Сопротивление сила тока и: 1. Электрическое сопротивление. Закон Ома для участка электрической цепи

Содержание

Элеком37, Электрический ток. Сила тока. Сопротивление.

Электрический ток. Сила тока. Сопротивление.

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод

– это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

Теория по физике для ЕГЭ, пособия по подготовке и справочные материалы в Москве

Электрический ток. Сила тока. Условия существования постоянного тока в цепи. Электродвижущая сила (ЭДС). Сопротивление. Напряжение. Измерение силы тока и напряжения.

  • Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

  • Сила тока — количественная характеристика электрического тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда \(q\), прошедшего через поперечное сечение проводника за время \(t\), к этому времени. \[\fbox{$I=\dfrac{q}{t}$}\]

    Единицы измерения: \(\displaystyle [\text{А}]\) (Ампер).

  • Условия существования постоянного тока в цепи:

    • наличие свободных заряженных частиц

    • наличие электрического поля (разности потенциалов на концах проводника)

  • Электродвижущая сила (ЭДС)

    Для того, чтобы ввести понятие ЭДС, разберемся сначала со сторонними силами.

    По цепи идёт ток, стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм. Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока.

  • \(R\) — сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.

    Сторонняя сила \(\vec{F}_\text{ст}\) не имеет отношения к стационарному электрическому полю. Обозначим через \(A_\text{ст}\) работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы \(A_\text{ст}\) называется также работой источника тока.

    Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда q вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, \(A_\text{ст}\) — это также работа сторонней силы по перемещению заряда по всей цепи.

    Сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле не может поддерживать постоянный ток. Опыт показывает, что работа \(A_\text{ст}\) прямо пропорциональна перемещаемому заряду \(q\). Поэтому отношение \(\displaystyle \frac{A_\text{ст}}{q}\) уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается \(\mathscr{E}\): \[\fbox{$\mathscr{E}=\dfrac{A_\text{ст}}{q}$}\] Данная величина называется электродвижущей силой (ЭДС) источника тока.

    Единицы измерения: \(\displaystyle [\text{В}]\) (Вольт).

  • Электрическое напряжение между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.

    Единицы измерения: \(\displaystyle [\text{В}]\) (Вольт).

  • Измерение силы тока и напряжения

    • Для измерения силы тока используется измерительный прибор — амперметр. Включается в цепь последовательно.

    • Для измерения напряжения используется измерительный прибор — вольтметр. Включается в цепь параллельно.

  • Сила тока и сопротивление – Картина дня – Коммерсантъ

    Человечество испокон веков занято поиском неких сверхрешений – так называемого краеугольного камня, способного сразу решить все проблемы. Скатерть-самобранка, ковер-самолет, превращение свинца в золото, эликсир молодости… И несмотря на неудачи, усилия эти живы до сих пор. Одно из последних увлечений – попытка пересадить нас на электрические автомобили. Благодаря чему мы сразу заживем в идеальном мире. Ледники перестанут таять. Нефтяные магнаты – наживаться на потребности человечества в углеводородах. А перемещаться в пространстве мы будем бесшумно и быстро. И при этом практически бесплатно, ибо электричество дешево… Естественно, только дурак, не ведающий своего счастья, может отказаться от таких перспектив.

    Юрий Постников, доктор-инженер, Германия; Валерий Чусов

    Все автомобильные фирмы сегодня наперебой хвалятся, сколько именно полностью электрических моделей они выведут на рынок через пару лет. Отдельные государства уже объявили даты, когда на их дорогах будет введен тотальный запрет на автомобили с двигателями внутреннего сгорания. Но мало кто при этом пытается объяснить нам, за счет чего все это случится и почему это будет хорошо. Аспектов у проблемы много.

    Автомобильный аспект. Электромобили придумали сто с лишним лет назад. Но массового распространения они не получили. Самым проблемным местом электромобиля и тогда, и сегодня остается его аккумуляторная батарея. Из-за ее технологической сложности, стоимости, надежности, долговечности, а также соотношения массы к энергоемкости. Что же такого произошло или должно произойти в этом сегменте техники, что позволяет избавить электромобиль от всем давно извечных недостатков, оставив нам лишь его неоспоримые достоинства?

    Энергетический аспект. А именно наличие доступных мощностей по производству электроэнергии, необходимой для приведения электромобилей в движение. Сколько электростанций, каких и где придется построить, если мы ставим цель все количество находящихся в эксплуатации автомобилей с ДВС заменить на электрические? Как мы собираемся транспортировать эту энергию от места ее производства до станции зарядки электромобиля, сколько таких станций зарядки нам необходимо и где они будут размещены, сколько будет стоить один киловатт-час?

    Политический аспект. Именно политические решения о госсубсидиях как для покупки, так и при эксплуатации искусственно повысили привлекательность этой техники для конечного потребителя. Если эта политическая воля по каким-либо причинам иссякнет, не окажется ли электромобиль опять в забвении на следующие сто лет?

    Финансовый аспект. Где взять огромные свободные финансовые ресурсы для построения буквально с нуля целой новой отрасли мировой экономики? Как заработать на этом деньги при гораздо более высокой себестоимости производства электромобилей по сравнению с обычными? Как заставить потребителя покупать заведомо более дорогой товар? За чей счет дотировать разницу в его цене, чем компенсировать отказ от ожидаемой прибыли со средств, уже вложенных в нынешнюю инфраструктуру по производству автомобилей и автокомпонентов? Из каких источников оплачивать пособия сотрудникам, которые станут безработными в массовом порядке с закрытием традиционных автопроизводств?

    Своеобразной попыткой ответить на все эти вопросы стала рекламная кампания, организованная Volkswagen в ознаменование грядущего выпуска первого массового электромобиля марки – модели ID.3. Это дюжина веселых картинок, на которых транслируется миф, а вернее – наше предубеждение относительно электромобильности. А потом дается его «разоблачение».

    Мы не беремся в свою очередь разоблачать эти «разоблачения». Просто хотим обратить внимание общественности на то, что, как сейчас модно говорить, «не все так однозначно».

    Хотя, впрочем, кое-что более чем очевидно. То, что в технике не бывает универсальных решений на все случаи жизни. Утверждать обратное – значит обманывать самих себя и потребителя. Пытаться запретами эксплуатации машин с ДВС расчистить путь для продвижения электромобилей в массы – значит заведомо признавать их ущербность и, по сути дела, препятствовать их дальнейшему развитию. Ведь зачем развивать и совершенствовать то, что и так купят по принуждению? Гораздо разумнее дать обоим подходам в автомобилестроении мирно сосуществовать, развиваться и конкурировать без искусственного протекционизма.

    МИФ № 1. «Никто не может себе это позволить»

    Факты: ID.3 стоит столько же, сколько Golf TDI, государственные субсидии, минимальные налоги.

    Volkswagen объявил цену на модель ID. 3 в 40 тысяч евро. Да, Volkswagen Golf действительно можно купить за такие деньги. Правда, это будет очень дорогой Volkswagen Golf – самый доступный стоит 21 365 евро, почти вдвое дешевле. За 32 900 можно купить Golf с дизелем 2,0 л/150 л.с. и DSG в богатой комплектации Highline. Нынешний e-Golf, который будет заменен ID.3, стоит от 35 900 евро.

    С развитием производства электромобилей цены на аккумуляторные батареи снижаются: за десять лет, с 2005-го по 2015-й, стоимость 1 кВт•ч емкости батареи снизилась в три с половиной раза (с 1280 до 365 долларов), и, конечно, она будет снижаться и дальше. Но электромобили все еще стоят дороже своих аналогов с двигателями внутреннего сгорания. И похоже, что высокие розничные цены не всегда покрывают их себестоимость.

    Посмотрим на главную икону сторонников электропривода – Tesla. С прибылью эта компания закончила только один год за всю свою историю – 2013-й. В 2018 году убыток составил 976 млн долларов. И это при рекордном объеме выручки – 21,4 млрд долларов. С точки зрения цен на электромобили это означает, что реально машина стоит дороже, чем за нее платит покупатель. Кто же доплачивает рабочим за работу, а поставщикам – за поставленные детали? Илон Маск берет кредиты и продает акции, то есть пока покупателей Tesla финансируют со стороны. Volkswagen и другим традиционным производителям автомобилей не обязательно нужно искать займы и привлекать инвесторов для запуска производства «электричек», на это они тратят деньги, полученные от продажи автомобилей с ДВС.

    То есть Volkswagen может назначать любые цены на свои электромобили, но если цена продажи ниже цены себестоимости, то разницу должен кто-то компенсировать. И мы знаем, кто именно этот кто-то – покупатель автомобиля с ДВС.

    МИФ № 2. «Зарядных станций недостаточно»

    Факты: 17,4 тысячи общественных электрозарядок в Германии, домашняя зарядная станция позволяет подзаряжаться в щадящем режиме, 100 тысяч станций по всей Европе.

    На данный момент в Германии имеется примерно 14 тысяч обычных АЗС, а во всей Европе – около 140 тысяч. На первый взгляд, сопоставимые с электрозаправками цифры. Но на заполнение бака бензином либо соляркой уходит менее пяти минут, а для зарядки электромобиля по нормальному, щадящему батареи циклу нужно 8 часов, или 480 минут, т.е. в 100 раз больше. Исходя из этого, на самом деле потребуется в 100 раз больше станций подзарядки, чем автозаправок: только для Германии – 140 тысяч, а для Европы – 1,4 млн станций! Кроме того, они займут суммарно гораздо большую площадь земли. Даже несмотря на то, что организация зарядной станции куда проще, чем строительство и обслуживание традиционной АЗС – никаких проблем с местом для резервуаров, не требуется постоянных поставок разных видов топлива, проверок топливораздаточного оборудования, – места запаркованный на подзарядку электромобиль займет не меньше, чем автомобиль с ДВС.

    Иными словами, если электромобилисту придется довольствоваться количеством станций подзарядок, обещанным VW, то поймите его ощущения, просто представив, что в вашем городе количество бензозаправок внезапно уменьшилось в 100 раз.

    МИФ № 3. «Зарядка занимает целую вечность»

    Факты: время зарядки коротко, ID.3 может питаться током мощностью до 125 кВт, приложения показывают дорогу к ближайшей зарядной станции.

    Среднее частное домовладение в Германии имеет 380-вольтовое трехфазное подключение электроэнергии мощностью до 11 кВт. Токоподвод в этом случае представляет собой трехжильный подземный кабель сечением 10 кв. мм каждой жилы. Для возможности зарядки ID.3 будет необходимо проложить новый кабель к каждому домовладению сечением, в десять раз большим, т.е. по 100 кв. мм каждой жилы. Помимо того что придется перекопать в буквальном смысле слова всю страну, необходимо будет зарыть в землю в десять раз больше денег за весьма дорогой медный кабель. Затем будет необходимо перестроить все подстанции, увеличив их мощность на порядок, попутно увеличив соответственно мощность либо количество электростанций.

    Приложения к смартфонам помогают найти свободную зарядку. Но, во-первых, далеко не все пенсионеры в Германии – а среди покупателей «Гольфов» их изрядная часть – умеют пользоваться смартфонами. И во-вторых, где гарантия, что ближайшая зарядная точка, к которой можно «припасть», окажется не в десяти километрах?

    МИФ № 4. «На такой тачке я никогда не доеду до Италии»

    Факты: запас хода до 550 км, IONITY в Европе – высокомощные зарядные станции через каждые 120 км, уже 2 тысячи общественных станций быстрой зарядки в Германии.

    Италия на картинке упомянута неспроста. Страна за Альпами – популярное у немцев место для отпуска. Куда они привыкли отправляться на своих машинах в июле и в августе. То есть нагрузка на зарядные станции по маршруту и очереди на них в эти месяцы вырастут в разы. Но это не главное. С VW не поспоришь – до Италии на электромобиле действительно доедешь. Но от себя мы добавим, что это будет весьма увлекательное и познавательное путешествие. На машине с ДВС все выглядит быстро и потому скучно. Если верить картам Google, то дорога от Берлина до Римини – это 1261 км, а время в пути составит около 13 часов. Выехав на электромобиле, через 500 км придется встать на зарядку. И лучше бы на восьмичасовую, ведь машина своя и заряжать ее по короткому и весьма нещадному циклу – значит преждевременно убить батарею. То есть надо останавливаться в мотеле. Затем следующим днем проехать очередные 500 км, повторив итерацию. То есть на курорт вы приедете лишь на третий день, невольно осмотрев достопримечательности тех мест, где пришлось ночевать. Вероятно, с сопоставимой скоростью путешествовали на перекладных лошадях двести лет назад, пока Европу не покрыла сеть железных дорог.

    МИФ № 5. «Электричество? Слишком опасно»

    Факты: никакого риска при зарядке в дождь; авария – в случае аварии, напряжение в сети отключается мгновенно, клетка Фарадея – надежная защита.

    Мы, конечно, верим, что, вставляя вилку в розетку под дождем, сами не попадем под электрораздачу. Но тема, согласитесь, новая, поэтому если что-то все-таки случается, то паникуют даже пожарные. В Нидерландах задымившийся по неизвестным причинам электрокар погрузили в бак с водой на сутки – чтобы гарантировать прекращение возгорания. Про пожары электромобилей есть даже статья в Википедии. Плюс автопроизводители не учитывают такой фактор опасности электромобилей, как отрицательное влияние электромагнитного излучения (ЭМИ) на организм человека. С ЭМИ давно сталкиваются машинисты электропоездов, работники подстанций, а также пилоты авиалайнеров. Но они получают неплохую зарплату с надбавками за вредность, пользуются медицинским обеспечением, социальными льготами и рано выходят на пенсию. И к тому времени, увы, нередко уже превращаются в развалины. А что получат владельцы электрокаров и гибридов, которым предложено брать пример с представителей опасных профессий?

    МИФ № 6. «Это не защита окружающей среды»

    Факты: до 90 процентов меньше выбросов CO2, чем у ДВС, «зеленого электричества» становится все больше, ID.3 первый углеродно-нейтральный автомобиль.

    Электромобили не вырабатывают углекислый газ. Да, когда они едут.

    Сам Volkswagen совсем недавно выкладывал данные о суммарной выработке CO2 в течение жизненного цикла автомобиля, начиная с производства. И выходило, что при производстве электрического e-Golf выбрасывается столько углекислого газа, что дизельный Golf отстает от него по этому параметру до 125 тысяч километров пробега! И еще вопрос, все ли выбросы при этом учтены? Литий добывают в основном в Австралии и Южной Америке, а батареи делают в Китае, Японии и других странах. То есть его надо туда доставлять, а грузовых судов с электроприводом у нас пока не больше, чем парусников. Точнее, их нет вообще.

    К слову, не только Volkswagen анализировал этот вопрос. Немецкий журнал Focus пишет: «Если взять всю цепочку производства и эксплуатации Tesla Model 3 и обычного дизельного Mercedes-Benz, то дизель окажется гораздо чище». Все потому, что для добычи сырья и при производстве аккумуляторов требуется много энергии.

    МИФ № 7. «Наша электрическая сеть не справится с этим»

    Факты: текущая нагрузка в Германии на электросеть – 520 ТВт в год, лишь половину процента от этого потребляют электромобили, Германия производит больше электричества, чем ей необходимо.

    Трудно спорить с авторитетными исследователями. Но мы просто напомним, что население Норвегии чуть больше пяти миллионов человек, примерно в 16 раз меньше, чем в Германии. Число автомобилей тоже меньше примерно в 17 раз (2,8 млн против 45,8 млн). И Норвегия вообще уникальная с точки зрения экологии страна – практически все электричество здесь получают с ГЭС, то есть из возобновляемого источника. Так что для нее замена ДВС на электропривод и правда снижает выбросы углекислого газа и других продуктов сгорания. И вряд ли означает значительный рост нагрузки на электросети. Но в Германии на данный момент из возобновляемых источников получают лишь около 40 процентов энергии, еще процентов 15 – от АЭС, а остальные 45 – от сжигания углеводородов. Правда, к 2050 году планируется сократить потребление «грязного» электричества процентов до десяти, максимум до двадцати. Именно в рамках этого плана и платят немцы специальный налог на этот переход. Но он предполагает и снижение потребления электричества в целом. А перевод автомобильного парка на электропривод его увеличит.

    МИФ № 8. «Это сокращает количество рабочих мест»

    Факты: производство почти на треть менее затратно, чем изготовление машины с ДВС, однако наступление эры электромобильности создает тысячи новых рабочих мест, завод в Цвиккау – это примерно 8 тысяч сотрудников, задействованных в создании семейства ID.

    Давайте не будем наивными: мечта каждого работодателя – сократить количество сотрудников и платить им меньшую зарплату. Это так же нормально, как желание покупателя купить товар по самой низкой цене. Понятно, что Volkswagen – работодатель не совсем обычный. Не для каждого автозавода строили целый город, где все завязано на него. Да и когда в числе акционеров земля Нижняя Саксония, менеджерам придется задумываться о взаимоотношениях с населением. Хотя город Цвиккау – это в другой Саксонии, но политика будет единой. Так что спасибо VW – местные жители будут трудоустроены. Но будет ли это происходить на других заводах и в других отраслях? Сопротивляться прогрессу бессмысленно. Особенно когда он приводит к удешевлению товаров и услуг. Но надо быть морально готовыми к тому, что работникам некоторых АЗС и НПЗ скоро придется осваивать новые специальности, а на автосервисах будет существенно меньше рабочих – электромобиль проще и по конструкции, и при обслуживании. А многие его узлы и ремонтировать никто не сможет, придется их просто заменять. То есть глобально электромобильность – это скорее безработица, нежели новые возможности для приложения труда.

    МИФ № 9. «Опасная тишина»

    Факты: с лета 2019 года электромобили должны генерировать звук, на скорости от 30 км/ч они и так будут слышны, оптимальная защита для всех участников дорожного движения.

    Действительно, с 1 июля нынешнего года все электромобили в Евросоюзе на скорости до 30 км/ч обязаны «звучать» – транслировать специальный сигнал. Собственно, автопроизводители и сами уже давно озаботились этим вопросом – Nissan презентовал свой официальный электромобильный звук еще пару лет назад.

    Но, похоже, автофирмы в этом вопросе пекутся не столько о безопасности пешеходов, сколько пытаются извлечь для себя маркетинговую выгоду. Так, для Jaguar I-Pace звук придумывал известный американский композитор Ричард Дивайн. А для BMW звук сочиняла и вовсе голливудская знаменитость – Ханс Циммер, известный саундтреками ко многим фильмам, от «Человека дождя» до «Пиратов Карибского моря». Вы без труда найдете эту «музыку» на YouTube. И представите, какая технодискотека воцарится на наших улицах, когда по ней поедут электромобили.

    МИФ № 10. «Слишком медленно»

    Факты: электромобили разгоняются быстрее, чем аналогичные машины с ДВС, максимальный крутящий момент доступен уже на старте, превосходные гоночные электрокары – ID.R разгоняется до «сотни» за 2,25 секунды.

    Да, электромобили могут быть быстрыми – сама характеристика электромотора к этому располагает. Да, тяжелая батарея под полом повышает устойчивость и ездить на электромобиле безопаснее. Но просто разогнаться – это еще не все. И безопасность – не синоним удовольствия от вождения. За почти полтора столетия существования автомобиля с ДВС и столетие его доминирования в качестве массового транспорта он настолько врос в наше общество, что найти ему полноценную замену в плане удовольствия сразу не получится. Нелинейность отдачи двигателя, звук мотора – это как минимум повод поговорить. А умение пользоваться сцеплением – как непросто оно нарабатывается и как жаль, что его негде применить. А колдовство с тюнингом мотора, которому на смену теперь окончательно придет лишь смена его компьютерных прошивок… Чем больше трудностей, тем больше мы ценим результат. А тут результат лишь еще больше пододвинет к нам эру автономного вождения – потому что именно электропривод оптимален для замены человека роботами.

    МИФ № 11. «Как скучно»

    Факты: семейство ID обладает инновационным чистым дизайном, компактное размещение агрегатов электропривода позволяет сделать более просторным интерьер, большое разнообразие – 27 моделей на одной платформе к 2022 году.

    Выглядит ли скучно электромобиль – вопрос субъективный. Едва ли кто назовет посредственной внешность Tesla Model S, Porsche Taycan или Jaguar I-Pace. Но это премиальные автомобили, которые не могут пойти на компромисс с эстетикой, например в угоду аэродинамике, дабы увеличить пробег на одной зарядке. Но что касается массового сегмента, то в нем мы шедевров автомобильного дизайна пока не наблюдаем. Хотя, казалось бы, компактность агрегатов электропривода развязывает дизайнерам руки, в том числе в плане компоновочных решений. И потом, кто сказал, что автомобиль с электроприводом должен внешне обязательно отличаться от электромобиля? Вот марка Hyundai, например, сделала модель Ioniq, у которой может быть как чистый электропривод, так и гибридный.

    МИФ № 12. «У нас скоро не останется лития»

    Факты: большой запас – его достаточно на 10 млрд электромобилей, исследования – батареи нуждаются все в меньшем количестве кобальта, в будущем до 97 процентов электромобиля может быть использовано для вторичной переработки.

    Действительно, из-за роста спроса на батареи для электромобилей спрос на литий тоже резко вырос, и цены на самый легкий металл за несколько лет увеличились в несколько раз. Добывают его в основном в Австралии, Чили и Аргентине. Есть он и в России – СССР по добыче лития был вторым после США. Но сейчас разработка месторождений прекратилась – раньше он использовался в основном в ядерной энергетике и, сами понимаете, производстве оружейного урана, а потребность в нем в девяностые, к счастью, снизилась. Но если спрос на литий будет расти, то и наши месторождения могут стать выгодными.

    Правда, есть риск, что станут выгодными и другие методы его добычи – разработана технология по извлечению лития из морской воды, – и в итоге мы пропустим еще одну революцию типа сланцевой… Но тут надо думать не только о том, хватит ли нам лития на такое чудовищное число электрокаров, но и как перерабатывать аккумуляторы. В коробке у входа в супермаркет, куда ответственный гражданин выбрасывает батарейки от телевизионного пульта, автомобильные «батарейки», очевидно, не поместятся.

    Закон Ома… Связь между напряжением, током и сопротивлением

    Теоретические термины и определения

    Следующие определения относятся к базовой теории электричества. Важно, чтобы установщики и инспекторы обладали практическими знаниями в области теории электричества. Такие знания часто необходимы для определения надлежащего размера проводников для цепей с различными нагрузками.

    Вольт — единица электрического давления — это давление, необходимое для передачи одного ампера через сопротивление в один ом; сокращенно «Е», первая буква термина электродвигатель сила .

    Ампер — единица измерения силы электрического тока, который проходит через один ом при давлении в один вольт за одну секунду; сокращенно «И», первая буква термина интенсивность тока .

    Ом — единица электрического сопротивления — это сопротивление, через которое один вольт действует на один ампер; сокращенно «R», первая буква термина сопротивление .

    Ватт — это единица измерения энергии, протекающей в электрической цепи в любой момент времени.Это также количество работы, выполняемой в электрической цепи. Термины ватт или киловатт чаще использовались для выражения количества работы, выполненной в электрической цепи, а не термин джоуль . Ватты — это произведение вольт и ампер, иногда их называют вольт-амперами. Одна тысяча вольт-ампер обозначается как один киловольт-ампер или один кВА.

    Закон Ома

    Джордж Саймон Ом открыл зависимость между током, напряжением и сопротивлением в электрической цепи в 1826 году.Экспериментально он обнаружил, что давление равно произведению тока на сопротивление; эта зависимость называется законом Ома. Этот закон является практической основой, на которой основано большинство электрических расчетов. Формула может быть выражена в различных формах и путем ее использования, как в трех примерах, показанных на рисунке 1.

    Рисунок 1. Основные примеры закона Ома и его применение

    Если известны любые два значения, то третье можно найти по формуле. Например, если известны сопротивление и напряжение, ток можно определить, разделив напряжение на сопротивление.Это может быть полезно при определении количества тока, который будет протекать в цепи, для правильного выбора размеров проводников, а также устройств перегрузки по току.

    Лошадиных сил. Механическая мощность обычно выражается в лошадиных силах, а электрическая мощность – в ваттах. Термин лошадиных сил возник как количество работы, которую сильная лондонская упряжная (тягловая) лошадь могла выполнить за короткий промежуток времени. Он также использовался для измерения мощности паровых двигателей. Одна лошадиная сила, сокращенно «HP», равна работе, необходимой для подъема 33 000 фунтов на один фут (33 000 футо-фунтов) за одну минуту.Это то же самое, что поднять 550 фунтов на один фут за одну секунду.

    Часто необходимо преобразовать мощность из одних единиц в другие, и уравнение на рисунке 2 используется для преобразования лошадиных сил в ватты или ватт в лошадиные силы.


    Рисунок 2. Базовая формула HP

    Формула HP применима к лабораторным условиям, поскольку двигатели потребляют больше энергии, чем выдают. Это происходит из-за того, что мощность расходуется в виде тепла в двигателе для преодоления трения в подшипниках, сопротивления ветра и других факторов.Например, двигатель мощностью 1 л.с. (746 ватт) может потреблять около 1000 ватт, разница расходуется на преодоление уже указанных факторов. Для определения фактической мощности однофазных двигателей необходимо учитывать коэффициент КПД двигателя (см. рис. 3).


    Рисунок 3. Базовые формулы коэффициента мощности

    Колесо Ватт

    Колесо Уоттса было разработано и опубликовано во многих руководствах и в нескольких вариантах, чтобы проиллюстрировать ватты или мощность и их связь с элементами закона Ома.Как показано в этом тексте, он точен для цепей постоянного тока и резистивных нагрузок цепей переменного тока, где коэффициент мощности близок к 100 процентам или единице (см. рис. 4). Не пытайтесь использовать его для нагрузки двигателя, так как в формулу должны быть включены как коэффициент мощности, так и КПД двигателя (см. рис. 3).


    Рисунок 4. Колесо Уоттса и закон Ома

    В цепях переменного тока мы используем термин полное сопротивление , а не омы, чтобы представить сопротивление цепи. Импеданс – это полное сопротивление току, протекающему в цепи переменного тока; измеряется в омах.Полное сопротивление включает сопротивление, емкостное сопротивление и индуктивное сопротивление. Последние два фактора уникальны для цепей переменного тока и обычно могут игнорироваться в таких цепях, как нагрузки освещения с лампами накаливания и цепи нагревателей, состоящие из резистивных нагрузок. Подробное объяснение емкостного реактивного сопротивления и индуктивного сопротивления выходит за рамки этого текста, но его можно найти во многих превосходных учебниках по теории электричества.

    Закон Ома и основы теории электричества

    Электрический ток, протекающий через любую электрическую цепь, можно сравнить с водой под давлением, протекающей через пожарный рукав. Вода, протекающая через пожарный шланг, измеряется в галлонах в минуту (GPM), а электричество, протекающее по цепи, измеряется в амперах (А).

    Вода течет по шлангу, когда на него оказывается давление и открывается клапан. Давление воды измеряется в фунтах на квадратный дюйм (psi). Электрический ток течет по электрическому проводнику, когда к нему приложено электрическое давление и предусмотрен путь для протекания тока. Подобно тому, как «фунты на квадратный дюйм» (давление) заставляют течь галлоны в минуту, так и «вольты» (давление) заставляют течь «ампер» (ток).

    Чтобы протолкнуть такое же количество воды через маленький шланг, требуется большее давление, чем через большой шланг. Небольшой шланг при том же давлении, что и шланг большего размера, пропустит гораздо меньше воды за определенный период времени. Из этого следует, что маленький шланг оказывает большее сопротивление потоку воды.

    В электрической цепи большее электрическое давление (вольты) вызывает прохождение определенного количества тока (ампер) через небольшой проводник (сопротивление), чем то, которое требуется для проталкивания того же количества тока (ампер) через больший проводник (сопротивление) . Проводник меньшего размера будет пропускать меньший ток (ампер), чем проводник большего размера, если к каждому проводнику будет приложено одинаковое электрическое давление (вольты) в течение того же периода времени. Можно предположить, что меньший проводник имеет большее сопротивление (Ом), чем больший проводник. Таким образом, мы можем определить сопротивление как «свойство тела, которое сопротивляется или ограничивает поток электричества через него». Сопротивление измеряется в Ом. — термин, аналогичный трению в шланге или трубе.

    Выдержки из Электрические системы жилых домов на одну и две семьи, , 8 th Edition. Эту книгу можно приобрести по адресу www.iaei.org/web/shop или по адресу Amazon.com .

     

    Расчет сопротивления – Закон Ома – Ток, напряжение и сопротивление – GCSE Physics (Single Science) Revision – Other

    Сопротивление электрического компонента можно определить путем измерения электрического тока, протекающего через него, и разности потенциалов на нем.

    Это уравнение, называемое Законом Ома , показывает взаимосвязь между разностью потенциалов, током и сопротивлением:

    напряжение = ток × сопротивление

    В = I × R

    где: вольт, В

    I — сила тока в амперах (амперах), А

    R — сопротивление в омах, Ом

    Для нахождения сопротивления можно преобразовать уравнение:

    Вопрос
    3 Через лампу на 240 В протекает ток.Каково сопротивление лампы?

    Укажите ответ

    Сопротивление = 240 ÷ 3 = 80 Ом

    разница. Затем сопротивление можно рассчитать по закону Ома.

    9.S: Ток и сопротивление (Сводка)

    ампер (ампер) Единица СИ для тока; \(\displaystyle 1A=1C/с\)
    цепь полный путь, по которому проходит электрический ток
    обычный ток ток, протекающий по цепи от положительной клеммы батареи через цепь к отрицательной клемме батареи
    критическая температура температура, при которой материал достигает сверхпроводимости
    плотность тока поток заряда через площадь поперечного сечения, деленную на площадь
    диод устройство неомической цепи, допускающее протекание тока только в одном направлении
    скорость дрейфа скорость заряда, когда он движется почти беспорядочно через проводник, испытывая множественные столкновения, усредненная по длине проводника, величина которой равна длине пройденного проводника, деленной на время, необходимое зарядам для прохождения длины
    электропроводность мера способности материала проводить или передавать электричество
    электрический ток скорость, с которой течет заряд, \(\displaystyle I=\frac{dQ}{dt}\)
    электроэнергия временная скорость изменения энергии в электрической цепи
    Джозефсон-Джанкшн соединение двух кусков сверхпроводящего материала, разделенных тонким слоем изоляционного материала, по которому может проходить сверхток
    Эффект Мейснера явление, возникающее в сверхпроводящем материале, когда все магнитные поля вытесняются
    неомический тип материала, для которого закон Ома недействителен
    Ом (\(\displaystyle Ω\)) единица электрического сопротивления, \(\displaystyle 1Ω=1V/A\)
    Омический тип материала, для которого справедлив закон Ома, то есть падение напряжения на устройстве равно произведению силы тока на сопротивление
    Закон Ома эмпирическое соотношение, утверждающее, что ток I пропорционален разности потенциалов V; его часто записывают как \(\displaystyle V=IR\), где R – сопротивление
    сопротивление электрическое имущество, препятствующее току; для омических материалов это отношение напряжения к току, \(\displaystyle R=V/I\)
    удельное сопротивление внутреннее свойство материала, независимое от его формы или размера, прямо пропорциональное сопротивлению, обозначаемое \(\displaystyle ρ\)
    схема графическое представление цепи с использованием стандартных символов для компонентов и сплошных линий для провода, соединяющего компоненты
    СКВИД (Сверхпроводящее квантовое интерференционное устройство) устройство, представляющее собой очень чувствительный магнитометр, используемый для измерения очень тонких магнитных полей
    сверхпроводимость явление, возникающее в некоторых материалах, когда сопротивление достигает точного нуля и все магнитные поля вытесняются, что резко проявляется при некоторой низкой критической температуре \(\displaystyle (T_C)\)

    Ампер, вольт, ом, ватт

    Ампер, вольт, ом и ватт — основы электротехники. Если вы изучали электротехнику, принципы электротехники или электронику за рамками школьного уровня, то вы уже знакомы со многими из этих концепций. С другой стороны, если вы возвращаетесь к учебе или являетесь новичком в области электроники или электротехники, эти основные определения помогут вам освоиться. Ниже я сделал сравнение этих терминов с их формулами.

    Что такое ампер?

    Поток электрического тока измеряется в амперах, сокращенно «А» или «I» (сила тока).Его можно назвать силой тока (или ампером), которая представляет собой скорость, с которой электрический ток протекает через проводник в секунду. Один ампер тока — это примерно 6 280 000 000 000 000 000 электронов, проходящих через любую точку проводника в секунду 90 107 .

    Для измерения этого электрического тока используется амперметр. Ток должен проходить через измеритель для измерения тока. Если ток не течет, амперметр показывает «0».

    Ампер измеряют, насколько «быстро» электричество движется по цепи. Если сравнить с рекой, ампер в электрической цепи будет соответствовать скорости движения воды в реке.

    Ампер можно выразить разными способами, например:

    Количество

    Символ

    Десятичный

    1 миллиампер

    1 мА

    1/1000 А

    1 ампер

    1 А или 1 А

    1 ампер

    1 килоампер

    1 кА

    1000 ампер

    Формулы:

    И = Э/Р

    Я = П/Э

    I = √P / R

     

    E= Напряжение (В)

    I = Ток (Ампер)

    R= Сопротивление (Ом)

    P = Мощность (Вт)

     

    Что такое вольт?

    Вольт, сокращенно обозначаемый как «V» или «E» (электродвижущая сила), является единицей измерения электрического напряжения (давления) или давления, приложенного для принудительного прохождения электронов по цепи. Вольт можно измерить вольтметром.

     

    Вольта измеряют мощность источника питания (аккумулятор, розетка в вашем доме). Если приравнять к реке, напряжение электрической цепи будет соответствовать ширине реки.

    1. Домашние розетки от 110 до 125 вольт. (в Америке)
    2. Одна батарея «AAA», «AA», «C» или «D» рассчитана на 1 ½ вольта.
    3. Большие «фонарные» батарейки прямоугольной формы на 6 вольт.
    4. Маленькие батарейки прямоугольной формы на 9 вольт.
    5. Автомобильный аккумулятор на 12 вольт.

    При использовании более высокого напряжения питаемое устройство будет выполнять больше работы. Например, двигатель будет вращаться быстрее, или лампочка будет излучать больше света. Однако, если вы используете слишком большое напряжение, лампочка перегорит, провод расплавится или двигатель «сгорит».

    Вольт можно выразить разными способами:

    Количество

    Символ

    Десятичный

    1 милливольт

    1 мВ

    1/1000 вольт

    1 вольт

    1 В

    1 вольт

    1 киловольт

    1 кВ

    1000 вольт

    Формулы:

    Е = I х R

    Э = П/Я

    Е = √P x R

     

    E= Напряжение (В)

    I = Ток (Ампер)

    R= Сопротивление (Ом)

    P = Мощность (Вт)

     

    Что такое Ом?

    Единица измерения электрического сопротивления известна как ом (сокращенно «R» для сопротивления). Греческая буква омега (S) используется для обозначения электрического сопротивления.

    Движение электронов вдоль проводника встречает некоторое противодействие. Эта оппозиция известна как сопротивление. Сопротивление может быть полезно в электромонтажных работах. Сопротивление позволяет генерировать тепло, контролировать протекание тока и подавать правильное напряжение на устройство.

    Ом измеряют, какое «сопротивление» есть в цепи, чтобы «замедлить» электричество. Если сравнить с рекой, омы в электрической цепи подобны плотине на реке.Цепям с большим сопротивлением требуется более высокое напряжение для выполнения того же объема работы (например, для питания двигателя с той же скоростью).

    Ом можно выразить разными способами:

    Количество

    Символ

    Десятичный

    1 Ом

    1 Ом

    1 Ом

    1 кОм

    1 кОм

     1000 Ом

    1 МОм

    1 МОм

    1 000 000 Ом

    Величина сопротивления (Ом) проводника определяется:

    1. Материал, из которого изготовлен проводник
    2. Размер проводника
    3. Длина проводника
    4. Температура

    Сопротивление пропорционально длине и размеру проводника. Если длину провода удвоить, сопротивление удвоится. Если диаметр провода уменьшить вдвое, то сопротивление удвоится. Связь между амперами (электрический ток), вольтами (электродвижущая сила) и сопротивлением называется законом Ома. Закон Ома гласит, что вольты равны амперам, умноженным на сопротивление.

    Формулы:

    E = I x R или  I = E / R или R = E / I

    E= Напряжение (В)

    I = Ток (Ампер)

    R= Сопротивление (Ом)

    P = Мощность (Вт)

    Уравнение закона Ома может быть перестроено для решения любого из трех значений, если известны два других значения.Например, сопротивление в 6-вольтовой цепи, если по цепи течет 2 ампера тока, равно 3 Ом.

     

    Что такое ватт?

    Электрическая мощность измеряется в ваттах, сокращенно W. Ее можно назвать мощностью в ваттах. Применительно к электрическому оборудованию это скорость преобразования электрической энергии в какую-либо другую форму энергии, такую ​​как свет.

    ватт можно сравнить с работой, совершаемой водой при мытье автомобиля. Имейте в виду, что ампер — это ток, а вольт — электрическое напряжение.Ни ампер, ни вольт сами по себе не являются мерой количества энергии, производимой для вращения двигателей или производства тепла или света. Например, если бы было доступно 15 000 вольт, но не было бы свободного потока электронов или ампер, не было бы энергии.

    Кроме того, если бы в цепи было достаточно свободных электронов, чтобы обеспечить ток в 3000 ампер, но не было напряжения или давления, не было бы никакой энергии, чтобы заставить их течь. Между амперами, вольтами и ваттами существует следующая зависимость:

     

    Р = Е х I

    P = E² / R

    P = I² x R

     

    P =

    Вт

    Е = Вольт

    I = Ампер

    R = Сопротивление

     

    Мощность большинства электрооборудования измеряется в ваттах.

    Ампер, вольт, ом, ватт

    Функция

    Срок

    Символ

    Единица измерения

    Сокращение

    Сила

    Напряжение

    Е

    Вольт

    В

    Результат форсировки

    Текущий

    я

    Ампер

    А

    Сопротивление току
    благодаря физическим свойствам

    Сопротивление

    Р

    Ом

    Ом

    Rete выполнения работы

    Мощность

    Р

    Вт

    Вт