Ток в нулевом проводе: Ток в нулевом проводе трехфазной сети

Содержание

Есть ли ток в “нулевом” проводе? : Дискуссионные темы (Ф)

Цитата:

Но если на провод подавать переменное напряжение, то там будет возникать ток. Даже если цепь не замкнута.


Нет, для протекания тока необходима не только разность потенциалов, но и замкнутый контур.

Цитата:

Если нагрузка всех трёх фаз точно сбалансирована, то тока в нулевом проводе нет


Все верно. Это вытекает из первого закона Кирхгофа.

Цитата:

Это если нагрузка включена между фазами. В этом случае и нулевого провода-то фактически нет – это точка.
А вот если нагрузка включена между фазой и нулем?


Если нагрузка включена между фазами это – соединение нагрузки в треугольник, в такой схеме нулевой точки нет (хотя ее можно создать искуственно), нет и нулевого провода. Если нагрузка включена между фазой и нулевой точкой, тогда можно соединить две нулевые точки: трансформатора и нагрузки одним проводом. Это и будет нулевой провод.

Цитата:

При одинаковых нагрузках во всех трёх фазах потенциал нулевой точки генератора и приёмника всё время будет равным нулю (отчего провод соединяющий эти точки так и называется и, кроме того, его ещё и соединяют с “землёй”), а при нулевом потенциале на обоих концах провода ток по нему не потечёт.


Различают отдельно рабочий нулевой проводник и защитный. Часто их объединяют.

Цитата:

Коллеги! Вы, пожалуйста, разберитесь. Переменный ток частотой 50 Гц это квазистационарный ток. Т.е. электроны, вытолкнутые эдс генератора из одного конца его обмотки, побегут к вам в дом, зажгут эл.лампочку, попадут в “нулевой” провод и … обязаны добраться до другого конца обмотки.
Если тока в “нуле” нет, значит цепь не замкнута и лампочка не горит.
Если лампочка горит, то ток в “нуле” есть! Но что это за ток, если равнодействующая эдс трёх обмоток генератора в “нулевом” проводе равна нулю?
Если ток – это движение заряженных частиц, то они в “нуле” стоят, как вкопанные!

Раз лампочка горит, ток в “нуле” есть! Но что это за ток?


Я понимаю, вы подходите к трехфазным цепям больше со стороны физики, чем ТОЭ. Если тока в нуле нет это не обязательно значит что цепь не замкнута. Это может означать что потенциалы двух нулевых точек одинаковы, следовательно напряжение между ними равно нулю. Также, если лампочка горит, то это не значит что ток в нуле есть. Лампочка может гореть, если нагрузка симметрична а тока в нулевом проводе не будет из-за симметрии нагрузок по фазам.

Цитата:

Они дойдут до “нулевого” провода, отскочат от него как от стенки (он же не просто провод, а заземленный на большую емкость), и побегут обратно.
Дойдут до генератора и побегут дальше, а у него на другом конце обмотки такая же “стенка”. Вот и бегают как мячики туда сюда 50 раз в секунду.


Красочное объяснение, но не отражающее реальное положение дел.

Цитата:

Как видите “нулевой” провод не обязателен. Но его почему-то заводят к Вам в квартиру.


Нулевой провод нужен: 1. Для обеспечения электробезопасности (хотя это не фонтан на самом деле, УЗО надежнее). 2. Для получения фазного напряжения 220 В. 3. Для нивелирования последствий несимметрии напряжений в сети, когда при неисправном нуле фазы перекашивает так, что на одной напряжение близко к линейному, на другой меньше 220 В в 1,5-2 раза.
Резюмируя:
1. Нулевой провод есть только в схеме звезда-звезда.
2. Ток течет в нем при несимметрии нагрузок. Чем сильнее несимметрия, тем больше величина тока в нулевом проводе. При отсутствии несимметрии (такого не бывает в наших бытовых сетях 0,4 кВ) разность потенциалов на концах нулевого провода равна нулю, тока нет.
3. Нулевой провод выполняет несколько функций: электробезопасность, получение 220 В, выравнивание фазных напряжений при несимметрии.

что происходит в нулевом проводе? : Дискуссионные темы (Ф)

Так,ладно..переформулирую вопрос…
Я понимаю зачем нужен ноль в трехфазной сети.

Ноль или нейтральный провод? Ноль это потетенциал или точка, принятая за ноль. Представьте себе выводы обмотоки трансформатора, их два, откуда куда в них будет течь ток определяется произвольным выбором нулевого вывода, который будет соединён с землёй схемы.

Цитата:

Но у нас-то в квартирах сеть однофазная.

Ток передаётся по двум проводам, второй провод может быть и нейтралью (центром звезды) и фазой.

Цитата:

И понятно,что по нулю будет течь ток (в однофазной сети) если замкнуть на него фазу через нагрузку. Но ток-то будет менять направление.

И чё? Вы без тестера сможете определить в розетке переменного тока, где фаза, а где нейтраль? Вы вилку в эту розетку не случайным ли образом втыкаете?

Цитата:

Т.е на “1ом” полупериоде он пойдет из фазы через нагрузку в ноль, а на “2ом” из нуля через нагрузку в фазу? Т.е получается что в однофазной сети ноль и фаза как-бы “равноправны” (за исключением того,что на фазе есть меняющийся потенциал,а на нуле всегда нулевой потенциал)?

Нуль это потенциал, принятый за нулевой. Если цепь замкнута, то напряжение будет и в нейтральном проводе.

Цитата:

И еще вопрос: есть три квартиры-три абсолютно одинаковых потребителя.В каждой квартире есть одна розетка. Соединим их в звезду,подключив к трем фазам. Ноль не нужен? (не с точки зрения электробезопасности). В этих розетках будут токо фазы+земля?

Если вы соедините звездой, то нулём будет центр звезды генератора или нагрузки. Нейтральный провод нужен для того чтобы фазы не плавали при несимметричной нагрузке. Земля это контур защитного заземления, в евророзетках это два лепестка в пазах (а не дырки), а в советских земли нет. Т.к. контура заземления в большинстве домов нет, то применяют зануление и все непроводящие полезный ток железяки надо подсоединить к этому заземлению (занулению). Если фазу посадить на Землю, то вокруг заземления возникнет уменьшающийся потенциал в радиусе нескольких метров и человек стоящий на Земле на двух ногах попадёт под разность напряжений между двумя точками в этой зоне.

Расчет тока в нулевом проводе при неравномерной нагрузке

Совсем недавно, при обсуждении темы на форуме, попросили сделать программу для расчета тока в нулевом проводе при неравномерной нагрузке. Какое практическое значение она имеет? Это уже второй вопрос В общем, об программе и не только…

В общем случае, ток в нулевом проводе не может быть больше тока в фазном проводе, если в сети отсутствует нелинейная нагрузка.

Я уже когда-то писал про выбор кабеля для нелинейной нагрузки.

Чтобы найти ток в нулевом проводнике необходимо найти результирующий вектор тока, образованный тремя фазными токами.

Ток в нулевом проводе

Чтобы ускорить этот процесс, я создал простую программу, которая позволяет быстро найти ток в нулевом проводе при неравномерной нагрузке.

Внешний вид программы:

Внешний вид программы

А теперь самое главное, что хотел рассказать вам. У меня есть как хорошие, так и плохие новости.

В настоящее время на блоге происходят перемены и эти перемены в лучшую сторону. Я стремлюсь к тому, чтобы каждый смог найти для себя здесь полезную информацию. Все что здесь не делается — все для вас, уважаемые читатели! Если бы не было вас, не было бы и этого блога.

Особенно хочу всех поблагодарить за теплые слова, которые шлете мне на почту, именно они меня мотивируют делать сайт еще лучше.  Например, посмотрите последний отзыв. Лично я к отзывам на других сайтах отношусь насторожено, т. к. закрадывается мысль, что все они куплены. Но, у меня все по-другому, я даже приветствую критику, т.к. именно критика позволяет ставить перед собой новые цели и задачи. Не стесняйтесь оставлять отзывы, критиковать меня.

Всех подписчиков блога я перенес на новый сервис рассылки. Туда даже попали не активированные адреса. Если вдруг вы не желаете или просто не хотите получать автоматические письма о новых статьях – просто нажмите «отписаться».

Кроме автоматических писем, теперь я буду вам высылать письма с различными полезными штучками. Каждый раз архив будут накапливаться, так что новые подписчики смогут получить «плюшку», например, которую я отправлял 3 месяца назад.

Первая такая «плюшка» – программа для расчета тока в нулевом проводе.

Следующая хорошая новость: уже практически готов «Практический курс проектирования кабельных сетей» и ориентировочно через 2 недели будет более подробный обзор. Поэтому у вас еще имеется возможность зарезервировать курс по скидке, которую устраиваю в честь первого своего курса.

Если наберется нужное количество желающих, то обзора на блоге возможно и не будет, вернее будет рассылка с ссылкой на страницу курса лишь тем, кто уже изъявил желание получить данный курс и научиться проектировать так, как это умею я, используя мой шаблон проекта и мои динамические блоки.

Реализация курса будет проходить в 2 этапа – сначала по скидке, затем будет перерыв для записи дополнительного бонуса. После этого будет запущен курс в продажу по стандартной цене и, конечно же, об этом еще напишу.

Зачем я это все делаю? Цель: все 100% должны быть довольны, а по-другому наверное и не будет, я готов каждому уделить нужное количество времени. Подобных аналогов в проектировании я не встречал. Где вы еще получите знания-опыт-шаблон проекта и все это в одном флаконе?

Если бы мне предложили такой инструмент 8 лет назад, я бы даже и не думал…

По поводу конкурса. Конкурс будет продлен, жаль, что практически никто не хочет получить данный курс совсем бесплатно. Неужели трудно написать статью?) У меня их на блоге более 400. Ожидаю хотя бы 3-х участников, чтобы раздать подарки.

Есть у меня еще и плохая новость, хотя…как посмотреть…

С выходом курса будут введены новые условия получения программ. Расчетные программы, формы – один из основных инструментов проектировщика, который способен сократить сроки проектирования. Я намерен сделать их еще лучше. После завершения работы над курсом, скорее всего займусь программами для ВЛИ, т.к. уже давно обещаю… В конце месяца будет рассылка архива программ, где все версии программ примут «v.1».

Следите за новостями и будьте на шаг впереди своих конкурентов

Советую почитать:

Ток – нулевой провод – Большая Энциклопедия Нефти и Газа, статья, страница 1

Ток – нулевой провод

Cтраница 1

Ток нулевого провода, равный геометрической сумме токов трех фаз, при равномерной нагрузке равен нулю. Следовательно, в нулевом проводе ток протекать не будет и надобность в нем отпадает. Так, например, трехфазные двигатели переменного тока включаются в сеть звездой без нулевого провода.  [1]

Так как ток нулевого провода равен сумме линейных токов, то при одинаковой нагрузке фаз суммы токов прямой и обратной систем будут равны нулю и в нулевом проводе будут только токи нулевых систем.  [2]

В симметричных трехфазных системах ток нулевого провода равен нулю. На практике при неидеальной симметрии ток нулевого провода хотя и отличен от нуля, но остается значительно меньше токов фаз. Поэтому возможность выбора меньшего сечения нулевого провода в сравнении с сечением фазных проводов приводит к более эффективному использованию токопроводящих материалов в трехфазных системах.  [3]

Разновидностью проверки является определение тока нулевого провода в схеме полной звезды. Теоретически при симметричной трехфазной нагрузке ток в нулевом проводе должен быть равен нулю. Практически за счет несимметрии первичных токов, несимметрии вторичной нагрузки и неидентичности, характеристик ТТ ток в нулевом проводе обычно не равен нулю.  [5]

Как видно из векторной диаграммы, при неполнофазном режиме ток ID нулевого провода может быть достаточно большим. Это приходится учитывать в условиях эксплуатации, так как заземление нулевой точки обычно не рассчитывается на длительное протекание больших токов.  [7]

Если для кабелей с медными жилами сечением 35 ми и более ток нулевого провода составляет более 50 % фазного тока, то сечение гибкого медного провода ( перемычки) принимается на одну ступень больше.  [9]

Обрыв нулевого провода не влияет на работу цепи, так как ток нулевого провода равен нулю.  [11]

На одну из первичных обмоток с числом витков w подается фазный ток, а на другую с числом витков / з w i – ток нулевого провода. Наличие второй первичной обмотки с числом витков 11 / з w i необходимо для компенсации токов нулевой последовательности.  [12]

В симметричных трехфазных системах ток нулевого провода равен нулю. На практике при неидеальной симметрии ток нулевого провода хотя и отличен от нуля, но остается значительно меньше токов фаз. Поэтому возможность выбора меньшего сечения нулевого провода в сравнении с сечением фазных проводов приводит к более эффективному использованию токопроводящих материалов в трехфазных системах.  [13]

В схеме дифференциальной защиты ( рис. 13.10, в) применен один трансформатор тока нулевой последовательности TAZ. Ток в реле КА пропорционален разности магнитного потока, создаваемого токами фазных проводов, и потока, создаваемого током нулевого провода. При внешних коротких замыканиях на землю эта разность близка к нулю и ток в реле недостаточен для срабатывания защиты. В случае повреждения на землю в зоне действия защиты магнитные потоки суммируются, ток в реле превышает ток срабатывания и защита отключает генератор.  [14]

В схеме дифференциальной защиты, показанной на рис. 12.2, в, применен один трансформатор тока нулевой последовательности TAZ. Ток в реле КА пропорционален разности магнитного потока, создаваемого токами фазных проводов, и потока, создаваемого током нулевого провода. При внешних коротких замыканиях на землю эта разность близка к нулю и ток в реле недостаточен для срабатьшания защиты. В случае повреждения на землю в зоне действия защиты магнитные потоки суммируются, ток в реле превышает ток срабатьшания и защита отключает генератор.  [15]

Страницы:      1    2

Как вычислить ток в нулевом проводе при несимметричной нагрузке | Электрик со стажем.

Самый простой способ – его измерить (есть такой прибор… амперметр). Но бывают случаи, когда этот ток необходимо вычислить. Для этого существуют математические формулы.

Формулы вычисления тока в нулевом проводе. Рисунок из интернета

Формулы вычисления тока в нулевом проводе. Рисунок из интернета

Но есть способ намного проще, измерить этот ток не с помощью амперметра, а с помощью линейки.

Здравствуйте уважаемые подписчики и читатели канала «Электрик со стажем».

На практике такие задачи не возникают (зачем измерять то, что нас не интересует?). Но в теории этот вопрос может возникнуть, значит – нужно на него ответить.

Как узнать ток в фазном проводе

Очень просто. Для этого есть закон Ома.

формула закона Ома

формула закона Ома

Допустим, что нам удалось вычислить ток в каждом из фазных проводов по этой очень простой формуле. Но вопрос остался, какой ток будет протекать в нулевом проводе?

От этого зависит, какое сечение проводников должен иметь кабель для подключения нагрузки.

Немного теории

В 3-фазной сети фазы сдвинуты друг от друга на 120 градусов.

В эту окружность можно вписать треугольник, угол между сторонами треугольника будет = 60 градусов.

А по сторонам треугольника можно начертить (при помощи линейки) параллельные отрезки, длинной, равной токам в каждой из фаз. Для этого обозначим точку – начало координат.

точка начала координат

точка начала координат

Допустим, что токи будут в фазе А = 6А, в фазе В = 9А, в фазе С = 5А.

Рисуем треугольник.

ток в проводе А

ток в проводе А

ток в проводе В

ток в проводе В

ток в проводе С

ток в проводе С

Треугольник у нас получился не замкнутый. Теперь берём линейку, и измеряем ток, который будет протекать в нулевом проводе.

ток в нулевом проводе

ток в нулевом проводе

На рисунке видно, что нужно измерить расстояние между началом координат и окончанием отрезка С. При токах в фазе А = 6А, в фазе В = 9А, в фазе С = 5А, ток в нулевом проводе будет = 3,59А.

Вывод

При симметричной нагрузке (ток А = ток В = ток С) ток в нулевом проводе буде отсутствовать, или = 0 (отсюда и провод называется «нулевой»).

При симметричной нагрузке при обрыве одной фазы ток в нулевом проводе будет равен наибольшему току в одной из оставшихся необорванных фазах.

При симметричной нагрузке при обрыве двух фаз ток в нулевом проводе будет равен току в необорванной фазе.

При несимметричной нагрузке ток в нулевом проводе будет меньше, чем самый большой ток одной из фаз.

Хочу обратить Ваше внимание на то, что мой канал не носит образовательного характера, здесь я просто делюсь с Вами своими мыслями и опытом, поэтому, моё мнение не обязательно должно совпадать с Вашим. Образование нужно получать в образовательном учреждении.

До следующих встреч.

Если статья была для Вас полезной или интересной, не забудьте поставить лайк и подписаться на мой канал.

Задавайте вопросы и оставляйте комментарии, вступайте в дискуссию.

Много полезных статей Вы можете найти здесь.

Если Вам будет интересно:

Как соединять провода в распредкоробке без схемы и «на автомате» прочитаете здесь

Как паять скрутки – прочитаете здесь

Как выполнить проводку в гофре

Как выполнить проводку в кабельном канале

Как выполнить проводку на тросе

Как выполнить проводку в гараже

Почему «ноль» бьется током?

Появление фазы на нуле — довольно частое явление. Ничего хорошего в этом нет: такого быть не должно. В чем может быть проблема, что проверить в своей квартире или щитке? Как правило, тут ничего сложного. 

1 Обрыв нуля

Первая причина возникновения напряжения на нуле заключается в его обрыве. Если на пути от электрощитка к розетке произошел обрыв нуля, тогда при включенной нагрузке ноль в розетке может биться током. На рисунке ниже мы схематически показали, как из-за обрыва нулевого провода появляются две фазы в розетке (точнее та же фаза).

К примеру, мы нечаянно дрелью задели нулевой проводник, тем самым оборвав его на пути к розетке. Если в это время подключен какой-то потребитель (например, лампочка),  через него та же фаза придет на ноль в розетку, и при проверке индикаторной отверткой мы увидим на нуле напряжение.

Если такое произошло, нужно выключить автомат и проверить целостность нуля на всем промежутке от щита (или счетчика) до розетки, в которой нулевой контакт стал биться током.

2 Замыкание фазы на нуль

Вторая причина заключается в замыкании фазы на рабочий ноль в розетке. Произойти это может, если мы сверлили в стену или забивали в нее гвоздь, нечаянно оборвали ноль и закоротили ее на фазу (см рис.).

В этом случае по нулю пойдет напряжение даже в том случае, если нет ни одного подключенного потребителя. Это будет та же фаза, что приходит в розетку.
Вот, собственно, основные причины «бьющегося» нуля в розетке.

3 Наведенное напряжение

Такая ситуация может возникнуть на воздушной линии электропередач. Если по одним и тем же опорам идут линии в 10 кВ и 0,4 кВ, то в сырую погоду на нуле линии 0,4 кВ может возникнуть напряжение. Оно будет невелико, но при этом достаточно ощутимо.

Автору когда-то доводилось ремонтировать линию 0,4 кВ в сырую погоду без отключения линии 10 кВ. Расстояние между проводами было примерно 1,2 м. При этом и нулевой, и фазный провод линии 0,4 кВ ощутимо бились током, так что приходилось ремонтные работы выполнять в диэлектрических перчатках.

Интересное из мира электрики:

Теги электропроводка

Отгорание нуля в трехфазной сети: современные проблемы электросетей

Причины отгорания нуля в трехфазной сети

Отгорание нуля в однофазной сети, то есть в пределах одного дома или квартиры не принесет вреда бытовой технике. В этом случае пропадёт напряжение сети 220 В, а фазный провод останется под потенциалом. В другом варианте, когда произойдёт отгорание нуля в трехфазной сети, может не выдержать бытовая техника повышенного напряжения.

Защита от отгорания нуля в квартире

При отгорании нуля в трехфазной сети, напряжение в квартире может достигнуть 380 В. Такого напряжения, не выдержит ни один бытовой прибор. Как известно к электрощиту на площадке вашего этажа подведен четырех жильный трехфазный кабель.

Три фазы, которого распределяются по квартирам равномерно, а нулевой провод (сечение его в 2 раза меньше фазного) является общим для всех квартир. Если отгорит ноль в вашей квартире, тогда просто пропадет напряжение. Но если отгорает общий ноль с кабеля на электрощите в подъезде, тогда вся ваша техника окажется под угрозой повышенного напряжения.

Повышенное напряжение приходит через какую-либо нагрузку (бойлер, электроплита, электрический чайник) от вашего соседа, имеющего другую фазу, чем ваша. Фаза соседа – включенный чайник – нулевой провод. То есть фаза через ваш нулевой провод окажется на вашем нуле. Это напряжение может достигнуть 380 В (в зависимости от нагрузки соседа).

Особенности нулевого провода трехфазной сети

В промышленности электросеть может собираться по схеме “треугольник” или “звезда”.  Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.

Схема соединений нагрузок звезда

При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.

Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.

Перекос фаз в трехфазной сети, ток нулевого провода не равен нулю

Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.

Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.

Перегрев нулевого провода

Появление коротких импульсов в сети с нелинейными нагрузками приводит к появлению больших токов нулевого провода в 1,5 раза превышающих фазные токи. Сечение же нулевого провода остается ниже фазного и отсутствует какая-либо защита нулевого проводника.

Всё это приводит к перегрузке нулевого провода и его перегреву. Вероятность отгорания нуля значительно увеличивается. Как следствие, под влиянием токов импульсного характера меняется форма синусоиды напряжения, она становится “плоской”.

Работа электродвигателей и трансформаторов в сетях с искаженной формой синусоиды

Возникающие гармоники в сетях с нелинейной нагрузкой отрицательно действуют на работу трансформаторов, вызывая немалые потери. Увеличение потерь в трансформаторе сопутствует его перегреву, увеличению потребления электроэнергии и выходу его из строя.

Искаженная форма синусоиды сети

Перегрев трансформатора исключает возможность его использования на максимальной мощности, уменьшается время работы в несколько раз. Импульсные помехи в электросетях значительно уменьшают срок службы бытовых приборов из-за их перегрева и быстрого старения изоляции.

В электродвигателях импульсный характер сетей вызывает дополнительное подмагничивание стали, ее перегреву, преждевременному износу и ухудшению характеристик электродвигателя. Гармоники в сетях могут вызвать срабатывание автоматических выключателей из-за дополнительного нагрева его элементов.

Такие импульсные помехи возникают в случае близкого расположения питающих сетей сотовой связи. Иногда можно встретить подключение кабелей сотовой связи к электросетям жилых зданий. В результате страдают жильцы от частого отгорания нуля, выхода из строя бытовой техники и быстрого износа электропроводки.

Определить импульсный характер токов обычными токоизмерительными клещами не получится, так как они рассчитаны на сеть 50 Гц и токи гармоник не видят. Для этой цели можно использовать измерительные приборы имеющие функцию True RMS, которые рассчитаны на обширный частотный диапазон.

Как сделать защиту от отгорания нуля? Для защиты нужно установить реле напряжения в квартирный щиток, на нулевые проводники поставить автоматы. Лучшим решением для защиты своей сети от отгорания нуля и импульсных помех будет использование инверторного стабилизатора, который на выходе даст идеальную синусоиду с частотой 50 Гц с минимальными искажениями.

электричество – разница между живыми и нулевыми проводами

Вы можете понять концепцию нейтрального провода математически или практически. Поскольку я больше практичный парень, давайте посмотрим на картину в целом. Нет нулевого провода, идущего от генератора или в системах передачи. Нейтральный провод реализован только на распределительном (4-проводные системы) и сетевом (под напряжением и нейтралью …. и заземлении) конце изображения.

Вы можете спросить, почему это так.Причина в том, что на уровне генератора и передачи линии или проводники имеют почти идентичный импеданс (в идеале идентичный), поэтому напряжение между каждой из 3 линий имеет одинаковую величину, но на 120 градусов друг от друга по фазе. На уровне распределения ваши нагрузки далеко не идентичны, фактически каждый раз, когда потребитель электроэнергии включает свет, полное сопротивление распределительной сети изменяется.

Это означает, что без нейтрального провода напряжение на каждой нагрузке и напряжение между фазами были бы разными, что не идеально как для потребителя, так и для электрической системы, поскольку это приводит к дисбалансу в системе распределения электроэнергии. Нагрузки с большим импедансом потребуют большего падения напряжения на них, чем нагрузки с меньшим импедансом.

Последствия этого могут быть разрушительными для оборудования, не рассчитанного на изменение напряжения питания, не говоря уже о том, что ваш свет будет колебаться между тусклым и солнечным, как в дискотеке. Здесь в игру вступает нейтральный провод. Нейтральный провод подключается в общей точке ко всем трем фазам. В идеале при $ 0 \, V $, например, в звездообразной конфигурации.

Это гарантирует, что если есть разница между импедансом нагрузки каждой фазы, то напряжение останется постоянным.Вот почему у вас есть только $ 220 \, V $ (RMS) и $ 110 \, V $ (RMS) или другие стандартные уровни напряжения. Это электрический ток, который всегда должен быть колеблющимся. С реализованной нейтралью мы получаем постоянное напряжение на любой нагрузке (полное сопротивление) с переменным током.

Как нейтральный провод делает это возможным? Поскольку нейтральный провод представляет собой потенциал между всеми тремя фазами, каждая фаза вместе с нейтральным проводом может образовывать независимую цепь, например, ваш дом, следовательно, под напряжением и нейтраль. Роль нейтрального провода заключается в пропускании любого тока в результате дисбаланса импеданса каждой из фазных нагрузок. Это приводит к поддержанию стабильного стандартного номинального напряжения. Помните, что напряжение относится к другому уровню напряжения.

Если $ 220 \, V $ высокое, нейтраль, с другой стороны, низкое, что также означает, что, поскольку существует эта разность потенциалов, в первую очередь может быть сформирована электрическая цепь.

Теперь, чтобы ответить на вопрос, поставленный в этой теме, провод под напряжением , который можно проследить вплоть до ближайшего трансформатора (ов), чьи фазные провода можно проследить до обмотки статора генератора на всем пути к источнику питания. станция. Нейтраль – это провод, связанный с концом с низким потенциалом между каждой фазой, позволяющий завершить цепь и поддерживать стабильный уровень напряжения.

Поскольку нейтральный провод замыкается, и электрическая цепь (с точки зрения переменного тока) проходит по току, аналогичному току , находящемуся под напряжением, или фазному проводу, идущему обратно к генератору, однако его потенциал относительно земли составляет почти $ 0 \, V $. Напряжение между проводом фазы и землей будет составлять $ 220 \, V $, поэтому фазный провод будет чередовать направление тока между максимальным положительным и максимальным отрицательным пиками цикла переменного тока.

электричество – Как может быть нулевой провод на 0 вольт, когда по нему течет ток?

Вы сокращаете путь, когда говорите: «Напряжение равно нулю».

Напряжение всегда измеряется между двумя точками . В электротехнике, когда мы говорим, что напряжение в точке X равно V, мы фактически измеряем напряжение между точкой X и неявной другой точкой, называемой «землей».

В электросети «нейтраль» по определению означает заземление.Так что напряжение нулевого провода всегда равно нулю … По определению.


Реальность немного иная.

Если вы измеряете напряжение между любыми двумя точками сверхпроводящего провода, вы будете измерять ноль вольт независимо от силы тока, но нейтральные провода в электросети не являются сверхпроводниками.

Если вы измеряете напряжение между двумя разными точками нейтрального провода, по которому проходит ток, вы, , сможете измерить небольшую разницу.

Обычно эта разница достаточно мала, чтобы ее игнорировать в большинстве случаев. Если он недостаточно мал, чтобы его можно было игнорировать, это означает, что нейтральный провод слишком мал (диаметр) для величины тока, который он несет.


ток течет из-за напряжения

Ну да, но нет. Ток будет вечно течь в обмотках сверхпроводящего магнита вообще без приложенного напряжения. Требуется напряжение, чтобы запустить ток, но когда ток течет в катушке, напряжение не требуется для его поддержания.

Ток перестает течь в катушках обычного электромагнита только тогда, когда напряжение снимается из-за сопротивления провода.

Это похоже на разницу между самолетом, летящим по воздуху, и спутником, вращающимся вокруг Земли намного выше атмосферы. Самолет не будет летать долго, если его двигатель остановится из-за сопротивления, с которым он сталкивается при движении по воздуху, но после первоначального разгона спутник будет продолжать вращаться по орбите вечно.

электричество – Почему мы не получаем электрический ток, касающийся нейтрального провода?

Почему бы и нет? На самом деле могли!

Ваша первая строка – это предположение, которое вас убьет.Буквально.

Нейтральный провод имеет такое же напряжение, как и земля, т.е. почти 0.

В идеальном мире, где повсюду идеальные электрические проводники с нулевым сопротивлением, нет напряжения между нейтралью и землей. В этом идеальном мире можно было спокойно дотронуться до нейтрального провода.

Сюрприз – мы живем не в идеальном мире …

Передача электроэнергии на самом деле не имеет нейтрали. Вместо этого у него есть 3 провода, на каждом из которых есть переменный ток, при этом волны переменного тока на каждом не совпадают с другими. Когда электричество попадает на местную подстанцию ​​рядом с вашим домом, оно проходит через трансформатор для понижения напряжения, а также для «добавления» трех сигналов переменного тока. Поскольку волны переменного напряжения не синхронизированы друг с другом, сложение их таким образом дает «нулевое» напряжение в середине, которое является нейтралью.

Чтобы нейтраль оставалась близкой к земле, она соединяется с землей (физический металлический стержень в землю!) Через некоторое сопротивление. Однако он не может быть привязан к земле слишком хорошо, потому что удары молнии поблизости вернут нейтраль и будут невероятно опасными.(Кстати, они все еще могут, но из-за этого урон в основном довольно низкий.)

Кроме того, в вашем доме есть физический металлический стержень в земле, который соединен с точками заземления всех ваших розеток.

Так как же это может пойти не так …?

Ну, здесь «земля» больше нигде не «земля». Вот почему в вашем доме есть собственный металлический стержень в землю. Различные факторы (например, молния, химические реакции в почве, трение воздуха о землю, влажность воздуха) приводят к разнице напряжений между местами.Как известно, именно поэтому коров может убить ближайший удар молнии – между каждой ногой, на земле, на которой они стоят, достаточно напряжения, чтобы убить их электрическим током. Таким образом, даже если нейтраль была на «земле» на трансформаторе, это могло не быть к тому времени, когда она достигла вашего дома.

Или соединение может оборваться. Если земля в вашем доме корродирует или ломается, или то же самое происходит с трансформатором, все ставки на то, находитесь вы на земле или нет.

Или вы можете получить короткое замыкание с фазы на нейтраль.Теоретически это должно привести к срабатыванию выключателя. Но предположим, что у вас нет выключателя или кто-то заменил предохранитель гвоздем в старом доме. Сопротивления вдоль фазы под напряжением и обратно вдоль нейтрали будут примерно равными, поэтому нейтральный провод в вашей розетке будет составлять примерно половину напряжения под напряжением. (А потом изоляция провода имеет тенденцию сгорать и поджигать дом, но это отдельная проблема.)

Или вы можете получить отказ в передаче электроэнергии, когда однофазное соединение разорвано. Вместо того, чтобы складывать три фазы вместе, чтобы нейтрализовать и создать нейтраль, теперь у вас есть чертовски большое переменное напряжение на нейтрали.Обычно есть защита от этого, поэтому в этом случае следует отключить все питание, но в сельской местности со старым комплектом (или где-нибудь, например, на ферме, где им управляет фермер), я бы не стал ставить на это свою жизнь. .

Или, по иронии судьбы, где-то еще может быть неисправность, связанная с замыканием на землю. Вы можете безопасно прикоснуться к нейтральному (кроме проблем, описанных выше), но если вы держитесь за землю в одной руке и нейтральную в другой, это будет земля, которая вас убьет.

Вот несколько примеров. Я не претендую на то, чтобы это исчерпывающий список способов убить себя с помощью нейтралов – я просто пытаюсь дать вам представление о том, почему это плохая идея и почему ваше неверное предположение оказывается фатальным для стольких людей. каждый год. Не добавляйте к этой статистике.

Силовая электроника

– почему нейтраль не шокирует. как нейтраль может быть нейтралью в переменном токе?

Мы заставляем так быть

Электропитание подключено к изолированной системе , отмеченной звездочкой.Звездочка появилась по очень веским причинам. «Безопасность» нейтралов – это побочный и необязательный эффект.

Если бы питание от сети было изолированной системой (и я запустил ее таким образом, и она работает), и вы предположительно заземлены … тогда не имеет значения, коснулись ли вы полюса 1 или центра (я не буду называть он «нейтральный»). Никакого тока не будет. Горячий и центральный не имеют отношения к земле (кроме вас, и только с одним «проводом», это разомкнутая цепь). Система «плавает».

Изолированная система – это именно то, что вы ожидаете.

Тем не менее, мы создаем сетевое питание, чтобы быть устойчивым, когда что-то идет не так. С изолированными системами что-то может пойти не так, и одна из самых страшных – утечка трансформатора. Если первичная обмотка трансформатора (даже небольшая) протекает во вторичной обмотке или если имеется емкостная связь, то отключает изолированную систему и «подтягивает ее» до тысяч вольт по сравнению с землей. Теперь у нас проблема. В этом двигателе токарного станка, кофеварке или светодиодной лампе изоляция не рассчитана на вольт.

Эквипотенциальное соединение делает нейтраль

Чтобы предотвратить плавание вторичной обмотки («изолированная система») при высоких напряжениях, мы, , намеренно добавляем эквипотенциальную связь , чтобы обеспечить связь с землей. Вы можете использовать трансформатор для эквипотенциального соединения, например в 3-фазном треугольнике (без диких опор) положить землю посередине. Вы также можете использовать автомобильный аккумулятор, подавая системе смещение 12 В постоянного тока от земли. Но обычно вы используете самое дешевое эквипотенциальное соединение: кусок проволоки.Вы подключаете один из проводов к земле, обычно «по центру». ** Поскольку он связан с землей, вы называете его «нейтральным».

На самом деле не имеет значения, какой провод питания вы подключаете к нейтрали. В идеале вы хотите минимизировать напряжение (относительно земли) самых горячих, поэтому лучший выбор – в электрическом «центре» … однако дельта-диафрагма 240 В является примером того, чего этого не делать.

Итак, отвечу на ваш вопрос: нейтральный – это холодный, потому что мы сделали его холодным .

Нейтраль не находится в состоянии покоя; он пульсирует с частотой сети, как горячий.Эффект эквипотенциальной связи заключается в том, что динамически изменяет смещение всей вторичной обмотки трансформатора, чтобы поддерживать нейтраль при потенциале земли и заставлять горячие отходы от нее.

Другие полезные причины

Желательным побочным эффектом эквипотенциального соединения является то, что при коротком замыкании на землю возникает сильноточный путь через заземляющий провод, кабелепровод и т. Д. Обратно к эквипотенциальному соединению нейтраль-земля и, в конечном итоге, обратно к нейтрали. Это замыкает цепь, позволяет протекать сильному току и вызывает отключение автоматического выключателя, которое устраняет замыкание на землю. Помните, ток хочет вернуться к источнику, а не к земле. Он не заботится о земле, за исключением того, что эквипотенциальное соединение заставляет его заботиться .

По разным причинам должна быть ровно одна эквипотенциальная связь . Другой может создать избыточные (параллельные) пути для нормального нейтрального (обратного) тока, и это приведет к разного рода неприятностям.

Разница между нейтралью и заземляющим проводом в электротехнике

Нейтральный и заземляющий провода часто путают вне электроснабжения, так как оба провода имеют нулевое напряжение.На самом деле, если вы по ошибке подключите заземляющий провод как нейтраль, большинство устройств будет работать правильно. Однако такое соединение противоречит правилам, поскольку каждый проводник выполняет свою функцию в электрической установке.

Национальный электротехнический кодекс (NFPA 70 NEC) устанавливает цвета изоляции для нейтрального и заземляющего проводов. Стандартные цвета упрощают электромонтаж , делая его более безопасным .

  • Цвета нейтрального провода: белый или серый
  • Цвета заземляющего провода: зеленый, желто-зеленый или голый

Эти цвета изоляции разрешены только для нейтрального и заземляющего проводов, и их использование для любой из фаз под напряжением противоречит правилам.Электрики работают с предположением, что проводка этих цветов находится под нулевым напряжением, и использование белой или зеленой изоляции для проводника под напряжением было бы смертельной ловушкой (и в первую очередь против норм).


Получите профессиональный электрический дизайн для вашего следующего строительного проекта.


Роль нейтрального проводника в электрических цепях

Чтобы представить себе, как работает нейтральный проводник, представьте, что электроэнергия доставляется в виде тока через разность напряжений. Напряжение передается по токоведущему проводнику, но нейтральный провод также необходим для двух важных функций:

  • Служит точкой отсчета нулевого напряжения.
  • Завершает цепь, обеспечивая обратный путь для тока, подаваемого токоведущим проводом.

Если к электрическому устройству подключен только токоведущий провод, он не активируется, потому что ток не может циркулировать независимо от приложенного напряжения. Это похоже на то, как гидроэлектрической турбине требуется выход для движения: если выпуск турбины заблокирован, вода не может течь и турбина не может вращаться.

Когда установка использует трехфазное питание , могут быть случаи, когда нейтральный проводник не требуется.

  • Трехфазная система с линейным напряжением 120 В обеспечивает 208 В между фазами, и вы можете подключить нагрузку 208 В между двумя фазами без использования нейтрального провода. Оба токоведущих проводника несут напряжение, но ток может течь, потому что они имеют различных напряжений.
  • Трехфазные нагрузки, такие как электродвигатели, часто рассчитаны на работу с тремя токоведущими проводниками и без нейтрального проводника.Здесь действует тот же принцип: между токоведущими проводниками может протекать ток при разном напряжении.

Даже если некоторые нагрузки не используют нейтральный провод в трехфазной установке, он необходим для однофазных нагрузок, которые используют только одно из линейных напряжений. Теоретически, когда к трем фазам подключены одинаковые нагрузки, их токи нейтрализуются, и нейтральный проводник проводит нулевой ток. Однако это невозможно в реальных установках, и нейтральный проводник несет дисбаланс тока между тремя фазами.

Роль заземляющего проводника в электрических цепях

Заземляющий провод имеет нулевое напряжение, как и нейтральный проводник, но выполняет другую функцию. Как следует из названия, этот проводник обеспечивает заземленное соединение для всех приборов и оборудования.

  • В нормальных условиях весь ток возвращается через нейтральный проводник, а заземляющий провод не имеет тока.
  • Когда происходит короткое замыкание в линии, заземляющий провод обеспечивает обратный путь для тока замыкания.Устройства электрической защиты могут обнаружить это состояние, и они немедленно отключают цепь от источника питания.

Без заземления приборы и оборудование будут находиться под напряжением, если их случайно коснется токоведущий провод. Неисправность не отключается, поскольку защитные устройства могут среагировать только при наличии тока короткого замыкания в заземляющем проводе. В этом случае любой, кто прикоснется к поверхности под напряжением, получит удар электрическим током.

Поскольку замыкание на землю может повлиять на любую цепь, заземляющий провод необходим даже при отсутствии нейтрального провода.Например, если в двигателе используются три токоведущих провода и нет нейтрали, заземление все равно требуется, потому что любой из токоведущих проводов может вызвать неисправность.

Правильный выбор размеров нейтрального и заземляющего проводов

Проводники под напряжением подбираются с учетом ожидаемого тока, и то же самое относится к нейтральным проводам в однофазных цепях (они пропускают тот же ток, что и провод под напряжением). Однако для трехфазных цепей применяются другие правила: обычно используется тот же размер провода, что и для фазных проводов, но в некоторых случаях требуется больший размер провода для нейтрального проводника.

  • Заземляющие проводники для параллельных цепей подбираются в зависимости от мощности устройства защиты от перегрузки по току с использованием таблиц, приведенных в NEC.
  • С другой стороны, размеры заземляющих проводов для главного служебного входа рассчитываются в зависимости от емкости служебных проводов. NEC предоставляет таблицы для обоих случаев.

Работая с квалифицированными инженерами-электриками с самого начала проекта, вы можете быть уверены, что все компоненты указаны в соответствии с NEC и местными нормами. Это не только обеспечивает безопасность, но и быстрое согласование проекта с местными властями. Инженеры-электрики также могут предложить меры по повышению энергоэффективности, чтобы сэкономить на счетах за электроэнергию.

Характеристики нейтрального проводника

Характеристики нейтрального проводника

В любой электрической системе нейтраль – это заземленный провод, размер и обращение с которым должны отличаться от незаземленных фазных проводов.

Знаете ли вы, как правильно подобрать нейтральный проводник? Вы знаете правила его правильного применения? Если нет, читайте дальше.В этой статье обсуждается, как рассчитать ток нейтрали для различных конфигураций цепей, чтобы удовлетворить требованиям, изложенным в Кодексе.

Подбор нейтрали: разд. 220-22. Размер нейтрального проводника должен быть таким, чтобы пропускать максимальный несимметричный ток в цепи (т. Е. Наибольшую нагрузку между нейтралью и любым одним незаземленным фазным проводом). Вы рассчитываете первые 200 А нейтрального тока на 100%. Для всех резистивных нагрузок нейтрали, превышающих 200 А, необходимо применить коэффициент потребления 70%.Затем вы добавляете это значение к первым 200 А, которое мы рассчитали как 100%.

Вы рассчитываете весь индуктивный ток нейтрали на 100% без применения коэффициента нагрузки. При работе с кухонным оборудованием или сушилкой нейтральная нагрузка питателя также должна составлять 70% от требуемой нагрузки. Вы должны использовать множитель 140% при расчете тока нейтрали для 3-проводной, 2-фазной или 5-проводной, 2-фазной системы. Нейтральные проводники не перегружаются, потому что нагрузки 120 В переключаются в цепи через разные промежутки времени.

Использование нейтрали: разд. 310-15 (б) (4). Этот раздел состоит из трех частей, в которых объясняются условия нагрузки и использование нейтрального проводника. Давайте подробнее рассмотрим каждый из этих разделов, чтобы помочь вам полностью разобраться в их применении.

Часть (а). Кодекс рассматривает нейтральный проводник как проводник с током только в том случае, если по нему проходит несимметричный ток от других незаземленных фазных проводов. Когда цепи правильно сбалансированы, через нейтраль проходит очень небольшой ток.При определении нагрузки для 2-проводной схемы заземленный нейтральный проводник проводит такое же количество тока, что и незаземленный фазный провод. Этот тип установки не имеет несбалансированной нагрузки; следовательно, нейтральный проводник проводит полный ток.

Пример: Какова нейтральная нагрузка для однофазной, 120 В, двухпроводной цепи, питающей нагрузку 14 А?

Шаг 1: Определите силу тока в секунду. 220-22 и разд. 310-15 (б) (4) (а).

Незаземленный провод = 14 А

Заземленный нейтральный провод = 14 А

Решение: Подобрать нейтральный проводник таким образом, чтобы он выдерживал нагрузку 14 А.

При определении нагрузки для 3-проводной схемы заземленный нейтральный провод должен выдерживать несимметричную нагрузку двух незаземленных фазных проводов. Этот тип установки имеет несимметричную нагрузку – если оба незаземленных проводника не тянут одинаковое количество тока на каждый незаземленный фазовый провод.

Пример: Какова несимметричная нагрузка нейтрали для 3-проводной цепи, несущей 64 А и 52 А на незаземленных фазных проводниках?

Шаг 1: Определите силу тока в секунду. 220-22 и разд.310-15 (б) (4) (а).

Незаземленный фазный провод: Фаза A = 64A

Незаземленный фазный провод: Фаза B = 52A

Несимметричная нагрузка = 12 А

Решение: Нагрузка заземленного нейтрального проводника составляет 12 А для несимметричного состояния.

Для расчета тока нейтрали для трехфазных фидерных цепей необходимо использовать специальную формулу. Если токи в фазах A, B и C имеют разные значения, вы можете вычислить нейтральный ток

.

Часть (б). Кодекс требует, чтобы заземленный нейтральный провод 3-проводной фидерной цепи на 120/208 В был такого же размера, что и незаземленные фазные проводники для фидерной цепи, полученной из 4-проводной системы на 120/208 В.

Это связано с тем, что заземленная нейтраль трехпроводной цепи (состоящей из двухфазных проводов) несет примерно такое же количество тока, как и незаземленный фазный провод. Следовательно, Кодекс не допускает снижения допустимой нагрузки.

Пример: Какова нагрузка заземленного нейтрального проводника для однофазной цепи 120/208 В, взятой из 4-проводной трехфазной системы со звездой 190 A, фазой B 170 A и нейтралью 90 A?

Решение: Вы должны выбрать размер заземленного (нейтрального) проводника на основе самого большого незаземленного фазного проводника.Следовательно, вы должны рассчитать заземленный провод на ток 190 А.

Часть (с). Заземленный нейтральный провод 4-проводной 3-фазной системы, питающей нелинейные нагрузки, должен быть такого же размера, как и незаземленные фазные проводники. Кодекс рассматривает заземленный нейтральный проводник как проводник с током из-за гармонических токов, генерируемых этими нагрузками.

Коэффициент потребления 70% применяется к нейтральным нагрузкам, превышающим 200 А для нелинейных нагрузок. Вы должны рассчитать нелинейные связанные нагрузки на 100%.

Пример: Какова нагрузка нейтрали, если она превышает 200 А и более 50% ее нагрузки подвержены гармоникам? Незаземленные фазные проводники несут общую нагрузку нейтрали 275А соответственно.

Шаг 1: Определите силу тока в секунду. 310-15 (б) (4) (в). Фазы 4275A

Шаг 2: Рассчитайте силу тока в секунду. 220-22.

Во-первых, 200A x 100% = 200A

Далее, 75A x 100% = 75A

Следовательно, итого = 275А

Решение: нейтральный провод должен выдерживать ток 275А.

Кодекс рассматривает заземленный нейтральный проводник как проводник с током из-за гармонических токов, генерируемых этими нагрузками. Вы должны применить разд. 310-15 (b) (2) (a) для четырех или более токоведущих проводов в кабелепроводе, кабеле и т. Д.

Пример: Какова нагрузка нейтрали для нагрузок 120 В с гармоническими токами 400 А на фазу?

Шаг 1: Определите силу тока в секунду. 310-15 (б) (4) (в). Незаземленные проводники = 400A

Шаг 2: Рассчитайте силу тока в секунду.220-22. 400A2 x 100% = 400A

Решение: Нейтральная нагрузка составляет 400 А.

Примечание: Кодекс не допускает снижения допустимой нагрузки из-за гармонических токов.

Необходимо тщательно определять размер нейтрального проводника (исходя из его использования с незаземленными проводниками цепи). Например, способ распределения нагрузки между другими проводниками определяет, можете ли вы снизить его номинальную допустимую нагрузку. Точно так же вы должны учитывать количество токоведущих проводов, чтобы увидеть, нужно ли снижать допустимую токовую нагрузку нейтрали.Нейтральный проводник особенный; следовательно, вы должны выбрать соответствующий размер.

Заземление, нейтраль и провода под напряжением (США / Канада)

Нейтральный, заземляющий и горячий провода объяснены. В этой статье мы рассмотрим разницу между горячим, нейтральным и заземляющим проводами, а также функцию каждого из них на нескольких примерах. Эта тема для домов в Северной Америке. Если вы находитесь за пределами этого региона, вы все равно можете следовать инструкциям, но ваша система будет работать и выглядеть иначе, поэтому проверьте другие наши темы.

Прокрутите вниз, чтобы просмотреть руководство YouTube по заземлению, нейтрали и горячим проводам.

Предупреждение

Помните, что электричество опасно и может быть смертельным. Вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. Никогда не работайте с электрическими цепями, находящимися под напряжением / горячими.

Прежде чем мы перейдем к этому видео, я хочу, чтобы вы запомнили три вещи.

1) Электричество будет течь только по замкнутой цепи, если вы войдете в контакт с электрическим проводником, ваше тело может замкнуть цепь.
2) Электричество всегда пытается вернуться к своему источнику.
3) Электричество использует все доступные пути для замыкания цепи. Он предпочитает путь с меньшим сопротивлением, и по нему будет течь больше тока.

Мы собираемся рассмотреть провода под напряжением, нейтраль и заземление для типичной североамериканской жилой электрической цепи. Но сначала мы увидим действительно простую схему, чтобы понять, как она работает, а затем применим эти знания к сложной жилой установке.

Если мы посмотрим на простую электрическую схему с батареей и лампой.Мы знаем, что для включения лампы нам нужно подключить оба конца проводов к клеммам аккумулятора. Как только мы подключим эти провода, цепь замкнута, и электроны могут течь от отрицательного полюса через лампу и обратно к положительному выводу.

Электроны текут от отрицательного к положительному . Это называется потоком электронов. Первоначально считалось, что они перетекают от положительного к отрицательному. Позже было обнаружено, что это неверно, и мы называем это обычным током.

Итак, чтобы цепь была замкнута, нам нужен провод для переноса электронов от источника питания к свету, это наш горячий провод. Затем нам нужно подключиться от лампы и обратно к батарее, чтобы электроны вернулись к своему источнику питания или своему источнику. Это наш нейтральный провод. Горячий провод передает электричество от источника питания к нагрузке, а нейтральный провод возвращает использованное электричество обратно к источнику питания.

Токовая нагрузка в цепях

Если мы посмотрим на жилую электрическую систему в Северной Америке, мы найдем два провода под напряжением, нейтральный провод и несколько проводов заземления.Если вы хотите подробно изучить, как это работает, у нас есть обучающее видео, которое можно посмотреть здесь.

Представьте на секунду, что электрическая система дома отключена. подключен к аккумулятору, и у нас есть только один провод под напряжением и нейтральный провод. Как мы пила по простой схеме, для включения света нам понадобится горячий провод, чтобы Подаем ток на нагрузку, и нам нужен нейтральный провод, чтобы вернуть ток к источнику. Таким образом, электричество проходит через горячую шину. и автоматический выключатель и в свет.Затем он возвращается через нейтрально и к источнику.

Конечно дома не подключены к батареям, они подключен к трансформаторам. Итак, мы заменили батарею на трансформатор, и мы иметь полную схему.

Электричество в этой цепи – переменный ток, который отличается от постоянного тока, который мы видели с батареей. С DC электроны текут прямо от A к B в одном направлении, как поток вода по реке. Но в наших домах у нас есть переменный ток переменного тока, что означает электроны сильно меняют свое направление между вперед и назад как прилив на море.

Сейчас в Северной Америке у нас есть разделенная фаза питания для большинства жилых домов, поэтому у нас есть два провода под напряжением и один нейтральный провод. У нас просто есть две катушки на 120 В, соединенные вместе в трансформаторе, а затем нейтраль подключается к центру между двумя катушками.

Когда мы подключаем мультиметр между фазой и нейтралью, мы получаем 120 В, и мы получаем такие же показания для другого, потому что мы используем только половину катушки в трансформаторе. Когда мы подключаемся между двумя точками, мы получаем 240 В, потому что мы используем полную катушку трансформатора.

Если у вас нет мультиметра, я настоятельно рекомендую вам его приобрести, это незаменимый инструмент для поиска любых находок и электромонтажных работ.

Если у нас есть нагрузка только на одну половину катушки, между горячей и нейтралью, и нагрузка, например, 20 А, тогда горячая часть будет переносить 20 А к нагрузке, а нейтраль вернет 20 А обратно к источнику.

Мы можем измерить ток в кабеле с помощью токоизмерительных клещей.

Если у нас есть другая нагрузка на нашей другой половине катушки, между другой горячей и нейтралью, и нагрузка имеет другое значение, например, 15 Ампер, то нейтраль будет переносить только разницу между этими двумя значениями обратно на трансформатор.В этом случае 20A – 15A = 5A, поэтому нейтраль будет переносить 5A обратно. Остальная часть пройдет через два провода под напряжением. Это то, что мы будем иметь в большинстве случаев, потому что есть несколько цепей с разными нагрузками.

Если бы у нас была нагрузка на обе катушки, и они имеют одинаковое значение, скажем, например, 15 А каждая, то в нейтральном проводе не будет протекать ток. Все это течет вперед и назад по двум токоведущим проводам между нагрузкой и источником. Это связано с тем, что это переменный ток переменного тока, и трансформатор имеет центральное соединение с нейтралью, поэтому, когда одна половина движется вперед, другая половина движется назад, и ток будет течь в другую цепь, а не обратно через нейтраль.

Подробную анимацию см. В видео на YouTube ниже

Горячие провода переносят электрический ток от источника питания к нагрузке, а нейтральные провода переносят электрический ток от нагрузки и обратно к источнику питания.

Для чего нужен заземляющий провод?

Заземляющий провод при нормальных условиях эксплуатации не пропускает электрический ток. Этот провод будет пропускать электрический ток только в случае замыкания на землю. Будем надеяться, что иначе этот провод никогда не будет использоваться в течение всей его жизни. Это просто аварийный путь, по которому электричество возвращается к источнику энергии, а не проходит через вас. Заземляющий провод в большинстве случаев представляет собой неизолированный медный провод, но иногда он покрывается зеленой изоляцией. Этот провод имеет очень низкое сопротивление, поэтому электричество предпочтительнее перемещаться по нему, потому что это легче и может быстрее вернуться.

Возвращаясь к простой схеме с батареей и лампой. Если мы теперь возьмем другой провод и проведем его от положительной клеммы к лампе и подключим его к металлическому патрону лампы, это будет фактически наш заземляющий провод.Он не используется для подачи электричества. Если горячий провод касается металлического корпуса, то вместо этого электричество будет проходить через заземляющий провод. Если горячий провод соприкасается как с нейтралью, так и с землей, он будет течь по обоим проводам обратно к источнику, но, поскольку заземление имеет меньшее сопротивление, через него будет протекать больший ток.

Когда электричество находит способ покинуть свою цепь и вернуться к источнику другим путем, чем нейтральный провод, мы называем это замыкание на землю.

Возвращаясь в дом, электричество проходит через горячий и светлый и обратно через нейтраль. Но если горячая энергия касается металлического корпуса, она вместо этого потечет через заземляющий провод обратно к панели, затем через шину, а затем обратно к трансформатору через нейтральный провод. У заземляющего провода очень низкое сопротивление, поэтому он вызывает резкое и мгновенное увеличение тока, которое приведет к срабатыванию выключателя.

Поэтому мы подключаем заземляющие провода ко всему, что может потенциально стать потенциальным путем, по которому электричество может покинуть свою цепь, например, как металлические трубы, металлические пластины выключателей и розеток и их коробки.Нам также нужно запустить один в торговые точки, потому что часто наши бытовая техника будет иметь металлический корпус, как стиральные машины и микроволновые печи.

Если вы посмотрите на розетку и вилку, то увидите, что горячий терминал, нейтральный терминал и заземляющий терминал. Оболочка чего-то как стиральная машина подключена к проводу заземления в проводе, который идет к вилку через розетку и обратно к панели, чтобы спасти вас от поражение электрическим током.

Теперь предположим, что вы находитесь на улице без обуви и на земле. влажный.Если вы дотронетесь до горячего провода, вы замкните цепь и ток пройдет через вас, чтобы вернуться к источнику питания. В этом случае сопротивление очень высокое, поэтому ток может быть недостаточно высоким, чтобы автоматически переверните выключатель и отключите питание. Это, скорее всего, приведет к тому, что люди смерть.

К счастью, у нас есть розетка GFCI или прерыватель GFCI. GFCI расшифровывается как прерыватель цепи замыкания на землю. Мы рассмотрим вариант с автоматическим выключателем, но, по сути, они работают одинаково.

Этот выключатель GFCI будет подключаться как к горячему, так и к нейтрали цепи, чтобы он мог контролировать провода и гарантировать, что ток, протекающий в горячем проводе схемы, равен току в нейтральном проводе цепи. .Если ток не равен, значит, он явно течет обратно к источнику по другому маршруту, например, по металлической трубе, поэтому у нас есть замыкание на землю. Прерыватель осознает это очень быстро и автоматически перевернется, чтобы отключить питание цепи.

Штанга заземления

При подключении к основной панели находим толстый медный провод. что приводит к заземляющему стержню. Грунтовая дорога засыпана землей снаружи рядом с собственностью. Этот стержень не используется при замыканиях на землю. Цель состоит в том, чтобы рассеивают статическое электричество и высокое внешнее напряжение, например, молнии удары.

Также имеется заземляющий стержень, подключенный к нейтрали трансформатора. Многие думают, что во время замыкания на землю электричество проходит через заземляющий стержень в землю. Но помните, что электричество пытается вернуться к своему источнику. Поскольку у трансформатора есть заземляющий стержень, существует потенциальный путь для электричества, чтобы вернуться к источнику. НО, этот путь будет иметь очень высокое сопротивление или импеданс, поскольку это переменный ток, и, как мы знаем, электричество будет иметь преимущество над путем с наименьшим сопротивлением.Поскольку у нас уже есть заземляющий провод с низким сопротивлением, который обеспечивает обратный путь непосредственно к источнику, замыкание на землю будет происходить по этому же маршруту.

Когда дело доходит до освещения, источником освещения в основном является Земля. Итак, молния пытается вернуться к своему источнику, который является земля. Если молния ударит по кабелям электропитания, она потечет по проводам к добраться до заземляющих стержней как трансформатора, так и главной панели, чтобы вернуться на землю. В противном случае он взорвет все наши цепи и вызовет пожары.

Если горячая проволока напрямую контактирует с заземляющим стержнем, то электричество будет проходить через землю обратно к трансформатору, но сопротивление очень велико, поэтому ток будет низким. Это означает, что автоматический выключатель вряд ли обнаружит эту неисправность, и выключатель не будет автоматически переключаться, чтобы отключить питание.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *