Решение линейных уравнений методом крамера онлайн: Онлайн калькулятор. Решение систем линейных уравнений. Метод Крамера

Содержание

Решение систем линейных уравнений методом Крамера

Краткая теория


Рассмотрим частный случай системы линейных уравнений, когда число уравнений системы совпадает с числом неизвестных, подлежащих нахождению, то есть когда .

Пусть дана система  линейных уравнений с  неизвестными:

Определитель,  составленный из коэффициентов  называется определителем системы:

Рассмотрим случай, когда  – в этом случае система является определенной, то есть имеет единственное решение.

Напишем определитель, который будет отличаться от определителя  только -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель через , будем иметь:

Систему уравнений можно решить по следующим формулам, придавая индексу  значения :

Рассмотренный метод решения системы уравнений называется методом Крамера, а формулы – формулами Крамера.

Другие методы решения системы линейных алгебраических уравнений (СЛАУ):

Пример решения задачи


Задача

Решить систему линейных алгебраических уравнений (СЛАУ) методом Крамера. 

Решение

Если вам сейчас не требуется платная помощь с решением задач, контрольных работ и типовых расчетов, но может потребоваться в дальнейшем, то, чтобы не потерять контакт
вступайте в группу ВК
сохраните контакт WhatsApp (+79688494598)
сохраните контакт Телеграм (@helptask) .

Решим систему уравнений. Для этого вычислим определители, составленные по правилам Крамера:

Ответ:

Если вам сейчас не требуется платная помощь с решением задач, контрольных работ и типовых расчетов, но может потребоваться в дальнейшем, то, чтобы не потерять контакт
вступайте в группу ВК
сохраните контакт WhatsApp (+79688494598)
сохраните контакт Телеграм (@helptask) .

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Заявку можно оставить прямо в чате ВКонтакте, WhatsApp или Telegram, предварительно сообщив необходимые вам сроки решения и скинув условие задач.

Системы линейных уравнений методом крамера онлайн. Линейные уравнения. Решение систем линейных уравнений. Метод Крамера

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера.

Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:

и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение»

. В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить,

правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.

Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.


Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.


2. Решение систем уравнений матричным методом (при помощи обратной матрицы).
3. Метод Гаусса решения систем уравнений.

Метод Крамера.

Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ ).

Формулы на примере системы из двух уравнений с двумя переменными.
Дано: Решить методом Крамера систему

Относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы Вычисление определителей. :



Применим формулы Крамера и найдем значения переменных:
и .
Пример 1:
Решить систему уравнений:

относительно переменных х и у .
Решение:


Заменим в этом определителе первый столбец столбцом коэффициентов из правой части системы и найдем его значение:

Сделаем аналогичное действие, заменив в первом определителе второй столбец:

Применим формулы Крамера и найдем значения переменных:
и .
Ответ:
Замечание: Этим методом можно решать системы и большей размерности.

Замечание: Если получается, что , а делить на ноль нельзя, то говорят, что система не имеет единственного решения. В этом случае система имеет или бесконечно много решений или не имеет решений вообще.

Пример 2 (бесконечное количество решений):

Решить систему уравнений:

относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Решение систем методом подстановки.

Первое из уравнений системы — равенство, верное при любых значениях переменных (потому что 4 всегда равно 4). Значит, остается только одно уравнение. Это уравнение связи между переменными .
Получили, решением системы являются любые пары значений переменных, связанных между собой равенством .
Общее решение запишется так:
Частные решения можно определять выбирая произвольное значение у и вычисляя х по этому равенству связи.

и т.д.
Таких решений бесконечно много.
Ответ: общее решение
Частные решения:

Пример 3 (решений нет, система несовместна):

Решить систему уравнений:

Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Применять формулы Крамера нельзя. Решим эту систему методом подстановки

Второе уравнение системы — равенство, неверное ни при каких значениях переменных (конечно же, так как -15 не равно 2). Если одно из уравнений системы не верно ни при каких значениях переменных, то и вся системы не имеет решений.
Ответ: решений нет

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля. В этой статье мы разберем как по методу Крамера находятся неизвестные переменные и получим формулы. После этого перейдем к примерам и подробно опишем решение систем линейных алгебраических уравнений методом Крамера.

Навигация по странице.

Метод Крамера – вывод формул.

Пусть нам требуется решить систему линейных уравнений вида

Где x 1 , x 2 , …, x n – неизвестные переменные, a i j , i = 1, 2, …, n, j = 1, 2, …, n – числовые коэффициенты, b 1 , b 2 , …, b n – свободные члены. Решением СЛАУ называется такой набор значений x 1 , x 2 , …, x n при которых все уравнения системы обращаются в тождества.

В матричном виде эта система может быть записана как A ⋅ X = B , где – основная матрица системы, ее элементами являются коэффициенты при неизвестных переменных, – матрица – столбец свободных членов, а – матрица – столбец неизвестных переменных. После нахождения неизвестных переменных x 1 , x 2 , …, x n , матрица становится решением системы уравнений и равенство A ⋅ X = B обращается в тождество .

Будем считать, что матрица А – невырожденная, то есть, ее определитель отличен от нуля. В этом случае система линейных алгебраических уравнений имеет единственное решение, которое может быть найдено методом Крамера. (Методы решения систем при разобраны в разделе решение систем линейных алгебраических уравнений).

Метод Крамера основывается на двух свойствах определителя матрицы:

Итак, приступим к нахождению неизвестной переменной x 1 . Для этого умножим обе части первого уравнения системы на А 1 1 , обе части второго уравнения – на А 2 1 , и так далее, обе части n-ого уравнения – на А n 1 (то есть, уравнения системы умножаем на соответствующие алгебраические дополнения первого столбца матрицы А ):

Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x 1 , x 2 , …, x n , и приравняем эту сумму к сумме всех правых частей уравнений:

Если обратиться к озвученным ранее свойствам определителя, то имеем

и предыдущее равенство примет вид

откуда

Аналогично находим x 2 . Для этого умножаем обе части уравнений системы на алгебраические дополнения второго столбца матрицы А :

Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x 1 , x 2 , …, x n и применяем свойства определителя:

Откуда
.

Аналогично находятся оставшиеся неизвестные переменные.

Если обозначить

То получаем формулы для нахождения неизвестных переменных по методу Крамера .

Замечание.

Если система линейных алгебраических уравнений однородная, то есть , то она имеет лишь тривиальное решение (при ). Действительно, при нулевых свободных членах все определители будут равны нулю, так как будут содержать столбец нулевых элементов. Следовательно, формулы дадут .

Алгоритм решения систем линейных алгебраических уравнений методом Крамера.

Запишем алгоритм решения систем линейных алгебраических уравнений методом Крамера .

Примеры решения систем линейных алгебраических уравнений методом Крамера.

Разберем решения нескольких примеров.

Пример.

Найдите решение неоднородной системы линейных алгебраических уравнений методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель по формуле :

Так как определитель основной матрицы системы отличен от нуля, то СЛАУ имеет единственное решение, и оно может быть найдено методом Крамера. Запишем определители и . Заменяем первый столбец основной матрицы системы на столбец свободных членов, и получаем определитель . Аналогично заменяем второй столбец основной матрицы на столбец свободных членов, и получаем .

Вычисляем эти определители:

Находим неизвестные переменные x 1 и x 2 по формулам :

Выполним проверку. Подставим полученные значения x 1 и x 2 в исходную систему уравнений:

Оба уравнения системы обращаются в тождества, следовательно, решение найдено верно.

Ответ:

.

Некоторые элементы основной матрицы СЛАУ могут быть равны нулю. В этом случае в уравнениях системы будут отсутствовать соответствующие неизвестные переменные. Разберем пример.

Пример.

Найдите решение системы линейных уравнений методом Крамера .

Решение.

Перепишем систему в виде , чтобы стало видно основную матрицу системы . Найдем ее определитель по формуле

Имеем

Определитель основной матрицы отличен от нуля, следовательно, система линейных уравнений имеет единственное решение. Найдем его методом Крамера. Вычислим определители :

Таким образом,

Ответ:

Обозначения неизвестных переменных в уравнениях системы могут отличаться от x 1 , x 2 , …, x n . Это не влияет на процесс решения. А вот порядок следования неизвестных переменных в уравнениях системы очень важен при составлении основной матрицы и необходимых определителей метода Крамера. Поясним этот момент на примере.

Пример.

Используя метод Крамера, найдите решение системы трех линейных алгебраических уравнений с тремя неизвестными .

Решение.

В данном примере неизвестные переменные имеют другое обозначение (x , y и z вместо x 1 , x 2 и x 3 ). Это не влияет на ход решения, но будьте внимательны с обозначениями переменных. В качестве основной матрицы системы НЕЛЬЗЯ брать . Необходимо сначала упорядочить неизвестные переменные во всех уравнениях системы. Для этого перепишем систему уравнений как . Теперь основную матрицу системы хорошо видно . Вычислим ее определитель:

Определитель основной матрицы отличен от нуля, следовательно, система уравнений имеет единственное решение. Найдем его методом Крамера. Запишем определители (обратите внимание на обозначения) и вычислим их:

Осталось найти неизвестные переменные по формулам :

Выполним проверку. Для этого умножим основную матрицу на полученное решение (при необходимости смотрите раздел ):

В результате получили столбец свободных членов исходной системы уравнений, поэтому решение найдено верно.

Ответ:

x = 0, y = -2, z = 3 .

Пример.

Решите методом Крамера систему линейных уравнений , где a и b – некоторые действительные числа.

Решение.

Ответ:

Пример.

Найдите решение системы уравнений методом Крамера, – некоторое действительное число.

Решение.

Вычислим определитель основной матрицы системы: . выражения есть интервал , поэтому при любых действительных значениях . Следовательно, система уравнений имеет единственное решение, которое может быть найдено методом Крамера. Вычисляем и :

Пусть система линейных уравнений содержит столько уравнений, каково количество независимых переменных, т.е. имеет вид

Такие системы линейных уравнений называются квадратными. Определитель, составленный из коэффициентов при независимых переменных системы (1.5), называется главным определителем системы. Мы будем обозначать его греческой буквой D. Таким образом,

. (1.6)

Если в главном определителе произвольный (j -ый) столбец, заменить столбцом свободных членов системы (1. 5), то можно получить еще n вспомогательных определителей:

(j = 1, 2, …, n ). (1.7)

Правило Крамера решения квадратных систем линейных уравнений заключается в следующем. Если главный определитель D системы (1.5) отличен от нуля, то система имеет и притом единственное решение, которое можно найти по формулам:

(1.8)

Пример 1.5. Методом Крамера решить систему уравнений

.

Вычислим главный определитель системы:

Так как D¹0, то система имеет единственное решение, которое можно найти по формулам (1.8):

Таким образом,

Действия над матрицами

1. Умножение матрицы на число. Операция умножения матрицы на число определяется следующим образом.

2. Для того чтобы умножить матрицу на число, нужно все ее элементы умножить на это число. То есть

. (1.9)

Пример 1.6. .

Сложение матриц.

Данная операция вводится только для матриц одного и того же порядка.

Для того чтобы сложить две матрицы, необходимо к элементам одной матрицы прибавить соответствующие элементы другой матрицы:

(1.10)
Операция сложения матриц обладает свойствами ассоциативности и коммутативности.

Пример 1.7. .

Умножение матриц.

Если число столбцов матрицы А совпадает с числом строк матрицы В , то для таких матриц вводится операция умножения:

2

Таким образом, при умножении матрицы А размерности m ´n на матрицу В размерности n ´k мы получаем матрицу С размерности m ´k . При этом элементы матрицы С вычисляются по следующим формулам:

Задача 1.8. Найти, если это возможно, произведение матриц AB и BA :

Решение. 1) Для того чтобы найти произведение AB , необходимо строки матрицы A умножить на столбцы матрицы B :

2) Произведение BA не существует, т. к. количество столбцов матрицы B не совпадает с количеством строк матрицы A .

Обратная матрица. Решение систем линейных уравнений матричным способом

Матрица A – 1 называется обратной к квадратной матрице А , если выполнено равенство:

где через I обозначается единичная матрица того же порядка, что и матрица А :

.

Для того чтобы квадратная матрица имела обратную необходимо и достаточно, чтобы ее определитель был отличен от нуля. Обратную матрицу находят по формуле:

, (1.13)

где A ij – алгебраические дополнения к элементам a ij матрицы А (заметим, что алгебраические дополнения к строкам матрицы А располагаются в обратной матрице в виде соответствующих столбцов).

Пример 1.9. Найти обратную матрицу A – 1 к матрице

.

Обратную матрицу найдем по формуле (1.13), которая для случая n = 3 имеет вид:

.

Найдем det A = | A | = 1 × 3 × 8 + 2 × 5 × 3 + 2 × 4 × 3 – 3 × 3 × 3 – 1 × 5 × 4 – 2 × 2 × 8 = 24 + 30 + 24 – 27 – 20 – 32 = – 1. Так как определитель исходной матрицы отличен от нуля, то обратная матрица существует.

1) Найдем алгебраические дополнения A ij :

Для удобства нахождения обратной матрицы, алгебраические дополнения к строкам исходной матрицы мы расположили в соответствующие столбцы.

Из полученных алгебраических дополнений составим новую матрицу и разделим ее на определитель det A . Таким образом, мы получим обратную матрицу:

Квадратные системы линейных уравнений с отличным от нуля главным определителем можно решать с помощью обратной матрицы. Для этого систему (1.5) записывают в матричном виде:

где

Умножая обе части равенства (1.14) слева на A – 1 , мы получим решение системы:

, откуда

Таким образом, для того чтобы найти решение квадратной системы, нужно найти обратную матрицу к основной матрице системы и умножить ее справа на матрицу-столбец свободных членов.

Задача 1.10. Решить систему линейных уравнений

с помощью обратной матрицы.

Решение. Запишем систему в матричном виде: ,

где – основная матрица системы, – столбец неизвестных и – столбец свободных членов. Так как главный определитель системы , то основная матрица системы А имеет обратную матрицу А -1 . Для нахождения обратной матрицы А -1 , вычислим алгебраические дополнения ко всем элементам матрицы А :

Из полученных чисел составим матрицу (причем алгебраические дополнения к строкам матрицы А запишем в соответствующие столбцы) и разделим ее на определитель D. Таким образом, мы нашли обратную матрицу:

Решение системы находим по формуле (1.15):

Таким образом,

Решение систем линейных уравнений методом обыкновенных жордановых исключений

Пусть дана произвольная (не обязательно квадратная) система линейных уравнений:

(1.16)

Требуется найти решение системы, т.е. такой набор переменных , который удовлетворяет всем равенствам системы (1. 16). В общем случае система (1.16) может иметь не только одно решение, но и бесчисленное множество решений. Она может так же вообще не иметь решений.

При решении подобных задач используется хорошо известный из школьного курса метод исключения неизвестных, который еще называется методом обыкновенных жордановых исключений. Суть данного метода заключается в том, что в одном из уравнений системы (1.16) одна из переменных выражается через другие переменные. Затем эта переменная подставляется в другие уравнения системы. В результате получается система, содержащая на одно уравнение и на одну переменную меньше, чем исходная система. Уравнение, из которого выражалась переменная, запоминается.

Этот процесс повторяется до тех пор, пока в системе не останется одно последнее уравнение. В процессе исключения неизвестных некоторые уравнения могут превратиться в верные тождества, например . Такие уравнения из системы исключаются, так как они выполняются при любых значениях переменных и, следовательно, не оказывают влияния на решение системы. Если в процессе исключения неизвестных хотя бы одно уравнение становится равенством, которое не может выполняться ни при каких значениях переменных (например ), то мы делаем вывод, что система не имеет решения.

Если в ходе решения противоречивых уравнений не возникло, то из последнего уравнения находится одна из оставшихся в нем переменных. Если в последнем уравнении осталась только одна переменная, то она выражается числом. Если в последнем уравнении остаются еще и другие переменные, то они считаются параметрами, и выраженная через них переменная будет функцией этих параметров. Затем совершается так называемый «обратный ход». Найденную переменную подставляют в последнее запомненное уравнение и находят вторую переменную. Затем две найденные переменные подставляют в предпоследнее запомненное уравнение и находят третью переменную, и так далее, вплоть до первого запомненного уравнения.

В результате мы получаем решение системы. Данное решение будет являться единственным, если найденные переменные будут числами. Если же первая найденная переменная, а затем и все остальные будут зависеть от параметров, то система будет иметь бесчисленное множество решений (каждому набору параметров соответствует новое решение). Формулы, позволяющие найти решение системы в зависимости от того или иного набора параметров, называются общим решением системы.

Пример 1.11.

x

После запоминания первого уравнения и приведения подобных членов во втором и третьем уравнении мы приходим к системе:

Выразим y из второго уравнения и подставим его в первое уравнение:

Запомним второе уравнение, а из первого найдем z :

Совершая обратный ход, последовательно найдем y и z . Для этого сначала подставим в последнее запомненное уравнение , откуда найдем y :

.

Затем подставим и в первое запомненное уравнение , откуда найдем x :

Задача 1.12. Решить систему линейных уравнений методом исключения неизвестных:

. (1.17)

Решение. Выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение

В данной системе первое и второе уравнения противоречат друг другу. Действительно, выражая y , получим, что 14 = 17. Данное равенство не выполняется, ни при каких значениях переменных x , y , и z . Следовательно, система (1.17) несовместна, т.е. не имеет решения.

Читателям предлагаем самостоятельно проверить, что главный определитель исходной системы (1.17) равен нулю.

Рассмотрим систему, отличающуюся от системы (1.17) всего лишь одним свободным членом.

Задача 1.13. Решить систему линейных уравнений методом исключения неизвестных:

. (1.18)

Решение. Как и прежде, выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение и приведем подобные члены во втором и третьем уравнении. Мы приходим к системе:

Выражая y из первого уравнения и подставляя его во второе уравнение , мы получим тождество 14 = 14, которое не влияет на решение системы, и, следовательно, его можно из системы исключить.

В последнем запомненном равенстве переменную z будем считать параметром. Полагаем . Тогда

Подставим y и z в первое запомненное равенство и найдем x :

.

Таким образом, система (1.18) имеет бесчисленное множество решений, причем любое решение можно найти по формулам (1.19), выбирая произвольное значение параметра t :

(1.19)
Так решениями системы, например, являются следующие наборы переменных (1; 2; 0), (2; 26; 14) и т. д. Формулы (1.19) выражают общее (любое) решение системы (1.18).

В том случае, когда исходная система (1.16) имеет достаточно большое количество уравнений и неизвестных, указанный метод обыкновенных жордановых исключений представляется громоздким. Однако это не так. Достаточно вывести алгоритм пересчета коэффициентов системы при одном шаге в общем виде и оформить решение задачи в виде специальных жордановых таблиц.

Пусть дана система линейных форм (уравнений):

, (1.20)
где x j – независимые (искомые) переменные, a ij – постоянные коэффициенты
(i = 1, 2,…, m ; j = 1, 2,…, n ). Правые части системы y i (i = 1, 2,…, m ) могут быть как переменными (зависимыми), так и константами. Требуется найти решений данной системы методом исключения неизвестных.

Рассмотрим следующую операцию, называемую в дальнейшем «одним шагом обыкновенных жордановых исключений». Из произвольного (r -го) равенства выразим произвольную переменную (x s ) и подставим во все остальные равенства. Разумеется, это возможно только в том случае, когда a rs ¹ 0. Коэффициент a rs называется разрешающим (иногда направляющим или главным) элементом.

Мы получим следующую систему:

. (1.21)

Из s -го равенства системы (1.21) мы впоследствии найдем переменную x s (после того, как будут найдены остальные переменные). S -я строка запоминается и в дальнейшем из системы исключается. Оставшаяся система будет содержать на одно уравнение и на одну независимую переменную меньше, чем исходная система.

Вычислим коэффициенты полученной системы (1.21) через коэффициенты исходной системы (1.20). Начнем с r -го уравнения, которое после выражения переменной x s через остальные переменные будет выглядеть следующим образом:

Таким образом, новые коэффициенты r -го уравнения вычисляются по следующим формулам:

(1.23)
Вычислим теперь новые коэффициенты b ij (i ¹ r ) произвольного уравнения. Для этого подставим выраженную в (1.22) переменную x s в i -е уравнение системы (1.20):

После приведения подобных членов, получим:

(1.24)
Из равенства (1.24) получим формулы, по которым вычисляются остальные коэффициенты системы (1. 21) (за исключением r -го уравнения):

(1.25)
Преобразование систем линейных уравнений методом обыкновенных жордановых исключений оформляется в виде таблиц (матриц). Эти таблицы получили название «жордановых».

Так, задаче (1.20) ставится в соответствие следующая жорданова таблица:

Таблица 1.1

x 1x 2x j x s x n
y 1 =a 11a 12a 1j a 1s a 1n
…………………………………………………………………..
y i =a i 1a i 2a ij a is a in
…………………………………………………………………..
y r =a r 1a r 2a rj a rsa rn
………………………………………………………………….
y n =a m 1a m 2a mj a ms a mn

Жорданова таблица 1.1 содержит левый заглавный столбец, в который записывают правые части системы (1.20) и верхнюю заглавную строку, в которую записывают независимые переменные.

Остальные элементы таблицы образуют основную матрицу коэффициентов системы (1.20). Если умножить матрицу А на матрицу , состоящую из элементов верхней заглавной строки, то получится матрица , состоящая из элементов левого заглавного столбца. То есть, по существу, жорданова таблица это матричная форма записи системы линейных уравнений: . Системе (1.21) при этом соответствует следующая жорданова таблица:

Таблица 1.2

x 1x 2x j y r x n
y 1 =b 11b 12b 1 j b 1 s b 1 n
…………………………………………………………………. .
y i = b i 1b i 2b ij b is b in
…………………………………………………………………..
x s = b r 1b r 2b rj b rs b rn
………………………………………………………………….
y n = b m 1b m 2b mj b ms b mn

Разрешающий элемент a rs мы будем выделять жирным шрифтом. Напомним, что для осуществления одного шага жордановых исключений разрешающий элемент должен быть отличен от нуля. Строку таблицы, содержащую разрешающий элемент, называют разрешающей строкой. Столбец, содержащий разрешающий элемент, называют разрешающим столбцом. При переходе от данной таблицы к следующей таблице одна переменная (x s ) из верней заглавной строки таблицы перемещается в левый заглавный столбец и, наоборот, один из свободных членов системы (y r ) из левого заглавного столбца таблицы перемещается в верхнюю заглавную строку.

Опишем алгоритм пересчета коэффициентов при переходе от жордановой таблицы (1.1) к таблице (1.2), вытекающий из формул (1.23) и (1.25).

1. Разрешающий элемент заменяется обратным числом:

2. Остальные элементы разрешающей строки делятся на разрешающий элемент и изменяют знак на противоположный:

3. Остальные элементы разрешающего столбца делятся на разрешающий элемент:

4. Элементы, не попавшие в разрешающую строку и разрешающий столбец, пересчитываются по формулам:

Последняя формула легко запоминается, если заметить, что элементы, составляющие дробь , находятся на пересечении i -ой и r -ой строк и j -го и s -го столбцов (разрешающей строки, разрешающего столбца и той строки и столбца, на пересечении которых находится пересчитываемый элемент). Точнее, при запоминании формулы можно использовать следующую диаграмму:

-21-26-13-37

Совершая первый шаг жордановых исключений, в качестве разрешающего элемента можно выбрать любой элемент таблицы 1.3, расположенный в столбцах x 1 ,…, x 5 (все указанные элементы не равны нулю). Не следует только выбирать разрешающий элемент в последнем столбце, т.к. требуется находить независимые переменные x 1 ,…, x 5 . Выбираем, например, коэффициент 1 при переменной x 3 в третьей строке таблицы 1.3 (разрешающий элемент показан жирным шрифтом). При переходе к таблице 1.4 переменная x 3 из верхней заглавной строки меняется местами с константой 0 левого заглавного столбца (третья строка). При этом переменная x 3 выражается через остальные переменные.

Строку x 3 (табл.1.4) можно, предварительно запомнив, исключить из таблицы 1.4. Из таблицы 1.4 исключается так же третий столбец с нулем в верхней заглавной строке. Дело в том, что независимо от коэффициентов данного столбца b i 3 все соответствующие ему слагаемые каждого уравнения 0·b i 3 системы будут равны нулю. Поэтому указанные коэффициенты можно не вычислять. Исключив одну переменную x 3 и запомнив одно из уравнений, мы приходим к системе, соответствующей таблице 1.4 (с вычеркнутой строкой x 3). Выбирая в таблице 1.4 в качестве разрешающего элемента b 14 = -5, переходим к таблице 1.5. В таблице 1.5 запоминаем первую строку и исключаем ее из таблицы вместе с четвертым столбцом (с нулем наверху).

Таблица 1.5 Таблица 1.6

Из последней таблицы 1.7 находим: x 1 = – 3 + 2x 5 .

Последовательно подставляя уже найденные переменные в запомненные строки, находим остальные переменные:

Таким образом, система имеет бесчисленное множество решений. Переменной x 5 , можно придавать произвольные значения. Данная переменная выступает в роли параметра x 5 = t. Мы доказали совместность системы и нашли ее общее решение:

x 1 = – 3 + 2t

x 2 = – 1 – 3t

x 3 = – 2 + 4t . (1.27)
x 4 = 4 + 5t

x 5 = t

Придавая параметру t различные значения, мы получим бесчисленное множество решений исходной системы. Так, например, решением системы является следующий набор переменных (- 3; – 1; – 2; 4; 0).

Практическая работа Решение систем линейных уравнений методом Крамера

Практическая работа № 18

Тема: Решение систем линейных уравнений методом Крамера.

Цель работы: решить систему линейных уравнений методом Крамера.

Студен должен:

знать:

уметь:

Теоретическое обоснование.

Метод Крамера. Применение для систем линейных уравнений.

Задана система N линейных алгебраических уравнений (СЛАУ) с  неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами – числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй – при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение. Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность  чисел , которая при превращает каждое из уравнений системы в правильную равенство. Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае – несовместимой. Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственное, систему уравнений называют неопределенной. Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами, например , по формулам Крамера (метод Крамера)

Теорема Крамера.  Если определитель системы  линейных алгебраических уравнений с  неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера: – определители, образованные с  заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из  отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Главный определительопределяется разностью перемножения коэффициентов относительно одной диагонали и другой диагонали.

вычитаем

Пример 1

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Решение.

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Ход работы:

  1. Изучить теоретическое обоснование.

  2. Представить результаты практических заданий преподавателю.

  3. Оформить отчет.

  4. Ответить на контрольные вопросы.

Содержание отчета:

  1. Название и цели работы.

  2. Решение системы линейных уравнений по варианту.

  3. Вывод.

Практические задания:

Задание 1. Решить методом Крамера.

2.

4.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Задание 2. Проверить решение СЛАУ на компьютере в электронных таблицах Excel.

Размещаем исходные коэффициенты в диапазоне B2:E4. Для вычисления главного определителя выбираем коэффициенты при x1, x2, x3 и размещаем их в диапазоне B6:D8. Исходную формулу размещаем в ячейку E7. Она выглядит так: =B6*C7*D8+D6*B7*C8+B8*C6*D7-(D6*C7*B8+D8*C6*B7+B6*D7*C8). Для первого определителя берем свободные члены СЛУ и размещаем в первую колонку и вычисляем определитель по аналогии. В ячейке h22 будет вычисляться первый корень по формуле: =E12/E7 и т. д.

Контрольные вопросы.

  1. Как выглядит система линейных уравнений?

  2. Как вычисляется главный определитель системы?

  3. Как вычисляются дополнительные определители системы?

  4. В каком случае СЛАУ имеет единственное решение?

  5. По каким формулам вычисляются корни СЛАУ по методу Крамера?

Литература.

  1. Овечкин, Г. В Компьютерное моделирование [Текст]: учебник/ Г. В. Овечкин.- М – Академия, 2015. – 224 с.

  2. Колдаев, В. Д Численные методы и программирование [Электронный ресурс]: ИНФРА-М., 2016. – 336 с. (ЭБС Znanium.com). Режим доступа: http://znanium.com/bookread2.php?book=546692

  3. Колдаев, В. Д Основы алгоритмизации и программирования [Электронный ресурс]: ИНФРА-М., 2016. – 416 с. (ЭБС Znanium.com). Режим доступа: http://znanium.com/bookread2.php?book=537513

Решение уравнений способом крамера. Линейные уравнения. Решение систем линейных уравнений. Метод Крамера

Методы Крамера и Гаусса – одни из самых популярных методов решения СЛАУ . К тому же, в ряде случаев целесообразно использовать именно конкретные методы. Сессия близка, и сейчас самое время повторить или освоить их с нуля. Сегодня разбираемся с решением методом Крамера. Ведь решение системы линейных уравнений методом Крамера – весьма полезный навык.

Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений – система уравнений вида:

Набор значений x , при котором уравнения системы обращаются в тождества, называется решением системы, a и b – вещественные коэффициенты. Простенькую систему, состоящую из двух уравнений с двумя неизвестными, можно решить в уме либо выразив одну переменную через другую. Но переменных (иксов) в СЛАУ может быть гораздо больше двух, и здесь простыми школьными манипуляциями не обойтись. Что же делать? Например, решать СЛАУ методом Крамера!

Итак, пусть система состоит из n уравнений с n неизвестными.

Такую систему можно переписать в матричном виде

Здесь A – основная матрица системы, X и B , соответственно, матрицы-столбцы неизвестных переменных и свободных членов.

Решение СЛАУ методом Крамера

Если определитель главной матрицы не равен нулю (матрица невырожденная), систему можно решать по методу Крамера.

Согласно методу Крамера, решение находится по формулам:

Здесь дельта – определитель главной матрицы, а дельта x n-ное – определитель, полученный из определителя главной матрицы путем заменой n-ного столбца на столбец свободных членов.

В этом и заключается вся суть метода Крамера. Подставляя найденные по вышеприведенным формулам значения x в искомую систему, убеждаемся в правильности (или наоборот) нашего решения. Чтобы Вы быстрее уловили суть, приведем ниже пример подробного решения СЛАУ методом Крамера:

Даже если у Вас не получится с первого раза, не расстраивайтесь! Немного практики, и Вы начнете щелкать СЛАУ как орешки. Более того, сейчас совершенно необязательно корпеть над тетрадью, решая громоздкие выкладки и исписывая стержень. Можно легко решить СЛАУ методом Крамера в режиме онлайн, лишь подставив в готовую форму коэффициенты. Испробовать онлайн калькулятор решения методом Крамера можно, к примеру, на этом сайте .


А если система оказалась упорной и не сдается, Вы всегда можете обратиться за помощью к нашим авторам, например, чтобы . Будь в системе хоть 100 неизвестных, мы обязательно решим ее верно и точно в срок!

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.


Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

в чем суть, как применяется для решения систем линейных уравнений

С помощью метода Крамера решают системы линейных алгебраических уравнений или СЛАУ. Освоить данный способ – значит, существенно упростить определение ответов многих задач по математическому анализу и другим дисциплинам. Однако правило справедливо не во всех случаях, а применимо лишь в тех примерах, где число неизвестных и уравнений в системе одинаковое. Рассмотрим подробнее описание данного метода.

Метод Крамера — в чем заключается, суть для чайников

Габриель Крамер был великим математиком. Еще в детстве он отличался уникальными интеллектуальными способностями.

С двадцати лет Крамер преподавал в университете Женевы. Путешествуя по Европе, Габриель повстречался с другим ученым, Иоганном Бернулли, который в дальнейшем стал его наставником. Благодаря плодотворному сотрудничеству с Бернулли, Крамер опубликовал множество трудов по геометрии, математике и философии.

Свободное время ученый посвящал углубленному изучению математических теорий. В результате трудоемких исследований Габриелю удалось изобрести собственный способ решения систем линейных уравнений любой сложности.

Источник: eponym.ru

Метод Крамера представляет собой способ решения систем линейных уравнений.

Методика великого ученого применима в тех случаях, когда пример состоит из систем линейных уравнений, в которых их количество соответствует числу неизвестных, а определитель не равен нулю.

В том случае, когда для любой крамеровской системы уравнений n*m можно подобрать единственное решение (Х1, Х2, … Хn), справедлива формула:

\(x_{i}=\frac{\Delta _{i}}{\Delta }\)

где \(\Delta _{i}\) является определителем матрицы, которая получена на основе основной матрицы А с помощью замены i-го столбца на столбец со свободными членами системы;

\(\Delta\) представляет собой определитель матрицы.

Таким образом, записывают формулу Крамера.

Теоремы замещения и аннулирования

Перед решением системы линейных уравнений необходимо изучить две важные закономерности. К ним относят:

  • теорему аннулирования;
  • теорему замещения.

Теорема замещения

При сложении произведений алгебраических дополнений какого-либо столбца и произвольных чисел b1, b2, b3 получают новый определитель, в котором данными значениями осуществляют замену соответствующих элементов первоначального определителя, отвечающим данным алгебраическим дополнениям.

К примеру, можно записать справедливое равенство:

\(b_{1}A_{11}+b_{2}A_{21}+b_{3}A_{32}=\begin{vmatrix} b_{1}&a_{12}&a_{13}\\b_{2}&a_{22}&a_{23}\\b_{3}&a_{32}&a_{33} \end{vmatrix}\)

где A11, А21, А31 являются алгебраическими дополнениями для компонентов а11, а21, а31 первого столбца первоначального определителя:

\(\Delta =\begin{vmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}\)

Источник: is20-2019. susu.ru

Теорема аннулирования

В сумме произведения компонентов одной строки или столбца и алгебраических дополнений соответствующих компонентов другой строки или столбца равны нулю.

В качестве примера можно записать справедливое равенство:

\(a_{12}A_{11}+a_{22}A_{21}+a_{32}A_{31}=0\)

Применение метода Крамера для решения систем линейных уравнений (СЛАУ)

Данная методика актуальна для поиска ответа на задачи, которые содержат системы линейных уравнений. Метод Крамера позволяет найти решение систем с числом строк, равных количеству неизвестных. Таким образом, решают квадратные системы уравнений. В процессе необходимо вычислить определители матрицы, включая основные и дополнительные, которые получены с помощью замещения одного из столбца главного определителя на столбец, состоящий из свободных членов системы алгебраических уравнений. Наглядно ознакомиться с алгоритмом можно на примере задачи.

Требуется решить с помощью метода Крамера СЛАУ:

\(\begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3 = b_1\\a_{21}x_1+a_{22}x_2+a_{23}x_3 = b_2\\a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3 \end{cases}\)

Определим неизвестные \(\begin{pmatrix}x_1\\x_2\\x_3 \end{pmatrix}\)Порядок действий простой. Необходимо составить из системы матрицу:

\( A = \begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix}\)

А также следует записать столбец, состоящий из свободных членов:

\(B = \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix}\)

Затем нужно рассчитать главный определитель матрицы:

\(\Delta = |A|\)

Кроме того, требуется записать дополнительные определители \(\Delta_i\)

Дополнительные определители получают на основе главного определителя с помощью замены столбцов по очереди на столбец, в котором записаны свободные члены:

\(\begin{pmatrix}b_1\\b_2\\b_3 \end{pmatrix}\)

Бывает, что при расчетах получается \(\Delta = 0\). В таком случае метод Крамера не применим для решения системы.

По итогам расчетов с помощью формулы Крамера можно сделать вывод неизвестных для системы линейных уравнений, что является ответом к задаче:

\(x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}, x_3 = \frac{\Delta_3}{\Delta}\)

Источник: oneminute1min. files.wordpress.com

Порядок решения однородной системы уравнений

Метод Крамера – удобный способ решения систем линейных уравнений. Однако однородные системы являются отдельным случаем. Рассмотрим пример:

\(\begin{cases} a_{11}x+a_{12}y+a_{13}z = 0\\a_{21}x+a_{22}y+a_{23}z = 0\\a_{31}x+a_{32}y+a_{33}z=0 \end{cases}\)

Решениями системы однородного типа могут являться:

  • нулевые решения x = y = z =0;
  • решения, которые не равны нулю.

В том случае, когда определитель \(\Delta\) записанной однородной системы не равен нулю, то есть \(\Delta \neq 0\) такая система обладает единственным решением. Таким образом, вспомогательные определители \(\Delta_{x}= \Delta_{y}=\Delta_{z}= 0\) как такие, у которых имеется нулевой столбец и поэтому, за формулами Крамера (x = y = z =0).

В том случае, когда однородная система имеет решение, не равное нулю, ее определитель \(\Delta\) будет иметь нулевое значение, то есть \(\Delta=0\). Действительно, если один неизвестный элемент, например х, не равен нулю, тогда, исходя из однородности \(\Delta_{x}= 0\) справедливо равенство \(\Delta*x=0.\) В результате \(\Delta= 0 (x\neq 0)\).

Источник: cdn.retell.in

Метод Крамера позволяет достаточно просто решать системы линейных уравнений. Главное, соблюдать условия применения данного правила. В результате многие задачи из математического анализа станут намного проще. Если при освоении этой и других тем возникают трудности, выход есть. На сервисе Феникс.Хелп каждый учащийся получит квалифицированную помощь.

Решение СЛАУ и матрицы в Matlab

Доброго времени суток, читатели! Сегодня мы поговорим о матрицах в Matlab, об их применении в решении систем линейных алгебраических уравнений. Подробно разберем методы решения, и для этого необходимо знание нескольких базовых алгоритмов.

Также стоит отметить, что у каждого алгоритма, которым мы будем искать решение СЛАУ в Matlab, своя скорость нахождения этого решения, наличие или отсутствие условия выполнения алгоритма и т. д.

В традициях нашего сайта разберём на примере:

Решить систему линейных уравнений:

4*a + b - c = 6
a - b + c = 4
2*a - 3*b - 3*c = 4

Метод обратной матрицы в Matlab

Начнем с достаточно распространенного метода. Его суть состоит в том, что сначала необходимо выписать коэффициенты при a, b и c (то есть те коэффициенты, которые находятся слева) в одну матрицу, а свободный член (то есть то, что справа) в другую.

В итоге у нас получится 2 матрицы:

A=[4  1 -1; 1 -1  1; 2 -3 -3];   % коэффициенты
B=[6; 4; 4];

Для реализации этого метода (и следующих методов тоже) требуется одно условие: чтобы определитель матрицы, составленной из коэффициентов левой части не был равен нулю. Проверка на определитель:

det(A)

Вывод: 30

После проверки условия можем перейти к следующему шагу: нахождение обратной матрицы. В Matlab для этого используется оператор inv.
А само решение СЛАУ в Matlab находится как перемножение найденной обратной матрицы на матрицу свободных членов:

x=inv(A)*B

Вывод:
2
-1
1

Мы получили 3 значения, которые и соответствуют нашим коэффициентам: то есть a = 2, b = -1, c = 1. Можете проверить, подставив полученные ответы в исходную систему, и убедиться, что мы решили СЛАУ правильно.

Также следует отметить, что матрицы нужно перемножать именно, как сделали мы, то есть слева обратная матрица, справа матрица свободных членов.

Если вы не все поняли, то советую вам почитать нашу статью по основам Matlab.

Метод Гаусса

Метод Гаусса в Matlab реализуется достаточно просто: для этого нам нужно всего лишь изучить один новый оператор.
(\) - левое деление.
При следующей записи:

x = A\B

Вывод:
2
-1
1

Мы получим ответы на нашу исходную систему. Только заметьте, мы решили СЛАУ стандартным набором функций в Matlab, и желательно этот оператор использовать когда матрица коэффициентов квадратная, так как оператор приводит эту матрицу к треугольному виду. В других случаях могут возникнуть ошибки.

Метод разложения матрицы

Теперь поговорим о разложении матрицы. Нахождение решения через разложение матрицы очень эффективно. Эффективность обусловлена скоростью нахождения решения для данного вида систем и точностью полученных результатов.

Возможны следующие разложения:

  • разложение Холецкого
  • LU разложение
  • QR разложение

Разберём решение через LU и QR разложение, так как в задачах чаще всего встречается задание на решение именно через такие разложения.

Основное отличие этих двух разложений: LU разложение применимо только для квадратных матриц, QR — возможно и для прямоугольных.

LU разложение

Решим выше предложенную задачу через LU разложение:

[L, U] = lu(A);

Вывод:

L =
    1       0     0
    0.25    1     0
    0.5     2.8   1

U =
    4     1     -1
    0    -1.25   1.25
    0     0     -5

Затем:

y = L\B;
x = U\y

Вывод:

2
-1
1

QR разложение

И через QR разложение соответственно:

[Q, R] = qr(A);
x = R\(Q'*B)

Вывод:

2.0000
-1.0000
1.0000

Отметим, что апостроф (  '  ) после Q означает транспонирование.

Стандартные функции Matlab

Так же Matlab предлагает функцию linsolve, с помощью которой возможно решить систему линейных алгебраических уравнений. Выглядит это так:

x = linsolve(A,B)

Вывод:

2
-1
1

Как видите, ничего сложного тут нет, на то они и стандартные функции Matlab.

Повторение

Итак, сегодня мы с вами изучили несколько методов для решения СЛАУ в Matlab, как с помощью матриц, так и с помощью стандартных функций. Давайте их повторим на другом примере:

Решить систему линейных уравнений:
6*a - b - c = 0
a - 2*b + 3*d = 0
3*a - 4*b - 4*c = -1

A=[6 -1 -1; 1 -2 3; 3 -4 -4];
B=[0; 0; -1];
  • Методом обратной матрицы:
x=inv(A)*B

Вывод:
    0.0476
    0.1810
    0.1048
  • Методом Гаусса:
  • x = A\B
    
    Вывод:
        0.0476
        0.1810
        0.1048
    
  • LU разложение:
  • [L, U] = lu(A);
    y = L\B;
    x = U\y
    
    Вывод:
        0.0476
        0.1810
        0.1048
    
  • QR разложение:
  • [Q, R] = qr(A);
    x = R\(Q'*B)
    
    Вывод:
        0.0476
        0.1810
        0.1048
    

    На этом я с вами попрощаюсь, надеюсь, вы научились применять матрицы в Matlab для решения СЛАУ.

    Поделиться ссылкой:

    Похожее

    Метод Крамера – решение систем линейных уравнений, примеры – смотреть онлайн видео урок бесплатно! Автор: alWEBra – Линейная алгебра


    В этом видео рассказывается о методе Крамера – решение систем линейных уравнений, примеры. Это один из методов решения систем алгебраических уравнений, его еще называют методом определителей. Метод Крамера достаточно прост в использовании и позволяет быстро найти искомое решение, хотя и имеет ряд недостатков. Стоит отметить, что система уравнений называется линейной в том случае, если неизвестные между собой не перемножаются и не возводятся в степень. Именно для решения таких систем можно использовать метод Крамера. Решить систему – это значит найти все такие значения неизвестных, которые обращают каждое уравнение системы в тождество. Для решения системы линейных уравнений методом Крамера, сначала вычисляют определитель матрицы, составленных из коэффициентов при неизвестных. Если этот определитель не равен нулю, то система имеет единственное решение и метод крамера можно использовать, а если он равен нулю, то для решения данной системы уравнений необходимо использовать другой метод, например метод Гаусса. В этом уроке будет изучены все формулы метода Крамера и рассмотрен пример решения системы уравнения. Видео урок «Метод Крамера – решение систем линейных уравнений, примеры» вы можете смотреть онлайн абсолютно бесплатно в любое удобное время. Успехов!


    • Автор: alWEBra
    • Длительность: 4:19
    • Дата: 20.11.2013
    • Смотрели: 527
    • Рейтинг: 5.0/1



    Если у Вас есть качественные видео уроки, которых нет на нашем сайте, то Вы можете добавить их в нашу коллекцию. Для этого Вам необходимо загрузить их на видеохостинг (например, YouTube) и добавить код видео в форму добавления уроков. Возможность добавлять свои материалы доступна только для зарегистрированных пользователей.

    Калькулятор правила Крамерса

    Как найти неизвестные переменные по правилу Крамерса?

    Понятие матричного определителя появилось в Германии и Японии практически в одно и то же время. Секи впервые написал об этом в 1683 году в своем «Метод решения разрозненных задач ». Секи разработал шаблон для определителей для $ 2 \ times 2 $, $ 3 \ times 3 $, Матрицы $ 4 \ times 4 $ и $ 5 \ times 5 $ и использовали их для решения уравнений. В том же году Г. Лейбниц написал о методе решения система уравнений.Этот метод хорошо известен как Правило Крамера . Определитель квадратной матрицы $ A $ – это уникальное действительное число, которое является атрибутом матрицы $ A $. Определитель матрицы $ A $ обозначается $ det (A) $ или $ | A | $.

    Правило Крамера – это формула для решения системы линейных уравнений. Он выводит решение в терминах определителей матрицы и матриц, полученных из нее, путем замены одного столбца вектором-столбцом правых частей уравнений. Он назван Габриэлем Крамером (17041752), и правило для произвольного числа неизвестных опубликовано в статье [Cramer, G.{th} $ столбец основной матрицы вектором правых частей уравнений и вычисляем его определитель, $ D_x $.

  • Чтобы найти решение $ x $ системы линейных уравнений по правилу Крамера, разделите определитель $ D_x $ на главный определитель $ D $;
  • Повторите предыдущий шаг для каждой переменной;
  • Если главный определитель равен нулю, система линейных уравнений либо несовместна, либо имеет бесконечно много решений.
    Правило Крамера в двух переменных : Рассмотрим систему уравнений:
    $$ \ begin {align} & a_1x + b_1y = \ color {синий} {c_1} \\ & a_2x + b_2y = \ color {синий} {c_2} \ end {align} $$ Главный определитель $$ D = \ left | \ begin {array} {cc} a_1 и b_1 \\ a_2 и b_2 \\ \ end {массив} \ right | $$ и два других детерминанта $$ D_x = \ left | \ begin {array} {cc} \ color {blue} {c_1} & b_1 \\ \ color {синий} {c_2} & b_2 \\ \ end {массив} \ right | \ quad \ mbox {и} \ quad D_y = \ left | \ begin {array} {cc} a_1 & \ color {синий} {c_1} \\ a_2 & \ color {синий} {c_2} \\ \ end {массив} \ right | $$ С помощью определителей можно найти $ x $ и $ y $ по правилу Крамера как
    . $$ x = \ frac {D_x} {D} = \ frac {\ left | \ begin {array} {cc} \ color {blue} {c_1} & b_1 \\ \ color {синий} {c_2} & b_2 \\ \ end {массив} \ right |} {\ left | \ begin {array} {cc} a_1 и b_1 \\ a_2 и b_2 \\ \ end {массив} \ right |} \ quad \ mbox {and} \ quad y = \ frac {D_y} {D} = \ frac {\ left | \ begin {array} {cc} a_1 & \ color {синий} {c_1} \\ a_2 & \ color {синий} {c_2} \\ \ end {массив} \ right |} {\ left | \ begin {array} {cc} a_1 и b_1 \\ a_2 и b_2 \\ \ end {массив} \ right |} $$ Если каждый определитель равен нулю, система согласована, а уравнения зависимы.У системы бесконечно много решений. Если $ D = 0 $ и $ D_x $ или $ D_y $ не равны нулю, система несовместима и не имеет решения.
    Правило Крамера в трех переменных : Рассмотрим систему уравнений: $$ \ begin {align} & a_1x + b_1y + c_1z = \ color {синий} {d_1} \\ & a_2x + b_2y + c_2z = \ цвет {синий} {d_2} \\ & a_3x + b_3y + c_3z = \ color {синий} {d_3} \\ \ end {align} $$ Главный определитель $$ D = \ left | \ begin {array} {ccc} a_1 и b_1 и c_1 \\ a_2 и b_2 и c_2 \\ a_3 & b_3 & c_3 \\ \ end {массив} \ right | $$ а остальные три детерминанта $$ D_x = \ left | \ begin {array} {ccc} \ color {синий} {d_1} & b_1 & c_1 \\ \ цвет {синий} {d_2} & b_2 & c_2 \\ \ color {blue} {d_3} & b_3 & c_3 \\ \ end {массив} \ right | \ quad D_y = \ left | \ begin {array} {ccc} a_1 & \ color {синий} {d_1} & c_1 \\ a_2 & \ цвет {синий} {d_2} & c_2 \\ a_3 & \ color {синий} {d_3} & c_3 \\ \ end {массив} \ right | \ quad \ mbox {and} \ quad D_z = \ left | \ begin {array} {ccc} a_1 & b_1 & \ color {синий} {d_1} \\ a_2 & b_2 & \ color {синий} {d_2} \\ a_3 & b_3 & \ color {синий} {d_3} \\ \ end {массив} \ right | $$ Решение системы трех уравнений есть $$ x = \ frac {D_x} {D}, \ quad y = \ frac {D_y} {D}, \ quad \ mbox {и} \ quad z = \ frac {D_z} {D} $$ Например, решим систему линейных уравнений: $$ \ begin {align} & 3x + 4y + 5z = 10 \\ & 5x + 6y + 7z = 12 \\ & 4x + 5y + 0z = 15 \\ \ end {align} $$ Сначала вычисляем главный определитель: $$ \ begin {align} D & = \ left | \ begin {array} {ccc} 3 и 4 и 5 \\ 5 и 6 и 7 \\ 4 и 5 и 0 \\ \ end {массив} \ right | \ & = \ left | \ begin {array} {ccc | cc} 3 и 4 и 5 и 3 и 4 \\ 5 и 6 и 7 и 5 и 6 \\ 4 и 5 и 0 и 4 и 5 \\ \ end {массив} \верно.= 3 \ cdot6 \ cdot0 + 4 \ cdot7 \ cdot4 + 5 \ cdot5 \ cdot 5-5 \ cdot6 \ cdot4-3 \ cdot7 \ cdot5-4 \ cdot6 \ cdot0 = 12 \ end {align} $$ По аналогии, $$ D_x = \ left | \ begin {array} {ccc} \ color {blue} {10} & 4 и 5 \\ \ color {blue} {12} & 6 и 7 \\ \ color {blue} {15} & 5 & 0 \\ \ end {массив} \ right | = -80, \ quad D_y = \ left | \ begin {array} {ccc} 3 & \ color {синий} {10} & 5 \\ 5 & ​​\ color {blue} {12} & 7 \\ 4 & \ color {blue} {15} & 0 \\ \ end {массив} \ right | = 100, \ quad D_z = \ left | \ begin {array} {ccc} 3 и 4 & \ color {синий} {10} \\ 5 и 6 & \ color {синий} {12} \\ 4 и 5 & \ color {синий} {15} \\ \ end {массив} \ right | = -8 $$

    Решите систему линейных уравнений по правилу Крамера онлайн

    Один из способов решения системы линейных алгебраических уравнений (СЛАУ) – использование Правило Крамера .Предположим, у нас есть СЛАУ:

    a11x1a12x2a13x3b1a21x1a22x2a23x3b2a31x1a32x2a33x3b3

    Для ее решения нужно найти такие значения переменных х 1 , х 2 , х 3 которые преобразуют исходный SLAE в правильный идентификатор. Чтобы показать, как работает правило Крамера, перепишите нашу исходную СЛАУ в матричной форме:

    a11a12a13a21a22a23a31a32a33x1x2x3b1b2b3

    Первый шаг Правило Крамера , состоит в том, чтобы проверить ценность детерминант матрицы СЛАУ:

    Δa11a12a13a21a22a23a31a32a33

    Если вычисленный определитель не равен нулю, то исходная СЛАУ имеет единственное решение, которое можно найти по правилу Крамера.Если вычисленный определитель равен нулю, то исходная СЛАУ может либо не иметь решения, либо иметь бесконечный набор решений, который не может быть найден по правилу Крамера.

    Предположим, вычисленный определитель не равен нулю:

    Δ0

    то по правилу Крамера решение СЛАУ можно найти по формулам:

    xΔxΔyΔyΔzΔzΔ

    здесь, ∆ x , ∆ y а также ∆ z являются детерминантами, производными от определителя ∆ заменив соответствующий столбец на вектор свободных коэффициентов.Например, определитель ∆ x полученный от определителя ∆ заменив первый столбец на вектор свободных коэффициентов:

    Δxb1a12a13b2a22a23b3a32a33

    Используя этот метод, можно получить определители ∆ и а также ∆ z . Следует отметить, что правило Крамера применимо к СЛАУ, в которых количество уравнений равно количеству переменных.

    Наш онлайн-калькулятор решает SLAE по правилу Крамера с пошаговым решением. Коэффициенты СЛАУ могут быть не только числами дробей, но и параметрами. Чтобы использовать калькулятор, необходимо ввести СЛАУ и выбрать переменные СЛАУ для поиска.

    3×3 Решатель Системы Уравнений

    О правиле Крамера

    Этот калькулятор использует правило Крамера для решения систем трех уравнений с тремя неизвестные.Правило Крамера можно сформулировать следующим образом:

    Учитывая систему:

    $$ \ begin {выровнено} a_1x + b_1y + c_1z = d_1 \\ а_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \ end {выровнен} $$

    с

    $$ D = \ left | \ begin {array} {ccc} a_1 и b_1 и c_1 \\ a_2 и b_2 и c_2 \\ a_3 & b_3 & c_3 \\ \ end {array} \ right | \ ne 0 $$ $$ D_x = \ left | \ begin {array} {ccc} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \\ \ end {array} \ right | $$ $$ D_y = \ left | \ begin {array} {ccc} a_1 и d_1 и c_1 \\ a_2 & d_2 & c_2 \\ a_3 и d_3 и c_3 \\ \ end {array} \ right | $$ $$ D_z = \ left | \ begin {array} {ccc} a_1 и b_1 и d_1 \\ а_2 и b_2 и d_2 \\ a_3 & b_3 & d_3 \\ \ end {array} \ right | $$

    , то решение этой системы:

    $$ x = \ frac {D_x} {D} $$ $$ y = \ frac {D_y} {D} $$ $$ z = \ frac {D_z} {D} $$

    Пример: Решите систему уравнений, используя правило Крамера

    $$ \ begin {выровнено} 4x + 5y -2z = & -14 \\ 7x – ~ y + 2z = & 42 \\ 3x + ~ y + 4z = & 28 \\ \ end {выровнен} $$

    Решение: Сначала мы вычисляем $ D, ~ D_x, ~ D_y $ и $ D_z $.

    $$ \ begin {выровнено} & D ~~ = \ left | \ begin {массив} {ccc} {\ color {blue} {4}} & {\ color {red} {~ 5}} & {\ color {green} {- 2}} \\ {\ color {blue} {7}} & {\ color {red} {- 1}} & {\ color {green} {~ 2}} \\ {\ color {blue} {3}} & {\ color {red} {~ 1}} & {\ color {green} {~ 4}} \ end {array} \ right | = -16 + 30-14-6-8-140 = -154 \\ & D_x = \ left | \ begin {массив} {ccc} -14 & {\ color {red} {~ 5}} & {\ color {green} {- 2}} \\ ~ 42 & {\ color {red} {- 1}} & {\ color {green} {~ 2}} \\ ~ 28 & {\ color {red} {1}} & {\ color {green} {~ 4}} \ end {array} \ right | = 56 + 280 – 84 – 56 + 28 – 840 = -616 \\ & D_y = \ left | \ begin {массив} {ccc} {\ color {blue} {4}} & -14 & {\ color {green} {- 2}} \\ {\ color {blue} {7}} & ~ 42 & {\ color {green} {~ 2}} \\ {\ color {blue} {3}} & ~ 28 & {\ color {green} {~ 4}} \ end {array} \ right | = 672 – 84 – 392 + 252 – 224 + 392 = 616 \\ & D_Z = \ left | \ begin {array} {ccc} {\ color {blue} {4}} & {\ color {red} {~ 5}} & -14 \\ {\ color {blue} {7}} & {\ color {red} {- 1}} & ~ 42 \\ {\ color {blue} {3}} & {\ color {red} {~ 1}} & ~ 28 \ end {array} \ right | = -112 + 630 – 98 – 42 – 168 – 980 = -770 \\ \ end {выровнен} $$

    Следовательно,

    $$ \ begin {выровнено} & x = \ frac {D_x} {D} = \ frac {-616} {- 154} = 4 \\ & y = \ frac {D_y} {D} = \ frac {616} {- 154} = -4 \\ & z = \ frac {D_z} {D} = \ frac {-770} {- 154} = 5 \ end {выровнен} $$

    Примечание: Вы можете проверить решение с помощью вышеуказанного калькулятора

    Система уравнений 2×2 – Решатель, который показывает шаги

    О решении системы двух уравнений с двумя неизвестными

    Систему линейных уравнений можно решить четырьмя различными способами

    1.Способ замены

    2. Метод исключения

    3. Правило Крамера

    4. Графический метод


    1. Метод замещения

    Пример: Решите систему уравнений методом подстановки.

    $$ \ begin {выровнено} 3х + 2у = & 3 \\ -2x – ~ y = & -1 \ end {выровнен} $$

    Раствор:

    Шаг 1: Решите одно из уравнений относительно одной из переменных.Отметим, что это Проще всего решить второе уравнение относительно $ y $.

    $$ \ begin {выровнено} 3х + 2 у = & 3 \\ {\ color {красный} {- 2x + 1 =}} & {\ color {красный} {y}} \ end {выровнен} $$

    Шаг 2: ЗАМЕНИТЬ $ y $ первым уравнение.

    $$ \ begin {выровнено} 3x + 2 ({\ color {красный} {- 2x + 1}}) = & 3 \\ -2x + 1 = & y \ end {выровнен} $$

    Step3: Решите первое уравнение для $ x $.

    $$ \ begin {выровнено} {\ color {blue} {x =}} & {\ color {blue} {- 1}} \\ -2x + 1 = & y \ end {выровнен} $$

    Step4: Чтобы найти $ y $, заменить $ -1 $ на $ x $ во второе уравнение.

    $$ \ begin {выровнено} х = & -1 \\ у = & -2 \ cdot (-1) + 1 \ end {выровнен} $$

    Решение:

    $$ \ begin {выровнено} {\ color {blue} {x =}} & {\ color {blue} {- 1}} \\ {\ color {синий} {y =}} & {\ color {синий} {3}} \ end {выровнен} $$

    Вы можете проверить решение, используя указанный выше калькулятор.


    2. Метод исключения

    Примечание: Этот метод реализован в калькуляторе выше. Калькулятор следует шаги, которые объясняются в следующем примере.

    Пример: Решите систему уравнений методом исключения.

    $$ \ begin {выровнено} 3x + 2y = & -1 \\ 4x – ~ 5y = & 14 \ end {выровнен} $$

    Раствор:

    Шаг 1: Умножьте первое уравнение на 5, а второе на 2.

    $$ \ begin {выровнено} 3 \ cdot {\ color {red} {5}} \ cdot x + 2 \ cdot {\ color {red} {5}} \ cdot y = & -1 \ cdot {\ color {red} {5}} \ \ 4 \ cdot {\ color {red} {2}} \ cdot x – ~ 5 \ cdot {\ color {red} {2}} \ cdot y = & 14 \ cdot {\ color {red} {2}} \ end {выровнен} $$

    После упрощения имеем:

    $$ \ begin {выровнено} {\ color {blue} {15x + 10y}} = & {\ color {blue} {-5}} \\ {\ color {красный} {8x – 10y}} = & {\ color {красный} {28}} \ end {выровнен} $$

    Шаг 2: сложите два уравнения вместе, чтобы исключить $ y $ из системы.

    $$ \ begin {выровнено} ({\ color {blue} {15x + 10y}}) + ({\ color {red} {8x – 10y}}) = & {\ color {blue} {-5}} + {\ color {red} { 28}} \\ 15x + 10y + 8x – 10y = & 23 \\ 23x = & 23 \\ х = & 1 \ end {выровнен} $$

    Шаг 3: подставьте значение x в исходное уравнение для решения относительно y.

    $$ \ begin {выровнено} 3x + 2y = & -1 \\ 3 \ cdot1 + 2y = & -1 \\ 3 + 2у = & -1 \\ 2у = & -4 \\ у = & -2 \ end {выровнен} $$

    Решение:

    $$ \ begin {выровнено} {\ color {синий} {x =}} & {\ color {синий} {1}} \\ {\ color {blue} {y =}} & {\ color {blue} {-2}} \ end {выровнен} $$

    Проверьте решение с помощью указанного выше калькулятора.


    3. Правило Крамера

    Учитывая систему:

    $$ \ begin {выровнено} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \ end {выровнен} $$

    с

    $$ D = \ left | \ begin {array} {cc} a_1 и b_1 \\ a_2 и b_2 \ end {array} \ right | \ ne 0 $$ $$ D_x = \ left | \ begin {array} {cc} c_1 и b_1 \\ c_2 и b_2 \ end {array} \ right | $$ $$ D_y = \ left | \ begin {array} {cc} a_1 и c_1 \\ a_2 и c_2 \ end {array} \ right | $$

    , то решение этой системы:

    $$ x = \ frac {D_x} {D} $$ $$ y = \ frac {D_y} {D} $$

    Пример: Решите систему уравнений, используя правило Крамера

    $$ \ begin {выровнено} {\ color {blue} {3}} x + {\ color {red} {12}} y = & -4 \\ {\ color {blue} {7}} x {\ color {red} {- ~ 8}} y = & 3 \ end {выровнен} $$

    Решение: Сначала мы вычисляем $ D, ~ D_x $ и $ D_y $.

    $$ \ begin {выровнено} & D ~~ = \ left | \ begin {array} {cc} {\ color {blue} {3}} & {\ color {red} {~ 12}} \\ {\ color {blue} {7}} & {\ color {red} {- 8}} \ end {array} \ right | = {\ color {blue} {3}} \ cdot {\ color {red} {(- 8)}} – {\ color {blue} {7}} \ cdot {\ color {red} {12}} = -24 – 84 = -108 \\ & D_x = \ left | \ begin {array} {cc} -4 & {\ color {красный} {~ 12}} \\ ~ 3 & {\ color {красный} {- 8}} \ end {array} \ right | = -4 \ cdot {\ color {red} {(- 8)}} – 3 \ cdot {\ color {red} {12}} = 32 – 36 = -4 \\ & D_y = \ left | \ begin {array} {cc} {\ color {синий} {3}} & -4 \\ {\ color {blue} {7}} & ~ 3 \ end {array} \ right | = {\ color {blue} {3}} \ cdot3 – {\ color {blue} {7}} \ cdot (-4) = 9 + 28 = 37 \\ \ end {выровнен} $$

    Следовательно,

    $$ \ begin {выровнено} & {\ color {синий} {x = \ frac {D_x} {D} = \ frac {-4} {- 108} = \ frac {1} {27}}} \\ & {\ color {синий} {y = \ frac {D_y} {D} = \ frac {37} {- 108} = – \ frac {37} {108}}} \ end {выровнен} $$

    Калькулятор правила Крамерса

    Формула правила Крамера

    x = D x / D

    y = D y / D

    z = D z / D

    Где,

    D x, D y, и D z являются определителем матрицы x, y, и z соответственно, и

    D является определителем основной матрицы.

    Калькулятор правил Крамера эффективно решает одновременные линейные уравнения и мгновенно находит значения переменных в уравнении. Он также применяет правило Крамера для матриц 2×2 , 3×3, и 4×4 .

    Если вы знаете, как использовать правило Крамера в системе 2×2, и ищете реализацию правила Крамера в системах 3×3 или 4×4, продолжайте читать следующие разделы.

    Что такое правило Крамера?

    Правило Крамера – это метод оценки значения заданных неизвестных переменных в линейных уравнениях.Он был предложен Габриэлем Крамером в 1750 году. Используя это правило, можно легко решать совместные линейные уравнения.

    Как решить линейные уравнения с помощью правила Крамера?

    Чтобы решить совместные линейные уравнения с помощью правила Крамера, выполните следующие действия.

    Пример:

    Решите приведенные ниже уравнения для x, y, и z.

    2x + 3y + 5z = 10

    5x + 3y + 2z = 12

    x + 5y + 0z = 8 9000 Solution6 69

    Шаг 1: Используя коэффициенты, переменные и константы, создайте матрицу, как показано ниже.

    Шаг 2: Найдите определитель главной матрицы. Предположим, что основная матрица равна D.

    = 2 [(3 × 0) – (2 × 5)] – 3 [(5 × 0) – (2 × 1 )] + 5 [(5 × 5) – (3 × 1)]

    = 2 (0-10) – 3 (0-2) + 5 (25-3)

    = -20 + 6 + 110

    | D | = 96

    Шаг 3: Построение матриц x, y, и z путем замены x, y, и z столбцов D по постоянной матрице соответственно.

    Шаг 4: Возьмите определитель всех трех новых матриц x, y, и z .

    D x = 10 [(3 × 0) – (2 × 5)] – 3 [(12 × 0) – (2 × 8)] + 5 [(12 × 5) – (3 × 8)]

    D x = -100 + 48 + 180

    D x = 128

    D y 902 = 2 [(12 × 0) – (2 × 8)] – 10 [(5 × 0) – (2 × 1)] + 5 [(5 × 8) – (12 × 1)]

    D y = -32 + 20 + 140

    D y = 128

    D z = 2 [(3 × 8) – (12 × 5)] – 3 [(5 × 8) – (12 × 1)] + 10 [(5 × 5) – (3 × 1)]

    D z = -72 – 84 + 220

    D z = 64

    Шаг 4: Примените правила Крамера и разместите значения.

    x = D x / D = 128/96

    x = 1,33

    y = D y / D = 128/96

    = 1,33

    z = D z / D = 64/96

    z = 0,67

    Итак, мы получили x = 1,33, y = 1,33, и z = 0,67 после применения правила Крамера к данному уравнению 3×3 .

    Правило Крамера

    Cramer’s Правило


    Дана система линейных уравнения, правило Крамера – удобный способ решить только одну из переменных без необходимости решать всю систему уравнений. Они обычно не учить правилу Крамера таким образом, но это должно быть суть Правило: вместо решения всей системы уравнений можно использовать Крамеру нужно решить только одну-единственную переменную.

    Давайте использовать следующие система уравнений:

    У нас левая часть системы с переменными («матрица коэффициентов») и правая часть со значениями ответов. Позволять D – определитель матрицы коэффициентов указанной выше системы, и пусть D x быть определителем, образованным заменой столбца x значения со значениями столбца ответа:

    система из
    уравнений

    коэффициент
    определитель матрицы

    ответ
    столбец

    D x : детерминант коэффициента
    со столбцом ответа
    значений в
    x столбец

    2 х + 1 y + 1 z = 3
    1 х 1 y 1 z = 0
    1 x + 2 y + 1 z = 0

    Аналогично, D y и D z тогда будет: Авторское право Элизабет Стапель 2004-2011 Все права защищены

    Оценка каждого детерминанта (с использованием метода, описанного здесь), получаем:

    Правило Крамера гласит, что x = D x D , y = D y D , и z = D z D .То есть:

      х = 3 / 3 = 1, y = 6 / 3 = 2 , и z = 9 / 3 = 3

    Вот и все, что нужно для Cramer’s Правило.Чтобы найти любую желаемую переменную (назовите ее “” или “бета”), просто оцените определяющее частное D Д . (Пожалуйста не просите меня объяснять, почему это работает. Просто поверьте мне, что детерминанты может творить много видов магии.)

    • Учитывая следующее Система уравнений, найдите значение z .
    • Решить только для z , Сначала я нахожу определитель коэффициента.

      Затем формирую D z заменив третий столбец значений столбцом ответов:


      Затем я составляю частное и упростить:

    Смысл правила Крамера в том, что вам не нужно решать всю систему, чтобы получить одно значение тебе нужно.Это сэкономило мне много времени на некоторых тестах по физике. я забыть, над чем мы работали (я думаю, что-то с проводами и токами), но правило Крамера было намного быстрее, чем любой другой метод решения (и Видит Бог, мне нужно было дополнительное время). Не позволяйте всем нижним индексам и прочему запутать вас; Правило действительно довольно простое. Вы просто выбираете переменную вы хотите найти, замените столбец значений этой переменной в определитель коэффициента со значениями столбца ответа, оцените, что определитель и разделите на определитель коэффициента.Это все там к нему.

    Почти.

    Что делать, если определитель коэффициента ноль? Нельзя делить на ноль, что это значит? Я не могу пойти в технические детали здесь, но “ D = 0 “означает, что система уравнений не имеет единственного решения. Система может быть несовместимой (решение отсутствует вообще) или зависимое (бесконечное решение, которое может быть выражается как параметрическое решение, например “( a , a + 3, a 4) “).С точки зрения правила Крамера: “ D = 0 “означает, что вам придется использовать другой метод (например, матрицу строковые операции) в решить систему. Если D = 0, вы не можете использовать Cramer’s Правило.

    Верх | Вернуться к индексу

    Цитируйте эту статью как:

    Стапель, Елизавета.«Правило Крамера». Purplemath . Доступна с
    https://www.purplemath.com/modules/cramers.htm . Доступ [Дата] [Месяц] 2016 г.

    Правило Крамера с двумя переменными

    Правило Крамера – еще один метод, позволяющий решать системы линейных уравнений с использованием определителей.

    В терминах обозначений матрица представляет собой массив чисел, заключенный в квадратные скобки, а определитель представляет собой массив чисел, заключенный в две вертикальные полосы.

    Обозначения

    Формула для определения определителя матрицы 2 x 2 очень проста.

    Давайте быстро рассмотрим:


    Определитель матрицы 2 x 2

    Быстрые примеры того, как найти детерминанты матрицы 2 x 2

    Пример 1 : Найдите определитель матрицы A ниже.


    Пример 2 : Найдите определитель матрицы B ниже.


    Пример 3 : Найдите определитель матрицы C ниже.

    Зная, как найти определитель матрицы 2 x 2, теперь вы готовы изучить процедуры или шаги по использованию правила Крамера. Вот так!


    Правила Крамера для систем линейных уравнений с двумя переменными

    • Присвойте имена каждой матрице

    матрица коэффициентов:

    X – матрица:

    Y – матрица:

    От

    до найдите переменную x.

    От

    до найдите переменную y.

    Несколько моментов, которые следует учитывать при рассмотрении формулы:

    1) Столбцы \ large {x}, \ large {y} и постоянные члены \ large {c} получаются следующим образом:

    2) Оба знаменателя при решении \ large {x} и \ large {y} совпадают. Они происходят из столбцов \ large {x} и \ large {y}.

    3) Глядя на числитель при решении для \ large {x}, коэффициенты столбца \ large {x} заменяются постоянным столбцом (красным).

    4) Таким же образом, чтобы найти \ large {y}, коэффициенты \ large {y} -столбца заменяются постоянным столбцом (красным).


    Примеры решения систем линейных уравнений с двумя переменными с использованием правила Крамера

    Пример 1 : Решите систему с двумя переменными по правилу Крамера

    Начните с извлечения трех соответствующих матриц: коэффициентов, \ large {x} и \ large {y}. Затем решите каждый соответствующий определитель.

    После того, как все три детерминанты рассчитаны, пора найти значения \ large {x} и \ large {y}, используя приведенную выше формулу.

    Я могу записать окончательный ответ как \ large {\ left ({x, y} \ right) = \ left ({2, – 1} \ right)}.


    Пример 2 : Решите систему с двумя переменными по правилу Крамера

    Задайте свои коэффициенты, матрицы \ large {x} и \ large {y} из данной системы линейных уравнений. Затем рассчитайте их детерминанты соответствующим образом.

    Помните, что мы всегда вычитаем произведений диагональных записей.

    • Для матрицы коэффициентов (используйте коэффициенты обеих переменных x и y )
    • Для X – матрица (заменить столбец x на столбец констант)
    • Для Y – матрица (заменить y-столбец на постоянный)

    Надеюсь, вам удобно вычислять определитель двумерной матрицы.Чтобы окончательно решить требуемые переменные, я получаю следующие результаты…

    Записав окончательный ответ в точечной нотации, я получил \ large {\ left ({x, y} \ right) = \ left ({6, – 5} \ right)}.


    Пример 3 : Решите систему с двумя переменными по правилу Крамера

    На самом деле эту проблему можно довольно легко решить методом исключения. Это связано с тем, что коэффициенты переменной x являются «одинаковыми», но только противоположными по знакам (+1 и -1). Чтобы решить эту проблему с помощью метода исключения, вы добавляете соответствующие столбцы, и переменная x исчезает, оставляя вам одношаговое уравнение в \ large {y}.Я говорю об этом, потому что у каждой техники есть недостатки, и лучше выбрать наиболее эффективную. Всегда уточняйте у своего учителя, можно ли использовать другой подход, если метод не указан для данной проблемы.

    В любом случае, поскольку мы учимся решать по правилу Крамера, давайте продолжим и разберемся с этим методом.

    Я построю три матрицы (коэффициент, \ large {x} и \ large {y}) и оценю их соответствующие детерминанты.

    • Для X – матрица (прописная D с нижним индексом x)
    • Для Y – матрица (прописная D с индексом y)

    После получения значений трех требуемых определителей я вычислю \ large {x} и \ large {y} следующим образом.

    Окончательный ответ в виде баллов: \ large {\ left ({x, y} \ right) = \ left ({- 1,2} \ right)}.


    Пример 4 : Решить по правилу Крамера систему с двумя переменными

    Поскольку мы уже рассмотрели несколько примеров, я предлагаю вам попробовать решить эту проблему самостоятельно. Затем сравните свои ответы с решением ниже.

    Если вы поймете все правильно с первого раза, это означает, что вы становитесь «профи» в отношении правила Крамера. Если вы этого не сделали, попытайтесь выяснить, что пошло не так, и научитесь не совершать ту же ошибку в следующий раз.Так вы станете лучше разбираться в математике. Изучите множество проблем и, что более важно, много практикуйтесь самостоятельно.

    Вы должны получить ответ ниже…


    Пример 5 : Решите систему с двумя переменными по правилу Крамера

    В нашем последнем примере я включил ноль в столбец констант. Каждый раз, когда вы видите число ноль в столбце констант, я настоятельно рекомендую использовать правило Крамера для решения системы линейных уравнений.Почему? Потому что вычисление определителей для матриц \ large {x} и \ large {y} значительно упрощается. Убедитесь сами!

    Окончательное решение этой проблемы –


    Практика с рабочими листами

    Возможно, вас заинтересует:

    Правило Крамера 3 × 3

    .

    Оставить комментарий