Решение систем линейных уравнений методом гаусса примеры: Решение систем линейных уравнений методом Гаусса

Содержание

Метода Гаусса: примеры решения СЛАУ: понятия, определения, примеры задач

Найти решение этого же примера методом Гаусса в матричной форме записи:

3×1+2×2+x3+x4=-2×1-x2+4×3-x4=-1-2×1-2×2-3×3+x4=9×1+5×2-x3+2×4=4

Как решать?

Расширенная матрица системы представлена в виде:

   x1    x2     x3 x432111-14-1-2-2-3115-12-2-194

Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на -a21a11=-13, -a31a11=–23=23 и на -а41а11=-13.

Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной  . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на -а32(1)а22(1)=-23-53=-25 и -а42(1)а22(1)=-133-53=135:

   x1    x2     x3 x43211|-20-53113-43|-130-23-7353|2330133-4353|143~

      x1                 x2                           x3                           x4~3211|-20-53113-43|-130-23+(-25)(-53)-73+(-25)11353+(-25)(-43)|233+(-25)(-13)0133+135(-53)-43+135×11353+135(-43)|143+135(-13)~

       x1    x2     x3       x4~3211|-20-53113-43|-1300-195115|39500415-95|195

Теперь исключаем переменную x3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а43(2)а33(2)=-415-195=4119.

       x1    x2     x3       x43211|-20-53113-43|-1300-195115|39500415-95|195~

      x1    x2               x3                           x4~3211|-20-53113-43|-1300-195115|39500415+4119(-195)-95+4119×115|195+4119×395~

       x1    x2     x3       x4~3211|-20-53113-43|-1300-195115|3950005619|39219

Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

   x1    x2     x3       x43211|-20-53113-43|-1300-195115|3950005619|39219

стала диагональной, т.е. приняла следующий вид:

   x1    x2     x3       x43000|а10-5300|а200-1950|а30005619|39219, где а1, а2, а3 – некоторые числа.

Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

-1155619=-209280, на –435619=1942 и на -15619=1956.

   x1    x2     x3       x43211|-20-53113-43|-1300-195115|3950005619|39219~

      x1    x2      x3                   x4~3211+(-1956)5619|-2+(-1956)392190-53113-43+1942×5619|-13+1942×3921900-195115+(-209280)5619|395+(-209280)392190005619|39219~

       x1    x2     x3       x4~3210|-90-531130|900-1950|-3850005619|39219

Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на

-113-195=5557 и на -1-195=519.

 x1    x2     x3       x43210|-90-531130|900-1950|-3850005619|39219~

      x1    x2             x3                   x4~321+519(-195)0|-9+519(-385)0-53113+5557(-195)0|9+5557(-385)00-1950|-3850005619|39219~

       x1    x2     x3       x4~3210|-110-5300|5300-1950|-3850005619|39219

На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на -2-53=65.

 x1    x2     x3       x43210|-110-5300|5300-1950|-3850005619|39219~

      x1           x2            x3      x4~32+65(-53)00|-11+65×53)0-5300|5300-1950|-3850005619|39219~

       x1    x2     x3       x4~3000|-90-5300|5300-1950|-3850005619|39219

Полученная матрица соответствует системе уравнений

3×1=-9-53×2=53-195×3=-3855619×4=39219, откуда находим неизвестные переменные.

Ответ: x1=-3, x2=-1,x3=2,x4=7.​​​

Системы линейных уравнений. Метод Гаусса

Рассмотрим систему линейных уравнений:

   

С этой системой связываются две матрицы: матрица коэффициентов

   

и расширенная матрица — с присоединенными свободными членами:

   

Элементарными преобразованиями системы линейных уравнений называются:

1. умножение уравнения на отличное от нуля число;

2. прибавление к одному уравнению любого другого, умноженного на любое число;

3. перестановка уравнений местами.

Теорема. Любая система линейных уравнений с помощью элементарных преобразований и, может быть, изменением нумерации неизвестных, может быть приведена к системе с трапециевидной матрицей.

Доказательство. Проводим элементарные преобразования только над строками матрицы , как в доказательстве теоремы о ранге матрицы. Возможно, при этом придется изменить нумерацию неизвестных. Приводим систему уравнений к виду

   

Если хотя бы одно из чисел отлично от нуля, то данная система уравнений решений не имеет (несовместна). Если же все они равны нулю, то последние равенств не несут никакой информации и могут быть отброшены. Тогда, если , то неизвестным можно придавать произвольные значения, а неизвестные находим из решения системы с треугольной матрицей

   

Эту систему удобно решать, определив из -го уравнения , затем из -го и т.д. Таким образом, можно выразить переменные через и получить общее решение системы. Если , то система (в случае совместности) имеет единственное решение.

Преобразование системы уравнений к системе с трапециевидной матрицей называется прямым ходом метода Гаусса. Последовательное вычисление неизвестных в порядке называется обратным ходом

.

Пример. Решить систему линейных уравнений

   

Решение. Составим расширенную матрицу системы:

   

Первую строку умножим на 3 и вычтем из второй. Затем первую строку умножим на 2 и вычтем из третьей. Получим

   

Далее вторую строку прибавим к третьей и отбросим нулевую строку, получим

   

Запишем полученные уравнения:

   

Из второго уравнения выразим :

   

Полученное выражение подставляем в первое уравнение и выражаем из него :

   

Ответ. Общее решение данной системы:

   

Задачи.

1. Решите систему линейных уравнений

   

2. Решите систему линейных уравнений

   

3. Решите систему линейных уравнений

   

Страница не найдена — ПриМат

© 2012-2016: Нохум-Даниэль Блиндер (11), Анастасия Лозинская (10), Денис Стехун (8), Валентин Малявко (8), Елизавета Савицкая (8), Игорь Любинский (8), Юлия Стерлянко (8), Олег Шпинарев (7), Александр Базан (7), Анна Чалапчий (7), Константин Берков (7), Влад Радзивил (6), Максим Швандт (6), Людмила Рыбальченко (6), Кирилл Волков (6), Татьяна Корнилова (6), Сергей Черкес (5), Алиса Ворохта (5), Валерия Заверюха (5), Елизавета Снежинская (5), Вадим Покровский (5), Даниил Радковский (5), Влад Недомовный (5), Александр Онищенко (5), Андрей Метасов (5), Денис Базанов (5), Александр Ковальский (5), Александр Земсков (5), Марина Чайковская (5), Екатерина Шибаева (5), Мария Корень (5), Анна Семененко (5), Мария Илларионова (5), Роман Бронфен-Бова (4), Артём Романча (4), Анна Шохина (4), Иван Киреев (4), Никита Савко (4), Кондрат Воронов (4), Алина Зозуля (4), Иван Чеповский (4), Артем Рогулин (4), Игорь Чернега (4), Даниил Кубаренко (4), Ольга Денисова (4), Татьяна Осипенко (4), Яков Юсипенко (4), Ольга Слободянюк (4), Руслан Авсенин (4), Екатерина Фесенко (4), Дмитрий Заславский (4), Алина Малыхина (4), Андрей Лисовой (4), Полина Сорокина (4), Кирилл Демиденко (4), Дмитрий Стеценко (4), Александр Рапчинский (4), Святослав Волков (4), Иван Мясоедов (4), Владислав Стасюк (4), Алёна Гирняк (4), Николай Царев (4), Валентин Цушко (4), Павел Жуков (4), Анна Цивинская (3), Михаил Бутник (3), Станислав Чмиленко (3), Катя Писова (3), Дмитрий Дудник (3), Дарья Кваша (3), Игорь Стеблинский (3), Артем Чернобровкин (3), Виктор Булгаков (3), Дмитрий Мороз (3), Богдан Павлов (3), Игорь Вустянюк (3), Андрей Яроцкий (3), Лаура Казарян (3), Екатерина Мальчик (3), Анатолий Осецимский (3), Иван Дуков (3), Дмитрий Робакидзе (3), Вячеслав Зелинский (3), Данила Савчак (3), Дмитрий Воротов (3), Стефания Амамджян (3), Валерия Сиренко (3), Георгий Мартынюк (3), Виктор Иванов (3), Вячеслав Иванов (3), Валерия Ларикова (3), Евгений Радчин (3), Андрей Бойко (3), Милан Карагяур (3), Александр Димитриев (3), Иван Василевский (3), Руслан Масальский (3), Даниил Кулык (3), Стас Коциевский (3), Елизавета Севастьянова (3), Павел Бакалин (3), Антон Локтев (3), Андрей-Святозар Чернецкий (3), Николь Метри (3), Евелина Алексютенко (3), Константин Грешилов (3), Марина Кривошеева (3), Денис Куленюк (3), Константин Мысов (3), Мария Карьева (3), Константин Григорян (3), Колаев Демьян (3), Станислав Бондаренко (3), Ильдар Сабиров (3), Владимир Дроздин (3), Кирилл Сплошнов (3), Карина Миловская (3), Дмитрий Козачков (3), Мария Жаркая (3), Алёна Янишевская (3), Александра Рябова (3), Дмитрий Байков (3), Павел Загинайло (3), Томас Пасенченко (3), Виктория Крачилова (3), Таисия Ткачева (3), Владислав Бебик (3), Илья Бровко (3), Максим Носов (3), Филип Марченко (3), Катя Романцова (3), Илья Черноморец (3), Евгений Фищук (3), Михаил Абабин (2), Дмитрий Калинин (2), Бриткариу Ирина (2), Никита Шпилевский (2), Алексей Белоченко (2), Юлиана Боурош (2), Никита Семерня (2), Владимир Захаренко (2), Дмитрий Лозинский (2), Яна Колчинская (2), Юрий Олейник (2), Кирилл Бондаренко (2), Елена Шихова (2), Татьяна Таран (2), Наталья Федина (2), Настя Кондратюк (2), Никита Гербали (2), Сергей Запорожченко (2), Николай Козиний (2), Георгий Луценко (2), Владислав Гринькив (2), Александр Дяченко (2), Анна Неделева (2), Никита Строгуш (2), Настя Панько (2), Кирилл Веремьев (2), Даниил Мозгунов (2), Андрей Зиновьев (2), Андрей Данилов (2), Даниил Крутоголов (2), Наталия Писаревская (2), Дэвид Ли (2), Александр Коломеец (2), Александра Филистович (2), Евгений Рудницкий (2), Олег Сторожев (2), Евгения Максимова (2), Алексей Пожиленков (2), Юрий Молоканов (2), Даниил Кадочников (2), Александр Колаев (2), Александр Гутовский (2), Павел Мацалышенко (2), Таня Спичак (2), Радомир Сиденко (2), Владислав Шиманский (2), Илья Балицкий (2), Алина Гончарова (2), Владислав Шеванов (2), Андрей Сидоренко (2), Александр Мога (2), Юлия Стоева (2), Александр Розин (2), Надежда Кибакова (2), Майк Евгеньев (2), Евгений Колодин (2), Денис Карташов (2), Александр Довгань (2), Нина Хоробрых (2), Роман Гайдей (2), Антон Джашимов (2), Никита Репнин (2), Инна Литвиненко (2), Яна Юрковская (2), Гасан Мурадов (2), Богдан Подгорный (2), Алексей Никифоров (2),

НОУ ИНТУИТ | Лекция | Задачи линейной алгебры

Аннотация: Познакомимся с инструментами Octave, предназначенными для работы с векторами и матрицами, а также с возможностями, которые предоставляет пакет при непосредственном решении задач линейной алгебры.

5.1 Ввод и формирование векторов и матриц

Векторы и матрицы в Octave задаются путём ввода их элементов. Элементы вектора-строки отделяют пробелами или запятыми, а всю конструкцию заключают в квадратные скобки:

	
>>> a =[2 -3 5 6 -1 0 7 -9]
a = 2 -3 5 6 -1 0 7 -9
>>> b =[ -1,0,1]
b = -1 0 1

Вектор-столбец можно задать, если элементы отделять друг от друга точкой с запятой:

	
>>> c=[-pi; -pi / 2; 0; pi / 2; pi ]
c =
-3.14159
-1.57080
0.00000
1.57080
3.14159

Обратиться к элементу вектора можно указав имя вектора, а в круглых скобках — номер элемента, под которым он хранится в этом векторе:

	
>>> a( 1 )
ans = 2
>>> b( 3 )
ans = 1
>>> c( 5 )
ans = 3.1416

Ввод элементов матрицы также осуществляется в квадратных скобках, при этом элементы строки отделяются друг от друга пробелом или запятой, а строки разделяются между собой точкой с запятой:

	
>>> Matr=[0 1 2 3; 4 5 6 7 ]
Matr =
0 1 2 3
4 5 6 7

Обратиться к элементу матрицы можно указав после имени матрицы, в круглых скобках, через запятую, номер строки и номер столбца, на пересечении которых элемент расположен:

	
>>> Matr ( 2, 3 )
ans = 6
>>> Matr ( 1, 1 )
ans = 0
>>> Matr ( 1, 1 )=pi; Matr ( 2, 4 )= _pi;
>>> Matr
Matr =
3.1416 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000 -3.1416

Матрицы и векторы можно формировать, составляя их из ранее заданных матриц и векторов:

	
>>> a=[-3 0 2 ]; b=[3 2 -1]; c =[5 -2 0 ];
>>> M=[a b c ] % Горизонтальная конкатенация векторов–строк
M = -3 0 2 3 2 -1 5 -2 0 % результат — вектор–строка
>>> N=[a; b; c ] % Вертикальная конкатенация векторов–строк,
% результат — матрица
N =
	-3  0  2
	 3  2 -1
	 5 -2  0
>>> Matrica =[N N N] % Горизонтальная конкатенация матриц
Matrica =
	-3  0  2 -3  0  2 -3  0  2
	 3  2 -1  3  2 -1  3  2 -1
	 5 -2  0  5 -2  0  5 -2  0
>>> Tablica =[M;M;M] % Вертикальная конкатенация матриц
Tablica =
	-3 0 2 3 2 -1 5 -2 0
	-3 0 2 3 2 -1 5 -2 0
	-3 0 2 3 2 -1 5 -2 0

Важную роль при работе с матрицами играет знак двоеточия “:”. Примеры с подробными комментариями приведены в листинге 5.1.

	
>>> Tabl =[ -1.2 3.4 0.8; 0.9 -0.1 1.1; 7.6 -4.5 5.6; 9.0 1.3 -8.5]
Tabl =
	-1.20000 3.40000 0.80000
	0.90000 -0.10000 1.10000
	7.60000 -4.50000 5.60000
	9.00000 1.30000 -8.50000
>>> Tabl( :, 3 ) % Выделить из матрицы 3-й столбец
ans =
	0.80000
	1.10000
	5.60000
	-8.50000
>>> Tabl( 1, : ) % Выделить из матрицы 1-ю строку
ans = -1.20000 3.40000 0.80000
>>> Matr=Tabl( 2 : 3, 1 : 2 ) % Выделить из матрицы подматрицу
Matr =
0.90000 -0.10000
7.60000 -4.50000
% Вставить подматрицу в правый нижний угол исходной матрицы
>>> Tabl( 3 : 4, 2 : 3 )=Matr
Tabl =
	-1.20000 3.40000  0.80000
	0.90000  -0.10000 1.10000
	7.60000  0.90000  -0.10000
	9.00000  7.60000  -4.50000
>>> Tabl( :, 2 ) = [ ] % Удалить из матрицы 2-й столбец
Tabl =
	-1.20000 0.80000
	0.90000  1.10000
	7.60000  -0.10000
	9.00000  -4.50000
>>> Tabl( 2, : ) = [ ] % Удалить из матрицы 2-ю строку
Tabl =
	-1.20000 0.80000
	7.60000 -0.10000
	9.00000 -4.50000
>>> Matr % Представить матрицу в виде вектора–столбца
Matr =
	0.90000 -0.10000
	7.60000 -4.50000
>>> Vector=Matr ( : )
Vector =
	0.90000
	7.60000
	-0.10000
	-4.50000
>>> V=Vector( 1 : 3 ) % Выделить из вектора элементы со 1-го по 3-й
V =
	0.90000
	7.60000
	-0.10000
>>> V( 2 ) = [ ] % Удалить из массива 2-й элемент
V =
	0.90000
	-0.10000
Листинг 5.1. Пример использования знака двоеточия “:”

Алгоритм решения неопределенной системы линейных уравнений методом Гаусса » ProcMem.Ru Линейная Алгебра

п.10. Алгоритм решения неопределенной системы линейных уравнений методом Гаусса.

Пусть дана система .

1. Выписываем расширенную матрицу системы .

2. Пользуясь элементарными преобразованиями строк расширенной матрицы, приводим ее к ступенчатому виду.

Далее, вся работа проводится с полученной системой ступенчатого вида.

3. Убеждаемся, что базисный минор матрицы системы является базисным минором расширенной матрицы системы, т.е. . В противном случае, система несовместна, т.е. не имеет решений.

4. Вычисляем размерность пространства решений соответствующей однородной системы : .

5. Определяем, какие переменные системы будут независимыми, а какие зависимыми:

а) те переменные, коэффициенты при которых входят в базисный минор объявляем независимыми, их оставляем в левых частях уравнений системы;

б) оставшиеся переменные объявляем зависимыми, их переносим в правую часть уравнений. Зависимых переменных должно быть  штук.

6. Обозначаем зависимые переменные буквами греческого алфавита: , если их не очень много; или буквой с индексами, например: .

7. Придавая зависимым переменным какие-нибудь числовые значения, находим частное решение данной системы X*.

8. Обнуляем столбец свободных членов в системе и, двигаясь от последнего уравнения системы к первому (снизу вверх), выражаем независимые переменные системы через зависимые.

9. Записываем общее решение соответствующей однородной системы.

10. Записываем общее решение данной неоднородной системы.

11. Выписываем полученную фундаментальную систему решений соответствующей однородной системы.

12. Записываем множество решений данной неоднородной системы в виде суммы линейной оболочки, натянутой на фундаментальную систему решений и частного решения Х*.

13. Записываем ответ (из пункта 10 и 12).

Пример 1. Решить систему: .

Решение.

1) Выписываем расширенную матрицу системы :

.

2) Пользуясь элементарными преобразованиями строк расширенной матрицы, приводим ее к ступенчатому виду:

а) умножаем первую строку на (–2) и прибавляем ко второй строке, затем  умножаем первую строку на (–1) и прибавляем к третьей:

;

б) умножаем вторую строку на (–1) и прибавляем к третьей:

.

3) Находим базисные миноры матрицы системы и расширенной матрицы системы:

 – базисный минор матрицы системы;

 – базисный минор расширенной матрицы системы.

Мы видим, что , . Так как , то данная система является несовместной, т.е. не имеет решений.

Ответ. Система не имеет решений.

Пример 2. Решить систему: .

Приводим расширенную матрицу системы к ступенчатому виду:

.

В результате получили квадратную систему

с определителем системы . Следовательно, система имеет единственное решение:

.

Ответ: .

Пример 3. Решить систему: .

1) Приводим расширенную матрицу системы к ступенчатому виду:

.

2) Находим базисные миноры матрицы системы и расширенной матрицы системы:

 – базисный минор матрицы системы и он же базисный минор расширенной матрицы системы,  . Следовательно, полученная система , которая равносильна данной, имеет решения, т.е. является совместной.

3) Вычисляем размерность пространства решений соответствующей однородной системы: . Следовательно, из трех неизвестных системы, два неизвестных  и  объявляем независимыми, а неизвестное  объявляем зависимым.

4) Обозначаем зависимую неизвестную  и переносим его в правую часть уравнения:

.

5) Полагаем , получаем частное решение системы:

.

6) Обнуляем столбец свободных членов системы и получаем соответствующую однородную систему:

.

7) Выписываем общее решение соответствующей однородной системы:

.

8) Выписываем решение неоднородной системы:

.

9) Фундаментальная система решений соответствующей однородной системы состоит из одного столбца:

.

10) Множество решений данной системы:

.

Ответ: общее решение системы: , ;

множество решений системы: .

Пример 4. Решить систему: .

Решение. Расширенная матрица системы:

.

Коэффициент при , равный 1, можно принять за базисный минор, так что .

Соответствующая однородная система имеет вид:

,

размерность пространства ее решений:

.

Обозначим – три свободные переменные. Систему можно записать так:

.

Полагая , получаем частное решение данной системы:  или

.

Соответствующая однородная система имеет вид:

.

Тогда ее общее решение имеет вид:

,

где .

Общее решение данной неоднородной системы:

,

где .

Фундаментальная система решений соответствующей однородной системы:

.

Множество решений данной системы:

или .

Ответ: общее решение системы

,

где ;  множество решений системы:

.

п.11. Формулы Крамера.

Теорема. Пусть  квадратная система линейных уравнений и . Тогда единственное решение системы можно найти по формулам:

, ,

где  – определитель матрицы системы,  – столбцы матрицы системы,

 – определитель системы, в котором i-й столбец заменен столбцом свободных членов В. Эти формулы называются формулами Крамера.

Доказательство. Так как , то матрица А – обратимая и из равенства  получаем:

,

откуда и следуют формулы Крамера. Проработка деталей оставляется читателю.

Теорема доказана.

Еще записи по теме

Метод Гаусса – решение систем линейных уравнений, пример – смотреть онлайн видео урок бесплатно! Автор: alWEBra – Линейная алгебра


В этом видео уроке рассказывается о том, как использовать метод Гаусса при решении систем линейных уравнений, пример. Метод Гаусса является универсальным методом решения систем линейных уравнений. Он основан на последовательном исключении неизвестных. Здесь будет рассмотрен простейший случай, т.е. когда система имеет единственное решение. При решении, системе уравнений сопоставляется, так называемая, расширенная матрица, состоящая из коэффициентов при неизвестных и свободных членов. Суть Метода Гаусса заключается в том, что по определенным правилам выполняется преобразование этой матрицы к виду, в котором ниже главной диагонали располагаются только нули. Элементарные преобразования матрицы выполняются по таким правилам как перемена местами двух строк, умножение (деление) строки на число, добавление к строке другой строки, умножение на число и вычеркивание строки из нулей. После такого преобразования система уравнений легко решается. В качестве примера практического применения метода Гаусса, будет рассмотрено задание с решением системы линейных уравнений с тремя неизвестными. Видео урок «Метод Гаусса – решение систем линейных уравнений, пример» вы можете смотреть онлайн в любое время совершенно бесплатно. Удачи Вам!


  • Автор: alWEBra
  • Длительность: 5:32
  • Дата: 22.11.2013
  • Смотрели: 520
  • Рейтинг: 5.0/1



Если у Вас есть качественные видео уроки, которых нет на нашем сайте, то Вы можете добавить их в нашу коллекцию. Для этого Вам необходимо загрузить их на видеохостинг (например, YouTube) и добавить код видео в форму добавления уроков. Возможность добавлять свои материалы доступна только для зарегистрированных пользователей.

Решение систем линейных уравнений

Определение и формула решения систем линейных уравнений

Школьные методы решения систем описаны в статье (\textbf{ссылка на статью «Решение систем уравнений» выше}).

Метод Гаусса для решения систем линейных уравнений

Метод Гаусса — это метод последовательного исключения переменных, когда расширенная матрица системы с помощью элементарных преобразований над ее строками приводится к матрице (системе) треугольного вида, из которой последовательно, начиная с последней, находятся все остальные неизвестные системы. Метод назван в честь немецкого математика, механика, физика, астронома и геодезиста Иоганна Карла Фридриха Гаусса (1777-1855), хотя первое известное описание метода встречается уже в китайском трактате «Математика в девяти книгах» (10-2 в.в. до н.э.).

Метод Крамера для решения систем линейных уравнений

Матричный метод (метод обратной матрицы)

Матричный метод или метод обратной матрицы базируется на следующем алгоритме:

1. Система (1) записывается в матричной форме , где

   

2. Из матричного уравнения получаем, что

   

где матрица — это обратная матрица к матрице системы . Обратная матрица находится по формуле:

   

Матрица называется союзной матрицей к матрице , ее элементами есть алгебраические дополнения к соответствующим элементам матрицы .

Необходимым и достаточным условием применимости матричного метода является неравенство нулю определителя матрицы .

Понравился сайт? Расскажи друзьям!

Исключение Гаусса

Тип 2. Умножьте строку на ненулевую константу.

Тип 3. Добавьте одну строку, кратную одной, в другую.

Цель этих операций – преобразовать – или уменьшить – исходную расширенную матрицу в одну из форм, где A ′ является верхним треугольником ( a ij ′ = 0 для i> j ), любые нулевые строки появляются внизу матрицы, и первая ненулевая запись в любой строке находится справа от первой ненулевой записи в любой более высокой строке; такая матрица имеет вид эшелон .Решения системы представлены более простой расширенной матрицей [ A ′ | b ′], можно найти путем осмотра нижних рядов и обратной подстановки в более высокие ряды. Поскольку элементарные операции со строками не меняют решений системы, векторы x , которые удовлетворяют более простой системе A x = b ′, являются в точности теми, которые удовлетворяют исходной системе, A x = b .

Пример 3 : Решите следующую систему с помощью исключения Гаусса:

Расширенная матрица, которая представляет эту систему:

Первая цель – получить нули под первой записью в первом столбце , что означает исключение первой переменной x из второго и третьего уравнений.Для этого выполняются следующие операции со строками:

Вторая цель – получить ноль под второй записью во втором столбце, что означает исключение второй переменной y из третьего уравнения. Один из способов добиться этого – добавить -1/5 второй строки к третьей строке. Однако, чтобы избежать дробей, есть еще один вариант: сначала поменять местами второй и третий ряды. Замена двух строк просто меняет местами уравнения, что явно не изменит решения системы:

Теперь прибавьте −5 раз вторую строку к третьей строке:

Поскольку матрица коэффициентов преобразована в эшелонированную форму, «прямая» часть исключения Гаусса завершена.Теперь остается использовать третью строку для оценки третьего неизвестного, затем выполнить обратную подстановку во вторую строку для оценки второго неизвестного и, наконец, выполнить обратную замену в первой строке для оценки первого неизвестного.

Третья строка финальной матрицы переводится в 10 z = 10, что дает z = 1. Обратная подстановка этого значения во вторую строку, которая представляет уравнение y – 3 z = – 1, дает y = 2.Обратная подстановка обоих этих значений в первую строку, которая представляет уравнение x – 2 y + z = 0, дает x = 3. Таким образом, решение этой системы: ( x, y, z ) = (3, 2, 1).

Пример 4 : Решите следующую систему с помощью исключения Гаусса:

Для этой системы расширенная матрица (вертикальная линия опущена) составляет

Сначала умножьте строку 1 на 1/2:

Теперь добавление -1 первой строки ко второй строке дает нули под первой записью в первом столбце:

Перестановка второй и третьей строк дает желаемую матрицу коэффициентов верхней треугольной формы:

В третьей строке теперь указано z = 4.Обратная подстановка этого значения во вторую строку дает y = 1, а обратная подстановка обоих этих значений в первую строку дает x = −2. Таким образом, решение этой системы ( x, y, z ) = (−2, 1, 4).

Исключение Гаусса-Джордана . Исключение по Гауссу осуществляется путем выполнения элементарных операций со строками для получения нулей ниже диагонали матрицы коэффициентов, чтобы привести ее к эшелонированной форме. (Напомним, что матрица A ′ = [ a ij ′] имеет эшелонированную форму, когда a ij ′ = 0 для i> j , любые нулевые строки появляются в нижней части матрицы , и первая ненулевая запись в любой строке находится справа от первой ненулевой записи в любой более высокой строке.Как только это будет сделано, проверка нижней строки (строк) и обратная подстановка в верхние строки определяют значения неизвестных.

Однако можно сократить (или полностью исключить) вычисления, связанные с обратной подстановкой, выполнив дополнительные операции со строками для преобразования матрицы из эшелонированной формы в сокращенную форму . Матрица находится в форме сокращенного эшелона, когда, помимо того, что она находится в форме эшелона, каждый столбец, содержащий ненулевую запись (обычно равную 1), имеет нули не только под этой записью, но и над этой записью.Грубо говоря, гауссовское исключение работает сверху вниз, чтобы создать матрицу в форме эшелона, тогда как Гаусс-Джордан исключение продолжается с того места, где остановился гауссиан, затем работает снизу вверх для создания матрицы в форме сокращенного эшелона. Техника будет проиллюстрирована на следующем примере.

Пример 5 : Известно, что высота, y , брошенного в воздух объекта задается квадратичной функцией от t (время) в форме y = at 2 + bt + c .Если объект находится на высоте y = 23/4 в момент времени t = 1/2, при y = 7 в момент времени t = 1 и при y = 2 при t = 2 , определите коэффициенты a, b и c .

Так как t = 1/2 дает y = 23/4

, а два других условия, y ( t = 1) = 7 и y ( t = 2) = 2, дают следующие уравнения для a, b и c :

Следовательно, цель – решить систему

Расширенная матрица для этой системы сокращается следующим образом:

На этом прямая часть исключения Гаусса завершена, поскольку матрица коэффициентов приведена к эшелонированной форме.Однако, чтобы проиллюстрировать исключение Гаусса-Жордана, выполняются следующие дополнительные элементарные операции со строками:

Эта окончательная матрица сразу дает решение: a = −5, b = 10 и c = 2.

Пример 6 : Решите следующую систему с помощью исключения Гаусса:

Расширенная матрица для этой системы –

Кратные значения первой строки добавляются к другим строкам, чтобы получить нули под первой записью в первом столбце:

Затем −1 раз вторая строка добавляется к третьей строке:

В третьей строке теперь указано 0 x + 0 y + 0 z = 1, уравнение, которому не могут удовлетворять никакие значения x, y и z .Процесс останавливается: у этой системы нет решений.

Предыдущий пример показывает, как исключение Гаусса выявляет противоречивую систему. Небольшое изменение этой системы (например, изменение постоянного члена «7» в третьем уравнении на «6») проиллюстрирует систему с бесконечным числом решений.

Пример 7 : Решите следующую систему с помощью исключения Гаусса:

Те же операции, которые применяются к расширенной матрице системы в примере 6, применяются к расширенной матрице для данной системы:

Здесь третья строка переводится в 0 x + 0 y + 0 z = 0, уравнение, которому удовлетворяют любые x, y и z .Поскольку здесь нет ограничений на неизвестные, на неизвестные не три условия, а только два (представленные двумя ненулевыми строками в окончательной расширенной матрице). Поскольку имеется 3 неизвестных, но только 2 константы, 3–2 = 1 неизвестных, скажем, z , произвольно; это называется свободной переменной . Пусть z = t , где t – любое действительное число. Обратная подстановка z = t во вторую строку (- y + 5 z = −6) дает

Обратная подстановка z = t и y = 6 + 5 t в первую строку ( x + y -3 z = 4) определяет x :

Следовательно, каждое решение системы имеет вид

, где t – любое действительное число.Существует бесконечно много решений, поскольку каждое действительное значение т дает отдельное решение. Например, выбор t = 1 дает ( x, y, z ) = (−4, 11, 1), а t = 3 дает ( x, y, z ) = (4, – 9, −3) и т. Д. Геометрически эта система представляет собой три плоскости в R 3 , которые пересекаются по линии, и (*) является параметрическим уравнением для этой линии.

Пример 7 дает иллюстрацию системы с бесконечным множеством решений, как возникает этот случай и как записывается решение.Каждая линейная система, имеющая бесконечно много решений, должна содержать хотя бы один произвольный параметр (свободная переменная). После того, как расширенная матрица была приведена к эшелонированной форме, количество свободных переменных равно общему количеству неизвестных минус количество ненулевых строк:

Это согласуется с теоремой B выше, которая утверждает, что линейная система с меньшим количеством уравнений, чем неизвестных, если она согласована, имеет бесконечно много решений. Условие «меньше уравнений, чем неизвестных» означает, что количество строк в матрице коэффициентов меньше количества неизвестных.Следовательно, приведенное выше уравнение в рамке подразумевает, что должна быть хотя бы одна свободная переменная. Поскольку такая переменная по определению может принимать бесконечно много значений, система будет иметь бесконечно много решений.

Пример 8 : Найти все решения для системы

Во-первых, обратите внимание, что есть четыре неизвестных, но только три уравнения. Следовательно, если система непротиворечива, гарантировано, что у нее будет бесконечно много решений, а это состояние характеризуется по крайней мере одним параметром в общем решении.После того, как соответствующая расширенная матрица построена, исключение Гаусса дает

Тот факт, что в эшелонированной форме расширенной матрицы остались только две ненулевые строки, означает, что 4-2 = 2 переменных свободны:

Следовательно, выбрав y и z в качестве свободных переменных, пусть y = t 1 и z = t 2 . Во второй строке сокращенной расширенной матрицы следует

, а первая строка дает

Таким образом, решения системы имеют вид

, где т 1 т 2 могут принимать любые реальные значения.

Пример 9 : Пусть b = ( b 1 , b 2 , b 3 ) T и пусть A будет матрицей

Для каких значений b 1 , b 2 и b 3 будет ли система A x = b согласованной?

Расширенная матрица для системы A x = b читает

, который гауссовский элиминатин сокращает следующим образом:

Нижняя строка теперь подразумевает, что b 1 + 3 b 2 + b 3 должно быть равно нулю, чтобы эта система была согласованной.Следовательно, в данной системе есть решения (фактически бесконечно много) только для тех векторов-столбцов b = ( b 1 , b 2 , b 3 ) T , для которых b 1 + 3 b 2 + b 3 = 0.

Пример 10 : Решите следующую систему (сравните с Примером 12):

Такая система, как эта, где постоянный член в правой части каждого уравнения равен 0, называется однородной системой .В матричной форме он читает A x = 0 . Поскольку каждая однородная система согласована – поскольку x = 0 всегда является решением, – однородная система имеет либо ровно одно решение ( тривиальное решение , x = 0 ), либо бесконечно много. Сокращение строки матрицы коэффициентов для этой системы уже было выполнено в примере 12. Нет необходимости явно дополнять матрицу коэффициентов столбцом b = 0 , поскольку никакая элементарная операция со строкой не может повлиять на эти нули.То есть, если A ‘является эшелонированной формой A , то операции элементарной строки преобразуют [ A | 0 ] в [ A ′ | 0 ]. По результатам Примера 12,

Поскольку последняя строка снова подразумевает, что z можно принять как свободную переменную, пусть z = t , где t – любое действительное число. Обратная подстановка z = t во вторую строку (- y + 5 z = 0) дает

и обратная подстановка z = t и y = 5 t в первую строку ( x + y -3 z = 0) определяет x :

Следовательно, каждое решение этой системы имеет вид ( x, y, z ) = (−2 t , 5 t, t ), где t – любое действительное число.Растворителей бесконечно много, поскольку каждое действительное значение т дает уникальное частное решение.

Обратите внимание на разницу между набором решений для системы в Примере 12 и здесь. Хотя обе имели одинаковую матрицу коэффициентов A , система в Примере 12 была неоднородной ( A x = b , где b 0 ), а здесь – соответствующая однородная система, A x = 0 .Помещая свои решения рядом,

общее решение для Ax = 0 : ( x, y, z ) = (−2 t , 5 t , t )

общее решение для Ax = b : ( x, y, z ) = (−2 t , 5 t , t ) + (−2, 6, 0)

иллюстрирует важный факт:

Теорема C . Общие решения для согласованной неоднородной лиенарной системы, A x = b , равны общему решению соответствующей однородной системы, A x = 0 , плюс частное решение неоднородная система.То есть, если x = x h представляет собой общее решение A x = 0 , то x = x h + x представляет общее решение A x + b , где x – любое конкретное решение (согласованной) неоднородной системы A x = b .

[Техническое примечание: теорема C, которая касается линейной системы , имеет аналог в теории линейных дифференциальных уравнений .Пусть L – линейный дифференциальный оператор; то общее решение разрешимого неоднородного линейного дифференциального уравнения, L (y) = d (где d 0), равно общему решению соответствующего однородного уравнения, L (y) = 0 плюс частное решение неоднородного уравнения. То есть, если y = y h повторно отображает общее решение L (y) = 0, то y = y h + y представляет собой общее решение L (y ) = d , где y – любое частное решение (решаемого) неоднородного линейного уравнения L (y) = d .]

Пример 11 : Определить все решения системы

Запишите расширенную матрицу и выполните следующую последовательность операций:

Поскольку в этой конечной (эшелонированной) матрице остаются только 2 ненулевые строки, есть только 2 ограничения и, следовательно, 4–2 = 2 из неизвестных – например, y и z – являются свободными переменными. Пусть y = t 1 и z = t 2 .Обратная подстановка y = t 1 и z = t 2 во вторую строку ( x – 3 y + 4 z = 1) дает

Наконец, обратная замена x = 1 + 3 t 1 – 4 2 , y = t 1 и z = t 2 в первую строка (2 w -2 x + y = −1) определяет w :

Следовательно, каждое решение этой системы имеет вид

, где t 1 и t 2 – любые вещественные числа.Другой способ написать решение:

, где т 1 , т 2 R .

Пример 12 : Определите общее решение

, которая является однородной системой, соответствующей неоднородной в примере 11 выше.

Поскольку решение неоднородной системы в примере 11 равно

Теорема C означает, что решение соответствующей однородной системы (где t 1 , t 2 R ) получается из (*), просто отбрасывая конкретное решение, x = (1 / 2,1,0,0) неоднородной системы.

Пример 13 : Докажите теорему A: независимо от ее размера или количества неизвестных, содержащихся в ее уравнениях, линейная система будет либо не иметь решений, либо иметь ровно одно решение, либо бесконечно много решений.

Доказательство . Пусть данная линейная система записана в матричной форме A x = b . Теорема действительно сводится к следующему: если A x = b имеет более одного решения, то на самом деле их бесконечно много.Чтобы установить это, пусть x 1 и x 2 будут двумя разными решениями A x = b . Теперь будет показано, что для любого реального значения t вектор x 1 + t ( x 1 x 2 ) также является решением A x = b ; Поскольку t может принимать бесконечно много различных значений, из этого следует желаемый вывод.Начиная с A x 1 = b и A x 2 ,

Следовательно, x 1 + t ( x 1 x 2 ) действительно является решением A x = b , и теорема доказана.

Гаусс Джордан Устранение – Объяснение и примеры

Метод исключения Гаусса-Жордана – это алгоритм для решения линейной системы уравнений.Мы также можем использовать его, чтобы найти обратную матрицу. Давайте сначала посмотрим на определение:

Исключение Гаусса Джордана или Гаусса исключение – это алгоритм для решения системы линейных уравнений, представляющий ее в виде расширенной матрицы, сокращая ее с помощью операций со строками и выражая систему в сокращенной строке. -эшелонированная форма для нахождения значений переменных.

В этом уроке мы увидим детали метода исключения Гаусса и того, как решить систему линейных уравнений с использованием метода исключения Гаусса-Жордана.Примеры и практические вопросы будут приведены ниже.

Что такое метод исключения Гаусса?

Метод исключения Гаусса – это структурированный метод решения системы линейных уравнений. Таким образом, это алгоритм, и его можно легко запрограммировать для решения системы линейных уравнений. Основная цель исключения Гаусса-Джордана:

  • для представления системы линейных уравнений в форме расширенной матрицы
  • затем выполнение над ней строковых операций по $ 3 до тех пор, пока не будет получена сокращенная форма эшелона строк (RREF) . достигнуто
  • Наконец, мы можем легко распознать решения из RREF

Давайте посмотрим, что такое расширенная матричная форма, операции со строками стоимостью 3 доллара, которые мы можем выполнять с матрицей, и уменьшенная форма эшелона строк матрицы.

Расширенная матрица

Система линейных уравнений показана ниже:

$ \ begin {align *} 2x + 3y & = \, 7 \\ x – y & = 4 \ end {align *} $

We запишет расширенную матрицу этой системы, используя коэффициенты уравнений и запишет ее в стиле , показанном ниже:

$ \ left [\ begin {array} {rr | r} 2 & 3 & 7 \\ 1 & -1 & 4 \ end {array} \ right] $

Пример использования одновременных уравнений $ 3 $ показан ниже:

$ \ begin {align *} 2x + y + z & = \, 10 \\ x + 2y + 3z & = 1 \\ – x – y – z & = 2 \ end {align *} $

Представление этой системы в виде расширенной матрицы:

$ \ left [\ begin {array} {rrr | r} 2 & 1 & 1 & 10 \\ 1 & 2 & 3 & 1 \\ – 1 & – 1 & – 1 & 2 \ end {array} \ right] $

Операции со строками в матрице

Есть $ 3 $ элементарных операций со строками , которые мы можем делать с матрицами.Это не изменит решения системы. Это:

  1. Обмен $ 2 $ строк
  2. Умножить строку на ненулевой ($ \ neq 0 $) скаляр
  3. Складывать или вычитать скалярное кратное одной строки из другой строки.

Форма сокращенного эшелона строк

Основная цель исключения Гаусса Джордана – использовать операции элементарной строки стоимостью 3 доллара в расширенной матрице, чтобы привести ее к форме сокращенного эшелона строк (RREF). Считается, что матрица находится в сокращенном эшелоне строк формы , также известной как каноническая форма строк , если выполняются следующие условия $ 4 $:

  1. Строки с нулевыми записями (все элементы этой строки равны 0 $. s) находятся внизу матрицы.
  2. Начальная запись (первая ненулевая запись в строке) каждой ненулевой строки соответствует справа ведущей записи строки непосредственно над ней.
  3. Начальная запись в любой ненулевой строке – $ 1 $.
  4. Все записи в столбце, содержащем начальную запись ($ 1 $), нулевые.

Как выполнить исключение Гаусса Джордана

Нет никаких определенных шагов в методе исключения Гаусса Джордана, но алгоритм ниже описывает шаги, которые мы выполняем, чтобы прийти к сокращенной форме эшелона строк расширенной матрицы.

  1. Поменяйте местами строки так, чтобы все строки с нулевыми записями находились внизу матрицы.
  2. Поменяйте местами строки так, чтобы строка с самой большой левой цифрой находилась наверху матрицы.
  3. Умножьте верхнюю строку на скаляр, который преобразует ведущую запись верхней строки в $ 1 $ (если ведущей записью верхней строки является $ a $, умножьте ее на $ \ frac {1} {a} $, чтобы получить $ 1 $).
  4. Добавьте или вычтите значения, кратные верхней строке, из других строк, чтобы все записи в столбце ведущей записи верхней строки были нулями.
  5. Выполните шаги $ 2 – 4 $ для следующей крайней левой ненулевой записи , пока все ведущие записи каждой строки не будут равны 1 $.
  6. Поменяйте местами строки так, чтобы ведущая запись каждой ненулевой строки находилась справа от ведущей записи строки непосредственно над ней

На первый взгляд, запомнить / запомнить шаги не так просто. Это вопрос решения нескольких проблем, пока вы не освоитесь с процессом. Существует также фактор , интуиция , которая играет B-I-G роль в выполнении исключения Гаусса Джордана.

Давайте рассмотрим несколько примеров, чтобы пояснить процесс решения системы линейных уравнений с помощью метода исключения Гаусса-Джордана .

Пример 1

Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

$ \ begin {align *} {- x} + 2y & = \, {- 6} \\ { 3x} – 4y & = {14} \ end {align *} $

Решение

Первый шаг – написать расширенную матрицу системы.Мы показываем это ниже:

$ \ left [\ begin {array} {r r | r} – 1 & 2 & – 6 \\ 3 & -4 & 14 \ end {array} \ right] $

Теперь наша задача состоит в том, чтобы преобразовать матрицу в сокращенную форму эшелона строк (RREF), выполнив $ 3 $ элементарные операции со строками.

У нас есть расширенная матрица:

$ \ left [\ begin {array} {r r | r} – 1 & 2 & – 6 \\ 3 & – 4 & 14 \ end {array} \ right] $

Шаг 1:

Мы можем умножить первую строку на $ – 1 $, чтобы получить ведущий вход $ 1 $.Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & – 2 & 6 \\ 3 & – 4 & 14 \ end {array} \ right] $

Шаг 2:

Теперь мы можем умножить первую строку на 3 $ и вычесть ее из второй ряд. Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & -2 & 6 \\ {3 – (1 \ times 3)} & {-4 – (-2 \ times 3)} & {14 – (6 \ times 3)} \ end {array} \ справа] $

$ = \ left [\ begin {array} {rr | r} 1 & – 2 & 6 \\ 0 & 2 & – 4 \ end {array} \ right] $

У нас есть $ 0 $ как первая запись во второй строке.

Шаг 3:

Чтобы сделать вторую запись второй строки $ 1 $, мы можем умножить вторую строку на $ \ frac {1} {2} $. Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & – 2 & 6 \\ {\ frac {1} {2} \ times 0} & {\ frac {1} {2} \ times 2} & {\ frac {1} {2} \ times – 4} \ end {array} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & – 2 & 6 \\ 0 & 1 & – 2 \ end {array} \ right] $

Шаг 4:

Мы почти у цели!

Вторая запись первой строки должна быть $ 0 $.Для этого мы умножаем вторую строку на $ 2 $ и добавляем ее к первой строке. Показано ниже:

$ \ left [\ begin {array} {r r | r} {1 + (0 \ times 2)} & {- 2 + (1 \ times 2)} & {6 + (- 2 \ times 2)} \\ 0 & 1 & – 2 \ end {array} \ справа] $

$ = \ left [\ begin {array} {rr | r} 1 & 0 & 2 \\ 0 & 1 & – 2 \ end {array} \ right] $

Это сокращенный ряд строк , форма , форма . Из расширенной матрицы мы можем написать два уравнения (решения):

$ \ begin {align *} x + 0y & = \, 2 \\ 0x + y & = -2 \ end {align *} $

$ \ begin {align *} x & = \, 2 \\ y & = – 2 \ end {align *} $

Таким образом, решение системы уравнений: $ x = 2 $ и $ y = – 2 $.

Пример 2

Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

$ \ begin {align *} x + 2y & = \, 4 \\ x – 2y & = 6 \ end { align *} $


Решение

Запишем расширенную матрицу системы уравнений:

$ \ left [\ begin {array} {rr | r} 1 & 2 & 4 \\ 1 & – 2 & 6 \ end {array} \ right] $

Теперь мы выполняем элементарные операции со строками над этой матрицей, пока не получим сокращенную форму эшелона строк.

Шаг 1:

Умножаем первую строку на $ 1 $, а затем вычитаем ее из второй строки. Это в основном вычитание первой строки из второй:

$ \ left [\ begin {array} {r r | r} 1 & 2 & 4 \\ 1 – 1 & – 2 – 2 & 6 – 4 \ end {array} \ right] $

$ = \ left [\ begin {array} {r r | r} 1 & 2 & 4 \\ 0 & – 4 & 2 \ end {array} \ right] $

Шаг 2:

Мы умножаем вторую строку на $ – \ frac {1} {4} $, чтобы получить вторая запись строки, $ 1 $:

$ \ left [\ begin {array} {rr | r} 1 и 2 и 4 \\ 0 \ times – \ frac {1} {4} & – 4 \ times – \ frac {1} {4} и 2 \ times – \ frac {1} {4} \ end {массив} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & 2 & 4 \\ 0 & 1 & – \ frac {1} {2} \ end {array} \ right] $

Шаг 3:

Наконец, мы умножаем вторую строку на $ – 2 $ и добавьте его в первую строку, чтобы получить уменьшенную форму эшелона строк этой матрицы:

$ \ left [\ begin {array} {rr | r} 1 + (- 2 \ times 0) & 2+ (- 2 \ times 1) & 4 + (- 2 \ times – \ frac {1} {2}) \\ 0 & 1 & – \ frac {1 } {2} \ end {array} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & 0 & 5 \\ 0 & 1 & – \ frac {1} {2} \ end {array} \ right] $

Это сокращенный ряд строк , , форма .Из расширенной матрицы мы можем написать два уравнения (решения):

$ \ begin {align *} x + 0y & = \, 5 \\ 0x + y & = – \ frac {1} {2} \ end {align *} $

$ \ begin {align *} x & = \, 5 \\ y & = – \ frac {1} {2} \ end {align *} $

Таким образом, решение системы уравнений составляет $ x = 5 $ и $ y = – \ frac {1} {2} $.

Практические вопросы
  1. Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

    $ \ begin {align *} 2x + y & = \, – 3 \\ – x – y & = 2 \ end {align *} $

  2. Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

    $ \ begin {align *} x + 5y & = \, 15 \\ – x + 5y & = 25 \ end {align *} $

Ответы

  1. Начнем с написания расширенной матрицы системы уравнений:

    $ \ left [\ begin {array} {rr | r} 2 & 1 & – 3 \\ – 1 & – 1 & 2 \ end {array} \ right] $

    Теперь мы выполняем элементарные операции со строками, чтобы прийти к нашему решению.

    Первый,
    Мы меняем знаки второй строки местами. Итак, имеем:
    $ \ left [\ begin {array} {r r | r} 1 & 1 & – 2 \\ 2 & 1 & – 3 \ end {array} \ right] $
    Во-вторых,
    Мы дважды вычитаем первую строку из второй строки:
    $ \ left [\ begin {array} { rr | r} 1 & 1 & – 2 \\ 2 – (2 \ times 1) & 1 – (2 \ times 1) & – 3 – (2 \ times – 2) \ end {array} \ right] $
    $ = \ left [\ begin {array} {rr | r} 1 & 1 & – 2 \\ 0 & – 1 & 1 \ end {array} \ right] $
    В-третьих,
    Мы инвертируем вторую строку, чтобы получить:
    $ = \ left [\ begin {array} {rr | r} 1 & 1 & – 2 \\ 0 & 1 & – 1 \ end {array} \ right] $
    Наконец,
    Мы вычитаем вторую строку из первой и получаем:
    $ = \ left [\ begin { массив} {rr | r} 1 & 0 & – 1 \\ 0 & 1 & – 1 \ end {array} \ right] $

    Из этой расширенной матрицы мы можем написать два уравнения (решения):

    $ \ begin {align *} x + 0y & = \, – 1 \\ 0x + y & = – 1 \ end {align *} $

    $ \ begin {align *} x & = \, – 1 \\ y & = – 1 \ end {align *} $

    Таким образом, решение системы уравнений: $ x = – 1 $ и $ y = – 1 $.

  2. Расширенная матрица системы:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ – 1 & 5 & 25 \ end {array} \ right] $
    Давайте приведите эту матрицу к приведенной форме эшелона строк и найдите решение системы.

    Сначала
    Отмените первую строку, затем вычтите ее из второй строки, чтобы получить:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ – 1 – (- 1) & 5 – (- 5) & 25 – (- 15) \ end {array} \ right] $
    $ = \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ 0 & 10 & 40 \ end {array} \ right] $
    Second,
    Разделите вторую строку на $ 10 $, чтобы получить:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ 0 & 1 & 4 \ end {array} \ right] $
    Затем
    Умножьте вторую строку на $ 5 $ и вычтите ее из первой строки, чтобы получить окончательное решение:
    $ \ left [\ begin {array} {rr | r} 1 – (5 \ times 0) & 5 – (5 \ times 1) & 15 – (5 \ times 4) \\ 0 & 1 & 4 \ end {array} \ right] $
    $ = \ left [ \ begin {array} {rr | r} 1 & 0 & – 5 \\ 0 & 1 & 4 \ end {array} \ right] $
    Это сокращенная форма эшелона строк (RREF).Из этой расширенной матрицы мы можем написать два уравнения (решения):

    $ \ begin {align *} x & = \, – 5 \\ y & = 4 \ end {align *} $

    Таким образом, решение системы уравнений составляет $ x = – 5 $ и $ y = 4 $.

Предыдущий урок | Главная страница | Следующий урок

Матрицы и исключение Гаусса

Назад Замена

Напомним, что линейная система уравнений состоит из двух или более линейных уравнений с одинаковыми переменными.Линейная система, состоящая из трех уравнений стандартной формы, расположенных таким образом, что переменная x не появляется ни в одном уравнении после первого, а переменная y не появляется ни в одном уравнении после второго, называется верхнетреугольной формой. линейная система, состоящая из уравнений с тремя переменными в стандартной форме, расположенная так, что переменная x не появляется после первого уравнения, а переменная y не появляется после второго уравнения.. Например,

Обратите внимание, что система образует треугольник, в котором каждое последующее уравнение содержит на одну переменную меньше. В целом

Линейные системы в верхней треугольной форме {a1x + b1y = c1b2y = c2 {a1x + b1y + c1z = d1b2y + c2z = d2c3z = d3

Если линейная система находится в этой форме, мы можем легко найти одну из переменных, а затем произвести обратную замену, чтобы найти оставшиеся переменные.

Пример 1

Решить: {3x − y = 72y = −2.

Решение:

Напомним, что решения линейных систем с двумя переменными, если они существуют, представляют собой упорядоченные пары ( x , y ). Мы можем легко определить значение y , используя второе уравнение.

2у = −2у = −1

Затем используйте первое уравнение 3x − y = 7 и тот факт, что y = −1, чтобы найти x .

3x − y = 73x – (- 1) = 73x + 1 = 73x = 6x = 2

Ответ: (2, −1)

Пример 2

Решите: {x − 6y + 2z = 163y − 9z = 5z = −1.

Решение:

Напомним, что решения линейных систем с тремя переменными, если они существуют, являются упорядоченными тройками ( x , y , z ). Воспользуйтесь вторым уравнением 3y − 9z = 5 и тем фактом, что z = −1, чтобы найти y .

3y − 9z = 53y − 9 (−1) = 53y + 9 = 53y = −4y = −43

Затем подставьте y и z в первое уравнение.

x − 6y + 2z = 16x − 6 (−43) +2 (−1) = 16x + 8−2 = 16x + 6 = 16x = 10

Ответ: (10, −43, −1)

Попробуй! Решить: {4x − y + 3z = 12y − 9z = −23z = 2.

Ответ: (14, 2, 23)

Матрицы и исключение Гаусса

В этом разделе цель – разработать метод, упрощающий процесс решения линейных систем. Мы начинаем с определения матрицы – прямоугольного массива чисел, состоящего из строк и столбцов., Который представляет собой прямоугольный массив чисел, состоящий из строк и столбцов. Учитывая линейную систему в стандартной форме, мы создаем матрицу коэффициентов Матрицу коэффициентов линейной системы в стандартной форме, записанную так, как они выглядят выстроенной, без переменных или операций.записывая коэффициенты в том виде, в каком они кажутся выстроенными, без переменных или операций, как показано ниже.

Матрица коэффициентов линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇒ [a1b1c1a2b2c2a3b3c3]

Строки представляют коэффициенты в уравнениях, а столбцы представляют коэффициенты каждой переменной. Кроме того, если мы включим столбец, представляющий константы, мы получим так называемую расширенную матрицу – матрицу коэффициентов с включенным столбцом констант.. Для линейной системы с двумя переменными

Расширенная матрица линейной системы {a1x + b1y = c1a2x + b2y = c2 ⇔ [a1b1 | c1a2b2 | c2]

А для линейной системы с тремя переменными имеем

Расширенная матрица линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇔ [a1b1c1 | d1a2b2c2 | d2a3b3c3 | d3]

Примечание : Пунктирная вертикальная линия обеспечивает визуальное разделение между матрицей коэффициентов и столбцом констант.В других ресурсах по алгебре, с которыми вы можете столкнуться, это иногда опускается.

Пример 3

Постройте расширенную матрицу, которая соответствует: {9x − 6y = 0 − x + 2y = 1.

Решение:

Эта система состоит из двух линейных уравнений стандартной формы; следовательно, коэффициенты в матрице отображаются так же, как и в системе.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Пример 4

Постройте расширенную матрицу, которая соответствует: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Поскольку уравнения представлены в стандартной форме, коэффициенты появляются в матрице так же, как и в системе.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇔ [12−4 | 521−6 | 84−1−12 | 13]

Матрица имеет верхнюю треугольную форму, если все элементы ниже ведущего ненулевого элемента в каждой последующей строке равны нулю. Например,

Обратите внимание, что элементы ниже главной диагонали равны нулю, а коэффициенты выше образуют треугольную форму.В целом

Верхняя треугольная форма [a1b10b2] [a1b1c10b2c200c3]

Это важно, потому что в этом разделе мы очерчиваем процесс, с помощью которого можно выполнить определенные операции для создания эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки. Обзор процесса представлен ниже:

Когда система принимает форму верхнего треугольника, мы можем использовать обратную замену, чтобы легко ее решить.Важно отметить, что представленные здесь расширенные матрицы представляют собой линейные системы уравнений в стандартной форме.

Следующие элементарные операции со строками Операции, которые могут быть выполнены для получения эквивалентных линейных систем. приводят к расширенным матрицам, которые представляют эквивалентные линейные системы:

  1. Любые две строки можно поменять местами.
  2. Каждый элемент в строке можно умножить на ненулевую константу.
  3. Любая строка может быть заменена суммой этой строки и кратной другой.

Примечание: Эти операции согласуются со свойствами, используемыми в методе исключения.

Чтобы эффективно решить систему линейных уравнений, сначала постройте расширенную матрицу. Затем примените соответствующие элементарные операции со строками, чтобы получить расширенную матрицу в форме верхнего треугольника. В этой форме эквивалентная линейная система может быть легко решена с помощью обратной подстановки. Этот процесс называется гауссовским устранением. Шаги, используемые для получения эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки., названный в честь Карла Фридриха Гаусса (1777–1855).

Рисунок 3.1

Карл Фридрих Гаусс (Википедия)

Шаги решения линейного уравнения с двумя переменными с использованием исключения Гаусса перечислены в следующем примере.

Пример 5

Решить, используя матрицы и метод исключения Гаусса: {9x − 6y = 0 − x + 2y = 1.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму. В этом случае нам нужно только удалить первый элемент второй строки, −1. Для этого умножьте вторую строку на 9 и прибавьте ее к первой строке.

Теперь используйте это, чтобы заменить вторую строку.

[9−6 | 0012 | 9]

В результате получается расширенная матрица в форме верхнего треугольника.

Шаг 3 : Преобразуйте обратно в линейную систему и решите, используя обратную подстановку. В этом примере у нас

[9−6 | 0012 | 9] ⇒ {9x − 6y = 012y = 9

Решите второе уравнение относительно y ,

12y = 9y = 912y = 34

Подставьте это значение вместо y в первое уравнение, чтобы найти x ,

9x − 6y = 09x − 6 (34) = 09x − 92 = 09x = 92x = 12

Ответ: (12, 34)

Шаги по использованию исключения Гаусса для решения линейного уравнения с тремя переменными перечислены в следующем примере.

Пример 6

Решить, используя матрицы и метод исключения Гаусса: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇒ [12−4 | 521−6 | 84−1−12 | 13]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму.Начнем с исключения первого элемента второй строки, в данном случае 2. Для этого умножьте первую строку на −2, а затем добавьте ее во вторую строку.

[12−4 | 521−6 | 84−1−12 | 13] ⇒ × (−2) −2−48−10 + 21−680−32−2

Используйте это, чтобы заменить вторую строку.

[12−4 | 50−32 | −24−1−12 | 13]

Затем удалите первый элемент третьей строки, в данном случае 4, умножив первую строку на −4 и прибавив ее к третьей строке.

[12−4 | 50−32 | −24−1−12 | 13] ⇒ × (−4) −4−816−20 + 4−1−12130−94−7

Используйте это для замены третьей строки.

[12−4 | 50−32 | −20−94 | −7]

В результате получается расширенная матрица, в которой элементы под первым элементом первой строки равны нулю. Затем удалите второй элемент в третьей строке, в данном случае −9. Умножьте вторую строку на −3 и прибавьте ее к третьей строке.

Используйте это, чтобы заменить третью строку, и мы видим, что мы получили матрицу в форме верхнего треугольника.

[12−4 | 50−32 | −200−2 | −1]

Шаг 3 : Преобразуйте обратно в линейную систему и решите, используя обратную подстановку. В этом примере у нас

[12−4 | 50−32 | −200−2 | −1] ⇒ {x + 2y − 4z = 5−3y + 2z = −2−2z = −1

Ответ: Читателю остается убедиться, что решение (5,1,12).

Примечание: Обычно работа по замене строки путем умножения и сложения выполняется сбоку с помощью бумаги для заметок.

Пример 7

Решить, используя матрицы и метод исключения Гаусса: {2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47 ⇒ [2−93 | −181−2−3 | −8−42312 | 47]

Операции с элементарными строками упрощаются, если ведущий ненулевой элемент в строке равен 1.По этой причине начните с замены первого и второго ряда местами.

Заменить вторую строку суммой −2, умноженной на первую и вторую строку.

Заменить третью строку суммой четырех строк первой и третьей.

Далее разделите 3-ю строку на 15.

Поменяйте местами третий ряд со вторым.

Затем замените строку 3 суммой, умноженной на 5 строк второй и третьей.

В результате получается матрица в форме верхнего треугольника. Матрица находится в виде эшелона строк Матрица в треугольной форме, где ведущий ненулевой элемент каждой строки равен 1. если она находится в верхней треугольной форме, где ведущий ненулевой элемент каждой строки равен 1. Мы можем получить эту форму, заменив третью строку на результат деления на 9.

Преобразуйте в систему линейных уравнений и решите обратной подстановкой.

[1−2−3 | −8010 | 1001 | 13] ⇒ {x − 2y − 3z = −8y = 1z = 13

Здесь y = 1 и z = 13. Подставляем в первое уравнение, чтобы найти x .

x − 2y − 3y = −8x − 2 (1) −3 (13) = – 8x − 2−1 = −8x − 3 = −8x = −5

Ответ: Следовательно, решение – (−5, 1, 13).

Технологическое примечание : Многие современные калькуляторы и системы компьютерной алгебры могут выполнять метод исключения Гаусса. Сначала вам нужно узнать, как войти в матрицу.Затем используйте функции калькулятора, чтобы найти форму эшелона строки. Предлагаем вам провести исследование по этой теме для вашей конкретной модели калькулятора.

Попробуй! Решить, используя исключение Гаусса: {x − 3y + 2z = 164x − 11y − z = 692x − 5y − 4z = 36.

Ответ: (6, −4, −1)

Напомним, что некоторые непротиворечивые линейные системы зависимы, то есть у них бесконечно много решений.А некоторые линейные системы не имеют одновременного решения; это несовместимые системы.

Пример 8

Решить, используя матрицы и метод исключения Гаусса: {x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15 ⇒ [1−21 | 42−34 | 74−76 | 15]

Заменить строку два на −2 (строка 1) + (строка 2) и заменить строку три на −4 (строка 1) + (строка 3).

[1−21 | 4012 | −1012 | −1]

Заменить третью строку на −1 (строка 2) + (строка 3).

[1-21 | 4012 | -1000 | 0]

Последняя строка указывает, что это зависимая система, потому что преобразование расширенной матрицы обратно в уравнения, которые у нас есть,

{x − 2y + z = 4y + 2z = −10x + 0y + 0z = 0

Обратите внимание, что строка нулей соответствует следующему тождеству,

0x + 0y + 0z = 00 = 0 ✓

В этом случае мы можем выразить бесконечное множество решений через z .Из второго ряда имеем:

y + 2z = −1y = −2z − 1

И из первого уравнения,

x − 2y + z = 4x − 2 (−2z − 1) + z = 4x + 5z + 2 = 4x = −5z + 2

Решения имеют вид (x, y, z) = (- 5z + 2, −2z − 1, z), где z – любое действительное число.

Ответ: (−5z + 2, −2z − 1, z)

Зависимые и несовместимые системы могут быть идентифицированы в расширенной матрице коэффициентов, когда все коэффициенты в одной строке равны нулю.

Если строка нулей имеет соответствующую константу, равную нулю, тогда матрица представляет зависимую систему. Если константа отлична от нуля, матрица представляет собой несовместимую систему.

Попробуй! Решить, используя матрицы и метод исключения Гаусса: {5x − 2y + z = −310x − y + 3z = 0−15x + 9y − 2z = 17.

Ответ: Ø

Основные выводы

  • Линейная система в верхней треугольной форме может быть легко решена с помощью обратной подстановки.
  • Расширенная матрица коэффициентов и метод исключения Гаусса могут использоваться для упрощения процесса решения линейных систем.
  • Чтобы решить систему с использованием матриц и исключения Гаусса, сначала используйте коэффициенты для создания расширенной матрицы. Примените операции с элементарными строками как средство для получения матрицы в форме верхнего треугольника. Преобразуйте матрицу обратно в эквивалентную линейную систему и решите ее, используя обратную подстановку.

Тематические упражнения

    Часть A: Назад Замена

      Решите, используя обратную замену.

    1. {5x − 3y = 2y = −1

    2. {3x + 2y = 1y = 3

    3. {x − 4y = 12y = −3

    4. {x − 5y = 310y = −6

    5. {4x − 3y = −167y = 0

    6. {3x − 5y = −104y = 8

    7. {2x + 3y = −13y = 2

    8. {6x − y = −34y = 3

    9. {х-у = 02у = 0

    10. {2x + y = 23y = 0

    11. {x + 3y − 4z = 1y − 3z = −2z = 3

    12. {x − 5y + 4z = −1y − 7z = 10z = −2

    13. {x − 6y + 8z = 23y − 4z = −42z = −1

    14. {2x − y + 3z = −92y + 6z = −23z = 2

    15. {10x − 3y + z = 1311y − 3z = 92z = −6

    16. {3x − 2y + 5z = −244y + 5z = 34z = −12

    17. {x − y + 2z = 12y + z = 13z = −1

    18. {x + 2y − z = 2y − 3z = 16z = 1

    19. {x − 9y + 5z = −32y = 103z = 27

    20. {4x – z = 33y − 2z = −12z = −8

    Часть B: Матрицы и исключение Гаусса

      Построить соответствующую расширенную матрицу (не решать).

    1. {х + 2у = 34х + 5у = ​​6

    2. {6x + 5y = 43x + 2y = 1

    3. {x − 2y = 12x − y = 1

    4. {х-у = 2-х + у = -1

    5. {−x + 8y = 32y = 2

    6. {3x − 2y = 4 − y = 5

    7. {3x − 2y + 7z = 84x − 5y − 10z = 6 − x − 3y + 2z = −1

    8. {x − y − z = 02x − y + 3z = −1 − x + 4y − 3z = −2

    9. {x − 9y + 5z = −32y = 103z = 27

    10. {4x − z = 33y − 2z = −12z = −8

    11. {8x + 2y = −13−2y + z = 112x − 5z = −18

    12. {x − 3z = 2y + 6z = 42x + 3y = 12

      Решите, используя матрицы и метод исключения Гаусса.

    1. {x − 5y = 22x − y = 1

    2. {x − 2y = −1x + y = 1

    3. {10x − 7y = 15−2x + 3y = −3

    4. {9x − 10y = 23x + 5y = −1

    5. {3x + 5y = 82x − 3y = 18

    6. {5x − 3y = −147x + 2y = −1

    7. {9x + 15y = 53x + 5y = 7

    8. {6x − 8y = 1−3x + 4y = −1

    9. {х + у = 0х-у = 0

    10. {7x − 3y = 03x − 7y = 0

    11. {2x − 3y = 4−10x + 15y = −20

    12. {6x − 10y = 20−3x + 5y = −10

    13. {x + y − 2z = −1 − x + 2y − z = 1x − y + z = 2

    14. {x − y + z = −2x + 2y − z = 6 − x + y − 2z = 3

    15. {2x − y + z = 2x − y + z = 2−2x + 2y − z = −1

    16. {3x − y + 2z = 7 − x + 2y + z = 6x + 3y − 2z = 1

    17. {x − 3y + z = 6 − x − y + 2z = 42x + y + z = 3

    18. {4x − y + 2z = 12x − 3y + 2z = 7−2x + 3y + 4z = −16

    19. {2x − 4y + 6z = −43x − 2y + 5z = −25x − y + 2z = 1

    20. {3x + 6y + 9z = 62x − 2y + 3z = 0−3x + 18y − 12z = 5

    21. {−x + y − z = −23x − 2y + 5z = 13x − 5y − z = 3

    22. {x + 2y + 3z = 43x + 8y + 13z = 212x + 5y + 8z = 16

    23. {2x − 4y − 5z = 3 − x + y + z = 13x − 4y − 5z = −4

    24. {5x − 3y − 2z = 43x − 6y + 4z = −6 − x + 2y − z = 2

    25. {−2x − 3y + 12z = 44x − 5y − 10z = −1 − x − 3y + 2z = 0

    26. {3x − 2y + 5z = 104x + 3y − 3z = −6x + y + z = 2

    27. {x + 2y + z = −3x + 6y + 3z = 7x + 4y + 2z = 2

    28. {2x − y + z = 14x − y + 3z = 52x + y + 3z = 7

    29. {2x + 3y − 4z = 03x − 5y + 3z = −105x − 2y + 5z = −4

    30. {3x − 2y + 9z = 2−2x − 5y − 4z = 35x − 3y + 3z = 15

    31. {8x + 2y = −13−2y + z = 112x − 5z = −18

    32. {x − 3z = 2y + 6z = 42x + 3y = 12

    33. {9x + 3y − 11z = 62x + y − 3z = 17x + 2y − 8z = 3

    34. {3x − y − z = 4−5x + y + 2z = −36x − 2y − 2z = 8

    35. {2x − 4y + 3z = 153x − 5y + 2z = 185x + 2y − 6z = 0

    36. {3x − 4y − 3z = −144x + 2y + 5z = 12−5x + 8y − 4z = −3

    Часть C: Обсуждение

    1. Изучите и обсудите историю метода исключения Гаусса.Кто первым разработал этот процесс? Опубликуйте что-нибудь, что вам показалось интересным в связи с этой историей.

    2. Изучите и обсудите историю современной матричной записи. Кому засчитывается разработка? В каких сферах они используются сегодня? Разместите свои выводы на доске обсуждений.

ответов

  1. (-15, -1)

  2. (-5, -32)

  3. (-32,23)

  4. (−6, −2, −12)

  5. (85,0, −3)

  6. (73,23, −13)

  1. [12 | 345 | 6]

  2. [1-2 | 12-1 | 1]

  3. [−18 | 302 | 2]

  4. [3−27 | 84−5−10 | 6−1−32 | −1]

  5. [1−95 | −3020 | 10003 | 27]

  6. [820 | −130−21 | 1120−5 | −18]

  7. (13, −13)

  8. (32,0)

  9. (х, 23x − 43)

  10. (12,12, −12)

  11. (1,0,12)

  12. (−8, −12z + 52, z)

  13. (-32, -12, 0)

Gauss Elimination – обзор

1.3.7 Исключение Гаусса или Гаусса

Исключение Гаусса (также известное как Исключение Гаусса ) – широко используемый метод для решения систем линейных уравнений в форме [ K ] { u } = { F }. В операциях с матрицами существует три общих типа манипуляций, которые служат для создания новой матрицы, обладающей теми же характеристиками, что и исходная:

1.

Обмен любыми двумя строками.

2.

Умножьте каждую запись в любой строке на ненулевое постоянное значение.

3.

Добавьте значения из каждой записи одной строки к каждой записи другой строки.

Цель использования исключения Гаусса – создать новую матрицу с теми же свойствами, что и исходная [ K ], но в формате, в котором только верхний треугольник имеет ненулевые элементы. Используя предыдущую матрицу 5 × 5 в качестве примера, верхний треугольник состоит из элементов в правом верхнем треугольнике матрицы и включает элементы в правой диагональной строке в виде

[m11m12m13m14m150m22m23m24m2500m33m34m35000m44m450000m55].

Мы достигаем цели исключения Гаусса, правильно применяя одну из трех вышеупомянутых операций за раз. После того, как верхняя треугольная матрица сформирована, мы используем метод обратной подстановки , чтобы сначала найти последнюю переменную. Причина, по которой этот метод называется «обратной заменой», заключается в том, что последняя строка верхней треугольной матрицы должна быть решена первой. Поскольку в последней строке верхней треугольной матрицы есть только одна ненулевая запись, мы можем найти неизвестную переменную простым арифметическим делением, то есть из

[K] {u2v2u3u4v4} = [m11m12m13m14m150m22m23m24m2500m33m34m35000m44m40000m55u] {u2v2u3f2f2] } → v4 = F4Vm55.

Имея значение v 4 , мы решаем для второй до последней переменной. Поскольку m 44 u 4 + m 45 v 4 = F 4 H , мы можем решить для u 4 как u4 = F4H − m45v4m44. Мы многократно применяем один и тот же набор процедур, пока не будут найдены значения всех переменных.

Мы будем использовать типичный 64-битный компьютер, чтобы проиллюстрировать критическую проблему при использовании исключения Гаусса.Хорошо известно, что такой компьютер хранит действительное (десятичное) число в формате с плавающей запятой, используя 64 бита: 1 бит для представления знака (плюс или минус), 52 бита для представления числа точных цифр (мантисса), и 11 бит для представления экспоненты. При делении числа на другое очень маленькое число имеющихся цифр в мантиссе может быть недостаточно для поддержания необходимой точности, то есть может возникнуть ошибка округления. При исключении Гаусса точка поворота или позиция поворота – это позиция в строке, которая совпадает с правой диагональной линией.Значения в точках поворота используются в качестве знаменателя при формировании верхней треугольной матрицы. Чтобы исключить ошибки округления, возникающие при делении на очень маленькое число, используется первый тип манипуляции для перемещения строки с очень маленьким числом в точке поворота в другую строку. Это достигается простым перестановкой рядов так, чтобы большие числа располагались в точках поворота. Вторую и третью операции мы используем для получения нулей в левой нижней части матрицы, что необходимо для получения верхней треугольной матрицы.

Модифицированной версией метода исключения Гаусса является метод исключения Гаусса – Жордана. Цель исключения Гаусса – Жордана – получить матрицу, которая имеет правую диагональную линию всех единиц (единиц), а все остальные позиции матрицы содержат нули. Это достигается с помощью тех же трех типов манипуляций с матрицами, которые используются в методе исключения Гаусса. Поскольку квадратная матрица состоит только из единичных значений в диагональных элементах, решения для всех неизвестных становятся легко доступными.Один из недостатков метода Гаусса – Жордана заключается в том, что он более затратный в вычислительном отношении, чем метод исключения Гаусса. Таким образом, он полезен только для решения проблем путем ручного расчета, когда есть небольшое количество одновременных уравнений. Используя метод исключения Гаусса, а не метод Гаусса – Жордана, мы избегаем многих дополнительных шагов. Поскольку метод FE обычно включает большую систему, чаще используется метод исключения Гаусса.

В следующем разделе мы шаг за шагом продемонстрируем процессы в методе исключения Гаусса.Конечно, вместо ручных вычислений следует написать и использовать компьютерную программу. Используя предыдущий пример в качестве отправной точки, уравнение. (1.68) повторяется ниже.

[K] {u2v2u3u4v4} = 108 [100−50006.6700−6.67−506.44−1.441.9200−1.44400−6.671.

.67] {u2v2u3u4v4} = {F2HF2VF3HF40003−5002 = {0002002). все, кроме первой записи в первом столбце, равны 0. Мы заметили, что третья строка в этом столбце содержит единственное ненулевое значение. Чтобы манипулировать третьей строкой, чтобы сделать ведущее число 0, мы должны умножить существующее число (-5) на такое значение, чтобы добавление результата к первой записи в строке один (10) давало 0.Используя правило два, мы умножаем каждую запись в третьей строке на 2:

108 [100-50006,6700-6,67-10012,88-2,883,8400-1,44400-6,671,

,67] {u2v2u3u4v4} = {00020000-50000}.

Затем мы добавляем строку 1 к строке 3, но мы не затрагиваем строку 1:

108 [100−50006.6700−6.67007.88−2.883.8400−1.44400−6.671.

.67] {u2v2u3u4v4} = {00020000−50000 }.

Теперь, когда все значения в первом столбце, кроме первого, равны 0, мы применяем аналогичный процесс ко второму столбцу. Мы хотим, чтобы все значения во втором столбце, кроме второго, равнялись 0, а это значит, что мы должны адресовать −6.67 в последнем ряду. Это можно изменить на 0, просто добавив значения из строки 2.

108 [100-50006.6700-6.67007.88-2.883.8400-1.4440001.9204] {u2v2u3u4v4} = {00020000-50000}

Две операции, правила два и три необходимы для преобразования записи в строке четыре, столбце три в 0. Сначала мы умножаем четвертую строку на 7,881,44 (обратите внимание, что эта операция также применяется к вектору силы):

108 [100-50006,6700-6,67007. 88−2.883.8400−7.8821.8.9204] {u2v2u3u4v4} = {0001.094 × 105−50000},

, а затем добавьте значения из третьей строки к этим результатам, чтобы сформировать новую четвертую строку:

108 [100-50006.6700−6.67007.88−2.883.8400019.013.84001.9204] {u2v2u3u4v4} = {0001.094 × 105−50000}.

Аналогичным образом мы умножаем пятую строку на -7,881,92, а затем складываем значения из третьей строки, чтобы сформировать новую пятую строку:

108 [100-50006,6700-6,67007,88-2,883,8400019,013,84000-2,88-12,58 ] {u2v2u3u4v4} = {0001,094 × 1052,052 × 106}.

К этому моменту должно быть очевидно, что умножение на значение в другой строке и последующее деление на значение в текущей строке дает результат, который можно вычесть из этой другой строки и получить 0.Чтобы еще раз увидеть этот процесс, мы умножаем пятую строку на 19.012.88, затем складываем значения из четвертой строки, чтобы получить новую пятую строку:

108 [100−50006.6700−6.67007.88−2.883.8400019.013.840000−79.20] {u2v2u3u4v4} = {0001,094 × 1051,464 × 106}.

Теперь матрица имеет форму верхней треугольной матрицы, что означает, что все значения ниже и слева от правой диагональной линии являются нулями. На этом этапе мы применяем метод обратной замены для определения узловых смещений.

Начнем с последней строки, которая содержит 108 [0000−79.20], и мы умножаем последовательные значения в этой строке на последовательные значения в векторе узлового смещения:

108 ((0) (u2) + (0) (v2) + (0) (u3) + (0) ( u4) + (- 79.20) (v4)) = 1.464 × 106

Мы можем сделать это проще, признав, что только последнее значение в строке ненулевое, и поэтому v 4 – это просто последнее значение в вектор силы, деленный на последний элемент в верхней треугольной матрице [ K ]:

v4 = (1,464 × 106) (- 79,2 × 108) = – 1,849 × 10−4

Мы можем использовать v 4 , чтобы найти u 4 и т. Д.Ниже приведены расчеты значений узловых смещений в м :

u4 = 1.094 × 105-108 × 3.84 × v419.01 × 108 = 1.804 × 10519.01 × 108 = 0.949 × 10-4,

u3 = 108 × (2,88) × u4−108 × 3,84 × v4108 × 7,88 = 9,837 × 10−47,88 = 1,248 × 10−4,

v2 = 108 × 6,67 × v4108 × 6,67 = −1,849 × 10−4 и

u2 = 108 × 5 × u3108 × 10 = 0,624 × 10−4.

Узловые смещения, рассчитанные с использованием метода MSA или прямого метода жесткости, в точности совпадают с точными решениями проблем, связанных с фермами.Для типов элементов, отличных от фермы или пружины, узловые решения вряд ли будут иметь те же значения, что и точные решения. Простое практическое правило состоит в том, что чем больше элементов используется для представления интересующей структуры, тем точнее результаты будут приближаться к точным решениям. Дополнительные описания других типов элементов приведены в главе 2.

Метод исключения Гаусса – случай несовместимой системы

Мы продолжаем рассматривать метод исключения Гаусса.Ранее мы подготовили несколько руководств, охватывающих теоретические основы и примеры, включая применение матричного представления. Тем не менее, все эти примеры предлагали системы линейных уравнений, у которых есть решение. Однако это не всегда так. Выполняя домашнее задание или задание по линейной алгебре, вы можете столкнуться с разными ситуациями. Фактически, есть три возможности: система линейных уравнений может иметь либо единственное решение, либо бесконечное множество решений, либо вообще не иметь решения. В этом разделе мы обсудим последний случай.

Решим следующую систему линейных алгебраических уравнений:

\ left \ {\ begin {align} 2x_1-x_2 + 3x_3 = 4 \\ – 3x_1 + 2x_2 + x_3 = 5 \\ – 4x_1 + 2x_2-6x_3 = 1 \ end {align} \ right.

Вот видеоверсия этого руководства:

Как вы знаете, мы можем либо работать с системой в форме уравнений (как написано выше), либо использовать матричное представление системы. Выберем второй подход и рассмотрим матрицу коэффициентов для данной системы:

A = \ begin {pmatrix} 2 & -1 & 3 \\ – 3 & 2 & 1 \\ – 4 & 2 & -6 \ end {pmatrix}, \ vec {b} = \ begin {pmatrix} 4 \\ 5 \\ 1 \ end { pmatrix}, \ vec {x} = \ begin {pmatrix} x_1 \\ x_2 \\ x_3 \ end {pmatrix}, \ tilde {A} = \ begin {pmatrix} 2 & -1 & 3 & | & 4 \\ – 3 & 2 & 1 & | & 5 \\ – 4 & 2 & -6 & | & 1 \ end {pmatrix}

В этих терминах данная система представлена ​​следующим образом:

A \ vec {x} = \ vec {b}

Мы намерены получить нашу систему в треугольной (или эшелонированной) форме.Напомним, что мы можем менять местами строки матрицы, складывать или вычитать их, умножать или делить на действительное ненулевое число. Также обратите внимание, что поскольку у нас ненулевая правая часть системы, то есть наша система не является однородной, мы должны сделать все необходимые преобразования с расширенной матрицей \ tilde {A}, содержащей правые части уравнений, а не A. Распространенная ошибка – не учитывать \ vec {b}, поэтому не забывайте об этом, выполняя домашнее задание по алгебре. Таким образом, мы работаем с такой матрицей:

\ tilde {A} = \ begin {pmatrix} 2 & -1 & 3 & | & 4 \\ – 3 & 2 & 1 & | & 5 \\ – 4 & 2 & -6 & | & 1 \ end {pmatrix}

Сначала разделим первую строку на 2.Остальные строки остаются нетронутыми:

\ begin {pmatrix} 1 & – \ frac {1} {2} & \ frac {3} {2} & | & 2 \\ – 3 & 2 & 1 & | & | & 5 \\ – 4 & 2 & -6 & | & 1 \ end {pmatrix}

Теперь мы хотим исключить первое неизвестное x_1 из всех уравнений, кроме первого. Для этого сначала вычитаем первую строку, умноженную на (-3), из второй:

\ begin {pmatrix} 1 & – \ frac {1} {2} & \ frac {3} {2} & | & 2 \\ 0 & \ frac {1} {2} & \ frac {11} {2} & | & 11 \\ – 4 & 2 & -6 & | & 1 \ end {pmatrix}

Теперь умножаем вторую строку на $ 2 $ (чтобы получить коэффициент 1 перед x_2):

\ begin {pmatrix} 1 & – \ frac {1} {2} & \ frac {3} {2} & | & 2 \\ 0 & 1 & \ frac11 & | & 22 \\ – 4 & 2 & -6 & | & 1 \ end {pmatrix }

Также мы вычитаем первую строку раз (-4) из третьей строки:

\ begin {pmatrix} 1 & – \ frac {1} {2} & \ frac {3} {2} & | & 2 \\ 0 & 1 & \ frac11 & | & 22 \\ 0 & 0 & 0 & | & 9 \ end {pmatrix}

Хорошо, мы успешно исключили x_1 из второго и третьего уравнения.Собственно, дальше идти не нужно. Давайте внимательнее посмотрим на третью строку нашей матрицы (которая обозначает третье уравнение). Мы получили уравнение 0 = 9, что явно неверно. Это означает, что данная система не имеет решений. Такие системы называются несовместимыми.

В следующем разделе мы обсудим случай, когда система линейных алгебраических уравнений имеет бесконечно много решений. Как правило, если вы выполняете метод исключения по Гауссу, вам нужно быть внимательным и проверять систему на каждом этапе.Такой подход позволяет избежать лишних вычислений и экономит ваше время, как в только что рассмотренном примере.

Эта статья основана на одном из вопросов, полученных от наших клиентов. У вас есть собственные вопросы по математике? Спрашивайте и получайте ответы, мы помогаем.

Часть 6: Исключение по Гауссу. Исключение Гаусса – это алгоритм… | Авниш | Линейная алгебра

Метод исключения Гаусса – это алгоритм решения системы линейных уравнений. Он назван в честь немецкого математика Карла Фридриха Гаусса.

Карл Фридрих Гаусс

Он аналогичен методу исключения, описанному ранее.

Для выполнения метода исключения Гаусса:

  1. Создаем расширенную матрицу коэффициентов и констант данной системы линейных уравнений.
  2. Выбираем нашу pivot (это первый элемент по диагонали). Затем мы пытаемся уменьшить все элементы под ним (до «0»), используя pivot.

Мы делаем это, выполняя два вида операций:

a) Умножение сводной строки (строки сводного элемента) на скалярную величину и вычитание или добавление ее строк под ней.

b) Перестановка строк (например, строка 2 заменяется строкой 3)

Затем мы выбираем следующую точку поворота (следующий элемент по диагонали) и уменьшаем элементы под ней.

3. Разбиваем расширенную матрицу обратно на строковое изображение и выполняем умножение с переменной матрицей. Получаем новые редуцированные уравнения.

Мы решаем эти уравнения, чтобы получить значения неизвестных (переменных).

Предположим, что нам нужно найти решение (я) следующей системы уравнений:

4x + y = 9 → (1)

2x-y = 3 → (2)

5x-3y = 7 → ( 3)

(пример «Одно уникальное решение» из Части 5)

Шаг 1 (Создание расширенной матрицы):

Для выполнения исключения Гаусса мы берем изображение строки (1), (2) и (3) .Это будет выглядеть следующим образом:

Затем мы создаем расширенную матрицу для матрицы коэффициентов и постоянной матрицы.

Единая матрица со значениями коэффициентов и констант, разделенных пунктирной линией

Шаг 2 (Исключение):

Шаг 2A:

Принимая элемент в верхнем левом углу (первый элемент по диагонали) в качестве стержня, мы стремимся исключить ( уменьшить до «0») все элементы под ним. Другими словами, мы должны преобразовать каждый элемент в столбце 1 в «0», кроме pivot.

Элемент Pivot будет выделен красным цветом, а элементы, которые необходимо исключить, – синим.

Итак, мы умножаем первую строку на скаляр 1/2 и вычитаем ее из второй строки.

Элемент в строке 2 и столбце 1 исключается.

Затем мы умножаем первую строку на скаляр 5/4 и вычитаем из третьей строки.

Элемент в строке 3 и столбце 1 исключен.

Теперь все элементы в первом столбце равны «0», кроме точки поворота.

Шаг 2B:

Теперь следующий элемент по диагонали (второй столбец второй строки) установлен как опорный, и мы стремимся удалить все элементы под ним.

Pivot выделен красным.

Итак, мы умножаем вторую строку на скаляр 17/6 и вычитаем ее из третьей строки.

Элемент в строке 3 и столбце 2 исключен.

Результат – верхняя треугольная матрица.

Текущее состояние расширенной матрицы называется эшелоном строк формы .

Шаг 3 (обратная подстановка):

Теперь мы конвертируем форму эшелона строки обратно в изображение строки.

У нас было аналогичное уравнение на этапе 1

При умножении мы получаем:

Мы составляем уравнения из этих

4x + y = 9 → (4)

-3y / 2 = -3/2 → (5)

Решая (5) относительно «y», получаем:

y = 1

Теперь подставляем y = 1 в (4):

4x + 1 = 9

4x = 8

x = 2

Итак, мы получаем x = 2 и y = 1, именно то, что мы получили, когда решали через изображение строки и изображение столбца в Части 5.

Теперь применим тот же алгоритм еще в двух случаях (бесконечно много решений и нет решения).

Бесконечно много решений

Возьмем тот же пример, что и в части 5. А именно:

x + 2y = 4 → (6)

2x + 4y = 8 → (7)

Шаг 1 (Создание дополненного матрица):

Строковое изображение (6) и (7) Расширенная матрица строчного изображения выше

Шаг 2 (Исключение):

Принятие первого диагонального элемента («1») в качестве опорного.

Pivot выделен красным, и мы должны удалить все элементы под ним (синим). Чтобы исключить «2», мы дважды вычитаем строку 1 из строки 2 Теперь последняя строка полностью заполнена 0

Мы больше не делаем поворота. так как исключать нечего.

Шаг 3 (обратная подстановка):

Мы преобразуем форму эшелона строк обратно в изображение строки:

После этого мы умножаем ее и получаем новые уравнения

x + 2y = 4 → (8)

Уравнение (6) и уравнения (8) такие же, и у нас есть только одно уравнение после исключения, но два неизвестных («x» и «y»).

Существует множество значений, которыми можно заменить x и y, чтобы удовлетворить (8).

Нравится, x = 0 и y = 2. Подставляя в уравнение (8), получаем:

0 + 2 (2) = 4

4 = 4

Или x = 1 и y = 1.5. Подставляя в уравнение (8), получаем:

1 + 2 (1.5) = 4

1 + 3 = 4

4 = 4

Таким образом, система уравнений (6) и (7) имеет бесконечно много решений.

Нет решения

Рассмотрение системы линейных уравнений следующим образом:

x + y = 4 → (9)

x + y = 8 → (10)

xy = 0 → (11)

Применение Гаусса Устранение.

Шаг 1 (создание расширенной матрицы):

Строковое изображение (9), (10) и (11) Расширенная матрица коэффициентов и констант

Шаг 2 (исключение):

Принятие первого диагонального элемента в качестве точки поворота

Мы выполняем следующие две операции:

и матрица, которую мы получаем:

У нас все еще нет формы эшелона строк (верхняя треугольная матрица).

Итак, мы выполняем обмен строк (который также является вариантом на этапе исключения из метода исключения по Гауссу):

Замена строки 3 на строку 2 Форма эшелона строк

Этап 3 (обратная подстановка):

Форма эшелона строк преобразована обратно в изображение строки

Уравнения, которые мы получаем после умножения матриц выше:

x + y = 4 → (12)

-2y = -4 → (13)

Решая уравнение (13) относительно «y», получаем:

y = 2

Подставляя y = 2 в уравнение (12), мы получаем:

x + 2 = 4

x = 2

Чтобы подтвердить, что x = 2 и y = 2 является решением, мы подставляем их в систему уравнений i.е. (9), (10) и (11).

Подставляя в (9), получаем:

2 + 2 = 4

4 = 4

x = 2 и y = 2, удовлетворяет (9).

Подставляя в (10), получаем:

2 + 2 = 8

4 ≠ 8, это не удовлетворяет (10).

Следовательно, x = 2 и y = 2 не является решением (9), (10) и (11), и, как мы видели в прошлой статье, не существует решения этой системы линейных уравнений.

Одно решение

Когда количество неизвестных (переменных) равно количеству уравнения в системе линейных уравнений.

На примере (1), (2) и (3):

4x + y = 9 → (1)

2x-y = 3 → (2)

5x-3y = 7 → (3)

Есть 2 неизвестных («x» и «y») и 3 уравнения ((1), (2) и (3)).

Двух уравнений было бы достаточно для двух неизвестных.

Бесконечно много решений

Когда количество неизвестных превышает количество уравнений.

В качестве примера (6) и (7):

x + 2y = 4 → (6)

2x + 4y = 8 → (7)

Есть 2 неизвестных («x» и «y») и 2 уравнения ((6) и (7)).

Но если мы посмотрим дальше, то заметим, что (7) просто (6) умножается на 2. Следовательно, (6) и (7) являются одними и теми же уравнениями. Таким образом, количество уравнений равно 1.

Нет решения

Обычно, когда количество уравнений превышает количество неизвестных. У него нет решения.

Но также необходимо, чтобы никакие значения не могли быть заменены неизвестными, если удовлетворяется система линейных уравнений. Для этого нужно дважды проверить, удовлетворяет ли полученное решение всем уравнениям в системе.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовательская работа
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

Оставить комментарий