Решение методом гаусса примеры: Решение систем линейных уравнений методом Гаусса

Содержание

2.3.6. Примеры решения задач по теме «Системы уравнений общего вида. Метод Гаусса»

Задача 1.

Указать базисный минор матрицы

Указание

Определите вначале ранг матрицы А, а затем найдите ненулевой минор, порядок которого равен R(A).

Решение

Определим R(A). Вторая и четвертая строки А равны, поэтому после вычитания из 4-й строки 2-й получаем:

Вычислим минор полученной матрицы, составленный из первых трех столбцов:

Таким образом, найден минор максимально возможного (3-го) порядка, не равный нулю. Следовательно, ранг матрицы А равен рангу преобразованной матрицы, то есть равен 3, а рассмотренный минор является базисным.

Ответ:

Задача 2.

Определить количество решений системы линейных уравнений

.

Указание

Сравните ранги матрицы системы и расширенной матрицы.

Решение

Сравним ранги матрицы системы

И расширенной матрицы

.

Для удобства вычислений будем искать ранг матрицы А

1, отделив ее последний столбец вертикальной чертой. Тогда столбцы, стоящие слева от черты, образуют матрицу А, и мы одновременно найдем ранги обеих матриц.

А1 ~ .

Вычтем из второй строки удвоенную первую, а из третьей – первую, умноженную на 3:

А1 ~ ~ .

Таким образом, R(A) = 2, a R(A1) = 3, следовательно, система не имеет решений.

Ответ: система несовместна.

Задача 3.

Найти общее решение линейной системы

.

Указание

Убедившись в том, что система совместна, определите базисные и свободные неизвестные и выразите базисные неизвестные через свободные.

Решение

Найдем R(A) и R(A1):

Итак, R = R(A) = R(A1) = 2, а число неизвестных П = 5. Следовательно,

R < N, и система имеет бесконечно много решений (совместна, но не определена).

Число базисных неизвестных равно R, то есть двум. Выберем в качестве базисных неизвестных Х1 и Х2, коэффициенты при которых входят в базисный минор преобразованной матрицы А: .

Соответственно Х3, Х4, Х5 – свободные неизвестные.

Запишем систему, равносильную исходной, коэффициентами в которой являются элементы полученной матрицы:

И выразим базисные неизвестные через свободные:

.

Получено общее решение системы. Одно из частных решений можно найти, положив все свободные неизвестные равными нулю: Х3 = Х4 = Х5 = 0. Тогда

Ответ:

Задача 4.

Найти общее решение системы, выразив в ответе первые неизвестные через последние:

Указание

Приведите расширенную матрицу к виду

Решение

Минор, состоящий из первых трех столбцов полученной матрицы,

Поэтому R(A) = R(A1) = 3, выбранный минор является базисным, а Х1, Х2, Х3, коэффициенты при которых составляют базисный минор, – базисными неизвестными. Тогда свободное неизвестное – Х4, и система, равносильная исходной, имеет вид:

Откуда

Ответ:

Задача 5.

Найти фундаментальную систему решений однородной линейной системы

Указание

Количество решений, образующих фундаментальную систему, равно числу

Свободных неизвестных. Задайте свободным неизвестным значения 1,0,0; 0,1,0; 0,0,1 и вычислите соответствующие значения базисных неизвестных.

Решение

Количество решений, образующих фундаментальную систему, равно числу

Свободных неизвестных.

Матрица А1 отличается от матрицы А только добавлением нулевого столбца свободных членов, поэтому все ее ненулевые миноры являются минорами матрицы А, то есть R(A) = R(A1). Найдем R(A):

Выберем в качестве базисного минора

Значит, R(A) = 2. Пусть Х4, Х5 – базисные неизвестные, Х1, Х2, Х3 – свободные неизвестные. Запишем для них новую систему:

Откуда

Фундаментальная система решений состоит из трех столбцов. Рассмотрим три набора значений свободных неизвестных:

1) Х1 = 1, Х2 = Х3 = 0.

Тогда Х4 = -0,2, Х5 = 1,2, и решение можно записать в виде столбца

2) Х1 = 0, Х2 = 1, Х3 = 0.

При этом Х4 = 1,2, Х5 = 3,8, и следующее решение системы имеет вид

3) Х1 = Х2 = 0, Х3 = 1. Отсюда Х4 = -0,8, Х5 = -0,2, и последний столбец

Фундаментальная система решений, построенная при таком выборе свободных неизвестных, называется Нормальной. Поскольку столбцы свободных неизвестных , , линейно независимы, это гарантирует линейную независимость решений Х1, Х2, Х3.

Итак, в качестве фундаментальной системы решений можно выбрать

При этом любое решение данной системы имеет вид: Х = с1Х1 +

С2Х2 + С3Х3, где С1, С2, С3 – произвольные постоянные. Эта формула задает общее решение системы.

Ответ:

Задача 6.

Составить однородную систему из двух уравнений, для которой столбцы

Образуют фундаментальную систему решений.

Указание

Пусть искомая система имеет вид:

Подставьте вместо Х1, …, Х5 элементы столбцов Х1, Х2, Х3 и решите полученную систему уравнений для коэффициентов Aij.

Решение

Существует бесконечно много систем однородных линейных уравнений, для каждой из которых фундаментальная система решений имеет указанный вид. Число уравнений в таких системах может быть различным. При этом можно указать их наименьшее требуемое количество, а увеличивать их число можно неограниченно.

Определим вначале, из какого наименьшего числа уравнений может состоять такая система.

Число элементов каждого столбца равно пяти, следовательно, в системе пять неизвестных (П = 5). Количество столбцов, составляющих фундаментальную систему, равно трем, то есть N R = 3, поэтому R = 5 – 3 = 2. Значит, матрица А должна иметь по крайней мере 2 строки. Следовательно, система уравнений с заданной фундаментальной системой решений может состоять из двух и более уравнений.

Пусть искомая система имеет вид:

Подставим вместо Х1, …, Х5 элементы столбцов Х1, Х2, Х3. Получим:

Разобьем полученные 6 уравнений на две системы, одна из которых содержит A1I, а вторая – A2I:

Найдем какое-либо частное решение этой системы. Приведем ее матрицу к треугольному виду:

Откуда

Следовательно,

Выберем А14 = А15 = 4, тогда А11 = 0, А12 = 8, А13 = -4.

2) Так же выглядит общее решение системы для A2I:

Выберем свободные неизвестные так, чтобы получить решение, линейно независимое с предыдущим.

Пусть А24 = 4, А25 = 0, тогда А21 = 5, А22 = 5, А23 = -3.

Итак, используя найденные значения коэффициентов, можно составить линейную однородную систему:

Фундаментальная система решений которой имеет вид, приведенный в условии задачи.

Ответ:

Задача 7.

Найти общее решение неоднородной линейной системы

С помощью фундаментальной системы решений соответствующей однородной системы.

Указание

Убедитесь в том, что система совместна. Затем составьте соответствующую однородную систему и найдите для нее фундаментальную систему решений. Далее используйте то, что общее решение неоднородной системы линейных уравнений является суммой общего решения соответствующей однородной системы и частного решения неоднородной системы.

Решение

Убедимся в том, что система совместна:

Итак, R(A) = R(A1) = 2 – система совместна.

Составим по преобразованной матрице однородную систему:

И найдем для нее фундаментальную систему решений:

Фундаментальная система решений может быть выбрана так:

Общее решение неоднородной системы линейных уравнений является суммой общего решения соответствующей однородной системы и частного решения неоднородной системы.

Теперь найдем какое-нибудь частное решение неоднородной системы

Положим Х3 = Х4 = Х5 = 0, тогда . Следовательно,

и общее решение системы имеет вид:

Х = с1Х1 + С2Х2 + С3Х3 + Хчастн, где С1, С2, С3 – произвольные постоянные.

Ответ:

Задача 8.

Решить систему методом Гаусса:

.

Указание

Поменяйте местами 1-е и 2-е уравнения, чтобы в первом уравнении коэффициент при Х равнялся единице, а затем исключите Х из второго и третьего уравнений.

Решение

Метод Гаусса заключается в последовательном исключении неизвестных из уравнений системы. Для удобства его применения поменяем местами 1-е и

2-е уравнения, чтобы в первом уравнении коэффициент при Х равнялся единице:

Теперь исключим Х из второго и третьего уравнений. Для этого вычтем из второго уравнения первое, умноженное на 3, а из третьего – первое, умноженное на 2:

Далее можно легко исключить Z из третьего уравнения, если прибавить к нему второе:

Из последнего уравнения получаем, что У = 0. Подставляя это значение в первое и второе уравнения, находим остальные неизвестные: Z = 3, Х = 1.

Ответ: Х = 1, У = 0, Z = 3.

При применении метода Гаусса совсем не обязательно приводить систему к «классическому» треугольному виду:

.

Достаточно, чтобы матрица коэффициентов, например, системы трех уравнений с тремя неизвестными содержала два нуля в одном столбце и одновременно два нуля в одной строке, причем один из нулей стоял на пересечении этих строки и столбца.

Задача 9.

Решить систему методом Гаусса:

Указание

Исключите Х2 из 2-го и 4-го уравнений, используя 1-е уравнение, а затем вычтите из 3-го уравнения 2-е, чтобы исключить Х3.

Решение

Исключим Х2 из 2-го и 4-го уравнений. Для этого из 2-го уравнения вычтем 1-е, а к 4-му прибавим 1-е, умноженное на 2:

Вычтем из 3-го уравнения 2-е, чтобы исключить Х3:

Теперь вычтем из 4-го уравнения удвоенное 3-е:

Из последнего уравнения находим . Тогда из 3-го уравнения Х1 = 0, из 2-го , из 1-го Х2 = 2.

Ответ:

< Предыдущая   Следующая >

Системы линейных уравнений (Лекция №14)

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и EX = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

Примеры. Решить системы уравнений.

  1. Найдем матрицу обратную матрице A.

    ,

    Таким образом, x = 3, y = – 1.

  2. Итак, х1=4,х2=3,х3=5.

  3. Решите матричное уравнение: XA+B=C, где

    Выразим искомую матрицу X из заданного уравнения.

    Найдем матрицу А-1.

    Проверка:

  4. Решите матричное уравнение AX+B=C, где

    Из уравнения получаем .

    Следовательно,

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

  1. Итак, х=1, у=2, z=3.

  2. Решите систему уравнений при различных значениях параметра p:

    Система имеет единственное решение, если Δ ≠ 0.

    . Поэтому .

    1. При
    2. При p = 30 получаем систему уравнений которая не имеет решений.
    3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y, yÎR.

МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

  1. Вернувшись к системе уравнений, будем иметь

  2. Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

    Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

  3. Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

    Вернемся к системе уравнений.

    Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

Практическая работа метод Гаусса

Группа: Тв-21, Тв-22

УД: Математика

ФИО преподавателя: Никонова Н. С.

Дата проведения занятия (занятий): 22 апреля 2020

Дата выполнения задания: 22 апреля 2020

Вид занятия – Практическая работа – 2 часа

Тема занятия: «Решение систем линейных уравнений третьего порядка методом Гаусса»

Цели работы:

–     расширить представление о методах решения СЛУ и отработать алгоритм решения СЛУ методом Гаусса;

–      развивать логическое мышление студентов, умение находить рациональное решение задачи;

–     воспитывать у студентов культуру письменной математической речи при оформлении ими своего решения.

 

Задание:

1.      Ознакомиться с теоретическим материалом и оформить краткий конспект теории и разобранных примеров в тетради

2.      Выполнить самостоятельную работу

 

Форма отчета:

1.      Отчет оформить в текстовом документе (Word): в документ вставить фотоотчет из тетради по плану:

a.       Тема занятия

b.      Цель

 

2.      Отчет отправить не позднее 22 апреля по ссылке https://vk.com/topic-193207144_40540306 .

 

Основной теоретический материал.

 

Метод Гаусса, называемый также методом последовательного исключения неизвестных, состоит в том, что при помощи элементарных преобразований систему линейных уравнений приводят к такому виду, чтобы её матрица из коэффициентов оказалась трапециевидной или близкой к трапециевидной (см. рисунок).

 

Рассмотрим алгоритм решения методом Гаусса на конкретном примере.

Решить систему линейных уравнений 

 

Применим прямой ход – получим нули под главной диагональю. Для этого:

 

Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду.

Вначале поменяем первую и вторую строку,

 

 

 

 

Выполним преобразования, благодаря которым получим нули под главной диагональю в первом столбце.

Для этого от второй строки отнимаем две первых, от третьей – три первых:

 

 

Т.е. каждый элемент первой строки мы умножаем на 2 и вычитаем из соответствующих элементов второй строки

 

    

 

Каждый элемент первой строки умножаем на 3 и вычитаем из соответствующих элементов третьей строки

 

         , таким образом получили новую матрицу.

 

Все элементы третьей строки делим на два      

Выполним преобразования, благодаря которым получим нули во втором столбце под главной диагональю.

Для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

 

 

 

От третьей строки отнимаем вторую, умноженную на 3:

 

 получаем новый вид  А 

 

Разделим третью строку на (-2), получаем:

 

Проведем теперь обратный ход, то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца.

Надо обнулить элемент , для этого от второй строки отнимем третью:

 

  получаем   

 

Далее обнуляем недиагональные элементы второго столбца а12, к первой строке прибавляем

 

вторую:     получаем   приведем к

 

неизвестным таким образом, полученной матрице соответствует система

 

             отсюда следует                         Ответ: (0,2,0)

 

 

Задания для самостоятельного решения:

 

ВАРИАНТ 1

 

Решите системы линейных уравнений методом Гаусса:

 

А)   

 

Критерии оценивания:

 

«3», если: записано решение примера и выполнена проверка решения системы;

самостоятельно методом Гаусса верно решена одна из систем.

 «4», если: самостоятельно методом Гаусса верно решены любые две системы.

«5», если: самостоятельно методом Гаусса верно решены три системы.


 

Скачано с www.znanio.ru

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

Тема: Системы линейных уравнений

Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Аналитическая геометрия. Лекция 1.3

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

0.5 setgray0 0.5 setgray1

5 setgray 5 setgray Лекция 5 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ Ранг матрицы Рассмотрим матрицу A K m следующего общего вида: a a a A a 2 a 2 2 a 2 A = = A A 2,A 2,,A =, a m a2 m a m A m где a a a 2 A =,,A a 2

Подробнее

ТИПОВЫЕ ЗАДАНИЯ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Б.Г. Бочков Н.В. Воробьева Е.Ф. Шестакова ТИПОВЫЕ ЗАДАНИЯ ПО ВЫСШЕЙ МАТЕМАТИКЕ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное

Подробнее

Теорема Кронекера-Капелли

Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Теория систем линейных уравнений

Глава Теория систем линейных уравнений Ранг матрицы Пусть A F m n Рассмотрим столбцы a,,a n матрицы A = (a,,a n ) как векторы пространства F m, а строки ã,,ã m как векторы пространства F n Базу (соответственно

Подробнее

Контрольная по алгебре с решением

Контрольная по алгебре с решением Линейная алгебра 1-10 Каждый вариант этого раздела содержит четыре пункта, задания к которым соответствуют номеру пункта 1 Вычислить определитель 4-го порядка двумя способами:

Подробнее

МАТРИЦЫ И ОТОБРАЖЕНИЯ

ЛЕКЦИЯ 7 РАНГ МАТРИЦЫ КРИТЕРИЙ СОВМЕСТНОСТИ МАТРИЦЫ И ОТОБРАЖЕНИЯ 1 РАНГ МАТРИЦЫ В векторном пространстве R m столбцов высоты m рассмотрим n векторов A (j) = [a 1j, a 2j,…, a mj ], j = 1, 2,…, n, и

Подробнее

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Как изменится произведение B матриц и B если: а переставить -ю и j -ю строки матрицы? б переставить -й и j -й столбцы матрицы B? в к -й строке матрицы прибавить ее j -ю строку

Подробнее

Семинар 7. Линейная алгебра

1 Семинар 7. Линейная алгебра Теоретические вопросы для самостоятельного изучения: 1. Определители и их свойства. 2. Матрица. Виды матриц. 3. Действия над матрицами 4. Обратная матрица. Решение матричных

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Практикум по линейной алгебре

Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

Тема 1-5: Системы линейных уравнений

Тема 1-5: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,…, n в строчку одно за другим.

ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

Глава 2. Системы линейных равнений

Глава истемы линейных равнений Метод Гаусса решения систем линейных алгебраических уравнений истема m линейных алгебраических уравнений (ЛАУ) с неизвестными имеет вид a a a b a a a b () am am am bm Здесь

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

-й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

0.5 setgray0 0.5 setgray1

5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч45 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Подробнее

1. Линейная алгебра. a21x1 a12 x2 a13 x3 b2

1. Линейная алгебра 1.1. В 1 представлены задачи на решение линейных алгебраических крамеровских систем с определителем, отличным от нуля, вычисление определителей и действий с матрицами. Линейные алгебраические

Подробнее

ТРАНСПОНИРОВАНИЕ МАТРИЦ

матрица Для любой матрицы ТРАНСПОНИРОВАНИЕ МАТРИЦ a a an a a an am am amn a a am a a am, an an amn получающаяся из матрицы заменой строк соответствующими столбцами, а столбцов соответствующими строками,

Подробнее

Исключение Гаусса-Иордана | Задачи по математике

Исключение Гаусса-Иордана

Определение

Рассмотрим систему линейных уравнений $ m \ times n $:
\ begin {align *}
a_ {1 1} x_1 + a_ {1 2} x_2 + \ cdots + a_ {1 n} x_n & = b_1 \\
a_ {2 1} x_1 + a_ {2 2} x_2 + \ cdots + a_ {2 n} x_n & = b_2 \\
a_ {3 1} x_1 + a_ {3 2} x_2 + \ cdots + a_ {3 n} x_n & = b_3 \\
& \ vdots \\
a_ {m 1} x_1 + a_ {m 2} x_2 + \ cdots + a_ {mn} x_n & = b_m \\
\ end {align *}

  1. Матрица коэффициентов системы:
    \ [\ begin {bmatrix}
    a_ {1 1} & a_ {1 2} & \ cdots & a_ {1 n} \\
    a_ {2 1} & a_ {2 2} & \ cdots & a_ {2 n} \\
    \ vdots & \ vdots & \ ddots & \ vdots \\
    a_ {m 1} & a_ {m 2} & \ cdots & a_ {mn}
    \ end {bmatrix} \]
  2. Расширенная матрица системы:
    \ [\ left [\ begin {array} {rrrr | r}
    a_ {1 1} & a_ {1 2} & \ cdots & a_ {1 n} & b_1 \ \
    a_ {2 1} & a_ {2 2} & \ cdots & a_ {2 n} & b_2 \\
    \ vdots & \ vdots & \ ddots & \ vdots & \ vdots \\
    a_ {m 1} & a_ {m 2} & \ cdots & a_ {mn} & b_m
    \ end {array} \ right] \]
  3. [Исключение Гаусса-Джордана] Для данной системы линейных уравнений мы можем найти решение следующим образом.
    Эта процедура называется исключением Гаусса-Джордана .
    1. Запишите расширенную матрицу системы линейных уравнений.
    2. Используйте элементарные операции со строками, чтобы преобразовать расширенную матрицу в (сокращенную) форму эшелона строк.
    3. Запишите систему линейных уравнений, соответствующую матрице в виде ряда строк.
    4. Решите систему, используя обратную замену.