Транзистор принцип: простым языком для чайников, схемы

Содержание

Транзистор: принцип работы

Транзистор относится к категории полупроводниковых приборов. В электротехнике он используется как генератор и усилитель электрических колебаний. Основой прибора является кристалл, расположенный в корпусе. Для изготовления кристалла используется специальный полупроводниковый материал, по своим свойствам находящийся в промежуточном положении между изолятором и проводником. Транзистор применяется в радио- и электронных схемах. Данные приборы могут быть биполярными и полевыми. Каждый из них обладает собственными параметрами и характеристиками.

Особенности биполярных транзисторов

Электрический ток в биполярных транзисторах образуется электрическими зарядами, имеющими положительную и отрицательную полярность. Дырки переносят положительную полярность, а электроны – отрицательную. Для данного вида устройств используются германиевые или кремниевые кристаллы, обладающие индивидуальными особенностями, которые учитываются при создании электронных схем.

Основой кристалла служат сверхчистые материалы. К ним добавляются специальные примеси в точной дозировке. Именно они оказывают влияние на возникновение в кристалле электронной или дырочной проводимости. Они обозначаются соответственно, как n- или р-проводимость. Происходит формирование базы, являющейся одним из электродов. Специальные примеси, введенные в кристаллическую поверхность, изменяют проводимость базы на противоположное значение. В результате, образуются зоны n-р-n или р-n-р, к которым подключаются выводы. Таким образом, происходит создание транзистора.

Источник носителей заряда называется эмиттером, а собиратель носителей является коллектором. Между ними располагается зона, исполняющая роль базы. Выводы прибора называются в соответствии с подключенными электродами. При поступлении на эмиттер входного сигнала в виде небольшого электрического напряжения, в цепи между ним и коллектором будет протекать ток. Форма этого тока совпадает с входным сигналом, однако его значение существенно увеличивается. Именно в этом заключаются усиливающие свойства транзистора.

Работа полевого транзистора

В полевых транзисторах направленное движение электронов или дырок образуется под воздействием электрического поля, которое создается на третьем электроде приложенным напряжением. Из одного электрода выходят носители, поэтому он называется истоком. Второй электрод, на который поступают заряды, носит название стока. Третий электрод, управляющий движением частиц, называется затвором.

Токопроводящий участок, ограниченный стоком и истоком, именуется каналом, поэтому данные устройства еще известны как канальные. Сопротивление канала изменяется под действием напряжения, образующегося на затворе. Этот фактор оказывает воздействие на протекающий по каналу электрический ток.

Тип носителей заряда влияет на характеристики полевых транзисторов. В n-канале происходит направленное движение электронов, а в р-канале перемещаются дырки. Таким образом, ток появляется под действием носителей лишь с каким-то одним знаком. В этом состоит основное отличие полевых и биполярных транзисторов.

Транзисторы. Принцип действия, классификация, области применения

Похожие презентации:

3D печать и 3D принтер

Видеокарта. Виды видеокарт

Анализ компании Apple

Трансформаторы тока и напряжения

Транзисторы

Устройство стиральной машины LG. Электрика

Конструкции распределительных устройств. (Лекция 15)

Электробезопасность. Правила технической эксплуатации электроустановок

Магнитные пускатели и контакторы

Работа на радиостанциях КВ и УКВ диапазонов. Антенны военных радиостанций. (Тема 5.1)

1. ТРАНЗИСТОРЫ

Принцип действия, классификация,
области применения
Транзи́ стор — радиоэлектронный компонент из полупроводникового материала, обычно с
тремя выводами, способный от небольшого входного сигнала управлять значительным
током в выходной цепи, что позволяет его использовать для усиления, генерирования,
коммутации и преобразования электрических сигналов.
Транзисторы по структуре, принципу действия и параметрам делятся на два класса —
биполярные и полевые (униполярные).
В биполярном транзисторе используются полупроводники с обоими типами проводимости,
он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n
переходов и управляется изменением тока через база-эмиттерный переход, при этом
вывод эмиттера всегда является общим для управляющего и выходного токов.
В полевом транзисторе используется полупроводник только одного типа проводимости,
расположенный в виде тонкого канала, на который воздействует электрическое поле
изолированного от канала затвора, управление осуществляется изменением напряжения
между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется
напряжением, а не током.

3. Биполярные транзисторы

Трехслойная полупроводниковая структура, состоящая из двух слоев полупроводника с
одинаковым типом проводимости, разделенных тонким слоем полупроводника с другим
типом проводимости, называется биполярным транзистором.
Биполярный транзистор состоит из трех слоев полупроводника, называемых “база” (Б),
“коллектор” (К), “эмиттер” (Э). Ток, протекающий через переход база – эмиттер (Iб) вызывает
изменения сопротивления зоны эмиттер – коллектор, соответственно изменяется ток
коллектора Iк, причем его значения больше нежели базового. Это основной принцип работы
биполярного транзистора. Поскольку материал транзистора полупроводник, то ток может
протекать только в одном направлении, определяемом типом перехода. Соответственно этим
определяется полярность подключения (тип проводимости) транзистора (прямая – p-n-p,
обратная – n-p-n.
n(+) – повышенная концентрация носителей => сильное легирование эмиттера
Транзисторы n-p-n типа распространены Существенно больше. Инжектируемыми
носителями в этом случае являются электроны, подвижность которых в несколько выше,
чем у дырок, что обусловливает большее быстродействие.

5. Принцип работы биполярного транзистора

6.

Виды биполярных транзисторовСтрелочка всегда направлена от дырок электронам и показывает направление
протекающего тока

7. Режимы работы и схемы включения БП транзисторов

Каждый из p-n переходов может быть включен как в прямом, так и в обратном
направлении. В связи с этим различают три режима работы.
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база —
в обратном (закрыт) UЭБ>0; UКБ<0 (для транзистора p-n-pтипа), для транзистора n-p-n типа
условие будет иметь вид UЭБ<0;UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и
коллекторный р-n-переходы подключить к внешним источникам в прямом направлении,
транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле
эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем,
создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный
барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение
(инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор
транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
Напряжение насыщения коллектор-эмиттер (UКЭ.нас) – это падение напряжения на открытом
транзисторе (смысловой аналог RСИ.отк у полевых транзисторов). Аналогично напряжение
насыщения база-эмиттер (UБЭ.нас) – это падение напряжение между базой и эмиттером на
открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный
переход может быть подано как обратное, так и прямое смещение, не превышающее порогового
значения, при котором начинается эмиссия неосновных носителей заряда в область базы из
эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В). Режим отсечки
соответствует условию UЭБ<0,7 В, или IБ=0.
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через
небольшой резистор с его коллектором, а в коллекторнуюили в эмиттерную цепь транзистора
включается резистор, задающий ток через транзистор. В таком включении транзистор
представляет из себя своеобразный диод, включенный последовательно с токозадающим
резистором. Подобные схемы каскадов отличаются малым количеством комплектующих,
хорошей развязкой по высокой частоте, большим рабочим диапазоном температур,
нечувствительностью к параметрам транзисторов
Любая схема включения транзистора характеризуется двумя основными показателями:
• Коэффициент усиления по току Iвых/Iвх.
• Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общей базой
Среди всех трех конфигураций обладает наименьшим
входным и наибольшим выходным сопротивлением. Имеет
коэффициент усиления по току, близкий к единице, и большой
коэффициент усиления по напряжению. Фаза сигнала не
инвертируется.
Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
Входное сопротивление Rвх = Uвх/Iвх = Uбэ/Iэ.
Входное сопротивление для схемы с общей базой мало и не
превышает 100 Ом для маломощных транзисторов, так как
входная цепь транзистора при этом представляет собой
открытый эмиттерный переход транзистора.
Достоинства
• Хорошие температурные и частотные свойства.
• Высокое допустимое напряжение
Недостатки схемы с общей базой
• Малое усиление по току, так как α < 1
• Малое входное сопротивление
• Два разных источника напряжения для питания.
Любая схема включения транзистора характеризуется двумя основными показателями:
• Коэффициент усиления по току Iвых/Iвх.
• Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общим эмиттером
Iвых = Iк Iвх = Iб Uвх = Uбэ Uвых = Uкэ
Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α)
= β [β>>1].
Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
Достоинства
• Большой коэффициент усиления по току.
• Большой коэффициент усиления по напряжению.
• Наибольшее усиление мощности.
• Можно обойтись одним источником питания.
• Выходное
переменное
напряжение
инвертируется
относительно входного.
Недостатки
• Худшие температурные и частотные свойства по сравнению
со схемой с общей базой.
Любая схема включения транзистора характеризуется двумя основными показателями:
• Коэффициент усиления по току Iвых/Iвх.
• Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общим эмиттером
Iвых = Iэ Iвх = Iб Uвх = Uбк Uвых = Uкэ
Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α)
= β [β>>1].
Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
Достоинства
• Большое входное сопротивление.
• Малое выходное сопротивление.
Недостатки
• Коэффициент усиления по напряжению меньше 1.
Схему с таким включением называют «эмиттерным
повторителем».

12. Полевые транзисторы

Полевой транзистор – это полупроводниковый полностью
управляемый ключ, управляемый электрическим полем. Это
главное отличие с точки зрения практики от биполярных
транзисторов, которые управляются током. Электрическое поле
создается напряжением, приложенным к затвору относительно
истока. Полярность управляющего напряжения зависит от типа
канала транзистора.
В полевых транзисторах в зависимости от типа канала ток
осуществляется только одним типом носителей дырками или
электронами. В биполярных транзисторах ток формировался из двух
типов носителей зарядов – электронов и дырок, независимо от типа
приборов. Полевые транзисторы в общем случае можно разделить
на:
• транзисторы с управляющим p-n-переходом;
• транзисторы с изолированным затвором.
И те и другие могут быть n-канальными и p-канальными, к затвору
первых нужно прикладывать положительное управляющее
напряжение для открытия ключа, а для вторых – отрицательное
относительно истока.
У всех типов полевых транзисторов есть три вывода:
1. Исток (источник носителей заряда, аналог эмиттера на
биполярном).
2. Сток (приемник носителей заряда от истока, аналог коллектора
биполярного транзистора).
3. Затвор (управляющий электрод, аналог сетки на лампах и базы
на биполярных транзисторах).
Металл-оксид-полупроводник (МОП)
МДП-транзистор со встроенным каналом
МДП-транзистор с индуцированным каналом

English     Русский Правила

Основы транзисторов – типы, принцип работы и применение

Транзисторы также относятся к категории полупроводников. Они ответственны за революционные изменения в области электроники. Первый практический транзистор был представлен в 1927 году и известен как транзистор с точечным контактом Джоном Бардином, Уолтером Браттейном и Уильямом Шокли.

Уменьшение размеров электронных устройств произошло только из-за изобретения транзисторов. Слово транзистор можно разделить на два основных слова. Самый первый «транс» называется передачей сигналов. Вторая часть слова «истор» относится к свойству сопротивления, которое предлагается на соответствующих соединениях.

Обладает характеристиками переключателя. Он имеет возможность участвовать в процессе усиления, а также выпрямления сигналов, будь то сигналы напряжения или токовые сигналы.

Что такое транзистор?

Цепь с низким сопротивлением участвует в передаче слабых сигналов в цепь с большим сопротивлением. Этот тип схемы определяется как транзистор.

Конструкция транзистора

Транзистор состоит из двух диодов с p-n переходом, которые можно соединить таким образом, чтобы оба конца соединились вместе. В середине связанная область очень тонкая, называется основанием.

Одна сторона называется эмиттером, а другая — коллектором. Так устроены транзисторы. Эмиттер присутствует справа от транзистора, тогда как наличие коллектора можно наблюдать слева.

Типы транзисторов

Основные транзисторы можно разделить на два типа в зависимости от типа их конструкции. Один называется p-n-p, а другой – n-p-n. Конструкция этих p-n-p и n-p-n очень проста.

Транзистор с центром как n-типа, так и обоих p-типов приводит к образованию p-n-p. Транзистор, сформированный с центром p-типа и обоими n-типами с обеих сторон, приводит к образованию n-p-n.

Существуют обозначения, представленные стрелками, которые показывают обычное течение тока в этом конкретном направлении. Это можно назвать единственным различием между транзисторами n-p-n и p-n-p. Каждый транзистор имеет три основных вывода.

Эти три терминала называются

  1. Базовый
  2. Излучатель
  3. Коллектор

Основные символы транзистора вместе с его выводами

(1) База

Находится в центре транзистора. Он взаимодействует с двумя цепями, одна из которых называется входной схемой, а другая – выходной. Входной формируется за счет взаимодействия эмиттера и базы, а выходной – за счет коллектора и базы.

Меньшее сопротивление видно на входной цепи со стороны помех базы эмиттера. Более высокое сопротивление предлагается на выходной цепи базы и коллектора. Концентрация легирования в основе мала. Размер основания тонкий.

(2) Эмиттер

Для того, чтобы всегда питать большинство носителей заряда, соответствующий переход базы эмиттера должен питаться прямым смещением. Он имеет тяжелую легированную консистенцию, так что большинство носителей можно ввести в основу. Размер излучателя будет умеренным.

(3) Коллектор

Как следует из названия, действует как коллектор большинства перевозчиков. Следовательно, это считается для сбора выходов, по этой причине взаимодействующая часть коллектора и базы остается в обратном смещении.

Консистенция легирования коллектора умеренная, но его размер велик по сравнению с базой и эмиттером. Выше показаны клеммы базового транзистора.

Принцип работы транзистора

Элемент, названный кремнием, обычно предпочтительнее для конструкции транзистора. Кремний менее чувствителен к температуре. Он способен выдерживать высокие значения напряжения и большие диапазоны токов.

Как известно, эмиттерно-базовый переход должен находиться в прямом смещении, а коллекторно-базовый переход должен оставаться в обратном смещении. Из-за условия прямого смещения на эмиттерно-базовом переходе большинство носителей проникает в базу.

Это является причиной образования базового тока, который имеет тенденцию течь через область базы. Этот ток стремится течь к коллектору, и в ответ на это наблюдается движение электронов в области коллектора от базы.

Ток базы также отвечает за образование вакансии на коллекторе. Но имеет малую величину. Как мы уже знаем, база, присутствующая в транзисторе, всегда слегка легирована.

Это причина того, что будет меньшее количество носителей заряда, например, электронов меньше по сравнению с количеством эмиттера. Это небольшое количество электронов взаимодействует с отверстиями в основании, тогда как оставшееся количество электронов можно увидеть движущимся к коллектору.

Это проложило путь к генерации коллекторного тока. Следовательно, колебания на базе могут составлять большую величину тока на коллекторе.

Режимы работы транзистора

Условия, которые приводят к различным режимам работы, определяются соединениями, образованными на базе эмиттера и базе коллектора. Эмиттерно-базовый переход смещен в прямом направлении, а коллекторно-базовый переход смещен в обратном направлении, что приводит к активной области этого конкретного транзистора, таким образом, на основе дополнительных условий смещения в переходе можно анализировать различные режимы работы.

(1) FR

При рассмотрении случаев эмиттерно-базового перехода в этом случае эмиттерно-базовый переход смещен в прямом направлении, тогда как коллекторно-базовый переход смещен в обратном направлении. Следовательно, эти условия приводят к тому, что транзистор работает в активной области. Когда он находится в активной области, токи на коллекторе зависят от тока на эмиттере.

(2) FF

В этом случае соединение базы эмиттера и базы коллектора находится под прямым смещением. Этот тип условий приводит к тому, что транзистор находится в области насыщения. Эта область отвечает за то, чтобы ток на коллекторе не зависел от тока, генерируемого на эмиттере.

(3) RR

Следовательно, этот случай имеет дело с состоянием, когда оба перехода транзистора работают при обратном смещении. Если рассматривать при обратном смещении, то в схеме не наблюдается проводимости. Этот тип области известен как область отсечки.

Эмиттер на данном этапе не может поставлять большинство носителей заряда, и сбор этих носителей не может быть очевиден на коллекторе. Ситуация такого типа приводит к тому, что транзистор действует как замкнутый переключатель.

(4) RF

Эмиттерно-базовый переход транзистора смещен в обратном направлении, тогда как коллекторно-базовый переход в этом состоянии смещен в прямом направлении. Поскольку коллектор легирован легкой консистенцией, он не способен подавать основные носители заряда на соответствующую базу этого транзистора. Следовательно, действие транзистора в этом случае плохое.

Таким образом, в зависимости от типа смещения на переходе определяются различные типы рабочих областей. Смещение транзистора основано на принципе необходимости.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о MCQ на транзисторах

Применение и использование транзисторов

В современном мире электроники все так или иначе зависит от электроники. Либо это может быть схема усиления, либо схема переключения. Существуют различные типы транзисторов, которые можно использовать для различных целей.

(1) Транзистор в основном используется в качестве усилителя в различных типах генераторов, модуляторов и т. д., кроме того, в области цифровой схемотехники эти транзисторы могут использоваться для механизма переключения.

(2) В случае транзистора, когда на него падает количество света, наблюдается генерация тока, они относятся к категории фототранзисторов.

(3) В соответствии с требованием, когда требуется протекание большого количества тока от эмиттера к коллектору при поддержании тока базы на минимальном уровне, требуется транзистор с именем BJT.

(4) В устройствах, где требуется контроль напряжения, используются полевые транзисторы (FET). Это связано с тем, что он состоит из входного импеданса с более высоким значением, что приводит к минимизации текущего значения.

(5) В тех случаях, когда коэффициент усиления по току должен быть высоким, используются транзисторы специального типа, называемые парой транзисторов Дарлингтона. Основное его применение — уведомления при создании чувствительных сенсорных кнопок, потому что они способны выбирать значение токов на коже человека.

(6) В некоторых случаях требуется отводить высокие входные токи, чтобы предотвратить попадание транзистора в область насыщения.

(7) Если предположить, что более высокие значения тока необходимо коммутировать за меньшее время, то для этой цели полезны лавинные транзисторы.

Выше приведены некоторые области применения транзисторов. Таким образом обсуждаются основы транзисторов. Все ли транзисторы имеют три вывода?

Цифровой транзистор <Понимание принципов работы цифровых транзисторов> | Основы электроники

Метод выбора

1) Отношение IC/IB, необходимое для насыщения транзистора, составляет 20/1
2) Входной резистор R1: ±30%, резистор E-B R2: R2/R1=±20%
3) VBE: от 0,55 В до 0,75 В коэффициент усиления по постоянному току цифровых транзисторов

 

GI: коэффициент усиления по постоянному току цифрового транзистора B =I C /hfe , I R2 =V BE /R2
Соотношение напряжений: Vin=V R1 +V BE

– Взаимосвязь с током коллекционера:

∴ IC = HFE × (VIN-V BE ) /R1)-(V BE BE ) /R1)-(V /R1)- (VIN-V BE ) /R1)- (VIN-V BE ) /R1)- (VIN-V BE ) /R1) /R1) /R1) /R1) /R1). ) ・・・(1)
Упомянутое здесь значение hfe не достигает насыщения при VCE=5В/IC=1мА.
При использовании в качестве переключателя требуется соотношение тока для насыщения I C /I B = 20/1.
∴ Ic= 20×((Vin-V BE )/R1 )- (V BE /R2 ))・・・(2)
Замените hfe в (1) на 20/1.

Расчеты выполняются с учетом вариаций.
В уравнении (2) используются наихудшие значения для R1 (+30 % макс.), R2 (-20 % мин.) и V BE (0,75 В макс.). Выберите R1 и R2 цифрового транзистора из приведенного ниже уравнения, чтобы превысить выходной ток Iomax.

∴ Iomax ≦ 20((Vin-0,75)/(1,3XR1)-0,75/(1,04XR2))

Описание номера детали цифрового транзистора

Разница между Io и Ic

Ic: Максимальный теоретический ток, который может протекать через транзистор.
Io: Максимальный ток, который может использоваться для цифрового транзистора. Для этих продуктов Ic определяется как 100 мА. Подключение резисторов R1 и R2 делает его цифровым транзистором. Для работы Ic=100 мА требуется высокое входное напряжение Vin, чтобы обеспечить достаточный базовый ток IB.

Однако максимальное входное напряжение Vin(max) определяется допустимой мощностью (мощностью пакета) входного резистора R1, которая определяется по абсолютным максимальным номиналам. Следовательно, поскольку этот номинал может быть превышен, когда Ic=100 мА, Io определяется как значение тока, которое может протекать через цифровые транзисторы без превышения Vin(max).

Как вы, возможно, знаете, абсолютные максимальные рейтинги предусматривают, что 2 или более параметров не могут быть предоставлены одновременно, поэтому нет проблем с нотацией, использующей только Ic. Однако Io также может быть указан в соответствии с фактическими условиями использования.

Исходя из вышеизложенного, с учетом схемотехники, Io можно считать абсолютным максимальным рейтингом.

Разница между G

I и h FE

h FE : Коэффициент усиления по постоянному току в общих транзисторах
G I : Коэффициент усиления по постоянному току в цифровых транзисторах

Примечания
GI и hFE представляют коэффициент усиления по постоянному току в конфигурациях с общим эмиттером. Цифровые транзисторы — это обычные транзисторы, которые включают 2 внутренних резистора.

Здесь, поскольку коэффициент усиления постоянного тока = выходной ток/входной ток, коэффициент усиления не уменьшается входным резистором R1. Следовательно, для типов, в которые интегрирован только входной резистор R1, коэффициент усиления представлен hFE и будет эквивалентен hFE сконфигурированного транзистора.

Однако при подключении резистора (R2) между эмиттером и базой входной ток отводится от базы и безопасно направляется на эмиттер. В результате усиление уменьшается. Это значение представлено как GI.

Разница между VI(on) и VI(off)

Легко перепутать V I (on) с V I (off) и наоборот.
В I (вкл.): Минимальное напряжение, необходимое для включения транзистора.

Распространенное заблуждение:
 : Входное напряжение постоянно увеличивается с 0 В
 : Через короткое время напряжение достигает 1,8 В, что приводит к включению цифрового транзистора
 : Поскольку это напряжение ниже 3 В, указанных в спецификациях, считается, что это не годится.


Фактическое действие:
 : Сначала увеличьте входное напряжение Vin до уровня, достаточного для включения транзистора (т. е. 10 В).
 : Постепенно снизьте напряжение до уровня, указанного в технических характеристиках (т. е. 3 В). Если транзистор остается включенным, он считается исправным.
 : Продолжайте уменьшать напряжение, подаваемое на базу, пока транзистор не выключится. Поскольку эта точка ниже 3В, транзистор работает.

Температурные характеристики цифрового транзистора

VBE, hFE, R1 и R1 зависят от температуры окружающей среды.

hFE изменится на: 0,5%/°C (прибл.)
BE изменится примерно на -2 мВ/°C (в диапазоне от -1,8 до -2,4 мВ/°C)

R1 изменится в соответствии с приведенным ниже графиком.

Выходное напряжение — характеристики выходного тока в слаботочной области

Характеристики выходного напряжения и выходного тока цифровых транзисторов измеряются следующим методом.

FДля DTC114EKA измерение выполняется с использованием Io/Ii=20/1
i=IB+IR2 от (IR2=VBE/10k=0,65 В/10k=65 мкА)
Если IB=Ii-IR2=Ii-65uA (если Ii становится меньше 65 мкА) IB не будет течь, а Vo [VCE(sat)] увеличится. Если это произойдет, Vo не может быть измерен в области малых токов.

Если входной ток на базу слишком мал (например, он не может преодолеть 65 мкА в приведенном выше примере), то через базу не будет протекать ток, и, таким образом, транзистор никогда не будет проводить ток. Это приведет к выходному напряжению Vo (VCE(sat)] расти в области слабого тока

Операция переключения цифрового транзистора

 

Работа транзистора

Для работы NPN-транзистора напряжение подается, как показано на схеме 1. В этой схеме область база (B) – эмиттер (E) смещена в прямом направлении, что приводит к протеканию тока через базу. Другими словами, в основу впрыскиваются отверстия.

Когда это происходит, свободные электроны в эмиттере (E) притягиваются к базе. Однако, поскольку базовая область очень узкая, свободные электроны проходят через базовую область к коллектору из-за смещения напряжения от коллектора. Из-за этого ток течет от коллектора к эмиттеру.

Операция переключения

Работа транзистора состоит как из усиления, так и из переключения. Во время усиления протекает ток Ic, эквивалентный hFE, умноженному на базовый ток. Выходным током в активной области можно управлять, регулируя входной ток.

Операция переключения обеспечивает условия насыщения во включенном состоянии (наименьшее возможное напряжение коллектор-эмиттер). В этой области насыщения имеется избыточное количество отверстий, которые затем выходят через базовый вывод из базовой области. Коллекторный ток течет до тех пор, пока все плюсовые отверстия не выйдут из базовой области. Время, необходимое для этого, называется tstg (время выключения). Чем быстрее отверстия выходят из базовой области, тем короче время выключения.

В цифровых транзисторах R1 и R2 действуют последовательно как путь выхода отверстий из области базы, когда транзистор выключен. R2 следует сделать как можно меньше (при заданном фиксированном R1), чтобы минимизировать время выключения.

Терминология цифровых транзисторов

  • В I (on)min: Минимальное входное напряжение ON
    Прямое напряжение Vo, подаваемое между выводами OUT и GND — минимальное входное напряжение, необходимое для протекания выходного тока (Io). Или минимальное входное напряжение, необходимое для включения цифрового транзистора.
    Таким образом, поскольку для переключения с ВКЛ на ВЫКЛ требуется напряжение ниже этого минимального входного напряжения, значение для реальных продуктов будет меньше этого значения.
  • В I (выкл.)макс.: Максимальное входное напряжение ВЫКЛ.
    Максимальное входное напряжение, полученное между контактами IN и GND при подаче напряжения питания Vcc и выходного тока Io между контактами OUT и GND. Другими словами, это максимальное входное напряжение, при котором будет поддерживаться состояние ВЫКЛ.
    Однако, поскольку при переключении транзистора из состояния ВЫКЛ в положение ВКЛ требуется большее напряжение, значение для реальных продуктов будет выше.
  • В O (вкл.): Выходное напряжение
    Напряжение на выходной клемме при любых входных условиях, не превышающих максимальное значение. Состояние, при котором переходы IN/OUT смещены в прямом направлении, а выходное напряжение уменьшается, когда достаточный входной ток протекает через схему усиления GND.

Оставить комментарий