ∆s через ∆t. Поскольку

Но нам нужна не сама величина ∆s, а отношение ∆s/∆t. После деления на ∆t получим выражение

которое после устремления ∆t к нулю превратится в

В этом состоит процесс взятия производной, или дифференцирования функций. На самом деле он несколько легче, чем это кажется на первый взгляд. Заметьте, что если в разложениях, подобных предыдущим, встречаются члены, пропорциональные (∆t)

2 или (∆t)3 или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем ∆t устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8.3.

grandkid.ru

Скорость движения определяется как производная координат по времени

Вопросы по курсу «Механика и молекулярная физика»

 

 

  1. Общая задача кинематики. Виды движения и их уравнения.

 

  1. Кинематика криволинейного движения. Взаимосвязь между характеристиками прямолинейного и криволинейного движений.

 

  1. Основные понятия динамики. Законы Ньютона. Виды фундаментальных взаимодействий. Виды сил в механике.

 

  1. Закон всемирного тяготения. Ускорение свободного падения. Космические скорости.

 

  1. Движение тела с переменной массой. Уравнение Мещёрского и его решение.

 

  1. Законы сохранения и их физическая природа. Смысл понятия работы.

 

  1. Динамика вращательного движения. Основное уравнение динамики вращательного движения. Моменты и их физический смысл.

 

  1. Теорема Штейнера. Вычисление моментов инерции для простейших ситуаций. Дифференциальный метод.

 

  1. Постулаты теории относительности. Преобразования Лоренца и их следствия. Принцип соответствия. Парадоксы теории относительности.

 

  1. Предмет молекулярной физики. Статистический и термодинамический методы исследования. Термодинамические параметры. Уравнение состояния.

 

  1. Первое начало термодинамики. Внутренняя энергия системы. Теплота и работа. Графическое изображение термодинамических процессов.

 

  1. Теплоемкость вещества. Применение первого начала термодинамики к изопроцессам в идеальном газе. Теплоемкость в МКТ.

 

  1. Второе начало термодинамики. Круговые процессы. Обратимые и необратимые процессы. Энтропия и внутренняя энергия. Третье начало термодинамики. Вечные двигатели.

 

  1. Распределение Гаусса и его частные случаи.

 

  1. Явления переноса.

 

1.Общая задача кинематики. Виды движения и их уравнения.

Кинематика рассматривает движение тел, вне зависимости от причины, вызывающее это движение.

Главной задачей кинематики является математическое (уравнениями, графиками, таблицами и т. п.) определение положения и характеристик движения точек или тел во времени. Любое движения рассматривается в определённой системе отсчёта. Также кинематика занимается изучением составных движений (движений в двух взаимно перемещающихся системах отсчёта).



Скорость движения определяется как производная координат по времени

Ускорение определяется как производная скорости по времени

Системой отсчета называется совокупность системы пространственных координат жестко связанных с телом и система отсчета времени.(Декартова; Сферическая; Цилиндрическая; Полярная)

Механи́ческим движе́ниемтела называется изменение его положения в пространстве относительно других тел с течением времени

Движениематериальной точки полностью определяется изменением её координат во времени (например, двух на плоскости). В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.

Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)

Криволинейное движение – это движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например,

движение по окружности).


– Уравнение Траектории


Кинематика твёрдого тела изучает движение абсолютно твёрдых тел (тел, расстояние между двумя любыми точками которого не может изменяться).

Движениетвёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки.

Поступательное движение – движение при котором любая прямая неизменно связанная с телом, во все время движения остается параллельной своему начальному направлению

Вращательное движение — движения тела при котором любая точка тела движется по окружности.

Также для твёрдого тела выделяют плоское движение — движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела положением любых двух точек.

– Тангенциальное ускорение

– Нормальное ускорение


7. Динамика вращательного движения. Основное уравнение динамики вращательного движения. Моменты и их физический смысл.

– уравнение динамики вращательного движения, где M – момент силы;

– момент Инерции

– момент импульса


8. Теорема Штейнера. Вычисление моментов инерции для простейших ситуаций. Дифференциальный метод.

Теорема Штейнера –момент инерции тела – J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

где

JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

 

Доказательство :

Момент инерции, по определению:

Радиус-вектор можно расписать как разность двух векторов:

,

где — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид:

Вынося за сумму , получим:

Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю:

Тогда:

Откуда и следует искомая формула:

,

где JC — известный момент инерции относительно оси, проходящей через центр масс тела.


9. Постулаты теории относительности. Преобразования Лоренца и их следствия. Принцип соответствия. Парадоксы теории относительности.

1 постулат: Принцип относительности Эйнштейна.

Уравнения, выражающие законы природы, инвариантны по отношению к преобразованиям координат и времени от одной инерциальной системы отсчета к другой. (

Инвариантность – неизменность вида уравнений при замене в нем координат и времени одной системы отсчета координатами и временем другой системы)

2 постулат: Принцип постоянства скорости света

Принцип постоянства скорости света утверждает, что скорость света в вакууме не зависит от движения источников света и, следовательно, одинакова во всех инерциальных системах отсчета.

Постоянство скорости света приводит к тому, что понятие одновременности, считающееся в ньютоновской механике абсолютным, в действительности является относительным.

Преобразования Лоренца:

, , , – переход от системы к системе

, , , переход от системы к системе

Следствия:

1. Лоренцево сокращение – у движущихся тел размеры их в направлении движения сокращаются тем больше, чем больше скорость движения.

 

следовательно

Отсюда видно, что в движении системы отсчета происходит сокращение, поперечные размеры тела не изменяются.

 

2. Движущиеся часы идут медленнее чем покоящиеся

Время отсчитанное по часам, движущимся вместе с телом называется собственным временем этого тела и обозначается буквой

3.Закон сложения скоростей. Скорость света в вакууме невозможно превысить

меняются только знаки с + на – везде кроме корней, а так же штрих.

Если , то формула примет вид =c. Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна.

Принцип соответствия : При скоростях, много меньших скорости света ( ), преобразования Лоренца практически не отличаются от преобразований Галилея. При для x, t, x’, t’ теряют физический смысл, следовательно движение со скоростью большей скорости света в вакууме невозможно.

Если ИСО S движется относительно ИСО S’ с постоянной скоростью вдоль оси , а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Галилея имеют вид:

Парадоксы теории относительности:

1. Парадокс близнецов: расстояние от Земли до звезды равно 500 световых лет. Представим космический полет до этой звезды со скоростью близкой к скорости света. По земным часам полет продлится 1000 лет, а для экипажа корабля 1 год. Таким образом, космонавт вернется на Землю в раз более молодым, чем его брат близнец, оставшийся на Земле.

megaobuchalka.ru

Производная – скорость – Большая Энциклопедия Нефти и Газа, статья, страница 1

Производная – скорость

Cтраница 1

Производная скорости по времени называется ускорением материальной точки.  [1]

Так как ускорение – это производная скорости по времени, то для того, чтобы найти его значение, нужно продифференцировать эту формулу. Вспомним теперь одно из правил табл. 8.3, а именно что производная суммы равна сумме производных.  [2]

Ди / Дг / – средняя производная скорости по направлению, нормальному к направлению потока), влияет на величину измеренной скорости и на ее направление.  [3]

Это означает, что в общем случае производная скорости разрыва по длине дуги ударной адиабаты в точке Жуге равна нулю.  [4]

Относительно радиальной компоненты многие исследователи [1, 82, 148, 181] утверждают, что производная скорости wr на.  [6]

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости ( ускорение) есть вторая производная координаты по времени.  [7]

Теперь предположим, что в резонансной точке, где фазовая скорость колебаний uo / k AVr0 / ( xc) / 2A; совпадает со скоростью течения VQ ( XS) вторая производная скорости имеет малое, но отличное от нуля значение. Как следует из (10.13) – (10.15), колебания будут нарастать, если величины АУ ( хс) и VQ ( XS) имеют разные знаки. Поскольку скачок первой производной соответствует предельной локализации второй, то условие неустойчивости совпадает с необходимым условием неустойчивости Рэлея. Инкремент неустойчивости может быть получен как с помощью (10.15), так и с использованием уравнения Рэлея. В последнем случае вклад резонансной точки следует учесть по методу последовательных приближений.  [8]

Описанное распространение метода Польгаузена на случай отсасывания имеет тот же недостаток, что и метод Польгаузена в первоначальном виде: в расчетные уравнения ( 4 – 20) и ( 4 – 21) входит явно вторая производная скорости внешнего потока по продольной координате.  [9]

Уравнение ( 8 – 6) позволяет найти поле направлений на фазовом цилиндре. Действительно, производная скорости по углу геометрически интерпретируется как тангенс угла наклона касательной к фазовой кривой в данной точке. Линии, соединяющие точки фазового цилиндра с одним и тем же тангенсом угла наклона касательной, называют изоклинами. Нулевая изоклина соединяет точки, которые являются для фазовых кривых точками максимума, минимума или перегиба.  [10]

Однако значения 0.015 и 0.005 нельзя, конечно, считать достаточно точными, так как для вычисления этих величин приходится находить производную скорости по данным в конечном числе точек. Причем в области отрыва производная скорости сильно меняется, а разброс в экспериментальных точках особенно велик.  [11]

При постоянных давлении и температуре скорость пропорциональна [ 1 а ( А-1) ] г / 3, если определяющая стадия принадлежит внешней границе раздела. Поскольку по предположению Д – 1 0, производная скорости по а положительна и кривая превращения представляет собой зависимость с ускорением во времени.  [12]

При постановке теоретической задачи необходимо сформулировать соответствующие физической реальности краевые условия для скоростей и их производных, входящих в уравнения движения жидкости. Это соответствует тому, что производная скорости по нормали к поверхности раздела фаз претерпевает излом, если коэффициенты вязкости жидкостей различны.  [13]

Для определения распределения скорости отсасывания уравнение ( 9 – 6) решено методом изоклин. Польгаузена на случай отсасывания имеет тот же недостаток, что и метод К. Польгаузена в первоначальном виде: в расчетные уравнения ( 9 – 5) и ( 9 – 6) входит явно вторая производная скорости внешнего потока по продольной координате. Как отмечалось ранее, наличие и затрудняет расчет, поскольку при задании и ( х), например, в виде графика определение и i ( x) связано с немалыми трудностями и ошибками.  [14]

Страницы:      1

www.ngpedia.ru

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *