Транзистор эмиттер коллектор база: Эта страница ещё не существует

Содержание

Биполярные транзисторы

Добавлено 21 октября 2016 в 17:45

Сохранить или поделиться

Биполярный транзистор был назван так, потому что его работа предполагает движение двух носителей заряда: электронов и дырок в одном и том же кристалле. Первый биполярный транзистор был изобретен в Bell Labs Уильямом Шокли, Уолтером Браттейном и Джоном Бардином в конце 1947 года, и поэтому публикации о нем не появлялись до 1948 года. Таким образом, многие тексты различаются по дате изобретения. Браттейн изготовил германиевый точечный транзистор, который имел некоторое сходство с точечным диодом. В течение месяца у Шокли появился более практичный плоскостной биполярный транзистор, который мы опишем ниже. В 1956 году за изобретение транзистора они были удостоены Нобелевской премии по физики.

Биполярный транзистор, показанный на рисунке ниже (a), – это NPN трехслойный полупроводниковый сэндвич с эмиттером и коллектором на концах и базой между ними.

Это как если бы к двухслойному диоду был добавлен третий слой. Но если бы это было единственным требованием, было бы достаточно иметь пару расположенных «спина к спине» диодов. Да и изготовить пару диодов, расположенных «спина к спине», гораздо проще. Но основой изготовления биполярного транзистора является создание среднего слоя, базы, такого тонкого насколько это возможно без замыкания внешних слоев, эмиттера и базы. Невозможно переоценить важность тонкой области базы.

Полупроводниковый прибор на рисунке ниже (a) имеет два перехода, между эмиттером и базой и между базой и коллектором, и две обедненные области.

(a) Биполярный NPN транзистор.
(b) Применение обратного смещения к переходу база-коллектор.

На переход база-коллектор биполярного транзистора принято подавать обратное смещение, как показано на рисунке выше (b). Обратите внимание, что это увеличивает ширину обедненной области. Напряжение обратного смещения для большинства транзисторов может находиться в диапазоне от нескольких вольт до десятков вольт. В данный момент в коллекторной цепи нет тока, кроме тока утечки.

На рисунке ниже (a) добавлен еще один источник напряжения в цепь между эмиттером и базой. Обычно мы прикладываем к переходу эмиттер-база прямое смещение, преодолевающее потенциальный барьер 0,6В. Это похоже на прямое смещение полупроводникового диода. Источник напряжения должен превышать 0,6В, чтобы основные носители (электроны для NPN) начали протекать от эмиттера в базу, становясь неосновными носителями заряда в полупроводнике P-типа.

Если бы область базы была толстой, как в паре расположенный «спина к спине» диодов, весь ток, поступающий в базу, утекал бы через вывод базы. В нашем примере NPN транзистора электроны, выходящие из эмиттера в базу, будут объединяться с дырками в базе, освобождая место для большего числа дырок, которые будут созданы на (+) выводе батареи, подключенного к базе, как только электроны уйдут.

Однако база изготавливается тонкой. Несколько основных носителей в эмиттере, введенных как неосновные носители в базу, действительно рекомбинируют.

Смотрите рисунок ниже (b). Несколько электронов, введенных эмиттером в базу NPN транзистора, попадают в дырки. Также несколько электронов, вошедших в базу, потекут напрямую через базу к положительной клемме батареи. Большая часть эмиттерного потока электронов диффундирует через тонкую базу в коллектор. Кроме того, изменение небольшого тока базы приводит к большим изменениям тока коллектора. Если напряжение на базе падает ниже примерно 0,6 вольт для кремниевого транзистора, то перестает течь большой ток эмиттер-коллектор.

Биполярный NPN транзистор с обратным смещением перехода коллектор-база: (a) добавление прямого смещения к переходу база-эмиттер дает в результате (b) маленький ток базы и большие токи эмиттера и коллектора.

На рисунке ниже мы более внимательно рассмотрим механизм усиления тока. У нас есть увеличенный вид переходов биполярного NPN транзистора с акцентом на тонкую область базы. Хотя это не показано, мы предполагаем, что подключены внешние источники напряжения: (1) прямое смещение перехода эмиттер-база, (2) обратное смещение перехода база-коллектор. Электроны, основные носители, входят в эмиттер от клеммы (-) батареи. Ток базы соответствует электронам, покидающим вывод базы к выводу (+) батареи. Впрочем, это небольшой ток по сравнению с током эмиттера.

Электроны, входящие в базу:
(a) Утерянные в результате рекомбинации с дырками базы.
(b) Выходящие из вывода базы.
(c) Большинство диффундирует из эмиттера через тонкую базу в обедненную область база-коллектор,
и (d) быстро захватываются сильным электрическим полем обедненной области в коллектор.

Основными носителям внутри эмиттера N-типа являются электроны, становящиеся неосновными носителями, когда входят в базу P-типа. У этих электронов, попадающих в тонкую базу P-типа, есть четыре возможных варианта. Несколько электронов (на рисунке (a) выше) попадают в дырки в базе, что способствует протеканию тока к выводу базы от клеммы (+) батареи. Это не показано, но дырки в базе могут диффундировать в эмиттер и объединяться с электронами, способствуя протеканию тока через вывод базы.

Несколько (b) протекают через базу к выводу (+) батареи, как если бы база была просто резистором. Обе группы электронов, и (a) и (b), вносят очень маленький вклад в ток базы. Для маломощных транзисторов ток базы обычно составляет 1% от тока эмиттера или коллектора. Большая часть электронов эмиттера диффундирует сквозь тонкую базу (c) в обедненную область база-коллектор. Обратите внимание на полярность обедненной области, окружающей электрон на рисунке (d). Сильное электрическое поле быстро сметает электрон в коллектор. Сила поля пропорциональна напряжению батареи коллектора. Таким образом, 99% эмиттерного тока поступает в коллектор. Он управляется током базы, который составляет 1% от тока эмиттера. Это потенциальное усиление тока в 99 раз, отношение I
К
/IБ, также известное как бета β.

Это потрясающе, распространение 99% носителей эмиттера через базу возможно, только если база очень тонкая. Что было бы с основными носителями эмиттера, если бы база была в 100 раз толще? Можно было бы ожидать увеличения рекомбинации, число электронов, попадающих в дырки, было бы намного больше.

Может быть 99%, а не 1%, попало бы в дырки, никогда не достигнув коллектора. Второй момент состоит в том, что ток базы может управлять 99% тока эмиттера, только если 99% тока эмиттера диффундирует в коллектор. Если бы весь ток вытекал из базы, никакое управление не было бы возможно.

Еще одна особенность, необходимая для передачи 99% электронов из эмиттера в коллектор, заключается в том, что реальные биполярные транзисторы используют небольшой сильно легированный эмиттер. Высокая концентрация электронов эмиттера заставляет больше электронов диффундировать в базу. Более низкая концентрация легирующей примеси в базе означает, что меньшее количество дырок диффундирует в эмиттер, которые могли бы увеличить ток базы. Распространение носителей заряда от эмиттера к базе пользуется большим преимуществом.

Тонкая база и сильно легированный эмиттер помогают сохранить высокую эффективность эмиттера, например, 99%. Это соответствует тому, что 100% тока эмиттера разделяется между базой (1%) и коллектором (99%). Эффективность эмиттера известна, как α = IК/IЭ.

Биполярные транзисторы могут иметь структуру как NPN, так и PNP. Мы приведем сравнение этих двух структур на рисунке ниже. Разница заключается в полярности PN-переходов база-эмиттер, что и обозначено направлением стрелки эмиттера на условном графическом обозначении. Она указывает в том же направлении, как и стрелка анода диода, противоположно направлению движения электронов.

Смотрите условное обозначение на изображении в P-N переход. Начало стрелки и ее конец соответствуют полупроводникам P-типа и N-типа, соответственно. Для эмиттеров NPN и PNP транзисторов стрелка указывает по направлениям от базы и к базе, соответственно. На условном обозначении нет стрелки на коллекторе. Тем не менее, переход база-коллектор имеет ту же полярность, как диод, что и переход база-эмиттер. Обратите внимание, что мы говорим о полярности диода, а не источника питания.

Сравните NPN транзистор (a) с PNP транзистором (b). Обратите внимание на стрелку эмиттера и полярности источника питания.

Источники напряжения для PNP транзисторов перевернуты по сравнению с NPN транзисторами, как показано на рисунке выше. Переход база-эмиттер должен быть смещен в прямом направлении в обоих случаях. На базу PNP транзистора подается отрицательное смещение (b), по сравнению с положительным (a) для NPN транзистора. В обоих случаях переход база-коллектор смещен в обратном направлении. Источник питания коллектора PNP транзистора имеет отрицательную полярность, по сравнению с положительной для NPN транзистора.

Биполярный плоскостной транзистор (BJT): (a) поперечное сечение отдельного прибора, (b) условное графическое обозначение, (c) поперечное сечение интегральной микросхемы.

Обратите внимание, что биполярный транзистор (BJT) на рисунке (a) выше имеет сильное легирование в эмиттере, обозначенное N+. База обладает нормальным уровнем P-легирования. База намного тоньше, чем показано на рисунке поперечного сечения не в масштабе. Коллектор легирован слабо, что обозначено с помощью N. Коллектор должен быть легирован так слабо, чтобы переход коллектор-база обладал высоким напряжением пробоя. Это приводит к высокому допустимому напряжению источника питания коллектора. Напряжение пробоя у маломощных кремниевых транзисторов составляет 60-80 вольт. Для высоковольтных транзисторов оно может достигать сотен вольт. Коллектор также должен быть сильно легирован для уменьшения резистивных потерь, если транзистор должен работать с большими токами. Эти противоречивые требования удовлетворяются за счет более сильного легирования коллектора в области металлического контакта. Коллектор около базы легирован слабо по сравнению с эмиттером. Сильное легирование в эмиттере дает низкое напряжение пробоя перехода эмиттер-база, которое составляет примерно 7 вольт для маломощных транзисторов. Сильнолегированный эмиттер делает переход эмиттер-база при обратном смещении, похожим по характеристикам на стабилитрон.

Основание биполярного плоскостного транзистора, пластина из полупроводника, – это коллектор, установленный (в случае мощных транзисторов) на металлическом корпусе. То есть, металлический корпус электрически соединен с коллектором. Основание маломощных транзисторов может быть заключено в эпоксидную смолу. В мощных транзисторах алюминиевые соединительные провода подключаются к базе и эмиттеру и соединяются с выводами корпуса. Основания маломощных транзисторов могут устанавливаться непосредственно на выводящих проводниках. На одном кристалле может быть изготовлено несколько транзисторов, что будет называться интегральной схемой. Коллектор даже может быть установлен не на корпусе, а на выводе. Интегральная схема может содержать внутренние проводники, соединяющие транзисторы и другие интегрированные компоненты. Встроенный биполярный транзистор, показанный на рисунке (c) выше, намного тоньше, чем показано на рисунке «не в масштабе». Область P+ изолирует несколько транзисторов в одном кристалле. Алюминиевый слой металлизации (не показан) соединяет между собой несколько транзисторов и другие компоненты. Область эмиттера сильно легирована N+ по сравнению с базой и коллектором для того, чтобы повысить эффективность эмиттера.

Дискретные PNP транзисторы почти столь же высокого качества, как и NPN транзисторы. Тем не менее, интегрированные PNP транзисторы не так хороши, как NPN в аналогичном кристалле интегральной схемы. Таким образом, интегральные схемы по максимуму используют NPN транзисторы.

Подведем итоги

  • Биполярные транзисторы проводят ток, используя и электроны, и дырки в одном приборе.
  • Функционирование биполярного транзистора, как усилителя тока, требует, чтобы на переход коллектор-база было подано обратное смещение, а на переход эмиттер-база – прямое.
  • Транзистор отличается от пары соединенных «спина к спине» диодов тем, что база (центральный слой) очень тонкая. Это позволяет основным носителям заряд из эмиттера диффундировать, как неосновные носители, через базу в обедненную область перехода база-коллектор, где их подбирает сильное электрическое поле.
  • Эффективность эмиттера улучшается более сильным легированием по сравнению с коллектором. Эффективность эмиттера: α = IC/IE, составляет 0,99 для маломощных транзисторов.
  • Усиление по току: β=IC/IB, для маломощных транзисторов лежит в диапазоне от 100 до 300.

Оригинал статьи:

Теги

PN переходБиполярный транзисторОбучениеЭлектроника

Сохранить или поделиться

Проверка биполярного транзистора мультиметром

Добавлено 27 сентября 2017 в 07:35

Сохранить или поделиться

Биполярные транзисторы построены из трехслойного полупроводникового «сэндвича» либо NPN, либо PNP. Как таковые транзисторы при проверке мультиметром в режиме «сопротивление» или «проверка диода», как показано на рисунке ниже, показываются как два диода, соединенных друг с другом. Показания низкого сопротивления с черным отрицательным (-) выводом на базе соответствует N-типу материала в базе PNP транзистора. На условном обозначении на материал N-типа «указывает» стрелка перехода база-эмиттер, который в этом примере является базой. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер. Коллектор очень похож на эмиттер и так же является материалом P-типа PN-перехода.

Проверка PNP транзистора мультиметром: (a) прямое смещение переходов Б-Э и Б-К, сопротивление низкое; (b) обратное смещение переходов Б-Э, Б-К, сопротивление равно ∞

Здесь я предполагаю использовать мультиметр с единственной функцией измерения (сопротивление) для проверки PN-переходов. Некоторые мультиметры оснащены двумя отдельными функциями измерения: сопротивление и “проверка диода”, каждая служит своей цели. Если у вашего мультиметра есть функция “проверка диода”, используйте её, вместо измерения сопротивления, в этом случае мультиметр покажет прямое падение напряжения PN-перехода, а не только то, проводит ли он ток.

Разумеется, показания мультиметра будут совершенно противоположными для NPN транзистора, причем оба PN-перехода будут направлены в противоположную сторону. Показания низкого сопротивления с красным (+) выводом на базе являются «противоположным» состоянием для NPN транзистора.

Если в этом тесте используется мультиметр с функцией «проверка диода», будет установлено, что переход эмиттер-база имеет несколько большее прямое падение напряжения, чем переход коллектор-база. Эта разница прямых напряжений обусловлена несоответствием концентрации легирования между областями эмиттера и коллектора: эмиттер представляет собой кусок полупроводникового материала, гораздо более легированный, чем коллектор, в результате чего его переход с базой создает более высокое прямое падение напряжения.

Зная это, становится возможным определение назначение выводов на немаркированном транзисторе. Это важно, потому что корпуса, к сожалению, не стандартизированы. Разумеется, все биполярные транзисторы имеют три вывода, но расположение этих трех выводов на реальном физическом корпусе не имеет универсального стандартизированного порядка.

Предположим, что техник нашел биполярный транзистор и начинает измерять его проводимость с помощью мультиметра, установленного в режим «проверка диода». Измерения между парами выводов и запись значений, отображаемых мультиметром, дают ему следующие данные.

Неизвестный биполярный транзистор. Где здесь эмиттер, база, коллектор? Ниже приведены показания мультиметра.
Мультиметр подключен к выводу 1 (+) и 2 (-): “OL”
Мультиметр подключен к выводу 1 (-) и 2 (+): “OL”
Мультиметр подключен к выводу 1 (+) и 3 (-): 0.655 V
Мультиметр подключен к выводу 1 (-) и 3 (+): “OL”
Мультиметр подключен к выводу 2 (+) и 3 (-): 0.621 V
Мультиметр подключен к выводу 2 (-) и 3 (+): “OL”

Единственными комбинациями тестовых измерений, дающих на мультиметре показания, говорящие о проводимости, являются выводы 1 и 3 (красный щуп на выводе 1, черный щуп на выводе 3) и выводы 2 и 3 (красный щуп на выводе 2, черный щуп на выводе 3). Эти два показания должны указывать на прямое смещения перехода эмиттер-база (0,655 вольт) и перехода коллектор-база (0,621 вольт).

Теперь мы ищем один провод, общий для обоих показаний проводимости. Это должен быть вывод базы транзистора, поскольку база единственным слоем трехслойного устройства, общего для обоих PN-переходов (база-эмиттер и база-коллектор). В этом примере это провод номер 3, являющийся общим для комбинаций тестовых измерений 1-3 и 2-3. В обоих этих измерениях черный (-) щуп мультиметра касался к выводу 3, что говорит нам, что база этого транзистора изготовлена из полупроводникового материала N-типа (черный = отрицательный). Таким образом, это PNP-транзистор с базой на выводе 3, эмиттером на выводе 1 и коллектором на выводе 2, как показано на рисунке ниже.

Выводы биполярного транзистора определены с помощью мультиметра.

Обратите внимание, что вывод базы в этом примере не является средним выводом транзистора, как это можно было бы ожидать от трехслойной «сэндвичной» модели биполярного транзистора. Это довольно частый случай, и, как правило, это часто путает новых студентов. Единственный способ определить назначение выводов – это проверка мультиметром или чтение технического описания на конкретную модель транзистора.

Знание того, что биполярный транзистор при тестировании мультиметром в режиме проводимости ведет себя как два соединенных «спинами» диода, полезно для идентификации неизвестного транзистора только по показаниям мультиметра. Это также полезно для быстрой проверки работоспособности транзистора. Если техник измерит проводимость между тремя выводами в разных комбинациях, он или она сразу узнает, что транзистор неисправен (или что это не биполярный транзистор, а что-то еще – отличная возможность, если на детали нет маркировки для точной идентификации!). Однако модель «двух диодов» для транзистора не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать этот парадокс, рассмотрим одну из схем транзисторных ключей, используя для представления транзистора физическую схему (как показано на рисунке ниже), а не условное обозначение. Так легче будет видеть два PN-перехода.

Небольшой ток базы, протекающий в прямо смещенном переходе база-эмиттер, обеспечивает большой ток через обратно смещенный переход база-коллектор (на рисунке показано направление движения потоков электронов, общепринятые направления электрических токов будут противоположными)

Диагональная стрелка серого цвета показывает направление потока электронов через переход эмиттер-база. Эта часть имеет смысл, так как электроны протекают от эмиттера N-типа к базе P-типа, очевидно прямое смещение перехода. Однако с переходом база-коллектор совсем другое дело. Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока электронов (вверх) от базы к коллектору. С базой из материала P-типа и коллектором из материала N-типа, это направление потока электронов явно указывает на направление, противоположное тому, с каким ассоциируется PN-переход! Обычный PN-переход не позволил бы потоку электронов протекать в этом «обратном» направлении, по крайней мере, не без значительного сопротивления. Однако открытый (насыщенный) транзистор демонстрирует очень малое противодействие электронам на всем пути от эмиттера к коллектору, о чем свидетельствует свечение лампы!

Ясно, что здесь происходит что-то, что бросает вызов простой «двухдиодной» модели биполярного транзистора. Когда я впервые узнал о работе транзистора, я попытался построить свой собственный транзистор из двух диодов, включенных в противоположных направлениях, как показано на рисунке ниже.

Пара включенных в противоположных направлениях диода не действуют как транзистор!

Моя схема не работала, и я был озадачен. Однако полезное «двухдиодное» описание транзистора может использоваться для проверки, оно не объясняет, почему транзистор ведет себя как управляемый ключ.

То, что происходит в транзисторе, заключается в следующем: обратное смещение перехода база-коллектор предотвращает протекание тока коллектора, когда транзистор находится в режиме отсечки (закрыт, т.е. при отсутствии тока базы). Если переход база-эмиттер смещен в прямом направлении с помощью управляющего сигнала, нормально блокирующее поведение перехода база-коллектор изменяется, и ток через коллектор пропускается, несмотря на то, что электроны через этот PN-переход идут «неправильно». Это поведение зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода расположены правильно, и концентрации легирования этих трех слоев распределены правильно. Два диода, соединенных последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться», когда он смещен в обратном направлении, независимо от того, какая величина тока проходит через нижний диод в схеме через вывод базы. Для более подробной информации смотрите раздел «Биполярные транзисторы» главы 2.

То, что концентрации легирования играют решающую роль в особых способностях транзистора, еще раз подтверждается тем фактом, что коллектор и эмиттер не являются взаимозаменяемыми. Если транзистор просто рассматривается как два противоположно направленных PN-перехода или просто как N-P-N или P-N-P сэндвич материалов, может показаться, что любой конец этого сэндвича может служить в качестве коллектора или эмиттера. Это, однако, неверно. При «противоположном» включении транзистора в схему, ток база-коллектор не сможет управлять током между коллектором и эмиттером. Несмотря на то, что эти оба слоя (эмиттер и коллектор) биполярного транзистора имеют один и тот же тип легирования (либо N, либо P), коллектор и эмиттер определенно не одинаковы!

Ток через переход эмиттер-база позволяет протекать току через обратно смещенный переход база-коллектор. Действие тока базы можно рассматривать как «открывание клапана» для тока через коллектор. Более конкретно, любая заданная величина тока от эмиттера к базе допускает протекание ограниченной величины тока от базы к коллектору. На каждый электрон, который проходит через переход эмиттер-база и через вывод базы, через переход база-коллектор проходит определенное количество электронов и не более.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

Подведем итоги:

  • При проверке с помощью мультиметра в режимах «сопротивление» и «проверка диода» биполярный транзистор ведет себя как два встречно направленных PN-перехода (диода).
  • PN-переход эмиттер-база имеет несколько большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.
  • Обратно смещенный переход база-коллектор обычно блокирует любой ток через транзистор между эмиттером и коллектором. Однако этот переход начинает проводить ток, если протекает ток и через вывод базы. Ток базы можно рассматривать как «открывание клапана» для определенной, ограниченной величины тока через коллектор.

Оригинал статьи:

Теги

PN переходБиполярный транзисторМультиметрОбучениеЭлектроника

Сохранить или поделиться

Транзистор [База знаний]

Транзистор. Определение, обозначение на схемах, принцип работы, основные характеристики

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Транзистор — один из самых распространенных полупроводниковых элементов самого широкого применения. Существуют различные виды транзисторов, но как правило данный электронный компонент имеет три вывода и, как и диод, основывается на явлении p-n перехода. Отсюда происходит его второе название – полупроводниковый триод.

Главным свойством транзистора является управление током, протекающим через него (ток эмиттерколлектор у биполярных и ток истоксток у полевых транзисторов), с помощью третьего вывода (база у биполярных и затвор у полевых транзисторов). Иными словами транзисторы зачастую используют как выключатель и/или регулятор силы тока и напряжения.


Биполярный транзистор

Транзисторы данного типа состоят из трех слоев полупроводников с чередующимся типом проводимости:
  • Эмиттер (emitter)
  • База (base) – на схемах изображается между К. и Э. под прямым углом к несущей черте
  • Коллектор (collector) – на схемах обозначен стрелкой.

 

Таким образом, у биполярных транзисторов имеется два p-n перехода: эмиттер-база и база-коллектор. Наделение полупроводников определенным типом проводимости происходит с помощью легирования — добавления в них специальных примесей. Каждый слой легируется в разной степени.
Различают два типа биполярных транзиторов:
  • p-n-p, где эмиттер – полупроводник p-типа, база – n-типа, коллектор – p-типа
  • n-p-n, где эмиттер – полупроводник n-типа, база – p-типа, коллектор – n-типа.

 

Их схематичное устройство представлено представлено на иллюстрации ниже.

Также на иллюстрации обозначено направление движения тока в биполярных транзисторах обоих типов и типичное обозначение напряжений, имеющих место между его выводами.

 

В основе работы биполярных транзисторов лежит следующий процесс, который рассмотрим на примере транзистора со структурой npn в нормальном активном режиме. В этом режиме переход эметтер-база смещён в прямом направлении, иначе говоря, открыт, а переход база-коллектор смещён в обратном направлении или закрыт. При переходе носителей заряда (электронов) из эмиттера через открытый p-n переход эмиттер-база, часть их рекомбинирует с носителями заряда (дырками) в базе. Однако база делается очень тонкой и слабо легированной (по сравнению с эмиттером), из-за чего большая часть электронов, перешедших (инжектированных) в базу из эмиттера, так сказать, «не находит себе в базе места» и, как следствие, диффундирует в коллектор. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы и переносит их в коллекторный слой. Таким образом, ток коллектора практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы. В случае с биполярными транзисторами структуры pnp процесс будет тем же, изменится лишь полярность и направление токов.

 


Полевой транзистор (униполярный)

Принцип действия полевых транзисторов основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.

 

Полевые транзисторы имеют следующие выводы:
  • Исток (source) — область, из которой носители заряда уходят в канал
  • Затвор (gate) – электрод, на который подается управляющее напряжение
  • Сток (drain) – область, в которую носители заряда входят.

Биполярные транзисторы

3.9. Биполярные транзисторы

 

1. Общие сведения. Характеристики

 

Биполярный транзистор – это полупроводниковый прибор с двумя р-n переходами и тремя выводами, служащий для усиления мощности. В транзисторе имеется три области – эмиттер (э), база (б) и коллектор (к). В зависимости от типа проводимости этих областей различают транзисторы n-p-n и p-n-p типа. Таким образом, в транзисторе имеется два p-n перехода: эмиттер-база (эмиттерный) и коллектор-база (коллекторный). Стрелка на условных обозначениях транзисторов (см. в начале главы) указывает направление от p области к n области. Принцип работы обоих типов транзисторов одинаков.

Толщина базы делается значительно меньше длины свободного пробега неосновных носителей тока, попадающих в нее из эмиттера, а концентрация основных носителей в базе много меньше концентрации основных носителей в эмиттере. В результате в базе сводится до минимума рекомбинация неосновных носителей с основными, пришедшими из эмиттера.

Площадь коллекторного перехода (перехода база-коллектор) значительно больше площади эмиттерного перехода (перехода база-эмиттер). Это делается для того, чтобы перехватить весь поток носителей, идущих от эмиттера, а также потому, что на коллекторном переходе выделяется большая мощность. Концентрация же основных носителей в коллекторе несколько меньше, чем в эмиттере.

В зависимости от того, какое напряжение (прямое или обратное) подано на переходы транзистора, выделяют четыре режима работы транзистора. В активном режиме (он является основным) напряжение на эмиттерном переходе прямое, на коллекторном – обратное. В режиме отсечки (запирания) на оба перехода подается обратное напряжение. В режиме насыщения напряжение на обоих переходах прямое. В инверсном режиме на коллекторном переходе напряжение прямое, а на эмиттерном – обратное.

Рассмотрим работу транзистора n-p-n типа в активном режиме без нагрузки (рис. 3.30). На рисунке темными кружками изображены электроны, светлыми – дырки. Поскольку на переход база-эмиттер подано прямое напряжение, то сопротивление эмиттерного перехода мало и для получения тока на этом переходе достаточно напряжения Е1 в десятые доли вольта. Сопротивление коллекторного перехода велико (на него подано обратное напряжение) и напряжение Е2 обычно составляет единицы и десятки вольт.

При увеличении прямого напряжения на эмиттерном переходе электроны из эмиттера переходят в базу. Благодаря малой толщине базы и малой концентрации в ней дырок лишь незначительная часть электронов рекомбинирует с дырками базы, образуя ток базы (его стараются сделать как можно меньше). Основная часть электронов достигает коллекторного перехода и под действием его обратного напряжения втягивается в коллектор (электроны являются неосновными носителями для базы и поле запирающего слоя на переходе коллектор-база является для них ускоряющим). Поэтому ток коллектора лишь немного меньше тока эмиттера: iэ=iк+iб.

Когда на эмиттерный переход не подано прямое напряжение, то через коллектроный переход протекает только небольшой обратный ток, созданный неосновными носителями. Таким образом, прямое напряжение эмиттерного перехода существенно влияет на токи эмиттера и коллектора: чем больше это напряжение, тем больше токи эмиттера и коллектора. Такое свойство транзистора позволяет использовать его в качестве электронного ключа, а также для усиления электрического тока.

Для расчета схем с транзисторами необходимо знать их характеристики (зависимости между токами и напряжениями). Для схемы включения транзистора с общим эмиттером (рис. 3.30) входная характеристика представляет собой зависимость силы тока базы от напряжения база-эмиттер при постоянном напряжении коллектр-эмиттер. Она имеет такой же вид, как прямая ветвь ВАХ полупроводникового диода. Выходные характеристики биполярного транзистора при схеме включения с общим эмиттером представляют собой зависимости силы тока коллектора от напряжения коллектор-эмиттер при различных постоянных значениях тока базы (рис. 3.31).

Самая нижняя выходная характеристика построена для iб=0. Она похожа на обратную ветвь вольт-амперной характеристики полупроводникового диода. Чем больше сила тока базы, тем выше расположена выходная характеристика.

Активная область на семействе выходных характеристик транзистора (рис. 3.32) ограничена максимально допустимым током коллектора, максимально допустимым напряжением коллектор-эмиттер, гиперболой максимально допустимой мощности рассеяния и неуправляемым током коллектора (ток коллектора при iб=0). Для уменьшения нелинейных искажений рабочую область ограничивают также слева (см. штриховую линию на рис. 3.32).

Характеристики транзисторов, как и всех полупроводниковых элементов, очень сильно зависит от температуры. При увеличении температуры сопротивление полупроводников уменьшается и токи в них увеличиваются. Поэтому семейство выходных характеристик при увеличении температуры смещается вверх (рис. 3.33).

 

2. Определение структуры и выводов биполярных транзисторов

В последнее время все чаще используют транзисторы, извлеченные из неработающих электронных приборов. В связи с этим возникает проблема определения структуры и выводов транзисторов.

При экспериментальном определении структуры транзистора (р-n-р или n-р-n) его можно рассматривать состоящим из двух диодов, соединенных в зависимости от структуры анодами или катодами (рис. 3.34 а, б), причем точка соединения диодов соответствует выводу базы транзистора. Для определения структуры и вывода базы транзистора воспользуемся омметром с известной полярностью напряжения, подаваемого на гнезда омметра от внутреннего источника питания. Обычно положительный полюс внутреннего источника питания омметра соединен с гнездом “общий”.

Следует отметить, что существуют омметры и с другой полярностью напряжения на гнездах. Так, например, авометр Ц20-05 выпускается в двух модификациях: в одной из них на общее гнездо омметра выведен плюс внутреннего источника питания, а в другой – минус. Поэтому перед экспериментальным определением структуры и вывода базы транзистора следует с помощью диода с маркированной полярностью проверить, какой полюс внутреннего источника питания омметра соединен с общим гнездом.

При одной полярности щупов омметра, подключаемых к переходу транзистора, сопротивление перехода оказывается малым (прямое подключение), а при другой – большим (обратное подключение). Если при малом сопротивлении переходов транзистора плюсовой щуп омметра касался одного и того же вывода, значит это вывод базы и транзистор имеет структуру n-р-n. Если в этой же ситуации минусовой щуп омметра касался одного и того же вывода (базы), то транзистор р-n-р типа.

После того, как определена структура транзистора и найден вывод базы транзистора, приступают к определению выводов эмиттера и коллектора. На рисунках, поясняющих принцип работы биполярного транзистора, области эмиттера и коллектора выглядят симметрично и, казалось бы, что выводы коллектора и эмиттера можно поменять местами. Однако конструктивно эмиттер и коллектор выполняются по-разному (имеют неодинаковую концентрацию носителей заряда и площадь поверхности). Поэтому менять их местами не следует, так как получится существенно меньший коэффициент усиления по току и меньшая мощность рассеяния транзистора. Для некоторых транзисторов в этом случае может возникнуть лавинный пробой перехода база-эмиттер, что нарушит нормальную работу собранного электронного устройства. На рисунке 3.35 приведены две выходные характеристики транзистора КТ315А в схеме включения с общим эмиттером: 1 – для стандартного включения транзистора, 2 – для случая, когда эмиттер и коллектор транзистора поменяли местами (инверсный режим работы).

Существует несколько вариантов экспериментального определения выводов эмиттера и коллектора. Рассмотрим два из них.

Возьмем резистор сопротивлением 10-100 кОм и включим его между выводом базы и предполагаемым выводом коллектора. К выводам эмиттера и коллектора омметр можно подключить так, как показано на рисунках 3.36а и 3.36б для транзистора n-р-n типа, а на рисунках 3.37а и 3.37б – для транзистора р-n-р типа. На всех рисунках предполагаемый вывод коллектора расположен вверху (по рисунку). Правильному выбору выводов коллектора и эмиттера соответствует меньшее сопротивление, фиксируемое омметром, т.е. подключение по схемам рисунков 3.36а, 3.37а.

Рассмотрим второй вариант определения выводов коллектора и эмиттера. В качестве источника питания используют любой источник постоянного напряжения (3-9 В). Миллиамперметр включают между положительным полюсом источника и предполагаемым выводом коллектора для транзисторов n-р-n типа (рис. 3.38а и 3.38б), между отрицательным полюсом источника и предполагаемым выводом коллектора для транзисторов р-n-р типа (рис. 3.39а и 3.39б). Предполагаемый вывод коллектора, как и в предыдущем случае, расположен на рисунке вверху. Правильно выбранному выводу коллектора соответствует больший ток, фиксируемый миллиамперметром.

В этом варианте можно определить не только выводы транзистора, но и приблизительно определить коэффициент усиления транзистора по току: , где Iк – сила тока коллектора, Iб – сила тока базы.

Ток базы можно рассчитать по формуле  , где Uп – напряжение источника питания, Uбэ – напряжение между базой и эмиттером транзистора.

 

Для кремниевых транзисторов напряжение база-эмиттер составляет примерно 0,6 В. Выберем напряжение питания 4,5 В и сопротивление резистора 390 кОм. Тогда Iб = 10-2 мА, и коэффициент усиления определяется из формулы: , где Iк – сила тока коллектора в мА.

 

Транзистор биполярный – Физическая энциклопедия

ТРАНЗИСТОР БИПОЛЯРНЫЙ (от лат. bi – двойной, двоякий и греч. polos – ось, полюс) – один из осн. элементов полупроводниковой электроники. Создан в 1948 Дж. Бардином (J. Bardeen), У. Браттейном (W. Brattain) и У. Шокли (W. Shockley) (Нобелевская премия по физике, 1956). Представляет собой трёхслойную полупроводниковую структуру с чередующимися слоями дырочной (р-тип) и электронной (n-тип) проводимости. Существуют Т. б. как pnр– (рис. 1, а), так и ppп-типа (рис. 1, б). Ср. область транзисторной структуры называют базой. На границе между базовой областью и крайними областями- эмиттером и коллектором – существуют электронно-дырочные переходы (рп-переходы): эмиттерный и коллекторный (рис. 2). В основе работы Т. б. лежат свойства pn-переходов, схема включения его в электрич. цепь показана на рис. 3. Т. б. изготовляются, как правило, на основе Si, GaAs и гетероперехода GaAlAs/GaAs.

Рис. 1. Структура биполярного транзистора: а-транзистор р- п-р-типа; б -транзистор п-р-n-типа.


Рис. 2. Структура биполярного транзистора рпp-типа; I-эмиттерный р-n-переход; 2 – коллекторный р- n-переход.


Рис. 3. Схема включения транзистора.

Принципы работы. Обычно при работе Т. б. к эмиттер-ному переходу приложено напряжение в прямом направлении (+ на p-эмиттере), а к коллекторному – в обратном направлении (-на p-коллекторе), В отсутствие внеш. напряжения на границе р– и и-областей существует, как известно, потенц. барьер, мешающий дыркам переходить из рn-область, а электронам – из п– в р-область. Если к рn-структуре приложено прямое напряжение (рис. 4, а), высота потенц. барьера понижается. При этом дырки из эмиттера инжектируются в базу (см. Инжекция носителей заряда), а электроны – из базы в эмиттер (рис. 4, б). В широком диапазоне токов выполняется соотношение где p1 – концентрация дырок в базе на границе с эмиттером, n1-концентрация электронов в эмиттере на границе с базой, р0 – концентрация дырок в эмиттере, n0 – концентрация электронов в базе (рис. 4, б). Концентрация дырок р0 в эмиттере и концентрация электронов n0 в базе определяются соответственно концентрациями легирующих примесей Na и Nd (см. Легирование полупроводников ).Эмиттер транзистора всегда легируется значительно сильнее, чем база (Nd<<Na). Поэтому в широком диапазоне токов n1<<p1.

Рис. 4. Протекание тока через p-n-переход при прямом напряжении: а-эмиттерный p-n-переход; б-распределение носителей заряда при протекании прямого тока равновесная концентрация дырок в p-эмиттере; равновесная концентрация электронов в базе; p1 – концентрация вблизи границы дырок, инжектированных из эмиттера в базу; n1-концентрация электронов,инжектированных в эмиттер).

Если ширина слаболегированной области (базы) значительно превышает диффузионную длину дырок (Dp-коэф. диффузии дырок, tp-время жизни дырок), то концентрация неравновесных (избыточных) дырок экспоненциально убывает в глубь базы:

Аналогично для электронов в эмиттере где х принимает отрицат. значения. На границе р – и n -областей полный ток, протекающий через p-n – переход, складывается из диффузионного тока дырок и диффузионного тока электронов (см.

Диффузия носителей заряда в полупроводниках). При этом доля дырочного тока


Коэф. называют к о э ф ф и ц и е н т о м и н ж е к ц и и э м и т т е р а. Электрофиз. параметры эмиттера и базы всегда выбираются такими, чтобы величина gp была по возможности близка к единице, даже с учётом того, что на практике часто выполняются неравенства Т. о., на границе эмиттера и базы (х = 0)ток в осн. является диффузионным током дырок.

Особенности протекания тока. При прямом напряжении на эмиттере через базовый электрод в базу каждую секунду входят N=I/e электронов со стороны отрицат. полюса источника питания. Если коэф. инжекции эмиттера gp=1 (идеальный эмиттер), то ни один электрон выйти из базы в эмиттер не может. На практике величина gp близка к единице, так что лишь малая доля электронов, вошедших в базу, покидает её в виде диффузионного потока электронов в эмиттер. Подавляющая часть вошедших в базу электронов исчезает в базе, рекомбинируя с дырками, инжектированными эмиттером. Это осн. свойство эмиттер-ного перехода, используемое при получении транзисторного эффекта – усиления по току.

Когда к p-n – переходу приложено обратное напряжение (рис. 5, а), высота потенц. барьера на границе p-n-перехода повышается. При этом ни дырки из коллектора в базу, ни электроны из базы в коллектор переходить не могут. Через коллекторный переход течёт относительно небольшой ток, складывающийся из двух компонентов. Первый компонент – ток электронов и дырок, возникающих вследствие теплового возбуждения в области объёмного заряда коллекторного перехода. Природа второго компонента представляет с точки зрения принципа работы Т. б. наибольший интерес. Электрич. поле, существующее внутри p-n-перехода, направлено так, что электрон, попавший в область перехода, выталкивается в и-область, а дырка – в p-область. Однако для неосновных носителей (дырок в n-области и электронов в p-области) поле в переходе, очевидно, направлено так, что оно способствует переходу дырок из базы в коллектор, а электронов из коллектора в базу. Любая дырка, оказавшаяся в базе на расстоянии от p-n-перехода, меньшем диффузионной длины Lp, с большой вероятностью попадает в поле p – n-перехода и выбрасывается из базы в коллектор. Такая же ситуация реализуется и для электронов в коллекторе. Поток неосновных носителей – дырок из базы и электронов из коллектора – и создаёт второй компонент тока pn-перехода при обратном напряжении – т.н. диффузионный компонент. По обе стороны от коллекторного pn-перехода при обратном напряжении возникают области, обеднённые неосновными носителями. В базе длина этой области равна диффузионной длине дырок Lp, в эмиттере – равна диффузионной длине электронов Ln (рис. 5, б).

Рис. 5. Протекание тока через p-n-переход при обратном напряжении: а – коллекторный p-n-переход; б-распределение неосновных носителей заряда в базовой и коллекторной области перехода (рn-равновесная концентрация дырок в базе; пр-равновесная концентрация электронов в коллекторе).

Осн. свойство коллекторного pn-перехода, используемое при получении транзисторного эффекта, состоит в том, что любая дырка, возникающая в n-базе на расстоянии, меньшем, чем диффузионная длина Lp, с высокой вероятностью попадает в поле перехода и увлекается в коллектор.

Для реализации эффекта усиления по току транзисторная структура (рис. 3) изготовляется так, чтобы расстояние между эмиттерным и коллекторным p-n-переходами, т. е. ширина базы W, было бы значительно меньше диффузионной длины дырок Lp в базе.

Если в базе транзистора протекает ток Iб, то в базовую область каждую секунду входят электронов. Ни в эмиттер, ни в коллектор электроны из базы практически уйти не могут. Следовательно, в стационарном состоянии все Ne электронов должны рекомбинировать в базе. В диоде с длинной базой и с коэф. инжекции дырок p-п-перехода gp=1 для того, чтобы обеспечить рекомбинацию Ne электронов, из эмиттера должно инжектироваться дырок. Если же p-n-переход обладает коэф. инжекции то для обеспечения рекомбинации электронов в базе должно ежесекундно инжектироваться дырок. Однако в транзисторе с шириной базы W<LP каждая дырка, инжектированная из эмиттера в базу, оказывается от коллектора на расстоянии, меньшем Lp. Поэтому она, не успев прорекомбинировать с электроном, с высокой вероятностью попадает в поле коллекторного перехода и выбрасывается в коллектор. Долю дырок a, проходящих без рекомбинации из эмиттера в коллектор, называют коэффициентом переноса. Естественно, эта доля тем больше, чем меньше отношение W/Lp. Во многих практически важных случаях можно считать, что В зависимости от типа и назначения Т. б. отношение W/LP лежит обычно в пределах от 0,5 до 0,05, а величинасоставляет от 0,9 до 0,999. Т. о., в транзисторной структуре подавляющая часть инжектированных эмиттером дырок проходит в коллектор, не прорекомбиниро-вав с электронами в базе.

Доля дырок, инжектированных эмиттером, идущих на рекомбинацию с поступающими в базу электронами, равна, очевидно, (1-a). Чтобы обеспечить рекомбинацию всех электронов, входящих в базу, должно выполняться равенство


Т. о., протекание тока Iб в цепи базы определяет протекание в эмиттерной и коллекторной цепи Т. б. токов Iэ и во много раз больших, чем Iб.

Основные параметры. Осн. характеристики Т. б.- коэф. усиления по току и предельная рабочая частота. Коэф. усиления Т. б. по току определяется гл. обр. отношением W/LP. Для уменьшения толщины базы W тех-нол. ограничений почти не существует. Совр. методы эпи-таксии позволяют изготовлять полупроводниковые моноатомные слои. Однако уменьшению толщины W и, следовательно, увеличению b препятствуют физ. ограничения.

На границах областей эмиттер – база и база – коллектор существуют области объёмного заряда (ООЗ). Для нормальной работы транзистора необходимо, чтобы протяжённость этих областей была существенно меньше W. Грубую оценку мин. значения W можно получить, приняв, что величина W должна быть много больше ширины ООЗ на границе эмиттер – база при нулевом смещении на эмит-терном переходе. Уровень легирования эмиттера значительно превышает уровень легирования базы. Поэтому практически вся ООЗ на эмиттерном переходе лежит в базовой области. Её ширина


Диффузионная разность потенциалов Vd может быть оценена как где-ширина запрещённой зоны полупроводника. Для для т. о.,

Величина Nd практически не может быть больше 5 • 1017 см -3. Уровень легирования эмиттера Однако при , время жизни носителей становится очень малым. При малом tn коэф. инжекции gp уменьшается [см. (1)]. Снижение gp, в свою очередь, вызывает уменьшение b.

При В величина мкм, что требует ширины базы мкм. Такой величине W соответствует значение

Коэф. усиления по току Т. б. составляет обычно неск. десятков, в нек-рых Т. б.- неск. сотен. В Т. б., для изготовления к-рых используются различные гетероструктуры, коэф. усиления- достигает неск. тысяч.

Быстродействие Т. б. принято характеризовать граничной частотой fг, при к-рой коэф. усиления по току уменьшается до b=1.

Физ. ограничение величины fг связано со временем переноса носителей через базу При чисто диффузионном механизме переноса носителей в базе Величина t может быть несколько уменьшена, если создать в базе электрич. поле, ускоряющее прохождение носителей от эмиттера к коллектору (т. н. тянущее поле). Такое поле создаётся в диффузионно-дрейфовых Т. б. неоднородным легированием базы. Величина т при этом может быть уменьшена приблизительно в 2 раза. Т. о., осн. путём повышения быстродействия Т. б. является уменьшение толщины базы W.

Отметим, что уменьшение W приводит к росту входного сопротивления базы rб. При этом увеличиваются постоянные времени заряда эмиттерной и коллекторной ёмкостей Сэ и Ск через сопротивление rб. Время заряда этих ёмкостей также ограничивает быстродействие Т. б. Практически граничная частота обычных Т. б. не превышает 10 ГГц.

Предельная рабочая частота гомоструктурных Т. б. составляет неск. ГГц. Предельная частота гетероструктур-ных Т. б. превышает 60 ГГц.

Характеристики Т. б. могут быть существенно улучшены, если в качестве эмиттера (а иногда и коллектора) использовать материал с шириной запрещённой зоны большей, чем у материала базы. В таких гетероструктурных Т. б. чаще всего база изготавливается из GaAs, а эмиттер – из GaAlAs (гетеропереход GaAs/GaAlAs). Идея гетероструктурных Т. б. сформулирована У. Шокли в 1948, а созданы они были в кон. 70-х гг. В этих Т. б. коэф. инжекции эмиттера близок к единице, даже если база легирована значительно сильнее, чем эмиттер (явление суперинжекции). Это снимает рассмотренные выше ограничения на толщину базы W и уровень легирования базы Nd. Кроме того, снижением уровня легирования эмиттера может быть существенно уменьшена ёмкость эмиттера Сэ. Созданы гетеротранзисторы с мкм, макс. частотой генерации ГГц и шума коэффициентом (в малошумящих Т. б.) пр.= 2-5 дБ.

Применение. Круг применений Т. б. условно можно разбить на 4 осн. части: Т. б. для цифровых устройств (ЦУ) и интегральных схем (ИС), Т. б. общего применения, СВЧ Т. б. и мощные Т. б.

Т. б., предназначенные для работы в ЦУ и ИС, должны обладать малыми габаритами, высокой скоростью и мин. энергией переключения. Элементную базу наибю быстродействующих (время переключения пр.= 20 пс) узлов серийных ЭВМ составляют кремниевые Т. б. В качестве наиболее быстродействующих элементов серийных ИС используются полевые транзисторы на основе GaAs и гетероструктурные Т. б. на основе гетеропары GaAs/GaAlAs.

Осн. требование к СВЧ Т. б. состоит в достижении макс. мощности и коэф. усиления на предельно высокой частоте. СВЧ Т. б. изготавливаются в осн. из GaAs, в к-ром баллистич. эффекты, позволяющие увеличить скорость пролёта носителей через базу, выражены значительно сильнее, чем в Si. Ведутся интенсивные разработки гетероструктурных СВЧ Т. б. Предельная частота генерации СВЧ Т. б.~60 ГГц.

Мощные Т. б. изготавливаются почти исключительно на основе Si, работают при напряжении коллектор – база до 1500 В и позволяют коммутировать ток ~ 10 А. Физ. особенности высоковольтных Т. б. обусловлены тем, что коллектор в высоковольтных Т. б. легирован значительно слабее базы. Благодаря этому широкая область объёмного заряда, возникающая при большом обратном напряжении, почти целиком расположена в коллекторе. На долю базы приходится лишь ничтожная часть общей ширины области объёмного заряда, что позволяет сделать базу достаточно тонкой и сочетать большие коллекторные напряжения с относительно малым временем переключения (~ 1 мкс).

Рис. 6. Транзистор с горбообразными барьерами: а структура слоев; б-зонная диаграмма.

Наиб. перспективными с точки зрения улучшения частотных свойств являются структуры, в к-рых сочетаются свойства Т. б. и полевых транзисторов (ПТ). Как и в ПТ, работа таких транзисторов основывается на использовании носителей заряда только одного знака, однако принцип управления в таких приборах тот же, что и в Т. б.: инжекция носителей в базу осуществляется понижением барьера на границе эмиттер – база.

Одна из наиб. перспективных разновидностей Т. б. схематически показана на рис. 6,а. Соответствующая зонная диаграмма приведена на рис. 6, б. Чередование легированных по заданному закону п– и p-областей приводит к образованию на границе эмиттер – база и база – коллектор двух горбообразных барьеров. К переходу эмиттер – база прикладывается напряжение, понижающее барьер на границе iр+. При этом из эмиттера в базу инжектируются электроны с большой энергией, достаточной для того, чтобы пройти над барьером (горячие электроны ).База структуры делается узкой так что горячие носители заряда пролетают её практически без столкновений с большой скоростью и, попадая в поле перехода коллектор – база, втягиваются коллектором. Предполагается, что такие транзисторы могут иметь граничную частоту, превышающую 300 ГГц.

Лит.: 1) Зи С. М., Физика полупроводниковых приборов, пер. с англ., кн. 1-2, М., 1984; 2) Степаненко И. П., Основы теории транзисторов и транзисторных схем, 4 изд., М., 1977; 3) Поже-ла Ю., Юцене В., Физика сверхбыстродействующих транзисторов, Вильнюс, 1985. М. Е. Левинштейн, Г. С. Симин.

      Предметный указатель      >>   

Транзисторы биполярные. Метод измерения граничного напряжения – РТС-тендер


ГОСТ 18604.19-88
(СТ СЭВ 6038-87)*
______________________
     * Обозначение стандарта.
Измененная редакция, Изм. N 1.

Группа Э29

ОКП (ОКСТУ) 62 2312 (6220)

Срок действия с 01.07.89
до 01.07.94*
_______________________________
* Ограничение срока действия снято
постановлением Госстандарта СССР от 29.05.91 N 760
(ИУС N 8, 1991 год). – Примечание изготовителя базы данных.

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.88 N 809

2. Стандарт полностью соответствует Публикации МЭК 147-2

3. ВЗАМЕН ГОСТ 18604.19-78

4. Срок проверки 1993 г., периодичность проверки 5 лет

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

ГОСТ 18604.0-83

Вводная часть

ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие с 01.07.89 постановлением Госстандарта СССР от 26.10.88 N 3542

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 2, 1990 год

Настоящий стандарт распространяется на биполярные транзисторы и устанавливает метод измерения граничного напряжения .

Общие требования при измерении и требования безопасности – по ГОСТ 18604.0-83.

Стандарт полностью соответствует СТ СЭВ 6038-87.

(Измененная редакция, Изм. N 1).

1.1. Измерение граничного напряжения биполярного транзистора заключается в определении напряжения между выводами коллектора и эмиттера при заданном токе коллектора и при токе базы, равном нулю.

1.2. Ток коллектора, ток базы в режиме насыщения, индуктивность в цепи коллектора (или длительность импульса тока коллектора), частоту импульсов генератора тока базы (если частота отличается от промышленной), температуру окружающей среды (при необходимости температуру корпуса) указывают в стандартах или технических условиях на транзисторы конкретных типов.

2.1. Граничное напряжение следует измерять на установке, электрическая структурная схема которой приведена на черт.1.


– генератор импульсов тока базы; – измеряемый транзистор; – резистор; – генератор тока коллектора; – импульсный измеритель напряжения; – ограничитель напряжения; – осциллограф

Черт.1

2.2. Полярность включения элементов указана на схеме для n-p-n транзисторов. Для р-n-р транзисторов полярность должна быть обратной.

2.3. Граничное напряжение измеряют осциллографом или импульсным измерителем напряжения. При использовании осциллографа напряжение на измеряемом транзисторе определяют по отклонению луча по оси , а ток – по отклонению луча по оси .

Импульсный измеритель напряжения используют вместо осциллографа при применении в качестве генератора импульсного генератора тока коллектора.

Входное сопротивление () осциллографа по оси и импульсного измерителя напряжения должно удовлетворять условию

,

где – максимальное значение граничного напряжения, которое может быть измерено на установке;

– ток коллектора.

2.4. Основная погрешность измерительной установки в диапазоне измеряемых значений не должна выходить за пределы ±10% для осциллографов и аналоговых импульсных измерителей и ±5% измеряемого значения ±2 знака младшего разряда дискретного отсчета для цифровых измерителей напряжения.

2.5. Генератор тока коллектора должен обеспечивать заданный в стандартах или технических условиях на транзисторы конкретных типов ток как в режиме насыщения, так и в режиме, соответствующем граничному напряжению.

2.6. Электрическая структурная схема генератора тока коллектора приведена на черт.2 и 3.


– измеряемый транзистор; , – резисторы; – дроссель; – источник питания

Черт.2


– измеряемый транзистор; – резистор; – генератор импульсов тока коллектора

Черт.3

2.7. Минимальное значение индуктивности дросселя () указывают в стандартах или технических условиях на транзисторы конкретных типов или вычисляют по формуле

,

где – длительность измерительного импульса;

– минимальное значение граничного напряжения, которое может быть измерено на данной установке.

2.8. Активное сопротивление дросселя () должно удовлетворять условию

.

2.9. Напряжение источника питания () должно удовлетворять условию

,

где – максимальное напряжение насыщения коллектор-эмиттер измеряемого транзистора, указанное в стандартах или технических условиях на транзисторы конкретных типов.

2.10. Сопротивление резистора () должно удовлетворять условию

.

2.11. Сопротивление генератора импульсов тока коллектора () должно удовлетворять условию

.

2.12. При использовании генератора импульсов тока коллектора измерение граничного напряжения проводится в схеме, в которой базовый вывод транзистора отключен. При этом генератор отключен.

2.13. Генератор импульсов тока базы должен обеспечивать ток базы , необходимый для вхождения измеряемого транзистора в область насыщения.

2.14. Сопротивление генератора импульсов тока базы должно удовлетворять условию

.

2.15. Сопротивление резистора () должно удовлетворять условию

.

При использовании осциллографа для удобства отсчета рекомендуется выбирать =1 Ом.

Резистор выбирают с допускаемым отклонением сопротивления от номинального ±1%.

2.16. Ограничитель напряжения служит для обеспечения режима измерения в области безопасной работы транзистора.

Уровень ограничения указывают в стандартах или в технических условиях на транзисторы конкретных типов.

Электрическая структурная схема ограничения приведена на черт.4.


– разделительный диод; – источник питания

Черт.4

Допускается проведение измерения без ограничителя напряжения.

2.17. Разделительный диод должен быть рассчитан на обратный ток, который в 10 раз меньше заданного измерительного тока.

2.18. Источник питания должен обеспечивать пределы регулировки напряжения от до .

3.1. Измеряемый транзистор должен быть включен в схему измерения. Устанавливаемый режим по току базы должен обеспечивать вхождение транзистора в режим насыщения.

Ток базы () должен удовлетворять условию

,

где – минимальное значение статического коэффициента передачи тока, указанное в стандартах или технических условиях на транзисторы конкретных типов.

В технически обоснованных случаях допускаются другие соотношения и . При этом значение указывают в стандартах или технических условиях на транзисторы конкретных типов.

3.2. При использовании схемы с индуктивностью в цепи коллектора измеряемый транзистор в исходном состоянии должен находиться в режиме насыщения.

В момент окончания импульса базового тока коллекторный ток поддерживается за счет э.д.с. самоиндукции в индуктивности цепи коллектора и напряжение коллектор-эмиттер возрастает до значения (или до напряжения ограничения , если ).

Измерение напряжения и тока транзистора должно производиться по экрану осциллографа.

На заданном уровне тока коллектора следует определить граничное напряжение по вольтамперной характеристике, приведенной на черт.5.


Черт.5

Максимальное значение тока коллектора при напряжении устанавливают по осциллографу в пределах , где – значение тока коллектора, при котором задано .

Транзистор считают годным, если значение напряжения, измеренное в точке на уровне заданного тока коллектора, не менее значения , заданного в стандартах или технических условиях на транзисторы конкретных типов.

3.3. При использовании ограничителя напряжения в процессе переключения транзистора напряжение между выводами коллектора и эмиттера измеряемого транзистора должно ограничиваться на заданном уровне и может не достигать значения , если .

Транзистор считают годным, если траектория движения луча на экране осциллографа (черт.6) на участке от точки к точке в процессе уменьшения тока коллектора соответствует заданному уровню ограничения . Допускается пересечение линии ВС при уровне тока меньше заданного значения.


Черт.6

3.4. При использовании схемы с генератором импульсов тока в цепи коллектора база измеряемого транзистора отключена, импульс от генератора тока подают между выводами коллектора и эмиттера.

Заданное значение тока устанавливают по экрану осциллографа в соответствии с п.3.2.

Значение граничного напряжения измеряют по экрану осциллографа или импульсным измерителем напряжения.

4.1. Показатели точности измерения граничного напряжения должны соответствовать установленным в стандартах или технических условиях на транзисторы конкретных типов.

4.2. Границы интервала (), в котором с установленной вероятностью 0,95 находится погрешность измерения, определяют по формуле

,

где – погрешность измерителя напряжения, по которому производится отсчет граничного напряжения;

– погрешность измерителя тока, протекающего в цепи коллектора транзистора;

– коэффициент влияния тока на напряжение, который равен

.

Для определения коэффициента измеряют при двух значениях тока коллектора: при и при . Тогда определяют

.

Принцип работы и схема биполярного транзистора.

На нашем сайте вышел обновленный курс по электронике! Мы рады предложить Вам новые статьи по этой теме:

Всем доброго времени суток! Мы продолжаем изучать основы электроники и сегодня пришло время разобраться как работает транзистор и что это вообще за зверь такой. Сразу отметим, что они делятся на два больших класса – биполярные и полевые, так вот в этой статье речь пойдет исключительно о биполярных транзисторах. Полевые пока немного подождут, но и до них мы доберемся 🙂

Итак, приступаем!

Биполярный транзистор является одним из самых важных и основных активных компонентов. Основная цель работы биполярного транзистора заключается в увеличении сигнала по мощности. Естественно, мощность не может появиться просто из воздуха, законы физики никто не отменял, поэтому в транзисторе увеличение мощности входного сигнала достигается за счет внешнего источника питания. Еще раз повторюсь и уточню, что усиление заключается именно в увеличении мощности, в отличие от трансформатора, который может усиливать по напряжению, но при этом происходит ослабление тока, и мощность на выходе равна мощности на входе.

Двигаемся дальше. Биполярники бывают двух типов – n-p-n и p-n-p. Какого бы типа не был биполярный транзистор, он имеет три вывода (электрода), которые называются:

  • коллектор
  • эмиттер
  • база

Схема биполярного транзистора.

Мы будем все обсуждать на примере n-p-n БТ, но в принципе для p-n-p все правила и законы точно такие же, но надо учитывать, что полярности напряжений должны быть изменены на противоположные.

Переходы база-эмиттер и база-коллектор представляют собой не что иное, как диоды (вот, кстати, статья о диодах), и в обычном рабочем режиме диод база-эмиттер открыт, а диод база-коллектор закрыт. Давайте посмотрим на визуальное представление схемы биполярного транзистора в виде комбинации диодов. Но тут необходимо уточнить, что в реальности биполярный транзистор не эквивалентен двум диодам. Представление транзистора в виде пары диодов используется только для облегчения понимания принципа его работы.

Теперь давайте на основе диодной модели, составим основные правила работы биполярного транзистора. Как уже упоминалось, диод база-эмиттер должен быть открыт, а, следовательно, напряжение на базе должно превышать напряжение на эмиттере на значение прямого напряжения диода (0.6 – 0.8 В). Таким образом:

U_б = U_э + 0.6\medspaceВ

Кстати, совсем забыл уточнить. Когда мы говорим «напряжение на коллекторе/эмиттере/базе», то подразумевается напряжение на соответствующем электроде, взятое по отношению к потенциалу земли(!). Ну и, соответственно, если мы говорим о напряжении U_{бэ}, например, то имеется в виду напряжение между базой и эмиттером, то же самое относится к U_{бк} и U_{кэ} .

Возвращаемся обратно к работе биполярного транзистора!

С диодом база-эмиттер разобрались, теперь диод коллектор-база. Он должен быть смещен в обратном направлении для нормальной работы транзистора, поэтому потенциал коллектора должен быть более положительным, чем потенциал базы (для p-n-p полярности должны быть противоположными). Таким образом, если выполнены эти условия, то биполярный транзистор находится в режиме нормальной работы, при котором ток коллектора:

I_k = h_{21э}\medspace I_b

Величина h_{21э} – это коэффициент усиления по току. Вот мы и пришли к основному принципу работы транзистора, а именно: большой ток коллектора управляется небольшим значением тока базы.

С устройством БТ разобрались, уделили внимание схеме биполярного транзистора, давайте теперь рассмотрим парочку схем посложнее!

Схема ключа на биполярном транзисторе.

Вот такая вот несложная, но безумно полезная схема! Будем разбираться, как она работает.

Пусть нагрузка у нас потребляет ток 100 мА при 12 В. Если на входе у нас ничего нету, то потенциал базы равен потенциалу эмиттера и равен нулю. При таком раскладе у нас диод база-эмиттер закрыт и, следовательно, тока на выходе тоже нет. Транзистор тут находится в режиме отсечки (это значит, что оба перехода – база-коллектор и база-эмиттер – закрыты).

Подаем на вход положительное напряжение (ну, например, с ножки контроллера) и сразу же начинается движуха 🙂 Напряжение на базе составит около 0.6 В (диод база-эмиттер открыт) и в схеме начинает протекать ток базы. И к чему же это приведет? А вот к чему. Так как диод база-эмиттер открыт, а диод база-коллектор закрыт, то БТ находится в режиме усиления, а значит, через нагрузку потечет коллекторный ток. Соответственно, на нагрузке появится напряжение.

А это в свою очередь приведет к тому, что напряжение на коллекторе будет уменьшаться (смотрите сами, напряжение коллектора + напряжение на нагрузке в сумме должны составлять 12 В, если увеличивается одно из этих значений, второе уменьшается, чистая математика 🙂 ). В итоге, когда ток коллектора увеличится до 100 мА, падение напряжения на нагрузке составит около 12 В (таковы параметры нагрузки у нас), и соответственно напряжение на коллекторе станет меньше, чем на базе. А это значит, что диод база-коллектор откроется и биполярный транзистор перейдет в режим насыщения (оба диода открыты), и дальнейшего роста тока не будет происходить.

Короче, пока на входе ничего нет – режим отсечки, подаем сигнал, транзистор, очень быстро минуя режим усиления, переходит в режим насыщения. В этом и заключается принцип работы биполярного транзистора в качестве ключа.

Есть тут, кстати, еще одна важная фишка. Пусть, к примеру, резистор в цепи базы имеет сопротивление 1 КОм. Пусть на базу подается 10 В. Тогда на этом резисторе будет напряжение 9.4 В (10 В минус прямое напряжение диода база-эмиттер). Рассчитаем ток базы – делим 9.4 В на 1 КОм и получаем 9.4 мА. Пусть коэффициент усиления транзистора равен 50. Находим коллекторный ток: 9.4 мА * 50 = 470 мА. Вот такой получили расчет. Вроде бы все верно, но на самом деле все совсем не так и таким образом рассчитывать нельзя! Давайте разбираться, в чем тут ошибка.

Вспоминаем, что при значении тока коллектора 100 мА напряжение на нем становится мало относительно базы и биполярный транзистор насыщается. А значит дальнейшего роста тока быть не может! Таким образом, рассчитанные 470 мА на нагрузке мы не увидим, просто образуется так называемый избыток тока базы.

Итак, сегодня мы обсудили суть работы биполярного транзистора и его схему. Хотел я еще рассказать в этой статье про эмиттерный повторитель, но как то получилось объемно, а про повторитель надо поговорить обстоятельно и обширно, так что через пару дней в новой статье обязательно вернемся к биполярникам. До скорой встречи, следите за новостями 🙂

Что такое транзистор? – Эмиттер, база и коллектор

Определение: Слово «транзистор» состоит из двух слов: одно – « Trans fer», а другое – «Var istor ». Это означает, что устройство, которое передает сопротивление от одного канала схемы к другому, называется транзистором. Это трехконтактное устройство , управляемое током, , которое может работать либо как переключатель , либо как усилитель , обеспечивая слабый сигнал напряжения.Это один из важных видов активных устройств.

Значение и история транзистора

Вы, наверное, думаете, зачем нужен транзистор ???

Позвольте мне объяснить это с помощью истории. В начале 20– годов, когда был изобретен вакуумный триод, он считался значительным достижением в области электроники. Это потому, что такие устройства, как компьютеры, были полностью основаны на них.

Но проблема началась с их размером, который может охватить всю комнату.Теперь вы можете представить, что будет, если вся комната будет состоять из единой системы обработки. Очевидно, что работать с ним – процесс громоздкий.

К счастью, в современном мире у нас есть компактная система обработки. Но все это стало возможным с изобретением транзистора. В 1947 , Джон Бардин вместе с Уильямом Шокли и Браттейном изобрели транзистор. Последствия очевидны. Теперь все вычислительные устройства доступны в небольших размерах, которые мы можем легко носить с собой куда угодно.

Строительство

Обсудим конструктивные особенности транзистора, как устроено это 3-х полюсное устройство. Диод – это устройство с двумя выводами, поэтому, если мы объединим два диода при условии, что один вывод является общим, полученное устройство будет состоять из трех выводов.

Так устроен транзистор. Мы можем использовать либо сэндвич-слой полупроводника P-типа между двумя полупроводниками N-типа, либо сэндвич-слой N-типа между двумя образцами полупроводника P-типа.Транзистор, сформированный в первом случае, будет иметь вид NPN-транзистора , а сформированный во втором случае – PNP-транзистор.

Три терминала имеют следующие конкретные имена: –

  1. Излучатель
  2. База
  3. Коллектор

Мы обсудим функции этих трех выводов в работе транзистора.

Транзистор является полупроводниковым устройством, поэтому полупроводниковый материал, используемый в его конструкции, может быть либо германием, , либо кремнием , , но кремний предпочтительнее германия, поскольку он имеет на меньший ток отсечки.

Работа транзистора

Транзистор в своем названии предполагает переходное сопротивление от одного канала к другому. Таким образом, имеется три вывода транзистора, то есть база, эмиттер и коллектор. Таким образом, имеется два перехода транзисторов. Один – это переход эмиттер-база, а другой – переход коллектор-база. Я намерен объяснить работу транзистора с помощью этих важнейших параметров.

Прежде чем я углублюсь в рабочие детали транзистора, давайте разберемся с этими тремя важными выводами транзистора и их характеристиками.

  1. Эмиттер: Вывод эмиттера – это сильно легированная область по сравнению с двумя базой и коллектором. Это связано с тем, что работа эмиттера заключается в подаче носителя заряда в коллектор через базу. Размер эмиттера больше базы, но меньше коллектора.
  2. База: Размер области базы крайне мал, она меньше эмиттера и коллектора. Размер базы всегда остается небольшим, так что носители заряда, выходящие из эмиттера и входящие в базу, не будут рекомбинировать в области базы и будут направлены в область коллектора.Интенсивность легирования базы также меньше, чем у эмиттера и коллектора по той же причине, о которой говорилось выше.
  3. Коллектор: Коллекторный вывод умеренно легирован, а размер коллекторной области немного больше, чем размер эмиттерной, потому что все носители заряда, выходящие из эмиттера, рекомбинируют в основании, и в этом процессе выделяется тепло. Таким образом, необходимо, чтобы вывод коллектора был достаточно большим, чтобы он мог рассеивать тепло и устройство не могло перегореть.

Несмещенный транзистор

Рассмотрим несмещенный NPN-транзистор. Несмещенный означает, что он не снабжен каким-либо внешним источником напряжения. В этом состоянии основные носители заряда в эмиттерной области будут двигаться в сторону базовой области.

Из-за умеренного легирования и небольшого размера клеммы базы только 5-10% носителей заряда, попадающих в базу, будут рекомбинировать. Обратите внимание, что мы рассмотрели транзистор NPN, поэтому основными носителями заряда в эмиттере будут электроны.

Таким образом, только несколько электронов рекомбинируют на базе, а остальные начнут двигаться к коллектору. Таким образом, 90-95% электронов, испускаемых эмиттером, рекомбинируются с дырками в области коллектора. Это движение электрона и дырок в цепи приводит к генерации тока.

В основном транзисторы работают в трех регионах, а именно:

  1. Активная область: Эта область используется для работы усилителя.
  2. Область насыщения: В этой области транзистор работает, когда нам требуется операция переключения. В этой области транзистор действует как переключатель ВКЛ.
  3. Область отсечки: В этом транзисторе работает как замкнутый переключатель.

Преимущества использования транзисторов

  1. Компактный Размер: Эти небольшие транзисторы положили начало разработке компактных процессоров. Нам больше не нужно работать с компьютерами на электронных лампах больших размеров.Все благодаря изобретателям транзисторов.
  2. Легкий вес: Транзистор полностью упакован в один корпус с теплоотводом и тремя выводами. Весь этот корпус чрезвычайно легкий, что увеличивает преимущество транзистора и делает его портативным устройством.
  3. Высокая рабочая эффективность: Транзисторы обладают высокой рабочей эффективностью независимо от того, используем ли мы их в качестве усилителя, генератора или переключателя.
  4. Длительный срок службы: Он также обладает длительным сроком службы, что делает его надежным для различных применений, поскольку сводит к минимуму эффекты старения.

Недостатки использования транзисторов

  1. Низкая рабочая частота: Он имеет рабочую частоту только до определенных МГц. Это делает его вне лиги, когда дело доходит до высокочастотных приложений.
  2. Низкая рабочая температура: Существует пороговое значение температуры, при превышении которого транзистор может выйти из строя. Предел порога составляет 75ᵒC. Таким образом, мы не можем эксплуатировать его выше этого температурного диапазона.

У всего есть свои плюсы и минусы.Вы, должно быть, слышали это. Каждое преимущество, которым обладает устройство, должно обладать определенными недостатками, хотя первое перевешивает второе. У транзисторов тоже есть определенные недостатки.

Биполярный переходной транзистор

– Engineering LibreTexts

Биполярный переходной транзистор – это полупроводниковое устройство, состоящее из двух P-N-переходов, соединяющих три клеммы, называемые клеммами базы, эмиттера и коллектора. Расположение трех выводов влияет на ток и усиление транзистора.Поведение транзисторов с биполярным переходом также сильно различается для каждой конфигурации схемы. Три разные конфигурации схемы дают разные характеристики схемы в отношении входного сопротивления, выходного сопротивления и усиления. Эти характеристики влияют на то, демонстрирует ли транзистор усиление по напряжению, усиление по току или усиление по мощности. Одна из основных операций транзистора с биполярным переходом – усиление сигнала тока. Транзисторы с биполярным переходом могут регулировать ток так, чтобы величина тока была пропорциональна напряжению смещения, приложенному к клемме базы транзистора.Применение биполярных переходных транзисторов можно найти в устройствах, использующих аналоговые схемы, таких как компьютеры, мобильные телефоны и радиопередатчики.

ВВЕДЕНИЕ

Биполярные транзисторы

имеют три полупроводниковые области. Эти три области – это область эмиттера (E), область базы (B) и область коллектора (c), и эти области по-разному легированы в зависимости от типа биполярного транзистора. Два типа биполярных транзисторов – это PNP-транзистор, три области которого относятся к p-типу, n-типу и p-типу соответственно, и NPN-транзистор, чьи области относятся к n-типу, p-типу и n-типу соответственно.Оба типа транзисторов имеют один P-N-переход между коллекторной областью и базой и другой P-N-переход между базовой и эмиттерной областями. Базовая область всегда является центральным соединением структуры с областями эмиттера и коллектора, соединенными с обеих сторон. Оба типа транзисторов также имеют одинаковый принцип работы с единственной разницей в полярности питания и смещении для каждого типа.

Способность биполярных транзисторов

усиливать сигнал посредством регулирования тока позволяет передавать входной сигнал от одной цепи к другой, независимо от разного уровня сопротивления в каждой цепи.Величина тока, протекающего через транзистор, пропорциональна величине напряжения смещения, приложенного к клемме базы. Это позволяет транзистору действовать как переключатель, управляемый током. В зависимости от того, является ли биполярный транзистор PNP или NPN, регулируемый ток будет течь от коллектора к эмиттеру или от эмиттера к коллектору, в то время как меньший управляющий ток будет течь от базы к эмиттеру или от эмиттера к базе соответственно.

Транзистор содержит максимально допустимый ток, который может ограничивать величину тока, проходящего от клеммы к клемме.В зависимости от порядка контактов в транзисторе, транзистор будет действовать как проводник или как изолятор при наличии контролируемого тока. Эта способность переключаться между этими двумя состояниями, изолятором или проводником, позволяет транзистору действовать как переключатель или как усилитель сигналов малой амплитуды, подаваемых на базу, в зависимости от структуры и порядка трех полупроводниковых областей.

СТРУКТУРА

Биполярные транзисторы

содержат три легированных примесных полупроводниковых области, каждая из которых подключена к цепи.Транзистор не является симметричным из-за разной степени легирования областей эмиттера, коллектора и базы. Базовая область состоит из легированных материалов, обладающих высоким удельным сопротивлением. База расположена между областью сильнолегированного эмиттера и областью слаболегированного коллектора. Коллектор охватывает эмиттерную область, что исключает возможность для электронов, инжектированных в базовую область, покидать базовую область, не собираясь. Область эмиттера сильно легирована, чтобы увеличить коэффициент усиления транзистора по току.

Для высокого коэффициента усиления по току необходимо высокое соотношение носителей, вводимых эмиттером, и несущих, вводимых базой. Повышение эффективности инжекции эмиттера приводит к тому, что большая часть носителей, инжектируемых в переход эмиттер-база, поступает из области эмиттера. Высокая степень легирования областей эмиттера и коллектора также означает, что переход коллектор-база имеет обратное смещение. Следовательно, к переходу коллектор-база может быть приложено высокое напряжение обратного смещения до того, как переход сломается.Для транзистора в целом фундаментальное различие между NPN-транзистором и PNP-транзистором заключается в направлениях тока и полярности напряжения на переходах транзистора. Убедившись, что эти два элемента всегда расположены напротив друг друга, обеспечивает правильное смещение транзисторов.

Биполярный переходной транзистор NPN

NPN-транзистор с биполярным переходом имеет полупроводниковую базу, легированную P, между эмиттером, легированным азотом, и областью коллектора, легированным азотом. Биполярные транзисторы NPN являются наиболее часто используемыми биполярными транзисторами из-за легкости подвижности электронов над подвижностью электронов-дырок.

Для этого типа транзисторов коллекторный и эмиттерный токи большой величины возникают за счет усиления небольшого тока, который проходит через базу. Этот небольшой ток усиливается только тогда, когда транзистор становится активным. В этом активном состоянии положительная разность потенциалов обнаруживается как между основной областью к области коллектора, так и областью эмиттера к области базы, что приводит к току, который переносится электронами между областями коллектора и эмиттера.Конструкция и напряжение на клеммах NPN-транзистора показаны на Рисунке 1 ниже.

Рисунок \ (\ PageIndex {1} \): Схема NPN транзистора.

Для биполярного NPN-транзистора, проводящего ток, коллектор всегда более положительный по отношению как к базе, так и к эмиттеру. Напряжение между базой и эмиттером (V BE ) положительное на базе и отрицательное на эмиттере. Клемма базы всегда положительна по отношению к эмиттеру. Другой способ отображения NPN-транзистора показан на рисунке 2 ниже.

Рисунок 2 Схема биполярного транзистора NPN.

Ток, вытекающий из транзистора, должен быть равен токам, текущим в транзистор, поскольку ток эмиттера задается как

Ie = Ic + Ib. (1)

Примечание: «Ic» – это ток, протекающий на выводе коллектора, «Ib» – это ток, протекающий на выводе базы, а «Ie» – ток, протекающий через вывод эмиттера.

Поскольку физическая конструкция транзистора определяет электрическую взаимосвязь между этими тремя токами (Ib), (Ic) и (Ie), любое небольшое изменение тока базы (Ib) приведет к гораздо большему изменению в коллекторе. ток (Ic).Отношение тока коллектора к току эмиттера называется Alpha (α).

Альфа (α) = Ic / Ie (2)

Коэффициент усиления транзистора по току от вывода коллектора до вывода эмиттера, Ic / Ie, является функцией электронов, диффундирующих через переход. Текущее усиление транзистора от клеммы коллектора до клеммы базы обозначено Beta, (β).

Бета (β) = Ic / Ib (3)

Транзисторы

NPN являются хорошими усилителями при большом бета-значении.Бета-значения обычно находятся в диапазоне от 20 до 200 для большинства транзисторов общего назначения. Следовательно, если бета-значение транзистора равно 50, то на каждые 50 электронов, проходящих между выводами эмиттер-коллектор, один электрон будет вытекать из вывода базы.

Комбинируя выражения для Alpha, α и Beta, β, коэффициент усиления транзистора по току может быть задан как:

Бета = (α) / (1-α) (4)

Как видно из приведенных выше уравнений, подвижность электронов между цепями коллектора и эмиттера является единственным связующим звеном между этими двумя цепями.Это звено является главной особенностью действия транзистора. Поскольку действие транзистора определяется начальным движением электронов через область базы, усилительные свойства транзистора обусловлены последующим контролем, который база оказывает на ток между коллектором и эмиттером. Пока поток тока смещения в базовый вывод является устойчивым, базовую область можно рассматривать как вход управления током.

PNP Биполярный переходной транзистор

PNP-транзистор с биполярным переходом имеет полупроводниковую базу с примесью азота между эмиттером с примесью фосфора и областью коллектора с примесью фосфора.PNP-транзистор имеет очень похожие характеристики с NPN-транзистором, с той разницей, что смещение направления тока и напряжения меняются местами. Для транзисторов PNP ток входит в транзистор через вывод эмиттера. Небольшой ток, выходящий из базы, усиливается на выходе коллектора. Область эмиттера-база смещена в прямом направлении, поэтому будут генерироваться электрическое поле и носители. Источники напряжения подключены к транзистору PNP, как показано на рисунках 3 и 4 ниже.

Рисунок 4 Схема транзистора PNP

Напряжение между базой и эмиттером (V BE ) теперь отрицательное на базе и положительное на эмиттере. Клемма базы всегда смещена отрицательно по отношению к эмиттеру while. Эмиттер положительный по отношению к коллектору (V CE ). В основной части коллектора с обратным смещением образовались отверстия. Из-за электрического поля носители или электроны притягиваются дырками. Для того чтобы транзистор PNP проводил, эмиттер всегда более положительный по отношению как к базе, так и к коллектору.

РЕГИОНЫ ДЕЯТЕЛЬНОСТИ

Биполярные транзисторы работают в четырех различных областях. Эти области определяются смещениями на переходе биполярного переходного транзистора.

  1. Отсечка : Область отсечки – это когда транзистор неактивен из-за того, что через транзистор проходит минимальный ток, из-за чего транзистор выглядит как разомкнутая цепь. И VBE, и VBC имеют обратное смещение, поэтому все края обедненной области имеют небольшую плотность неосновных носителей.Эта область имеет условия смещения, противоположные насыщению.
  1. Активно в прямом направлении : Область активного действия в прямом направлении возникает, когда транзистор находится в активном состоянии, что позволяет транзистору усиливать колебания напряжения, присутствующие на базе. Когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор имеет обратное смещение, транзистор может усиливать напряжение, потому что напряжение между коллектором и эмиттером больше, чем напряжение между базой и эмиттером, а также находится между состояниями отсечки и насыщения.Выходной ток пропорционален базовому току и может быть извлечен на коллекторе.
  1. Обратно-активный : Обратно-активная область возникает, когда транзистор находится в активном состоянии, но максимальный коэффициент усиления по току в обратном активном режиме намного меньше, чем в прямом активном режиме. Условия смещения меняются на противоположные, так что коллекторный переход базы имеет прямое смещение, а база-эмиттерный переход – обратное, что переключает роли коллекторной и эмиттерной областей.База содержит гораздо более низкое обратное напряжение смещения, чем в прямой активной области.
  1. Насыщение : Область насыщения позволяет транзистору проводить ток от эмиттера к коллектору. При прямом смещении как базового коллекторного перехода, так и базового эмиттерного перехода ток базы настолько велик, что превышает величину, при которой он может увеличить ток коллектора. В результате в цепи между выводами коллектора и эмиттера возникает короткое замыкание из-за перенасыщения тока.

КОНФИГУРАЦИИ

Существует три метода подключения биполярного переходного транзистора к электронной схеме. Конфигурация с общей базой, конфигурация с общим эмиттером и конфигурация с общим коллектором по-разному реагируют на входной сигнал схемы, таким образом изменяя характеристики каждой конфигурации.

Общая базовая конфигурация

Общая базовая конфигурация имеет сильную высокочастотную характеристику, которая хорошо подходит для схем с одноступенчатым усилителем.Однако это не очень распространено из-за низких характеристик усиления по току и низкого входного сопротивления. Входной сигнал подается между выводами базы и эмиттера, а выходной сигнал берется между выводами базы и коллектора. Для этого необходимо заземлить клемму базы, чтобы опорное напряжение было фиксированной величиной. Общая базовая конфигурация показана ниже.

Рисунок 5 Схема

транзистора с общей базой Этот тип конфигурации усилителя представляет собой схему неинвертирующего усилителя напряжения.Конфигурация имеет усиление сопротивления за счет соотношения между сопротивлением нагрузки (Rload) последовательно с коллектором и резистором Rin. Входной ток, протекающий в эмиттер, представляет собой сумму как базового тока, так и тока коллектора соответственно, поэтому выходной ток коллектора меньше, чем входной ток эмиттера, что приводит к усилению тока. Его входные характеристики соответствуют прямому смещению диода

.

Конфигурация общего эмиттера

Конфигурация усилителя с общим эмиттером обеспечивает самый высокий коэффициент усиления по току и мощности из всех трех конфигураций биполярных транзисторов, поэтому этот тип конфигурации является наиболее часто используемой схемой для усилителей на основе транзисторов.Входной сигнал, подаваемый между базой и эмиттером, невелик из-за прямого смещения PN-перехода, а выходной сигнал, принимаемый между коллектором и эмиттером, велик из-за обратного смещения PN-перехода.

Это происходит главным образом потому, что входной импеданс невелик, поскольку он подключен к PN-переходу с прямым смещением, а выходное сопротивление велико, поскольку оно снимается с PN-переходом с обратным смещением. Однако его коэффициент усиления по напряжению намного ниже. Конфигурация общего эмиттера показана ниже.

Рис. 6. Схема усилителя с общим эмиттером

Конфигурация с общим эмиттером представляет собой схему инвертирующего усилителя. Следовательно, выходной сигнал не совпадает по фазе с сигналом входного напряжения.

Конфигурация общего коллектора

Конфигурация с общим коллектором очень полезна для приложений согласования импеданса из-за очень большого отношения входного импеданса к выходному. Конфигурация имеет входной сигнал, напрямую подключенный к базе. Когда эмиттерная область включена последовательно с нагрузочным резистором, ток, протекающий через сопротивление нагрузки, имеет то же значение, что и ток эмиттера.Вот почему выходной сигнал берется из нагрузки эмиттера, а коэффициент усиления по току конфигурации приблизительно равен значению β транзистора.

Рис. 7. Схема

транзистора с общим коллектором Этот тип конфигурации биполярного транзистора является неинвертирующей схемой, в которой напряжения сигналов Vin и Vout «синфазны». Сопротивление нагрузки принимает как базовый, так и коллекторный токи, что приводит к большому усилению тока, а также обеспечивает хорошее усиление тока с очень небольшим усилением напряжения.

Вопросы

1. Если ток коллектора (Ic) составляет 50 ампер, а базовый ток (Ib) равен 2 амперам, то каково значение бета?

2. В чем разница между биполярным транзистором PNP и биполярным транзистором NPN?

3. Каков коэффициент усиления транзистора по току, если заданная альфа (α) равна 0,5?

ответов

1. Бета-отношение (β) = Ic / Ib. Значение бета равно 50 амперам, разделенным на 2 ампера, что составляет 25.

2. PNP-транзистор и NPN-транзистор имеют очень похожие характеристики, разница между ними заключается в смещении направлений тока и напряжения.

3. Коэффициент усиления транзистора по току – это бета-коэффициент (β), равный (α) / (1-α). Значение Beta равно 0,5 / (1-0,5), что равно 0,5

Список литературы

1. Kasap, S. (2006). Принципы электронных материалов и устройств (3-е изд.). Бостон: Макгроу-Хилл.

2. «Учебное пособие по NPN-транзисторам – Биполярный NPN-транзистор». Учебники по основам электроники . 1 сентября 2013 г. Интернет. 8 декабря 2015 г.

3. «Переходный транзистор». Переходный транзистор . Интернет. 8 декабря 2015 г.

4. Все изображения были созданы с помощью программного обеспечения с сайта digikey.com

Авторы

1. К. Битти, MSE (Калифорнийский университет, Дэвис).

Emitter Junction – обзор

Пример 3.2

Предположим, что усиление база-коллектор транзистора β = 100, ток насыщения перехода база-эмиттер I с = 2 × 10 −16 , первичный источник тока I = 100 мкА и R = 100; каково значение i c 2 , текущий сток?

Как устройство с управлением по току, ток базы транзистора рассматривается как независимая переменная. Два уравнения, уравнение тока в базовом узле и уравнение напряжения вокруг контура база-эмиттер, полностью описывают функцию цепи.

(3.6) ic1 + ib1 + ib2 = I, vbe1 = vbe2 + R (1 + β) ib2

Дальнейшая обработка дает

(3.7) ib1 = I − ib21 + β, R (1 + β) ib2 = vbe1 − vbe2 = VThln (ib1ib2)

Ур. (3.7) затем дает единственную неявную функцию в i b 2

(3.8) R (1 + β) ib2-VThln [(I-ib21 + β) ib2] = 0

Ур. Уравнение (3.8) можно решить численно, и оно дает i b 2 = 0,737 мкА. Его также можно решить графически, построив неявную функцию по отношению к i b 2 .Нулевое пересечение кривой дает немного неточное решение (рис. 3.9).

Рис. 3.9. Графическое решение для уравнения. (3.8).

Затем следует i c 2 = β i b 2 = 73,69 мкА.

Дальнейшие расчеты также дают i b 1 = 0,98 мкА и i c 1 = βi b 1 = 98,28 мкА, почти соответствует первичному источнику Я .Присутствие R в цепи база-эмиттер, по-видимому, играет тонкую роль в создании неравных коллекторных токов обоих транзисторов.

Затем спрашивают, что, если R – очень маленькое сопротивление; например R = 0 . 1 Ом. Быстрый расчет показывает, что i c 1 = 98,04 мкА, i c 2 = 98,00 мкА; почти идентичны.

Можно также спросить, а что, если R – большое сопротивление; е.грамм. R = 350 Ом. Быстрый расчет показывает, что i c 1 = 98,5 мкА, i c 2 = 49,8 мкА.

Эффект масштабирования выходного тока в электронной промышленности называется « токовое зеркало ». Это критически важно, универсально и полно возможностей. Легко представить, как переместить резистор задания тока на другую ногу, эмиттер Q 1 (рис. 3.10).

Рис. 3.10. Боб Видлар текущий источник, другая версия.

Интересно, что для тех же R = 100 и I = 100 мкА, i c 2 становится 143 мкА. Читатели предупреждаются, что уравнения. (3.7) и (3.8) будут немного изменены, чтобы учесть изменения схемы на рис. 3.10.

Фактически, уравнение. (3.8) может быть записано в другой форме, включая i c 2 напрямую.

(3.9) f (iC2, T) = R (1 + β) iC2β − kTqln [(I − iC2β1 + β) iC2β] = 0

Неявная функция (уравнение.3.9) предоставляет не только прямой способ найти i c 2 численно, но также дает представление о тепловом воздействии на ток. Это делается путем нахождения ∂i c 2 / ∂T , якобиана уравнения. (3.9). p / n свойств перехода, улучшенный источник / сток тока желаемого широкого диапазона доступен на одном выводе транзистора.Более того, потенциальные полезности, которые высвободила эта инновационная схема, на этом не закончились. Рис. 3.8 был легко расширен, чтобы обеспечить несколько источников разного уровня тока (рис. 3.11).

Рис. 3.11. Множественный источник тока.

Здесь мы выражаем нашу благодарность тем изобретательным умам, которые открывают дверь для разработки аналоговых интегральных схем.

Ядро и передняя часть операционных усилителей, которые сегодня считаются само собой разумеющимися, были легко сконструированы путем подключения дифференциальной пары к прецизионному источнику тока (рис.3.12).

Рис. 3.12. Типовой входной каскад операционного усилителя.

Примечание: С этого момента и для всей схемы, пересекающиеся и образующие «+», НЕ являются электрическими узлами. Т-образные образования есть.

Значение этой схемы неописуемо и заслуживает внимания.

Практически аналогично тому, как рассматривается источник тока Видлара, два уравнения определяют работу дифференциальной пары: сумма напряжений вокруг контура база-эмиттер и сумма токов на переходе эмиттер.Учитывая понимание уравнения. (3.1), токи эмиттера дифференциальной пары дают соотношение

(3.11) i1i2 = evbe1-vbe2vTh

Сумма напряжений вокруг петли база-эмиттер преобразует уравнение. (3.11) к уравнению. (3.12).

(3.12) i1i2 = ev1 − v2vTh = eδvvTh, i1 − eδvvThi2 = 0

Текущая сумма на эмиттерном узле дает

(3.13) i1 + i2 = Ic

С двумя неизвестными в двух уравнениях решаются оба

(3.14) i1 = | 0 − eδvvThIc1 || 1 − eδvvTh21 | = IceδvvTh2 + eδvvTh = Ice − δvvTh + 1, i2 = | 101Ic || 1 − eδvvTh21 | = Ic1 + eδvvTh

Эти два интересных течения имеют один свойства, они оба равны I c /2 при нулевом дифференциальном входе δv = 0.Это логично и согласуется с формулой. (3.13), в котором говорится, что оба эмиттерных тока всегда в любое время суммируются с постоянным током источника смещения I c . Поэтому разумно отделить статическое постоянное смещение от обоих выражений тока эмиттера.

(3,15) i1 (δv) = Ic2 (1 + tanhδv2vTh), i2 (δv) = Ic2 (1 − tanhδv2vTh)

И тогда усиленный дифференциальный выход равен

(3,16) vo1 (δv) = Vcc − Rc1i1 (δv), vo2 (δv) = Vcc − Rc2i2 (δv) vo (δv) = vo1 (δv) −vo2 (δv) = – (Rc1i1 (δv) −Rc2i2 (δv))

Очевидно, что оба несимметричные выходы находятся на уровне постоянного тока (DC) ( V cc – R c • I c /2 ), на котором передаются сигналы.Как показано, уровень постоянного тока принудительно понижается с помощью члена R c • I c / 2 . Слишком сильное понижение постоянного тока может привести к тому, что цепи, следующие за входным каскадом, окажутся на нежелательном рабочем уровне покоя, что вызовет искажения сигнала (ограничение, ограничение, насыщение). Здесь вступают в действие переключатели уровня, чтобы восстановить надлежащий уровень постоянного тока и включить большее количество каскадов усиления. Однако эти вопросы относятся к области разработки операционных усилителей и выходят за рамки данной статьи.

Коллекторный узел – обзор

Высокочастотная инкрементальная модель

Мы знаем, что предыдущая низкочастотная модель является неполной, поскольку в ней нет механизмов ограничения полосы пропускания. Давайте теперь рассмотрим некоторые из источников ограничения полосы пропускания в биполярных транзисторах.

Во-первых, мы знаем, что у перехода есть обедняющая емкость, связанная с его обедненным слоем, как мы показали при обсуждении диодов в предыдущей главе. Следовательно, мы знаем, что в биполярном транзисторе есть обедняющие емкости на переходах база-эмиттер и база-коллектор.Эти обедняющие емкости 14 показывают функциональную зависимость от напряжения перехода, как показано в предыдущей главе.

Во-вторых, когда транзистор смещен в активной области в прямом направлении, в базе сохраняется заряд (рис. 4.14), как показано на этом одномерном изображении NPN-транзистора. В предыдущей главе, посвященной диодам, это было названо «диффузионной емкостью». Поскольку v BE изменяется, концентрация дополнительных электронов ( n ′), хранящихся в базе, также изменяется, поддерживая ток коллектора.В этой формулировке мы будем предполагать, что изменение v BE происходит достаточно медленно, так что концентрацию n ‘в основании можно моделировать как серию статических треугольных распределений. Это так называемое квазистатическое приближение, которое будет использоваться в следующих главах, когда мы будем обсуждать переключение транзисторов с большим сигналом.

РИСУНОК 4.14. Заряд хранится в базовой области NPN-транзистора в прямой активной области. По мере увеличения напряжения база-эмиттер транзистора В BE , дополнительные электроны в базе n ‘увеличиваются, как показано.

Этот накопленный базовый заряд можно смоделировать как емкость, которая зависит от уровня смещения транзистора. В случае транзистора NPN, когда V BE увеличивается, избыточная концентрация неосновных носителей, хранящаяся в базе, также увеличивается, как показано.

Модель схемы, показывающая различные механизмы накопления заряда в биполярном транзисторе, показана на рисунке 4.15. Модель имеет следующие емкости:

РИСУНОК 4.15. Модель транзистора в передней активной области, показывающая компоненты накопления заряда C b (базовая диффузионная емкость), C je (обедненная емкость база-эмиттер) и C jc (обеднение база-коллектор) емкость).

C je : обедненная емкость база – эмиттер (зависит от напряжения перехода)

C b : базовая диффузионная емкость (ток4 линейно пропорциональна коллектору)

C jc : обедненная емкость база – коллектор (зависит от напряжения перехода).

В эту модель внесены несколько модификаций (рисунок 4.16). Сначала мы объединили C je и C b в единую емкость, которую мы назовем C π . Во-вторых, давайте переименуем C jc в C μ .

РИСУНОК 4.16. Высокочастотная инкрементальная модель транзистора в прямой активной области. В этой модели мы объединили C je и C b в один конденсатор C π , переименовали C jc в C μ и добавили базу сопротивление r x .

Наконец, добавим сопротивление «базового растекания» r x . Сопротивление растекания базы моделирует сопротивление между омическим контактом базы и частично обусловлено эффектами двумерного протекания тока базы. Для расчета полосы пропускания высоких частот важно включить в модель r x , потому что емкости транзистора C π и C μ должны заряжаться через него. Если вы опустите r x , в некоторых топологиях схемы ваша модель будет излишне оптимистичной в отношении пропускной способности.Для типичных транзисторов это базовое сопротивление составляет порядка от 50 Ом до 500 Ом.

Теперь, как нам определить C π и C μ из таблицы? C μ относительно легко. Мы знаем, что C μ – это просто обедненная емкость база-коллектор. Помните из главы 3, что обедняющие емкости зависят от напряжения перехода, как:

(4.10) Cj = Cjo (1-VJϕbi) m

, где m = 1/2 для резкого перехода и m = 1/3 для линейно-градиентного перехода C jo – обедненная емкость при напряжении нулевого перехода, V J – напряжение перехода, а ϕ bi – встроенное напряжение.Также помните полярность V J ; когда переход более смещен в обратном направлении, емкость перехода уменьшается.

Для начала необходимо определить значение рабочей точки напряжения перехода база – коллектор В CB . Затем мы можем просто прочитать обедненную емкость из таблицы данных при заданном напряжении смещения коллектор-база.

Поиск C π немного сложнее. Напомним, что C π включает часть обедненной емкости ( C je ), добавленную к базовой диффузионной емкости.Базовая диффузионная емкость пропорциональна току коллектора транзистора. Чтобы найти C π , нам нужно использовать некоторую информацию из таблицы. Если вы посмотрите на таблицу, то там есть число, которое иногда называют переходной частотой , или произведением текущего усиления и ширины полосы, или « f T ». Если мы посмотрим на график зависимости усиления тока транзистора от частоты, мы увидим график, похожий на рисунок 4.17.Текущее число «коэффициент усиления – ширина полосы» – это частота, на которой экстраполированный коэффициент усиления по току слабого сигнала достигает единицы.

РИСУНОК 4.17. График приращения тока усиления биполярного транзистора h fe ( f ) в зависимости от частоты. На частоте f T экстраполированная кривая достигает коэффициента усиления по току 1.

Мы можем использовать простую схему на рис. 4.18, чтобы помочь нам понять методику нахождения C π . Во-первых, для простоты мы проигнорировали эффекты r x .Давайте решим для инкрементного коллектора i c , когда база приводится в действие инкрементным базовым током i b .

РИСУНОК 4.18. Инкрементальная модель транзистора для нахождения произведения коэффициент усиления по току на ширину полосы частот f T . Ток, возвращаемый через емкость C коллектор-база, равен i f .

Поскольку правая часть C μ заземлена, напряжение v π будет просто:

(4.11) νπ = ibrπrπ (Cπ + Cμ) s + 1

Коллекторный ток i c равен:

(4.12) ic = gmνπ + if = gmibrπrπ (Cπ + Cμ) s + 1 − ibrπCμsrπ (Cπ + Cμ) s + 1 = (hfe − rπCμs) ibrπ (Cπ + Cμ) s + 1

Обратите внимание, что обратная связь через C μ дает ноль в правой полуплоскости при ω z = + 1/ r π C μ , что на частоте выше ω T . Поскольку нулевая частота выше, чем интересующий нас частотный диапазон, 15 , мы проигнорируем ее, аппроксимируя передаточную функцию слабого сигнала следующим образом:

(4.13) icib≈hferπ (Cπ + Cμ) s + 1

Для частот, намного превышающих точку излома, и используя тот факт, что h fe = g m r π :

(4.14) icib≈gmrπrπ (Cπ + Cμ) s = gm (Cπ + Cμ) s

Следовательно, величина, при которой это усиление падает до 1, приблизительно равна:

(4.15) fT≈gm2π (Cπ + Cμ)

Следовательно, наш рецепт для поиска C π и C μ из таблицы данных и информации о смещении:

(4.16) Cμ≈Cjc (найденный в таблице VBCbias) Cπ = gm2πfT − Cμ

Для транзистора 2N3904 с I C = 1 мА параметры слабого сигнала равны h fe ≈ 100 и f 9017 = 300 МГц. Коэффициент усиления по току слабого сигнала транзистора h fe начинает падать при f 3 МГц, как показано на рисунке 4.19.

РИСУНОК 4.19. Идеализированное усиление тока слабого сигнала h fe ( f ) в зависимости от частоты для транзистора 2N3904, предполагая низкую частоту h fe = 100 и f T = 300 МГц.На частоте 300 МГц коэффициент усиления по току слабого сигнала составляет приблизительно 1.

Транзистор – общая база, общий эмиттер и конфигурации с общим коллектором – ток, цепь, смещение и диод

Существует три способа подключения биполярного переходного транзистора к рабочей цепи, в зависимости от того, какой из трех транзисторных элементов выбран в качестве общего эталона для двух других элементов. Эти вариации, называемые общей базой, общим эмиттером и общим коллектором, создают различные схемы действия, каждое с уникальными характеристиками.Транзистор n-p-n , сконфигурированный как усилитель с общим эмиттером, где и базовая, и коллекторная цепи связаны с эмиттером, обычно подключается к положительному напряжению на коллекторе по отношению к эмиттеру. Диод коллектор-база и диод база-эмиттер, по-видимому, включены последовательно и соединены друг с другом. Диод коллектор-база смещен в обратном направлении, так что ток почти не будет течь, если диод база-эмиттер не смещен в прямом направлении. Очень малый ток в цепи коллектора в этих условиях обусловлен тем, что материал типа p в базе испытывает недостаток в основных носителях типа n , которые требуются цепи коллектора, если она должна проводить значительный ток.Когда переход база-эмиттер смещен в прямом направлении, носители тока, необходимые для тока в цепи коллектора, попадают в коллектор.

Диод база-эмиттер в транзисторе обеспечивает очень низкое сопротивление току при прямом смещении. Поэтому очень легко вызвать ток во входной цепи транзистора. Поскольку базовая область сделана очень тонкой, большинство основных носителей, которые текут из эмиттера, будут захвачены сильным электрическим полем в коллекторно-базовом переходе, прежде чем они смогут выйти через базовое соединение.Требуется лишь небольшое количество энергии, чтобы вызвать ток во входной цепи база-эмиттер транзистора с прямым смещением, но почти весь этот легко форсированный входной ток появляется в цепи коллектора. Маломощный сигнал становится более мощным, когда входной ток, вызванный низким напряжением, в цепи коллектора почти не уменьшается, но при более высоком напряжении.


Каковы функции базового эмиттера и коллектора? – Цвета-NewYork.com

Каковы функции базового эмиттера и коллектора?

Переход эмиттер-база вводит большое количество основных носителей заряда в базу, потому что она сильно легирована и имеет умеренный размер.Коллектор – секция, которая собирает большую часть основного носителя заряда, поставляемого эмиттером, называется коллектором.

Какова функция базы транзистора?

Роль базовой области BJT-транзистора Роль базовой области заключается в том, чтобы действовать как триггер для большего тока эмиттер-коллектор. Когда ток базы получает достаточный ток, больший ток течет от эмиттера к коллектору.

Какова функция транзистора, если эмиттер к базе и коллектор к базе смещены в прямом направлении?

Если и эмиттерный, и коллекторный переходы смещены в прямом направлении, то основные носители заряда эмиттера будут течь в цепи эмиттер-база, а носители заряда коллектора будут течь в цепи коллектор-база.

Какова функция эмиттерной области при работе транзистора?

Подача подходящего внешнего постоянного напряжения называется смещением. На эмиттерный и коллекторный переходы транзистора подается прямое или обратное смещение… Смещение транзистора.

РАЗЪЕМ ЭМИТТЕРА СОЕДИНИТЕЛЬ КОЛЛЕКТОРА РЕГИОН ДЕЯТЕЛЬНОСТИ
Обратное смещение Обратное смещение Область отсечения

Какие два основных типа транзисторов?

Сегодня существует два наиболее распространенных типа транзисторов: металл-оксидный полупроводник или MOS и биполярный переходный транзистор или BJT.MOS также обозначается как MOSFET, потому что это полевой транзистор (FET).

Какой транзистор сильно легирован?

эмиттерная область

Сколько стоит транзистор?

Значения бета варьируются от примерно 20 для сильноточных мощных транзисторов до более 1000 для высокочастотных биполярных транзисторов маломощного типа. Значение бета для большинства стандартных NPN-транзисторов можно найти в технических паспортах производителя, но обычно оно находится в диапазоне от 50 до 200.

Какова функция BJT?

Основная основная функция BJT – усиление тока, что позволит использовать BJT в качестве усилителей или переключателей для широкого применения в электронном оборудовании, включая мобильные телефоны, промышленное управление, телевидение и радиопередатчики. Доступны два разных типа BJT: NPN и PNP.

Почему площадь коллектора самая большая?

Коллекторная область является самой большой из всех областей, потому что она должна рассеивать больше тепла, чем эмиттерная или базовая области.Он спроектирован так, чтобы он был большим, потому что для того, чтобы рассеять весь нагреватель, дополнительная площадь поверхности позволяет ему это делать. Большая площадь обеспечивает большую площадь поверхности для рассеивания тепла.

Что больше легированного коллектора или базы?

Уровень легирования коллектора является промежуточным между сильным легированием эмиттера и легким легированием базы. Коллектор назван так потому, что собирает электроны с базы. Коллектор – самый крупный из трех регионов; он должен рассеивать больше тепла, чем эмиттер или база.

Что такое нормальная работа транзистора?

При нормальной работе транзистора переход база-эмиттер смещен в прямом направлении, а переход база-коллектор смещен в обратном направлении. Это сделано для того, чтобы проводимость основных носителей могла происходить через переход эмиттер-база, а свободные электроны могли достигать коллектора, давая выходной ток.

Что такое транзистор PNP?

PNP-транзистор – это тип транзистора, в котором один материал n-типа легирован двумя материалами p-типа.Это устройство, управляемое током. И эмиттерный, и коллекторный токи контролировались небольшим током базы. Два кристаллических диода подключены друг к другу в транзисторе PNP.

Что такое PNP и NPN?

Как обычно их называют, датчики PNP и NPN снабжены как положительными, так и отрицательными выводами питания, а затем вырабатывают сигнал, указывающий на состояние «включено». Датчики PNP выдают положительный выходной сигнал на вход вашего промышленного управления, в то время как датчики NPN выдают отрицательный сигнал во включенном состоянии.

Могу ли я использовать NPN вместо PNP?

Как правило, транзисторы PNP могут заменять транзисторы NPN в большинстве электронных схем, единственная разница заключается в полярности напряжений и направлениях тока. Транзисторы PNP также могут использоваться в качестве переключающих устройств, и ниже показан пример транзисторного переключателя PNP.

Нормально ли открыт PNP?

PNP – (транзистор PNP) NO – нормально открытый, это означает, что на выходе нет напряжения, пока датчик не сработал (см. Рисунок, выходной разъем датчика PNP отсутствует.4).

Почему NPN предпочтительнее PNP?

Основными носителями заряда в транзисторе NPN являются электроны, а в транзисторе PNP – дырки. Электроны обладают большей подвижностью, чем дырки. Следовательно, транзисторы NPN предпочтительнее транзисторов PNP.

Что является более распространенным PNP или NPN?

Почему два типа? Выбор датчика PNP по сравнению с датчиком NPN определяется характером схемы, в которой будет использоваться устройство. Датчики PNP, как правило, используются более широко.

Является ли PNP источником или поглотителем?

Датчики

PNP иногда называют «датчиками источника», потому что они подают на выход положительную мощность. Датчики NPN иногда называют «погружающимися датчиками», потому что они опускают землю на выход. Термин «нагрузка» определяет устройство, на которое подается питание датчика.

Уменьшается ли ток NPN?

Датчики

PNP – это устройства подачи тока, а датчики NPN – устройства потребления тока. Датчик источника тока должен быть подключен к входу стока тока.

Что такое погружение и поиск в ПЛК?

Понижение и источник – это термины, используемые для определения управления постоянным током в нагрузке. Понижающий цифровой ввод / вывод (ввод / вывод) обеспечивает заземленное соединение с нагрузкой, тогда как исходный цифровой ввод / вывод обеспечивает источник напряжения для нагрузки. Схема нуждается в источнике напряжения, заземлении и нагрузке.

Какие три типа ПЛК?

ПЛК

делятся на три типа в зависимости от выхода, а именно релейный выход, транзисторный выход и симисторный выход ПЛК.

Что такое ПЛК приемного типа?

Цепи ввода-вывода

«приемник / источник» сочетают в себе возможности приема и передачи. Это означает, что схема ввода-вывода в ПЛК позволит току течь в любом направлении, как показано ниже. Общая клемма подключается к одной полярности, а точка ввода / вывода подключается к другой полярности (через полевое устройство).

В чем разница между опусканием и добычей?

Приемник и Источник – это термины, используемые для определения потока постоянного тока в электрической цепи.Спадающая входная или выходная цепь обеспечивает заземление для электрической нагрузки. Вход или выход источника обеспечивают источник напряжения для электрической нагрузки.

Какое текущее опускание?

Понижение тока, также называемое понижающим программированием, – это способность подтягивать ток к положительной клемме источника питания постоянного тока. Например, источник питания втягивает или втягивает ток в положительную клемму всякий раз, когда программируется более низкое выходное напряжение.

Что является более распространенным опусканием или добычей?

Это всегда большая путаница со стороны различных производителей в отношении терминологии приемников и источников.Пример: терминология mitsubishi отличается от терминологии AB. Наиболее распространенным является Sinking Input и Sourcing Output на основе определения A-B.

Что такое синк?

Фильтры. Налить или подать вино или пиво, сцинк.

Какие примеры затопления?

Пенни, скрепка или пуговица утонули, потому что материалы, из которых они сделаны (металл для скрепки и пенни, пластик для пуговицы), имели большую плотность, чем вода. (Их молекулы ближе друг к другу, чем молекулы воды.) Пробка, кусок дерева или пенополистирол всплыли, потому что эти материалы имеют меньшую плотность, чем вода.

Какова формула фонда погашения?

Используя формулу простых процентов, I = Prt, мы получаем I = 10,000 (0,12) (1) = 1,200 в год. Поскольку он планирует делать ежемесячные платежи, вы делите на 12, чтобы 100 долларов в месяц пошли на выплату процентов. Затем вы вычисляете сумму, которая будет ежемесячно вноситься в амортизационный фонд.

Amazon.com: NTE Electronics NTE105 NTE Electronics NTE105 PNP Германиевый транзистор для усилителя мощности звука, корпус TO-36, постоянный ток эмиттера 15 А, напряжение коллектор-база 40 В: Industrial & Scientific


Цена: 25 долларов.85 $ 25,85 +17,92 $ перевозки
Депозит без импортных сборов и $ 17.91 Доставка в РФ Подробности Доступно по более низкой цене у других продавцов, которые могут не предлагать бесплатную доставку Prime.
  • Убедитесь, что это подходит введя номер вашей модели.
  • Напряжение эмиттер-база 20В
  • 4А непрерывный базовый ток
  • Общее рассеивание устройства 150 Вт
  • Вес упаковки: 0,045 килограмма
]]>
Характеристики данного продукта
Фирменное наименование NTE Electronics
Текущий рейтинг 15 ампер
Ean 07682419
Глобальный торговый идентификационный номер 007682419
Вес изделия 1.44 унции
Максимальное напряжение 20 вольт
Номер модели NTE105
Количество позиций 1
Номер детали NTE105
Диапазон температур -65-100 градусов Цельсия
Код UNSPSC 32110000
UPC 7682419
Напряжение 10 вольт
.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *