Основы электроники. Ток, напряжение, сопротивление.
На нашем сайте вышел обновленный курс по электронике! Мы рады предложить Вам новые статьи по этой теме:
Эта статья положит начало циклу статей, посвященных изучению основ электроники! Мы будем последовательно двигаться от самых азов до всяческих тонкостей при разводке плат и составлении принципиальных электрических схем. И начнем мы с рассмотрения основополагающих понятий электроники – тока, напряжения и сопротивления.
Напряжение.
По определению напряжение – это энергия или работа, которая тратится на перемещение единичного положительного заряда из точки с низким потенциалом в точку с более высоким потенциалом. Напряжение представляет собой разность потенциалов между двумя точками. Сразу же остановимся и рассмотрим подробнее понятие – электрический потенциал.
Для определения электрического потенциала необходимо выбрать точку нулевого потенциала, относительно которой будет вестись отсчет.
Земля будет точкой отсчета, потенциал в этой точке равен 0. Тогда электрический потенциал в точке 1 будет равен напряжению источника питания, то есть 10 В. Соответственно, в точке 2 потенциал снова уменьшится до нуля, а напряжение на нагрузке будет равно 10 В (разность потенциалов между точками 1 и 2). Вроде бы все несложно и понятно, но это довольно важный момент, надо сразу уяснить для себя понятия напряжения и разности потенциалов, разницу и взаимосвязь между ними.
Ток.
Ток – скорость перемещения заряда в определенной точке, измеряются эта величина в Амперах. Тут тоже есть момент, который важно понять раз и навсегда. Если напряжение мы меряем между(!) двумя точками, то ток всегда проходит через(!) какую-либо точку схемы, либо через какой-либо элемент схемы. И если говорить о напряжении в какой-то точке схемы, то подразумевается напряжение между этой точкой и землей (потенциал в нашей точке минус потенциал земли, равный нулю).
Существует один важный закон для токов, называется он первым законом Кирхгофа и заключается он в том, что «сумма втекающих в точку токов равна сумме вытекающих из этой же точки токов». Для полного понимания смотрим на схему:
Тут у нас втекающие токи – I_1, I_2, I_3, а вытекающие – I_4, I_5. И по первому закону Кирхгофа мы имеем: I_1 + I_2 + I_3 = I_4 + I_5.
Сопротивление.
Сопротивление помогает связать напряжение и ток в цепи. Есть такая потрясающая штука – закон Ома, который говорит нам, что «сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи». Поясним на простеньком примере:
Итак, по закону Ома имеем: I = \frac{U}{R}.
Таким образом, можно сказать, что резистор позволяет нам преобразовать ток в напряжение, ну и, соответственно, напряжение в ток.
Рассмотрим возможные соединения резисторов, а именно, последовательное и параллельное. Пусть имеются три резистора, соединенных последовательно:
Общее сопротивление равно сумме каждого из сопротивлений в отдельности, то есть: R_0 = R_1 + R_2 + R_3.
Рассмотрим параллельное соединение:
Для параллельного соединения резисторов формула выглядит иначе: \frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.
Очевидно, что при последовательном соединении резисторов общее сопротивление всегда получается большим, чем сопротивление отдельно взятого резистора, а при параллельном соединении резисторов, наоборот, общее сопротивление получается меньшим, чем сопротивление отдельных резисторов. Это важно запомнить и иметь ввиду при разработке электрических схем.
И еще важный момент – не нужно зацикливаться на точном определении значений сопротивления резисторов. Напротив, очень важно выработать способность быстро прикидывать в голове, какой резистор нужно поместить в схему в каждом конкретном случае.
Думаю тут еще надо рассмотреть такую вещь как делитель напряжения, раз уж речь идет о резисторах и сопротивлениях. Выглядит схема делителя так:
Делители напряжения, кстати, очень широко используются в схемах, можете взять какую-нибудь и обязательно там найдете с десяток делителей. Но что-то я забежал вперед, сначала рассмотрим, что же это такое. Простейший делитель напряжения – это схема, которая на выходе создает напряжение, равное части напряжения, которое имеется на входе.
Ток в цепи: I = \frac{U_{вх} }{R_1 + R_2} .
Тогда что же будет на выходе? Правильно: U_{вых} = IR_2 = \frac{U_{вх}R_2}{R_1 + R_2}.
Вот и получили, что на выходе напряжение равно части входного напряжения. Так работает делитель напряжения.
Итак, мы и рассмотрели понятия тока, напряжения и сопротивления. Наверное, на этом стоит остановиться, а то получится очень громоздко 🙂 Продолжим в следующих статьях, так что оставайтесь на связи!
Ток, напряжение, сопротивление
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно.
Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах.
Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.
Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира.
Условиями возникновения и существования электрического тока являются:
- Наличие свободных носителей заряда
- Наличие электрического поля, создающего и поддерживающего ток.
Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно.
Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.
Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.
Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ.
Здесь:
- E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
- Δφ=φ1-φ2 – разность потенциалов (рисунок 1).
Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.
Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε.
Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.
Напряжение
Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε.
Это не совсем корректно, но на практике вполне достаточно.
Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривется на отдельной странице этого раздела.
Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.
Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S.
Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление.
Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:
Ток – Ампер (А)
Напряжение – Вольт (В)
Сопротивление – Ом (Ом).
Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.
© 2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Что такое сила тока, формула
Что такое сила тока
Представим обычный водопроводный кран. Открываем вентиль — бежит вода. Чем больше мы будем поворачивать ручку, тем сильнее станет напор и тем больше воды будет выливаться из крана за определённое время.
Похоже обстоит дело и с электрическим током. Только вместо крана — проводник, молекулы воды — заряженные частицы, напор — напряжение, а расход воды — сила тока.
Сила тока (I) — это отношение электрического заряда (
q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).Единица измерения силы тока — Ампер (A). Она названа в честь Андре-Мари Ампера — французского физика, который совершил несколько важных открытий, связанных с электричеством.
Андре-Мари Ампер (1775-1836)
Один Ампер — это сила тока, при которой за одну секунду через поперечное сечение проводника проходит заряд, равный одному Кулону, то есть заряд чуть больше, чем шести квинтиллионов (миллиард миллиардов) электронов.
Чтобы понять, Ампер — много это или мало, обратимся к фактам.
Ток силой в 0,05 Ампер вызывает неприятные ощущения, а ток в 0,1 Ампер может убить человека за несколько секунд. В светодиодных лампочках течёт ток в 0,02 Ампер, мобильный телефон при максимальной нагрузке потребляет до 0,5 Ампер, автомобильный аккумулятор способен выдавать несколько сотен Ампер, а ток в молнии достигает 200 000 Ампер.
Сила тока и сопротивление
Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра.
То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.
Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.
Плавкие предохранители: новый и отработанный
Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан.
Формула сопротивления выглядит так:
l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё.
Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.
Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82021 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока!
Как измерить силу постоянного тока
Существует специальный прибор для измерения силы тока — амперметр. Он подключается последовательно к проводнику, в котором нужно измерить силу тока. Для этого один из концов нужного проводника отсоединяют от электрической цепи и в получившийся разрыв включают амперметр с помощью двух клемм — со знаками «+» и «−». Клемму со знаком «+» подключают к точке разрыва, которая сохранила связь с положительным полюсом источника тока.
Поскольку сила тока на всех последовательных участках цепи одинакова (он нигде не «застаивается»), амперметр можно включать как до потребителя тока, так и после.
На схемах амперметр изображается буквой «А» в круге.
Существует много разных видов амперметров, различающихся по принципу действия. Проще всего устроен тепловой амперметр. Между двумя зажимами натянута проволока, соединённая нитью с пружиной. Нить охватывает петлёй неподвижную ось со стрелкой. Когда к зажимам подаётся ток, он проходит через проволоку и нагревает её. Нагретая проволока становится немного длиннее, из-за этого нить сильнее оттягивается пружиной. При движении нить поворачивает ось, и стрелка на ней показывает, чему равна сила тока.
Схема работы теплового амперметра
Современные электрики пользуются мультиметрами — приборами, которые позволяют измерить и силу тока, и напряжение, и сопротивление.
Закон Ома | Физика
В предыдущих параграфах были рассмотрены три величины, характеризующие протекание электрического тока в цепи,— сила тока I, напряжение U и сопротивление R. Между этими величинами существует определенная связь. Закон, выражающий эту связь, был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя.
Выделим в произвольной электрической цепи участок, обладающий сопротивлением R и находящийся под напряжением U (рис. 37). Согласно закону Ома:
Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.
Математически закон Ома записывается в виде следующей формулы:
I = U/R (14.1)
Закон Ома позволяет установить, что будет происходить с силой тока на участке цепи при изменении его сопротивления или напряжения.
1. При неизменном сопротивлении сила тока прямо пропорциональна напряжению: чем больше напряжение U на концах участка цепи, тем больше сила тока I на этом участке. Увеличив (или уменьшив) напряжение в несколько раз, мы во столько же раз увеличим (или уменьшим) силу тока.
Проиллюстрируем эту закономерность на опыте. Соберем электрическую цепь из источника тока, лампы, амперметра и ключа (рис. 38, а). В качестве источника тока будем использовать устройство, позволяющее регулировать выходное напряжение от 4 до 12 В. Измеряя силу тока в цепи при разных напряжениях, можно убедиться в том, что она действительно пропорциональна напряжению.
2. При неизменном напряжении сила тока обратно пропорциональна сопротивлению: чем больше сопротивление R участка цепи, тем меньше сила тока I в нем.
Для проверки этой закономерности заменим в используемой цепи лампу на магазин сопротивлений (рис. 38, б). Измеряя силу тока при разных сопротивлениях, мы увидим, что сила тока I и сопротивление R действительно находятся в обратно пропорциональной зависимости.
При уменьшении сопротивления сила тока возрастает. Если сила тока превысит допустимое для данной цепи значение, включенные в нее приборы могут выйти из строя; провода при этом могут раскалиться и стать причиной пожара. Именно такая ситуация возникает при коротком замыкании. Так называют соединение двух точек электрической цепи, находящихся под некоторым напряжением, коротким проводником, обладающим очень малым сопротивлением.
Короткое замыкание может возникнуть при соприкосновении оголенных проводов, при небрежном ремонте проводки под током, при большом скоплении пыли на монтажных платах и даже при случайном попадании какого-нибудь насекомого внутрь прибора.
На законе Ома основан экспериментальный способ определения сопротивления. Из формулы (14.1) следует, что
R = U/I (14.2)
Поэтому для нахождения сопротивления R участка цепи надо измерить на нем напряжение U, затем силу тока I, после чего разделить первую из этих величин на вторую. Соответствующая этому схема цепи изображена на рисунке 39.
Если, наоборот, известны сопротивление R и сила тока I на участке цепи, то закон Ома позволяет рассчитать напряжение U на его концах. Из формулы (14.1) получаем
U = IR (14.3)
Чтобы найти напряжение U на концах участка цепи, надо силу тока I на этом участке умножить на его сопротивление R.
Опубликовав книгу, в которой излагался открытый им закон «Теоретические исследования электрических цепей», Георг Ом написал, что «рекомендует ее добрым людям с теплым чувством отца, не ослепленного обезьяньей любовью к детям, но довольствующегося указанием на открытый взгляд, с которым его дитя смотрит на злой мир». Мир действительно оказался для него злым, и уже через год после выхода его книги в одном из журналов появилась статья, в которой работы Ома были подвергнуты уничтожающей критике. «Тот, кто благоговейными глазами взирает на вселенную,— говорилось в статье,— должен отвернуться от этой книги, являющейся плодом неисправимых заблуждений, преследующих единственную цель — умалить величие природы».
Злобные и безосновательные нападки на Ома не прошли бесследно. Теорию Ома не приняли. И вместо продолжения научных исследований он должен был тратить время и энергию на полемику со своими оппонентами. В одном из своих писем Ом написал: «Рождение «Электрических цепей» принесло мне невыразимые страдания, и я готов проклясть час их зарождения».
Но это были временные трудности. Постепенно, сначала в России, а затем и в других странах, теория Ома получила полное признание. Закон Ома внес такую ясность в правила расчета токов и напряжений в электрических цепях, что американский ученый Дж. Генри, узнав об открытиях Ома, не удержался от восклицания: «Когда я первый раз прочел теорию Ома, то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак».
??? 1. Сформулируйте закон Ома. 2. Как изменится сила тока на участке цепи, если при неизменном сопротивлении увеличить напряжение на его концах? 3. Как изменится сила тока, если при неизменном напряжении увеличить сопротивление участка цепи? 4. Как с помощью вольтметра и амперметра можно измерить сопротивление проводника? 5. По какой формуле находится напряжение, если известны сила тока и сопротивление данного участка? 6. Что называют коротким замыканием? Почему при этом увеличивается сила тока? 7. Объясните причину короткого замыкания в ситуациях, изображенных на рисунке 40.
Задачи
Задачи к уроку 50/14
1. Космическая ракета при старте с Земли движется вертикально вверх с ускорением a = 25 м/с2. Определите вес космонавта массой m = 100 кг. Ускорение свободного падения считать равным 10 м/с2.
2. Парашютист, достигнув в затяжном прыжке скорости υ1 = 60 м/с, раскрыл парашют, после чего его скорость за t = 2 с уменьшилась до υ2 = 10 м/с. Чему равен вес парашютиста массой m = 70 кг во время торможения? Ускорение свободного падения считать равным 10 м/с2.
3. Самолет, двигаясь с постоянной скоростью 720 км/ч, совершает фигуру высшего пилотажа – «мертвую петлю» – радиусом 1000 м. Чему равна перегрузка летчика в верхней точке петли? (g = 10 м/с2).
Задачи д/з к уроку 48/12
1. Во сколько раз изменится сила Всемирного тяготения, если массу одного тела увеличить в 3 раза, а другого уменьшить в 9 раз?
2. Во сколько раз изменится сила Всемирного тяготения, если расстояние между телами уменьшить в 5 раз?
3. С каким ускорением всплывает тело массой 25 кг, если на него действует сила Архимеда 300 Н?
Задачи д/з к уроку 60
1. Почему невозможно, из положения сидя прямо на стуле, встать на ноги, не наклонившись предварительно вперед?
2. Почему однородный прямоугольный кирпич можно положить на край стола, только если с края стола свисает не более половины длины кирпича?
3. Почему вы вынуждены отклоняться назад, когда несете в руках тяжелый груз?
Задачи д/з к уроку 58/7
1. Какова средняя сила давления F на плечо при стрельбе из автомата, если масса пули m = 10 г, а скорость пули при вылете из канала ствола v = 300 м/с? Автомат делает 300 выстрелов в минуту.
2. Для проведения огневых испытаний жидкостный ракетный двигатель закрепили на стенде. С какой силой он действует на стенд, если скорость истечения продуктов сгорания из сопла 150 м/с, а расход топлива за 5 секунд составил 30 кг?
3. Ракета массой 1000 кг неподвижно зависла над поверхностью земли. Сколько топлива в единицу времени сжигает ракета, если скорость истечения продуктов сгорания из ракеты равна 2 км/с?
Онлайн калькулятор – закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
как связаны между собой напряжение, ток и сопротивление
Добавлено 30 сентября 2020 в 00:30
Сохранить или поделиться
Первая и, возможно, самая важная взаимосвязь между током, напряжением и сопротивлением называется законом Ома, который был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Гальваническая цепь, исследованная математически».
Напряжение, ток и сопротивление
Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.
Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.
Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.
Единицы измерения: вольт, ампер и ом
Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:
Величина | Символ | Единица измерения | Сокращение единицы измерения |
---|---|---|---|
Ток | I | Ампер | А |
Напряжение | V | Вольт | В |
Сопротивление | R | Ом | Ом |
«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.
Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.
Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.
Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.
Кулон и электрический заряд
Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.
Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.
Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.
Формула закона Ома
Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:
\[E=IR\]
В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:
\[I = \frac{E}{R}\]
\[R = \frac{E}{I}\]
Анализ простых схем с помощью закона Ома
Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:
Рисунок 1 – Пример простой схемыВ приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.
В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):
Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампыКакая величина тока (I) в этой цепи?
\[I = \frac{E}{R} = \frac{12 \ В}{3 \ Ом} = 4 \ А\]
Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):
Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепиКакое сопротивление (R) оказывает лампа?
\[R = \frac{E}{I} = \frac{36 \ В}{4 \ А} = 9 \ Ом\]
В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):
Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампыКакое напряжение обеспечивает батарея?
\[E = IR = (2 \ А)(7 \ Ом) = 14 \ В\]
Метода треугольника закона Ома
Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Рисунок 5 – Треугольник закона ОмаЕсли вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Рисунок 6 – Закон Ома для определения RЕсли вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Рисунок 7 – Закон Ома для определения IНаконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
Рисунок 8 – Закон Ома для определения EВ конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!
Резюме
- Напряжение измеряется в вольтах, обозначается буквами «E» или «V».
- Сила тока измеряется в амперах, обозначается буквой «I».
- Сопротивление измеряется в омах, обозначается буквой «R».
- Закон Ома: E = IR; I = E/R; R = E/I
Оригинал статьи:
Теги
Закон ОмаЗарядКулонОбучениеСила токаСопротивлениеСхемотехникаЭлектрический токЭлектрическое напряжениеСохранить или поделиться
электрический ток
Направленное движение носителей электрического заряда, то есть электронов, движущихся в определенном направлении, называется электрическим током. Сами электроны представляют собой чрезвычайно маленькие элементарные частицы, которые имеют одинаковый отрицательный заряд.
Электрический ток течет только в замкнутой цепи тока. Замкнутая цепь состоит, по крайней мере, из источника электроэнергии и электрического устройства или компонента, которые соединены электрическими проводниками (такими как электрические провода).Эти проводники могут быть металлами, а также жидкостями или газами. Примечание: важно проверить, где может протекать электрический ток! Иногда предмет или тело попадают случайно, если он соприкасается (касается) электрических проводников.
Чем выше напряжение на источнике питания, тем больше сила тока (необходимое условие: все компоненты остаются прежними, а температура не меняется). Кроме того: чем сильнее сопротивление электрического проводника, тем меньше сила тока, если напряжение остается прежним.
Если вы знаете напряжение и электрическое сопротивление электрической цепи, вы можете рассчитать силу тока по следующей формуле:
Сила тока – это физическая величина, обозначающая количество электронов, которые проходят через определенную площадь поперечного сечения электрического проводника в течение одной секунды. (Вы можете представить это как затвор, который считает электроны, проходящие через определенное место в проводнике). Сила тока обозначается условным обозначением I .Обозначение формулы I происходит от слова интенсивности . Цель состоит в том, чтобы описать силу электрического тока. Интенсивность помогает понять, что сила тока высока, если особенно большое количество электронов проходит через площадь поперечного сечения в течение определенного периода времени.
Сила тока указывается в амперах. Своим названием он обязан французскому физику Андре-Мари Амперу, который с 1775 по 1836 год жил во Франции. Сила тока в один ампер будет достигнута, если 6,24 квинтиллиона (6.240.000.000.000.000.000) электронов проходят через поперечное сечение проводника за одну секунду.
Сила электрического тока – это мера количества заряда ( Q ), который пересек площадь сечения за определенный период времени ( t ). Он описывается следующей формулой:
(Напоминаем: Q – это символ заряда, а t – время.)
Эти модели проводов помогут вам понять, что означает высокая или низкая сила тока.Чем выше сила тока, тем больше электронов проходит через
кондуктор в течение определенного периода времени:
Низкая сила тока; несколько электронов за период времени:
Примечание: в реальном проводнике электроны не так прямолинейны; они скорее двигаются зигзагообразно.
Вот несколько примеров сильных сторон вашей повседневной жизни:
лампочка | около | 0,4 Ампер |
фонарь | Спо | 0,6 А |
тостер | около | 5,2 Ампер |
печь для выпечки | Спо | 12 ампер |
электровоз | apbout | 150 ампер |
молния | Спо | 1.000.000 ампер |
открытых учебников | Сиявула
Математика
Наука
- Читать онлайн
Учебники
Английский
Класс 7A
Марка 7Б
7 класс (A и B вместе)
Африкаанс
Граад 7А
Граад 7Б
Граад 7 (A en B saam)
Пособия для учителя
- Читать онлайн
Учебники
Английский
Марка 8A
Сорт 8Б
Оценка 8 (вместе A и B)
Африкаанс
Граад 8А
Граад 8Б
Граад 8 (A en B saam)
Пособия для учителя
- Читать онлайн
Учебники
Английский
Марка 9А
Марка 9Б
9 класс (A и B вместе)
Африкаанс
Граад 9А
Граад 9Б
Граад 9 (A en B saam)
Пособия для учителя
- Читать онлайн
Учебники
Английский
Класс 4A
Класс 4Б
Класс 4 (вместе A и B)
Африкаанс
Граад 4А
Граад 4Б
Граад 4 (A en B saam)
Пособия для учителя
- Читать онлайн
Учебники
Английский
Марка 5A
Марка 5Б
Оценка 5 (вместе A и B)
Африкаанс
Граад 5А
Граад 5Б
Граад 5 (A en B saam)
Пособия для учителя
- Читать онлайн
Учебники
Английский
Класс 6A
класс 6Б
6 класс (A и B вместе)
Африкаанс
Граад 6А
Граад 6Б
Граад 6 (A en B saam)
Пособия для учителя
Наша книга лицензионная
Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:
CC-BY-ND (фирменные версии)
Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.
Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.
CC-BY (версии без марочного знака)
Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием – дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.
Сопротивление и резисторы | Безграничная физика
Закон Ома
ЗаконОма гласит, что ток пропорционален напряжению; схемы являются омическими, если они подчиняются соотношению V = IR.
Цели обучения
Контрастная форма вольт-амперных графиков для омических и неомических цепей
Основные выводы
Ключевые моменты
- Напряжение управляет током, а сопротивление препятствует ему. Закон
- Ом относится к пропорциональному соотношению между напряжением и током. Это также относится к конкретному уравнению V = IR, которое действительно при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
- Цепи или компоненты, которые подчиняются соотношению V = IR, известны как омические и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
- Существуют неомические компоненты и схемы; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
- простая схема : Схема с одним источником напряжения и одним резистором.
- омический : То, что подчиняется закону Ома.
Закон Ома
Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток. Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V.Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].
Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Это эмпирический закон, подобный закону трения – явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.Напомним, что в то время как напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].
Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.
Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.
Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.
Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для обозначения этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток – поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.
В истинно омическом устройстве одно и то же значение сопротивления будет вычислено из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток принудительно установлен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. Мы визуализируем график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их соотношение между током и напряжением (их ВАХ) нелинейное (или неомическое). Примером может служить диод с p-n переходом.
Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.
Закон Ома : Краткий обзор закона Ома.
Температура и сверхпроводимость
Сверхпроводимость – это явление нулевого электрического сопротивления и выброс магнитных полей в некоторых материалах при температуре ниже критической.
Цели обучения
Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле
Основные выводы
Ключевые моменты
- Сверхпроводимость – это сверхпроводимость. Сверхпроводимость – это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
- В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
- Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается. Сверхпроводники
- могут поддерживать ток без приложенного напряжения.
Ключевые термины
- высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
- критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
- сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.
Сверхпроводимость – это явление точно нулевого электрического сопротивления и выброса магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.
Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).
Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры T ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств – отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он претерпевает прерывистый скачок и после этого перестает быть линейным, как показано на.
.Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень малое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера – определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.
Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.
Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения – свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на текущую продолжительность жизни не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.
Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в правильности его классификации как «обычного» сверхпроводника.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в.
Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.
Сопротивление и удельное сопротивление
Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.
Цели обучения
Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением
Основные выводы
Ключевые моменты
- Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
- Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
- Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины. Резисторы
- расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
- эквивалентное сопротивление серии : сопротивление сети резисторов, расположенных так, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление – это сумма сопротивлений всех резисторов в сети.
- параллельное эквивалентное сопротивление : такое сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), поэтому токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
- удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
Сопротивление и удельное сопротивление
Сопротивление – это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.
Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.
Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ – это внутреннее свойство материала , независимо от его формы или размера. Напротив, сопротивление R – это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.
Типичный резистор : Типовой резистор с осевыми выводами.
Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:
[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].
В качестве особого случая сопротивление N резисторов, соединенных последовательно, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:
[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].
Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:
[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].
В качестве особого случая сопротивление N резисторов, подключенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.
Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.
Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одним из практических применений этих соотношений является то, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В особом случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.
Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.
Зависимость сопротивления от температуры
Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.
Цели обучения
Сравнить температурные зависимости удельного сопротивления и сопротивления при больших и малых изменениях температуры
Основные выводы
Ключевые моменты
- При изменении температуры на 100ºC или меньше удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.
- При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
- Сопротивление объекта демонстрирует такую же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
- удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
- температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
- полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.
Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или меньше) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражено в следующем уравнении:
Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах – это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление делает внезапный скачок, а затем увеличивается почти линейно. с температурой.
[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]
, где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 · 10 −3 K −1 до + 6 · 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно меняется с температурой. Это полезно, например, для создания не зависящего от температуры эталона сопротивления.
Отметим также, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,
[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]
– это температурная зависимость сопротивления объекта, где R 0 – исходное сопротивление, а R – сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Термометры : Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.
Учебное пособие по физике: электрическое сопротивление
Электрон, движущийся по проводам и нагрузкам внешней цепи, встречает сопротивление. Сопротивление является препятствием для прохождения заряда.Для электрона путешествие от терминала к терминалу не является прямым маршрутом. Скорее, это зигзагообразный путь, который возникает в результате бесчисленных столкновений с неподвижными атомами в проводящем материале. Электроны сталкиваются с сопротивлением – препятствием для их движения. В то время как разность электрических потенциалов, установленная между двумя выводами , способствует перемещению заряда , а препятствует этому сопротивлению. Скорость, с которой заряд проходит от терминала к терминалу, является результатом совместного действия этих двух величин.
Переменные, влияющие на электрическое сопротивлениеПоток заряда по проводам часто сравнивают с потоком воды по трубам. Сопротивление потоку заряда в электрической цепи аналогично эффектам трения между водой и поверхностями трубы, а также сопротивлению, создаваемому препятствиями, которые присутствуют на ее пути. Именно это сопротивление препятствует потоку воды и снижает как скорость потока, так и скорость дрейфа .Подобно сопротивлению потоку воды, общее сопротивление потоку заряда в проводе электрической цепи зависит от некоторых четко идентифицируемых переменных.
Во-первых, общая длина проводов влияет на величину сопротивления. Чем длиннее провод, тем большее сопротивление будет. Существует прямая зависимость между величиной сопротивления, с которым сталкивается заряд, и длиной провода, который он должен пройти. В конце концов, если сопротивление возникает в результате столкновений между носителями заряда и атомами провода, то, вероятно, столкновений будет больше в более длинном проводе.Больше столкновений означает большее сопротивление.
Во-вторых, на величину сопротивления влияет площадь поперечного сечения проводов. Более широкие провода имеют большую площадь поперечного сечения. Вода будет течь по более широкой трубе с большей скоростью, чем по узкой. Это можно объяснить меньшим сопротивлением, которое присутствует в более широкой трубе. Таким же образом, чем шире провод, тем меньше будет сопротивление прохождению электрического заряда. Когда все другие переменные одинаковы, заряд будет течь с большей скоростью через более широкие провода с большей площадью поперечного сечения, чем через более тонкие провода.
Третья переменная, которая, как известно, влияет на сопротивление потоку заряда, – это материал, из которого сделан провод. Не все материалы созданы равными с точки зрения их проводящей способности. Некоторые материалы являются лучшими проводниками, чем другие, и обладают меньшим сопротивлением потоку заряда. Серебро – один из лучших проводников, но никогда не используется в проводах бытовых цепей из-за своей стоимости. Медь и алюминий являются одними из наименее дорогих материалов с подходящей проводящей способностью, позволяющей использовать их в проводах бытовых цепей.На проводящую способность материала часто указывает его удельное сопротивление . Удельное сопротивление материала зависит от электронной структуры материала и его температуры. Для большинства (но не для всех) материалов удельное сопротивление увеличивается с повышением температуры. В таблице ниже приведены значения удельного сопротивления для различных материалов при температуре 20 градусов Цельсия.
Материал | Удельное сопротивление (Ом • метр) |
Серебро | 1.59 х 10 -8 |
Медь | 1,7 х 10 -8 |
Золото | 2,2 х 10 -8 |
Алюминий | 2,8 х 10 -8 |
Вольфрам | 5.6 х 10 -8 |
Утюг | 10 х 10 -8 |
Платина | 11 х 10 -8 |
Свинец | 22 х 10 -8 |
Нихром | 150 х 10 -8 |
Углерод | 3.5 х 10 -5 |
Полистирол | 10 7 – 10 11 |
Полиэтилен | 10 8 – 10 9 |
Стекло | 10 10 – 10 14 |
Твердая резина | 10 13 |
Как видно из таблицы, существует широкий диапазон значений удельного сопротивления для различных материалов.Материалы с более низким сопротивлением обладают меньшим сопротивлением потоку заряда; они лучшие дирижеры. Материалы, показанные в последних четырех строках вышеприведенной таблицы, обладают таким высоким удельным сопротивлением, что их даже нельзя рассматривать как проводники.
Посмотри! Используйте виджет Resistivity of a Material , чтобы найти удельное сопротивление данного материала. Введите название материала и нажмите кнопку Submit , чтобы узнать его удельное сопротивление. Математическая природа сопротивленияСопротивление – это числовая величина, которую можно измерить и выразить математически. Стандартной метрической единицей измерения сопротивления является ом, представленный греческой буквой омега -. Электрическое устройство с сопротивлением 5 Ом будет представлено как R = 5 . Уравнение, представляющее зависимость сопротивления ( R ) проводника цилиндрической формы (например,, провод) от влияющих на него переменных равно
, где L представляет длину провода (в метрах), A представляет площадь поперечного сечения провода (в метрах 2 ) и представляет удельное сопротивление материала (в Ом • метр). В соответствии с приведенным выше обсуждением это уравнение показывает, что сопротивление провода прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения провода.Как показано в уравнении, знание длины, площади поперечного сечения и материала, из которого изготовлен провод (и, следовательно, его удельного сопротивления), позволяет определить сопротивление провода.
Расследуй! Резисторы – один из наиболее распространенных компонентов в электрических цепях. На большинстве резисторов нанесены цветные полосы или полосы. Цвета отображают информацию о значении сопротивления.Возможно, вы работаете в лаборатории и вам нужно знать сопротивление резистора, используемого в лаборатории. Используйте виджет ниже, чтобы определить значение сопротивления по цветным полосам.
1. В бытовых цепях часто используются провода двух разной ширины: 12-го и 14-го калибра. Проволока 12-го калибра имеет диаметр 1/12 дюйма, а проволока 14-го калибра – 1/14 дюйма.Таким образом, провод 12-го калибра имеет более широкое сечение, чем провод 14-го калибра. Цепь на 20 А, используемая для настенных розеток, должна быть подключена с использованием провода 12-го калибра, а цепь на 15 А, используемая для цепей освещения и вентиляторов, должна быть подключена с помощью провода 14-го калибра. Объясните физику, лежащую в основе такого электрического кода.
2. Основываясь на информации, изложенной в предыдущем вопросе, объясните риск, связанный с использованием провода 14-го калибра в цепи, которая будет использоваться для питания 16-амперной пилы.
3. Определите сопротивление медного провода 12 калибра длиной 1 милю. Дано: 1 миля = 1609 метров и диаметр = 0,2117 см.
4. Два провода – A и B – круглого сечения имеют одинаковую длину и изготовлены из одного материала. Тем не менее, сопротивление провода A в четыре раза больше, чем у провода B.Во сколько раз диаметр проволоки B больше диаметра проволоки A?
Мощность– Соотношение между током, сопротивлением и напряжением согласно закону Ома, закону тепла Джоуля и P = IV
Приведем мысли по порядку …
Закон Ома касается линейного (постоянного) сопротивления. Это значит, что мы не должны допускать потепления. В этом аранжировке начинаем экспериментировать.
Сначала мы подключаем источник напряжения к резистору и начинаем изменять напряжение на нем. В результате пропорционально изменится ток через резистор – Iout = Vin / R. Если мы изменим сопротивление, ток будет пропорционально изменяться обратно – Iout = V / Rin.
Затем мы подключаем источник тока к резистору и начинаем изменять ток через него. Теперь напряжение на резисторе будет пропорционально изменяться – Vout = Iin.R. Если мы изменим сопротивление, напряжение будет пропорционально изменяться – Vout = I.2.Р. Если вы хотите, чтобы оно оставалось постоянным, измените сопротивление в соответствующем направлении. Это означает, что в законе Ома есть две входные переменные – Iout = Vin / Rin и Vout = Iin.Rin, или сопротивление стало «динамическим».
Такие уловки используются для создания нелинейных резисторов, которые поддерживают постоянное напряжение (например, стабилитрон) или постоянный ток (например, транзистор). Это видно по ВАХ диода и выходной характеристике транзистора.
Конечно, мы можем поддерживать постоянную мощность в соответствии с Pout = Vin.Iin. Это означает подключение источника напряжения к источнику тока. Таким образом, источник напряжения будет устанавливать напряжение на источниках, а источник тока будет устанавливать ток через них. Точнее говоря, в таком расположении только один из элементов является источником; другой – нагрузка, реализованная как нелинейный резистор.
Теперь, чтобы сохранить постоянную мощность, при увеличении напряжения мы уменьшаем ток и v.v. Но на самом деле это можно сделать, только изменив сопротивление (другого способа изменить ток или напряжение нет).Вот почему приведенные выше схемы больше подходят для интуитивного понимания.
Основы законаОм – напряжение, ток и сопротивление
В предыдущем уроке мы обсудили применение тока, напряжения и важность закона Кулона в электричестве. Но без закона Ома работа электрической цепи становится неполной.
Для выполнения этого также задействован закон Ома . Немецкий физик Георг Симон Ом открыл закон Ома и обнаружил взаимосвязь между током, напряжением и сопротивлением.
Из этого руководства вы узнаете, как применить закон сопротивления к различным приложениям электротехники и электроники.
Как известно, электрический ток течет в виде заряженных электронов. Другими словами, меньший поток электронов означает, что в цепи присутствует высокое сопротивление. А высокий поток электронов означает низкое сопротивление.
Электронный ток – это количество электронов, движущихся за секунду. Однако для практических приложений нам нужно меньшее количество заряда электрона.Для упрощения использовались две единицы измерения, известные как ампер и кулон .
Кулон, обозначенный « Q» , выражает достаточное количество электрического заряда.
Электрический заряд равен 6 миллионам электронов, умноженным на 1 миллион электронов. Этот результирующий заряд снова умножается на один миллион электронов.
Ампер, представленный как ‘A’ , представляет собой силу единичного тока или количество электронов, перемещающихся в секунду, в данном случае один кулон в секунду.
Ампер слишком велик для некоторых приложений. Таким образом, он снова делится на части, известные как миллиампер ( мА), и микроампер ( мкА, ).
1 А = 1000 мА = 1 000 000 мкА 1 мА = 1/1000 А = 1000 мкА
Теперь поговорим о сопротивлении. Поскольку состав различных материалов отличается, некоторые материалы обладают более сильным противодействием потоку электронов, чем другие металлы. Это электрическое явление известно как сопротивление .
Теперь, если мы приложим движущую силу или Электромагнитную силу (E.M.F) к проводнику, большое количество электронов потечет быстро. Это доказывает, что сопротивление проводника невелико.
С другой стороны, применение того же Э. М. Ф. к изолятору произведет меньше электронов. Следовательно, сопротивление изолятора высокое.
Сопротивление выражается в Ом и обозначается греческой заглавной буквой «Ω ». Единицей измерения E.M.F является вольт.Один вольт – это движущая сила, необходимая для создания силы тока 1 А в цепи с сопротивлением 1 Ом.
Электрический ток – это измерительный прибор, называемый амперметром, а электрическое сопротивление измеряется с помощью омметра.
Как работает закон Ома?
ЗаконОма связывает электрические величины, такие как ток, напряжение, мощность и сопротивление. Чтобы узнать о практическом использовании закона Ома, приведу пример.
Подключите провод определенного сопротивления последовательно с 1.Источник батареи 5 В и предположим, что амперметр показывает ток 0,2 А. Теперь, если мы увеличим напряжение до 3 В, измеритель тока покажет большее значение тока, скажем, 0,4 А.
Это означает, что при поддержании постоянного сопротивления и увеличении напряжения ток будет удвоен. Повторяя этот процесс увеличения и уменьшения напряжения, сохраняя неизменным сопротивление, напряжение будет пропорционально току.
То же самое происходит, если мы изменяем длину проводящего провода, сохраняя приложенное напряжение постоянным.
Если мы изменим длину провода на более короткую или более длинную, это будет иметь некоторый эффект из-за сопротивления провода.
Например, если приложить постоянный ЭДС 1,5 В и длину провода 2 м, потребляемый ток составит 0,3 А.
Теперь, если мы изменим длину провода на 1 м, ток будет меньше 0,1 (но не 0,3) из-за меньшего расстояния, которое нужно преодолеть, и меньшего сопротивления, которое необходимо преодолеть.
Теория закона Ома
Когда вы берете металлический проводник и пропускаете через него ток, разность потенциалов между двумя концами проводника остается постоянной.
Определение закона Ома
Закон
Ом гласит, что «ток, протекающий через электрическую цепь, изменится при приложении напряжения, но сопротивление обратно пропорционально сопротивлению материала проводника».Формула закона Ома представлена уравнением
В = ИК
‘V’ – падение потенциала (напряжения) на резисторе.
«I» – ток, протекающий в цепи через резистор
.‘R’ – значение сопротивления резистора, выраженное в омах.
Приведенное выше уравнение I = V / R отражает следующие факты.
- Ток меняется в зависимости от приложенного входного напряжения
Если сопротивление проводника остается постоянным, напряжение будет увеличиваться с увеличением тока и напряжение уменьшаться с уменьшением тока.
- Ток и сопротивление противоположны друг другу
Теперь сохраните напряжение в цепи как постоянный параметр. Если вы измените сопротивление, ток также изменится.
Например, если сопротивление увеличивается, ток в цепи уменьшается, а если сопротивление уменьшается, ток увеличивается.
- Соотношение напряжения и тока
Связь между напряжением и током линейна. то есть с большим напряжением ток будет выше, а с меньшим напряжением – меньший ток.
Аналогия закона Ома
Связь между напряжением, током и сопротивлением можно узнать, найдя третью величину из двух известных значений.
Двумя известными значениями могут быть напряжение, ток или сопротивление.
Расчет сопротивления по закону
Закон Ома можно представить в трех формах. Проще говоря, закон Ом, круг или закон Ом. Треугольник используется в электрических цепях для определения третьей величины из двух других величин.
Метод круга или треугольника используется для запоминания закона Ома.
Здесь я использую круг закона Ома, чтобы узнать напряжение, ток и сопротивление.
- Чтобы рассчитать напряжение (В) , округлите напряжение (В), как показано ниже. Ток и сопротивление взаимосвязаны.
V = I x R
- Для расчета силы тока (в амперах) округлите значение тока (I), как показано ниже. Это будет ток, протекающий в цепи.
I = V / R
- Аналогично, , чтобы узнать сопротивление (Ом) , округлив сопротивление (R), вы получите сопротивление проводника.
R = V / I
Комбинируя напряжение, ток и сопротивление, мы можем получить общее соотношение, чтобы нарисовать график закона Ом .
Из графика видно, что если ток в электрической цепи увеличивается, напряжение увеличивается линейно, и наоборот.
Для облегчения связи Закон Ома Таблица приведена для быстрого ознакомления.
Закон Ома | Известные значения | Связь 1 | Связь 2 |
---|---|---|---|
V = IR | Ток и сопротивление | Напряжение прямо пропорционально току | Напряжение прямо пропорционально сопротивлению |
I = V / R | Напряжение и сопротивление | Ток обратно пропорционален сопротивлению | Ток прямо пропорционален напряжению |
R = V / I | Напряжение и ток | Сопротивление прямо пропорционально напряжению | Сопротивление обратно пропорционально току |
Теперь дайте нам знать , как использовать формулы закона Ома на практике.
Примеры закона Ома
1 . Определение тока в цепи
Дано: напряжение = 5 В, сопротивление = 500 Ом, I =?Формула:
I = V / R = 5/500 = 0,01 А.
Итак, при приложении потенциала 5 В через резистор на 500 Ом протекает ток 0,01 А.
2. Определение напряжения в цепи
Дано: Сопротивление = 100 Ом, I = 2 А, Напряжение =?Формула:
В = ИК = 2 * 100 = 200 В
Итак, напряжение АКБ для схемы составляет 200В.
3. Определение сопротивления в цепи
Дано: I = 2 А, напряжение = 5 В, сопротивление =?Формула:
R = V / I = 5/2 = 2,5 Ом
Таким образом, необходимо последовательно подключить к источнику батареи сопротивление 2,5 Ом.
Практическое применение закона Ома
1. Устройство блока питания (как делитель напряжения)
ЗаконОм полезен при проектировании источников питания для электронных схем.Делители напряжения определяют регулируемый выход для правильного функционирования схемы. Это достигается выбором правильного сопротивления по закону Ома.
2. Аналоговые датчики
Некоторые типы датчиков выдают текущее значение на выходе. Например, радарный датчик выдает выходной ток 4-20 мА.
Этот выходной ток должен быть преобразован в напряжение с помощью уравнения сопротивления. Полученное аналоговое напряжение затем обрабатывается через АЦП (аналого-цифровой преобразователь).
3. Регулировка скорости
ЗаконОм широко используется в приложениях, регулирующих скорость. Он используется в потенциометре , также известном как « POT ». Сопротивление ручки изменяется медленно, что увеличивает напряжение и вращает двигатель или вентилятор.
4. Упрощение схем
Он также используется при сокращении сложных электрических цепей с использованием уравнения закона напряжения Кирхгофа и уравнения закона тока Кирхгофа .Последовательные и параллельные цепи могут быть реализованы просто с помощью закона Ома.
Заключение
В реальной жизни важно узнать ток и напряжение для любого приложения. Небольшое отклонение выходной нагрузки может привести к возгоранию или повреждению цепи. Чтобы этого избежать, необходимо применить принципы закона Ома и построить действующую электронную систему.
Тренировка с отягощениями – польза для здоровья
Тренировка с отягощениями (также называемая силовой тренировкой или силовой тренировкой) – это использование сопротивления мышечному сокращению для развития силы, анаэробной выносливости и увеличения размера скелетных мышц.
Тренировка с отягощениями основана на том принципе, что мышцы тела будут работать, чтобы преодолеть силу сопротивления, когда от них требуется. Когда вы регулярно и последовательно занимаетесь силовыми тренировками, ваши мышцы становятся сильнее.
Всесторонняя фитнес-программа включает силовые тренировки для улучшения функции суставов, плотности костей, силы мышц, сухожилий и связок, а также аэробные упражнения для улучшения физического состояния сердца и легких, упражнения на гибкость и равновесие. Правила Австралии по физической активности и сидячему поведению рекомендуют взрослым выполнять упражнения для укрепления мышц не менее двух дней в неделю.
Меняйте программу прогрессивных тренировок с отягощениями каждые шесть-восемь недель, чтобы поддерживать улучшение. Переменные, которые могут повлиять на ваши результаты, включают:
- комплектов.
- повторений.
- Проведенные учения.
- Интенсивность (используются веса).
- Периодичность сеансов.
- Отдых между подходами.
Если вы измените свою программу тренировок с отягощениями по количеству выполненных повторений и подходов, выполняемым упражнениям и используемым весам, вы сохраните достигнутый прирост силы.
Примеры тренировок с отягощениями
Есть много способов укрепить мышцы, будь то дома или в тренажерном зале.
Различные типы тренировок с отягощениями включают:
- Свободные веса – классические инструменты для силовых тренировок, такие как гантели, штанги и гири.
- Медицинские мячи или мешки с песком – утяжеленные шары или мешки.
- Весовые машины – устройства с регулируемыми сиденьями с ручками, прикрепленными к весам или гидравлике.
- Эспандеры, похожие на гигантские резиновые ленты, обеспечивают сопротивление при растяжении. Они портативны и могут быть адаптированы для большинства тренировок. Полосы обеспечивают постоянное сопротивление на протяжении всего движения.
- Подвесное оборудование – тренажер, использующий силу тяжести и вес тела пользователя для выполнения различных упражнений.
- Ваш собственный вес – можно использовать для приседаний, отжиманий и подтягиваний. Удобно использовать собственный вес, особенно в поездках или на работе.
Польза для здоровья от тренировок с отягощениями
Преимущества для физического и психического здоровья, которые могут быть достигнуты с помощью тренировок с отягощениями, включают:
- Повышение силы и тонуса мышц – для защиты суставов от травм.
- Сохранение гибкости и равновесия, которые помогут вам оставаться независимыми с возрастом.
- Управление весом и увеличение соотношения мышечной массы и жира – по мере набора мышц ваше тело сжигает больше килоджоулей в состоянии покоя.
- Может помочь уменьшить или предотвратить снижение когнитивных функций у пожилых людей.
- Больше выносливости – по мере того, как вы становитесь сильнее, вы не так легко устаете.
- Профилактика или контроль хронических состояний, таких как диабет, болезни сердца, артрит, боли в спине, депрессия и ожирение.
- Обезболивание.
- Улучшенная мобильность и баланс.
- Улучшение осанки.
- Пониженный риск травм.
- Повышение плотности и прочности костей и снижение риска остеопороза.
- Улучшение самочувствия – тренировки с отягощениями могут повысить вашу уверенность в себе, улучшить образ тела и настроение.
- Улучшение сна и предотвращение бессонницы.
- Повышенная самооценка.
- Повышение производительности повседневных задач.
Основные принципы тренировки с отягощениями
Тренировка с отягощениями состоит из различных компонентов.Основные принципы включают:
- Программа – ваша общая фитнес-программа состоит из различных типов упражнений, таких как аэробная тренировка, тренировка гибкости, силовая тренировка и упражнения на равновесие.
- Вес – различные веса или другие типы сопротивления, например, 3 кг веса для рук или фиксированный вес, вес тела или резинка будут использоваться для различных упражнений во время сеанса силовой тренировки.
- Упражнение – определенное движение, например подъем на носки, предназначено для укрепления определенной мышцы или группы мышц.
- Повторения или повторения – это количество раз, которое вы непрерывно повторяете каждое упражнение в подходе.
- Сет – это группа повторений, выполняемых без отдыха, например, два подхода приседаний по 15 повторений означают, что вы делаете 15 приседаний, а затем отдыхаете мышцы, прежде чем делать еще 15 приседаний.
- Отдых – отдыхать нужно между подходами. Периоды отдыха варьируются в зависимости от интенсивности выполняемых упражнений.
- Разнообразие – переключение режима тренировок, например, регулярное введение новых упражнений, бросает вызов вашим мышцам и заставляет их адаптироваться и укрепляться.
- Принцип прогрессивной перегрузки – чтобы продолжать получать пользу, силовые тренировки необходимо выполнять до такой степени, чтобы вам было трудно сделать еще одно повторение. Цель состоит в том, чтобы использовать соответствующий вес или силу сопротивления, которые бросят вам вызов, сохраняя при этом хорошую технику. Кроме того, регулярные корректировки переменных тренировки, таких как частота, продолжительность, упражнения для каждой группы мышц, количество упражнений для каждой группы мышц, подходы и повторения, помогают обеспечить ваш прогресс и улучшение.
- Восстановление – мышцам нужно время, чтобы восстановиться и адаптироваться после тренировки. Хорошее практическое правило – дать отдых группе мышц до 48 часов, прежде чем снова проработать ту же группу мышц.
Тренировка с отягощениями для начинающих
Скрининг перед тренировкой используется для выявления людей с заболеваниями, которые могут подвергнуть их более высокому риску возникновения проблем со здоровьем во время физической активности. Это фильтр или подстраховка, помогающая решить, перевешивают ли потенциальные преимущества физических упражнений риски для вас.
Распечатайте копию инструмента для проверки перед тренировкой для взрослых Fitness Australia и обсудите его со своим врачом, специалистом в области здравоохранения или физкультурой.
Австралийское руководство по физической активности и малоподвижному поведению рекомендует вам заниматься силовыми упражнениями не реже двух дней в неделю. Эти упражнения должны проработать все основные группы мышц вашего тела (ноги, бедра, спину, грудь, корпус, плечи и руки).
Начало тренировки с отягощениями
Важно уделять внимание безопасности и форме, чтобы снизить риск травмы.Зарегистрированный специалист по упражнениям может помочь вам разработать безопасную и эффективную программу.
Для начала типичная программа силовых тренировок для новичков включает в себя:
- Восемь-десять упражнений, которые прорабатывают основные группы мышц тела, и выполняются два-три раза в неделю.
- Начните с одного подхода каждого упражнения, состоящего всего из восьми повторений (повторений), не более двух раз в неделю.
Ваша цель – постепенно увеличивать количество подходов до двух-трех подходов для каждого упражнения, по 8-12 повторений каждый второй или третий день.Как только вы сможете с комфортом выполнить 12 повторений упражнения, вам следует подумать о дальнейшем прогрессе.
Разминка перед тренировкой с отягощениями
Разогрейте тело перед началом силовых тренировок. Начните с легких аэробных упражнений (таких как ходьба, езда на велосипеде или гребля) в течение примерно пяти минут в дополнение к нескольким динамическим растяжкам. Динамическая растяжка включает в себя медленные контролируемые движения во всем диапазоне движений.
Расширенные тренировки с отягощениями
Чтобы получить максимальную отдачу от тренировок с отягощениями, постепенно увеличивайте интенсивность тренировки в соответствии с вашим опытом и целями тренировки.Это может означать увеличение веса, изменение продолжительности сокращения (время, в течение которого вы поддерживаете вес с максимальным потенциалом мышц), сокращение времени отдыха или увеличение объема тренировки.
Если вы регулярно тренируетесь с отягощениями в течение четырех-шести недель, вы можете постепенно увеличивать интенсивность тренировки по мере адаптации ваших мышц.
Исследования показывают, что надзор и инструктаж экспертов могут улучшить ваши результаты, поскольку они гарантируют, что вы будете применять правильную технику и следовать принципам безопасности.Если вы испытываете дискомфорт или боль, обратитесь к врачу, прежде чем продолжить программу.
Повторяющийся максимум (RM) и тренировка с отягощениями
Лучший способ развить мышечную силу – это сокращение мышцы до максимального потенциала в любой момент времени – максимальное произвольное сокращение (MVC). В тренировках с отягощениями MVC измеряется термином XRM, где RM – это максимальное количество повторений, которое можно выполнить с заданным сопротивлением или весом. X – это количество раз, когда можно поднять определенный вес до того, как мышцы утомятся.
Диапазон RM определяет, какие улучшения будут производиться мышцами. Оптимальный диапазон для улучшения мышечной силы составляет 8–12 ПМ для новичков и 2–6 ПМ для более продвинутых.
Например, формула 7ПМ означает, что человек может поднять вес (скажем, 50 кг) семь раз, прежде чем мышцы будут слишком утомлены, чтобы продолжать. Более высокий вес означает более низкий RM – например, один и тот же человек мог бы поднять вес 65 кг, но менее семи раз.
Меньший вес обычно приводит к более высокому RM – например, один и тот же человек может поднять вес 35 кг примерно 12 раз, прежде чем наступит мышечная усталость.Принципы MVC могут помочь вам получить максимальную пользу от тренировок. Хорошее эмпирическое правило – увеличивать вес только на 2–10 процентов, если вы можете с комфортом сделать два повторения сверх максимума.
Применение MVC для достижения продвинутых целей тренировки с отягощениями
Принципы силовой тренировки включают в себя изменение количества повторений (повторений), подходов, темпа, упражнений и силы для перегрузки группы мышц и достижения желаемого изменения силы, выносливости , размер или форма.
Конкретные комбинации повторений, подходов, упражнений, сопротивления и силы будут определять тип развития мышц, которого вы достигнете. Общие рекомендации, использующие диапазон RM, включают:
- Сила мышц: 1 – 6 RM за подход, выполняемый взрывным образом.
- Сила / мощность мышц: 3 – 12 ПМ за подход, быстрый или контролируемый.
- Сила / размер мышц: 6-20 ПМ за подход, контролируемый.
- Мышечная выносливость: 15–20 или более упражнений на подход, контролируемая.
Восстановление мышц во время тренировки с отягощениями
Мышцам нужно время для восстановления и роста после тренировки.Недостаток времени для восстановления мышц означает, что они не станут больше и сильнее. Хорошее практическое правило – давать отдых группе мышц не менее 48 часов.
Когда у вас будет достаточный опыт в тренировках с отягощениями и при поддержке квалифицированного специалиста в области здравоохранения или физических упражнений, вы можете рассмотреть возможность сплит-программы. Например, вы можете тренировать верхнюю часть тела по понедельникам и пятницам и нижнюю часть тела по средам и воскресеньям.
Набираем силу за счет продвинутых тренировок с отягощениями
Большинство новичков испытывают быстрое увеличение силы, за которым следует плато или постепенное выравнивание улучшений силы.После этого увеличение мышечной силы и размера является заработанным с большим трудом.
Когда вы начинаете тренировку с отягощениями, большая часть вашего первоначального увеличения силы происходит за счет феномена, называемого нейронной адаптацией. Это означает, что нервы, обслуживающие мышцы, меняют свое поведение. Считается, что нервы срабатывают чаще (вызывая усиление мышечного сокращения), и для выполнения сокращения задействуется больше двигательных единиц (двигательной единицей является нервная клетка и связанные с ней мышечные волокна). Это означает, что вы становитесь сильнее, но мышцы остаются того же размера – вы вышли на плато.
Со временем мышечные клетки реагируют на непрерывные тренировки с отягощениями увеличением размера (гипертрофией), поэтому не расстраивайтесь, достигнув плато – на самом деле это обнадеживающий признак того, что вскоре последует рост мышц. Различные техники могут помочь вам сократить период плато.
Изменение тренировок может помочь вам преодолеть плато. Теория вариаций заключается в том, что вы можете добиться роста и силы своих мышц, удивив их целым рядом различных нагрузок.Мышцы будут реагировать размером и силой, когда они будут вынуждены адаптироваться.
Руководствуйтесь инструктором в тренажерном зале или личным тренером, но предложите следующие варианты:
- Увеличьте количество повторений.
- Увеличьте продолжительность тренировки на 10 или 15 минут.
- Увеличьте частоту тренировок, помня, что каждой мышце требуется не менее 48 часов на восстановление. Когда вы наберетесь опыта, вы можете рассмотреть возможность разделения частей тела в разные дни недели – например, грудь, плечи и трицепсы на первом занятии, спину, бицепсы и мышцы живота на втором занятии и ноги на третьем занятии.
- Переключайтесь на разные упражнения – например, сосредоточьтесь на упражнениях, в которых задействованы несколько групп мышц и которые являются функциональными или специфическими по своей природе, что означает, что они относятся к повседневной деятельности или спортивным требованиям.
- Увеличьте вес примерно на 5–10 процентов.
- Перекрестные тренировки с другими видами деятельности, такими как плавание или бег.
- Меняйте тренировку примерно каждые четыре-восемь недель, чтобы мышцы не догадывались.