Транзистор как выглядит: ТРАНЗИСТОРЫ

Содержание

ТРАНЗИСТОРЫ

   В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42. 

Транзистор в разрезе

   На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность: 

Внешний вид советских транзисторов

   Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

   Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

   Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

   Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности


Средней мощности


Большой мощности


В металлическом корпусе

   На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

 

Фото SMD транзистор

   Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема с общим эмиттером

   Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

   И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

   Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм. 

Пример усилителя по схеме с общим эмиттером

   Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

   Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

   А так выглядит один из фототранзисторов:

Фототранзистор – фотография

Полевые транзисторы


   Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:

Строение полевого транзистора

   Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

   На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа. 

Изображение на схемах полевых транзисторов с изолированным затвором

   Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

   Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

   Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком


С общим стоком


С общим затвором 

   Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


   Существуют так называемые Однопереходные транзисторы, второе, менее распространённое название – Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.

Схематическое изображение однопереходных транзисторов

   Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

   Форум по радиоэлементам

принцип работы, характеристики и параметры

Автор Vic На чтение 18 мин Просмотров 236 Опубликовано

Содержание

  1. Виды транзисторов
  2. Полевые
  3. Биполярные
  4. Комбинированные
  5. Что такое электронный ключ?
  6. Физические процессы
  7. Биполярный транзистор
  8. Схема с общей базой
  9. Схемы включения биполярных транзисторов
  10. С общим эмиттером
  11. С общей базой
  12. С общим коллектором
  13. Какие параметры учитывают при выборе биполярного транзистора?
  14. Принцип работы биполярного транзистора
  15. Транзистор в ключевом режиме
  16. Эмиттерный повторитель
  17. Где транзисторы купить?

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы

Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

  • Коллектор.
  • Эмиттер.
  • База.

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи.

Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Физические процессы

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном – обратное. Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Соответственно, как и раньше, темные маленькие кружки со стрелками – электроны, красные – дырки, большие кружки – положительно и отрицательно заряженные атомы доноров и акцепторов. Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усиление электрических колебаний с помощью транзистора. Основные биполярные транзисторы приведены в таблице ниже.


Таблица характеристик биполярных транзисторов.

При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора.Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.

Схема работы и устройства биполярного транзистора.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы.

Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.

Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.

Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу.

Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается. Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.

Как устроен транзистор.

Помимо рассмотренных процессов существует еще ряд явлений. Рассмотрим модуляцию толщины базы.При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией.

Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя.

Тепловой пробой может наступить без повышения коллекторного напряжения до пробивного. При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы.

Особенно важно учитывать напряжение коллектор-база, поскольку при этом толщина коллектора возрастает, толщина базы уменьшается. При очень тонкой базе может возникнуть эффект смыкания (так называемый “прокол” базы) – соединение коллекторного перехода с эмиттерным. При этом область базы исчезает и транзистор перестает нормально работать.

При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.

И напоследок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.

Схема устройства транзистора.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Схема с общей базой

Схема включения транзистора с общей базой (ОБ) показана на рис. 1.10. Входным сигналом для схемы с ОБ является напряжение, поданное между эмиттером и базой UBX = = UЭБ; выходным – напряжение, выделяемое на нагрузке Uвых = IкRн; входным током – ток эмиттера Iвх = IЭ; выходным током – ток коллектора Iвых = Iк.

Входное напряжение UЭБ является управляющим для транзистора, поэтому небольшое его изменение (па доли вольт) приводит к изменению тока эмиттера в очень широких пределах – практически от нуля до максимального.

Максимальный ток определяется назначением транзистора (маломощные, средней мощности и большой мощности) и соответствующей конструкцией.

Так как напряжение UΚБ является обратным, величина напряжения внешнего источника Ек может в десятки раз превышать значение напряжения UЭБ. Падение напряжения, выделяемого на нагрузке, будет тем больше, чем больше ток коллектора, при этом на самом транзисторе будет падать лишь небольшое напряжение UКБ, которое будет тем меньше, чем больше ток коллектора.

Таким образом, изменение на доли вольт входного напряжения приводит к изменению напряжения на нагрузке, чуть меньшего, чем напряжение Ек. Это положение определяет усилительные свойства транзистора.

Для оценки работы транзистора и его усилительных свойств в различных схемах включения рассматривают приращения входных и вызванные ими приращения выходных величин. Рассматривая транзистор как усилитель, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:

  • коэффициент усиления по току КI = ΔIвых /ΔIвх;
  • коэффициент усиления по напряжению КU = ΔUвых/ΔUвх;
  • коэффициент усиления по мощности КР = КI • КU.

Отношение изменения входного напряжения к изменению входного тока: Rвх = ΔUвх/ΔIвх. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает некоторым внутренним сопротивлением, и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя.

Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника. Таким образом, КРБ тоже определяется соотношением сопротивлений.

Так как коэффициент усиления схемы с ОБ по току КIБ оказывается меньше единицы, она применения не нашла.

Размеры биполярного транзистора.

Схемы включения биполярных транзисторов

В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Что ж, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается — лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Что ж друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Источники

  • http://popayaem.ru/bipolyarnyj-tranzistor-princip-raboty-dlya-chajnikov.html
  • https://www.asutpp.ru/kak-rabotaet-tranzistor.html
  • https://www.syl.ru/article/348974/tranzistornyie-klyuchi-shema-printsip-rabotyi-i-osobennosti
  • https://ElectroInfo.net/poluprovodniki/chto-takoe-bipoljarnyj-tranzistor.html
  • https://www.RadioElementy.ru/articles/bipolyarnye-tranzistory/

Как втиснуть миллиарды транзисторов в компьютерный чип

Закон Мура живет

На протяжении десятилетий количество крошечных транзисторов, вставленных в микросхемы интегральных схем, удваивалось каждые два года. Это явление, которое стало известно как закон Мура, означало более быстрые и мощные компьютеры. Но в последние годы прогресс замедлился, а некоторые говорят, остановился по законам физики. Критики говорят, что увеличение количества схем на кремниевых чипах достигло своего предела, и вычисления остановятся на нынешнем уровне, пока не будет найден альтернативный подход.

Мукеш Кхаре не согласен. Кхаре, отвечающий за все исследования в области полупроводников в IBM, считает, что проблемы физики можно преодолеть. Он видит многообещающее будущее в добавлении большего количества транзисторов, мельчайших вычислительных машин.

Стоит ли нам беспокоиться? Абсолютно, говорит Кхаре. По мере того, как электронные устройства становятся все меньше и все более распространенными, «размещение большего количества транзисторов на микросхеме — это способ, которым мы можем продолжать приносить больше ценности, больше функциональности, меньше затрат и меньшего энергопотребления», — объясняет он. И они также имеют решающее значение для больших компьютерных систем. «С системной точки зрения мы продолжаем помещать в чип все больше и больше транзисторов, чтобы иметь все более и более сложные функции, интегрировать их для повышения производительности наших систем и снижения энергопотребления».

Насколько малы 7 нм?

Новые материалы, конструкции и инновации

Так что насчет законов физики? Что ж, на пути к все меньшим чипам простое уменьшение размера транзисторов не является решением. По мере того, как они становятся меньше, их становится намного труднее отпечатывать на чипах. И сам их масштаб и близость могут влиять на электрические свойства. Например, между ними легче «просачиваться» сигналы.

«Теперь речь идет о внедрении новых материалов, новых структур, новых инноваций», — говорит Кхаре. «Речь идет об инновациях, а не о масштабировании. На физическом уровне мы по-прежнему хотим сделать вещи меньше, но то, как мы это делаем, требует совсем других концепций и идей на более фундаментальном уровне и уровне материалов… Раньше это было больше [о] геометрии».

При таком подходе команда Кхаре в партнерстве с GLOBALFOUNDRIES и Samsung в Колледже нанотехнологий Политехнического института SUNY (SUNY Poly CNSE) добилась этого. В июле 2015 года они представили первые в полупроводниковой промышленности тестовые чипы с нормой 7 нм (нанометры) с функционирующими транзисторами. Этот прорыв может привести к размещению более 20 миллиардов транзисторов на чипе размером с ноготь. Это примерно в 10 раз больше, чем в современных чипах.

Если рассматривать это глубже, учтите, что в большинстве используемых сегодня чипов используется технология 22 нм или 14 нм. Таким образом, новые транзисторы как минимум вдвое меньше нынешних. И мы говорим о действительно маленьком — в 100 000 раз меньше, чем ширина человеческого волоса, и примерно в два с половиной раза больше окружности нити вашей ДНК.

 

В конце концов, важна скорость, с которой работают эти структуры.

Да он маленький.

Но работает ли это?

Выход за пределы лабораторного прорыва в области 7 нм не обошлось без проблем, признает Харе. «Один из фронтов — это возможность построить эти структуры, выгравировать их и сделать физически жизнеспособными», — говорит он. «Другая часть — это электрический аспект. Могут ли работать эти транзисторы? Они должны иметь возможность включаться и выключаться и иметь надлежащую производительность транзистора. В конце концов, важна скорость, с которой они работают. Можем ли мы увеличить их скорость не только за счет физической геометрии, что важно, но и за счет изменения материалов, которые мы используем, или за счет изменения химии, которую мы используем для покрытия и травления этих пленок?»

Чтобы ответить на эти вопросы, исследовательская группа разработала несколько новых процессов и методов. В производстве транзисторы «печатаются» на кремниевой пластине с помощью сложного процесса, называемого литографией. Для производства 7-нм чипа команда использовала новый тип литографии в производственном процессе, Extreme Ultraviolet или EUV, который обеспечивает огромные улучшения по сравнению с сегодняшней основной оптической литографией. И заменили стандартный кремний на кремний-германий в каналах на микросхемах, проводящих электричество.

 

Все дело в внедрении новых материалов, новых структур, новых инноваций.

Обучение через изготовление

Кхаре во многом обязан уникальному партнерству и возможностям CNSE. Он называет это «сбывшейся мечтой». Исследовательский центр в Олбани, штат Нью-Йорк, имеет не только круглосуточную лабораторию, но и, благодаря партнерам по инструментам, возможности полноценной «фабрики», исследовательского центра с производственными возможностями. Это важно, потому что новые чипы должны быть не только небольшими и эффективными, но и экономически выгодными. Если их производство стоит слишком дорого, они не будут успешными.

«Мы можем масштабировать до реальных инструментов, поэтому мы можем быть уверены, что у нас есть нужные свойства, которые будут правильно масштабироваться», — говорит Кхаре. «Мы можем продемонстрировать возможности и структуру на реалистичных потрясающих инструментах». Конечно, это значительно увеличивает уверенность в том, что чипы могут производиться достаточно экономично, чтобы быть коммерчески успешными.

Но сотрудничество распространяется не только на инструменты, но и на все области передовых логических технологий. «Исследования IBM возглавляют эти усилия, и мы работаем рука об руку с другими нашими партнерами, в частности с GLOBALFOUNDARIES и Samsung. Это то, что человек не может сделать в одиночку. Мы должны сделать это вместе».

Следующий шаг: исследование 5-нм чипов

Работа далека от завершения, говорит Кхаре, признавая: «Семь нанометров все еще имеют серьезные проблемы. Но ведутся исследования, чтобы сделать еще меньшие чипы. На самом деле у нас много работы за пределами 7 нм. Этот поезд продолжает идти».

«В прошлом было много предсказаний конца полупроводниковой технологии, — продолжает он. «Но с объемом инвестиций и количеством инженеров, работающих над этой технологией, всегда есть выход; всегда есть путь, который могут найти все эти блестящие умы и миллиарды долларов инвестиций. Мы уже работаем над технологией 5 нм. Для этого потребуется много-много дополнительных инноваций как в материалах, так и в конструкции. Технология станет сложнее. Это потребует все новых и новых элементов и новых знаний».

И что еще? Он предвидит такие возможности, как изготовление транзисторов в трех измерениях, наложение схем друг на друга и изменение игры с помощью устройств на основе углерода. Команда также изучает возможности повышения ценности небольших микросхем, таких как MRAM или магнитная память, новые способы межсоединений и связывания фотоники.

«Я не думаю, что эта индустрия подходит к концу, — говорит Кхаре. «Я думаю, вопрос в том, сколько времени потребуется, чтобы вывести новые чипы на рынок и по какой цене. Вот в чем вопрос.”

Узнайте больше о передовых технологиях

Насколько маленькими могут быть транзисторы?

Транзисторы являются важным строительным блоком, используемым почти в каждом электронном устройстве. В один смартфон или ноутбук их можно впихнуть тысячи, а значит, даже, казалось бы, незначительные различия в их размерах могут оказать серьезное влияние на устройство в целом.

Хотя были и другие инновации, позволяющие процессорам выполнять вычисления быстрее (например, пластины GaAs), уменьшение размера транзисторов было одним из наиболее важных факторов увеличения скорости компьютера.

Насколько они малы и насколько малы они могут быть? Давайте обсудим.

Насколько малы транзисторы в настоящее время?

Этот вопрос кажется простым, но на самом деле на него можно ответить двумя разными способами:

  • Какой наименьший размер чипа вы можете найти на рынке сегодня?
  • Какой наименьший размер чипа находится в разработке?

Хотя ранее мы обсуждали жизненный цикл полупроводников, миниатюризация транзисторов может еще больше увеличить время производства, учитывая объем необходимых исследований и времени для создания прототипов.

Это означает, что по состоянию на июль 2021 года полупроводниковой промышленности удалось произвести чип размером 1 нанометр (нм). Тем не менее, 1-нм чипы все еще находятся в стадии исследований и разработок, а это означает, что мы далеки от того, чтобы увидеть их на рынке.

2-нм чип идет дальше, но мы все равно не ожидаем увидеть его еще 2-3 года.

3-нм чип в настоящее время является самым маленьким размером, который вы найдете в производстве сегодня.

Насколько велик нанометр?

Трудно понять, насколько малы транзисторы, поэтому сравнение может помочь.

Человеческий волос имеет ширину 100 000 нанометров. Как вы понимаете, человеческий глаз не может видеть ничего, что составляет 1/100 000 размера. Это даже не видно большинству микроскопов, вместо этого требуются атомно-силовые микроскопы.

Длина нити ДНК человека составляет 2,5 нанометра, что делает ее невероятно маленькой, но все же больше, чем у некоторых разрабатываемых в настоящее время транзисторов.

И атомы, и кварки меньше нанометра. Хотя они различаются по размеру, атомы могут иметь диаметр от 0,1 до 0,5 нанометров.

Насколько маленькими должны быть мои фишки?

Хотя вы можете создавать транзисторы по 3-нм техпроцессу, это не всегда в ваших интересах. При определении полупроводников, которые лучше всего подходят для вас, вы должны учитывать как то, для чего будет использоваться чип, так и требуемый уровень доступности.

Вот несколько причин, по которым не всегда выгодно получить самую маленькую стружку:

  • Чем меньше чип, тем сложнее его производство.
  • Чипы меньшего размера более уязвимы к перегреву.

С другой стороны, вам может понадобиться меньший размер микросхемы по следующим причинам:

  • Меньшие микросхемы потребляют меньше энергии, чем большие.
  • Чем больше транзисторов можно разместить на чипе, тем он быстрее.
  • Чипы меньшего размера обеспечивают большую вычислительную мощность портативных устройств, таких как ваш телефон.

Если вы не уверены, какой чип лучше всего подходит для ваших нужд, мы рекомендуем поговорить с производителем пластин. Они могут дать вам персональные рекомендации в зависимости от вашей ситуации.

Насколько велик типичный транзистор?

Если вы пытаетесь определить размер транзистора, который будет для вас оптимальным, полезно знать, каковы действующие отраслевые стандарты.

Смартфоны занимают лидирующие позиции в сфере потребительских товаров. В настоящее время они имеют размер примерно 7-10 нанометров, и они находятся на пути к еще большему уменьшению до 5 нанометров.

Большинство устройств на данный момент имеют размер менее 100 нанометров.

Какие проблемы необходимо решить для миниатюризации транзисторов?

Атомный размер обычных полупроводниковых материалов

Размер атома кремния составляет 0,2 нанометра. Достаточно сказать, что было бы невозможно создать кремниевый транзистор меньшего размера.

Важно отметить, что кремний — это лишь одно из многих веществ, которые можно использовать для создания транзисторов, и он был выбран не из-за его размера; он был выбран потому, что это второй по распространенности элемент в периодической таблице элементов.

Даже для того, чтобы получить что-то такое маленькое, как 1-нанометровый транзистор, выгодно выбрать другой элемент. В настоящее время большое количество исследований сосредоточено на полуметалле висмуте (BI).

Электронная передача

Также возникает вопрос, насколько маленькими мы хотим, чтобы транзисторы были на практическом уровне. В какой-то момент нам приходится беспокоиться о том, что транзисторы больше не могут блокировать электроны, что приводит к множеству ложных срабатываний.

Конец закона Мура?

Закон Мура гласит, что каждые восемнадцать месяцев количество компонентов, которые могут существовать в интегральной схеме, удваивается.

Тот факт, что это оставалось верным на протяжении десятилетий, может показаться естественным законом, но таковым он и не был задуман. Наоборот, это было наблюдение, которое сам Гордон Мур не ожидал, что оно продлится более десяти лет.

Поскольку закон Мура остается верным на протяжении десятилетий, то же самое можно сказать и о скором прекращении его действия. Однако сейчас мы приближаемся к моменту, когда транзисторы не будут намного больше атомов.

Даже если мы сможем производить микросхемы меньшего размера, промышленность не ожидает, что производство транзисторов будет продолжать сокращаться нынешними темпами.

Тем не менее, размер транзистора — не единственный путь развития полупроводниковой промышленности. Например, различные материалы постоянно тестируются, чтобы найти новые варианты использования.

Возьмем, к примеру, галлий. Кремний имеет атомный радиус 0,117 нанометров, что меньше, чем у галлия 0,122. Несмотря на то, что различия в размерах атомов между двумя элементами могут быть небольшими, эти изменения могут быть значительными при обсуждении нанотехнологий.

Тем не менее, полупроводники из нитрида галлия выделяют меньше тепла, чем кремниевые. Это означает, что хотя на одном кристалле может разместиться меньше GaN-транзисторов, в некоторых ситуациях это компенсируется уменьшением потребности в охлаждающих устройствах.

Оставить комментарий