Три фазы что это такое: Что такое трехфазное напряжение 380 В и однофазное напряжение 220 В – СамЭлектрик.ру

Содержание

Три фазы что это такое

Трехфазный переменный ток

В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.

В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ – концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора.

Такая система проводки называется четырехпроводной .

Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения – U12, U23 , U 31 , или в общем виде U л.

Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф

Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л – 380 В.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку – это соединение треугольником, изображенное на рис. 4.

Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.

Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки

Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок

Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой – под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .

Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис.

5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.

Трехфазные и однофазные сети. Отличия и преимущества. Недостатки

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.

Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия
Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.
  • В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
  • Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
  • Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
  • Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.

Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома
В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:
  • Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  • Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  • Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  • Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов:
  • Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  • Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  • Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
  • Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Чем трехфазное напряжение отличается от однофазного

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

{SOURCE}

можно ли использовать 2 или 4

Этот вопрос часто задают начинающие домашние мастера перед тем, как приступить к изучению алгоритма работ по электромонтажу в квартире или частном доме. Однако, до недавнего времени, на него не было однозначного ответа и по ходу ознакомления с сегодняшней статьёй читатель поймёт почему. Попробуем разобраться, почему используют именно 3 фазы, бывают ли 2 или 4, какое напряжение у того или иного вида подключения, как именно производится коммутация электроприборов.

Трёхфазные системы довольно широко распространены при электромонтаже в частных домах

Читайте в статье

Общие сведения о величинах напряжений

Если речь идёт об электромонтаже в частном доме, то здесь чаще всего используется трёхфазное напряжение сети, величина которого составляет 380 В. Однако подобный параметр используется лишь для электродвигателей и прочего оборудования промышленного типа. Единственным исключением можно назвать некоторые варочные плиты старого образца. Именно поэтому, даже если к вводному распределительному щитку дома подходят 3 фазы, их делят на группы. Дело в том, что если при делении с каждой из них в паре пускать нейтраль (ноль), то напряжение снизится до привычных всем 220 В.

Пример того, как трёхфазную линию можно разделить на три однофазных

Подобные системы можно наблюдать в большинстве многоквартирных домов. Ведь к каждому из них подходит 3 фазы, которые уже в подъездных щитках распределяются по квартирам. В результате, в каждую подводится только одна фаза, ноль и заземление. Только при таком подключении привычные всем бытовые приборы (холодильник, стиральная и посудомоечная машина, микроволновая печь) смогут нормально функционировать.

А это схема подключения одной квартиры в распределительном шкафу на лестничной клетке

Возможно ли подключение на 2 или 4 фазы

Профессиональные электромонтёры, получившие образование в течение последних 10-12 лет, с полной уверенностью скажут, что это невозможно. И это будет ошибкой. Для примера можно взять сварочные трансформаторы, произведённые в советские времена, которые ещё сравнительно недавно можно было встретить на заводах. Их рабочее напряжение было равным 380 В, однако проводов для подключения они имели всего два. И если подобный агрегат подключить согласно логике, то это будет «ноль» и «фаза». Но загвоздка в том, что варить аппарат при такой коммутации не будет. Их следовало подключать на 2 фазы, без использования третьей и нейтрали.

ТДМ-305 – один из сварочных аппаратов на 300 А, подключаемых на 2 фазы

Чем трёхфазная сеть завоевала популярность

По сути, возможно использование 4, 5 или даже 10 фаз, однако это будет нерациональным и повысит стоимость и без того недешёвой электроэнергии. С точки зрения разумности, электромагнитного поля трёхфазной системы вполне достаточно для вращения электродвигателя. А теперь представим, что фаз будет 5. В этом случае увеличивается количество обмоток двигателя, что приводит к излишним расходам на изготовление, а значит, увеличивает итоговую стоимость агрегата. При этом никаких видимых улучшений по мощности не будет.

Вот так могут подключаться электродвигатели к трёхфазной сети

Если же говорить о двух фазах, то для запуска асинхронного электродвигателя их будет недостаточно, придётся монтировать систему, включая в схему конденсатор, который обеспечит необходимый сдвиг. При этом падение мощности обеспечено.

Немного физики: объяснение рациональности использования трёх фаз

Если говорить цифрами, то можно отметить, что полный цикл вращения ротора электродвигателя составляет 360º, а сдвиг фаз в системе с напряжением 380 В равен 120º. Путём нехитрых вычислений можно сделать вывод, что 3·120º=360. Вот и ответ на вопрос, почему используют именно 3 фазы.

Вне зависимости от количества фаз, вся коммутация должна быть аккуратной

Подведём итоги

На сегодняшний день споры о том, сколько фаз необходимо для большего КПД практически утихли. Всем стало понятно, что трёхфазные сети являются наиболее удобными при электромонтаже как при строительстве жилых домов, так и в промышленности. Ведь именно по трёхпроводной системе передаётся высоковольтное напряжение по ЛЭП, а это также о многом говорит. Значит, не стоит забивать голову, размышляя о том, что бы получилось, будь фаз 4, 5 или 6. Лишние затраты никому не нужны.

Напряжение, протекающее по линиям электропередач, может превышать 750000 В

Редакция HouseChief очень надеется, что вопрос, рассмотренный в сегодняшней статье, больше не будет беспокоить нашего читателя. Если что-либо осталось непонятным для вас, смело спрашивайте об этом в комментариях ниже. Мы обязательно всё разъясним в максимально сжатые сроки.

Если же вы имеете личное мнение по данному вопросу, просим изложить и его. Редакции HouseChief будет весьма интересно с ним ознакомиться. Напоследок предлагаем вашему вниманию короткий видеоролик, который поможет понять суть работы трёхфазной системы.

ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями

380 Вольт сколько фаз и проводов

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.

Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия
Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.
  • В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
  • Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
  • Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
  • Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.

Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома
В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:
  • Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  • Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  • Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  • Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов:
  • Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  • Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  • Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
  • Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Одна фаза или три?

 Владимир Еремеев Электротехника

Постараемся ответить на это весьма актуальный вопрос. Проблемы трехфазного или однофазного подключения постоянно преследуют владельцев дач, загородных домов, коттеджей. Некоторые из них имеют решение, некоторые – нет.

Итак, какое подключение лучше, трехфазное или однофазное? Однозначного ответа на этот вопрос нет. Любое подключение имеет плюсы и минусы.

Однофазное подключение

Имеет бесспорный плюс – дешевизну входных защитных элементов электрощитка и кабелей. Учтем также, что качество поставляемой электроэнергии по-прежнему низкое, а в случае воздушного ввода лучше иметь систему молниезащиты. Всё это требует применения дорогой дополнительной защиты электроустановки по входу. В однофазном варианте эта защита в три раза дешевле.

Еще один плюс – при питании от одной фазы вводной ограничивающий автомат имеет большой номинал (ток срабатывания), что позволяет использовать в хозяйстве мощные потребители – сауны, электросварочные аппараты и т.п.

Однако, у однофазного подключения есть один существенный минус. Это – возможное падение напряжения в сети.

Например, в некоторых подмосковных поселках, напряжение практически не поднимается выше 180 Вольт. Обычный уровень – 160 Вольт.

При таком низком напряжении энергосберегающие лампы работают плохо или вообще не работают. Холодильники, стиральные машины и другое оборудование, имеющее в своем составе электродвигатели, быстро выходит из строя – из-за перегрева сгорают обмотки двигателя. Электроника часто вообще не включается…

Куда девается напряжение? Это достаточно просто. Не только вы один хотите включить электросварку. Сосед, подключенный к той же фазе, что и вы, тоже хочет включить сварку. И еще один сосед, еще…

Так образуется неравномерность напряжения по фазам. Одна фаза перегружена, другая работает нормально, третья – что-то среднее. При однофазном подключении всего поселка, такая ситуация встречается сплошь и рядом.

Решение проблемы – применение стабилизатора напряжения и более толстых вводных кабелей. Причем, от стабилизатора лучше питать электроприборы, требовательные к напряжению питания. Это позволит сэкономить на стабилизаторе, ведь чем он мощнее – тем дороже.

Трехфазное подключение

Используется обычно, когда единовременная выделенная мощность приближается к 10 кВт.

Трехфазное подключение требует трехфазных защитных элементов на вводе и в сумме чуть дороже однофазного. Кроме того, оно более надежно.

Трехфазная сеть имеет один, весьма существенный минус – вы не можете подключить к этой сети мощную однофазную нагрузку. Дело в том, что ток срабатывания вводного ограничивающего автомата оказывается в три раза ниже по сравнению с однофазным включением. Мощность распределяется по фазам равномерно, т.е. при выделенной мощности 10 кВт на каждую фазу приходится лишь 3,3 кВт. Соответственно, на вводе установлен автомат на 16А. К такому уже не подключить электросварку на 4,5кВт!

Что же делать? Проблема решается с помощью мощного трехфазного трансформатора, который преобразует трехфазную сеть в однофазную, причем так, что качество напряжения оказывается выше нежели при однофазном подключении. Значительное падение напряжения на одной внешней фазе не приводит к столь значительному падению напряжения во внутренней питающей сети. Кроме того, такой трансформатор дешевле стабилизатора напряжения равной мощности.

Как видите, ситуация неоднозначная. В большинстве случаев, вы не можете выбирать фазность питающей электросети. Это прерогатива Управляющей компании. И все же, по возможности постарайтесь добиться трехфазного подключения и выделенной мощности больше 10кВт.

Владимир Еремеев

<< Назад

Выбор между трехфазной или однофазной электростанцией

Один из самых распространенных вопросов при выборе электростанции, какая лучше однофазная или трехфазная? Часто покупатели бывают в недоумении от того, что продавец советует им купить однофазную электростанцию, хотя в дом приходит три фазы. Именно поэтому в этом разделе мы постараемся разобраться с темой количества фаз генераторной установки отдельно.

Сеть

Итак, основная сеть электропитания может иметь 1 или 3 фазы. Двух фаз не бывает. Два провода, входящие в дом – это фаза с напряжением 220 Вольт и нейтраль (ноль), которая часто также выполняет функцию заземления. Если в дом входит четыре провода, то имеет место быть 3-фазный вход плюс нейтраль (нулевая фаза). Напряжение в цепях трехфазного тока, как правило, обозначают дробью 220/380 (230/400) Вольт: 220 (230) в числителе дроби означает напряжение фаза-ноль, а 380 (400) в знаменателе – напряжение между любыми двумя фазными проводами.

Потребители

Трехфазный ток обычно используется на производстве, а так же для бытовых приборов старого образца, либо потребителей большой мощности: электроплиты, сауны, асинхронные двигатели в насосах. В быту, в основном, используются однофазные устройства.

Электрогенераторы

Однофазный и трехфазный генератор – разные устройства. Трехфазная электростанция создана для того, чтобы обеспечивать электроэнергией трехфазные потребители, а не для того, чтобы питать однофазные устройства, разделенные на три части. Трехфазный генератор мощностью 9 кВт выдает 3 раза по 3 кВт. Он не сможет запитать однофазную нагрузку в 4 кВт. При этом генераторные электростанции большой мощности (свыше 30 кВА), не имеют проблемы с распределением нагрузки пофазно при использовании в быту. Главной особенностью эксплуатации трехфазной электростанции является обязательное равномерное распределение нагрузки между фазами. Разница в нагрузке между тремя фазами не должна превышать 25%.

Системы резервного электроснабжения

Схема №1 Однофазный ввод, однофазные потребители, однофазный генератор

Самая простая ситуация, когда у вас в доме нет трехфазных потребителей, и к дому подходит одна фаза. В этом случае для резервного электроснабжения используется однофазный электрогенератор. Резервировать электрогенератором можно как все нагрузки в доме, так и особо важные, выделенные в ЩГП (щит гарантированного питания) в соответствии с мощностью генератора.

Схема №2 Трехфазный вход, однофазные потребители, однофазный генератор

Вариант 1. К вашему дому подведены три фазы, но резервировать вы хотите только одну, на которую подключаются особо важные электроприборы. В этом случае остальные две линии просто не будут участвовать в системе резервного электроснабжения. Тем не менее, в этом случае вам также необходимо равномерно распределять все свои нагрузки по фазам, чтобы исключить перекос мощности по фазам на питающей подстанции.

Вариант 2. Самый простой и удобный вариант построения резервной системы электроснабжения.

В эту систему входит однофазный электрогенератор и трехфазный АВР (автомат ввода резерва). В этом случае, при исчезновении внешней трехфазной сети, автоматически запускается однофазный генератор и через АВР подает на всю нагрузку свою фазу. Генератор, таким образом, будет питать все три фазы по однофазному принципу работы. Такая схема позволяет полностью использовать мощность генератора, подключить к резервному питанию всю имеющуюся нагрузку и не беспокоиться за перекос фаз.

Схема №3 Трехфазный ввод, однофазные потребители, трехфазный генератор

В данной схеме устанавливается трехфазная электростанция. В этом случае трехфазная электростанция будет питать энергией однофазные потребители, но обязательно равномерное распределение нагрузки на каждую из трех фаз генератора. Группировка потребителей по фазам часто требует полную переборку электрощита или монтаж новой проводки. Самая сложная схема. При этом, генераторная установка практически всегда будет недогружена, так как невозможно распределить все нагрузки пофазно так, чтобы на 100% загрузить каждую фазу.

Почему трехфазное питание? Почему не большее количество фаз?

Напряжение определенно находится между двумя проводниками. Если у вас есть один проводник, у вас нет напряжения. Нет напряжения, нет питания, ничего не происходит. Не очень полезно.

Если у вас два проводника, у вас есть одна пара (2C2), которая учитывает одно напряжение. Мы называем это однофазным. Теперь мы можем реально добиться успеха, что является существенным преимуществом по сравнению с одним проводником. Но вы можете сделать только одну вещь; нет возможных изменений в способе подключения нагрузки. Другими словами, есть только одно измерение напряжения: оно положительное или отрицательное. Одна из распространенных проблем заключается в том, что если вы подключите однофазный двигатель непосредственно к линии переменного тока, у вас нет гарантии, каким образом он будет вращаться или вообще будет вращаться.

Если у вас три провода, у вас есть три пары (3C2), что позволяет использовать три напряжения. Мы называем это трехфазным. Теперь мы можем сделать три вещи, в разное время . Например, вы можете иметь три электромагнита, расположенных по кругу, и включать их все по очереди. Теперь мы можем гарантировать, что двигатель будет вращаться и в каком направлении. Это существенное преимущество перед однофазным. Другими словами, теперь у нас есть два измерения напряжения; он представлен вектором в двухмерном пространстве. Есть только два возможных различных расположения проводников ((3-1)!), Что соответствует двум возможным направлениям вращения.

Если вы продлите это до четырех проводников, у вас будет шесть пар (4C2), поэтому следующим шагом будет шестифазное напряжение. Какие преимущества будет иметь шестифазный по сравнению с трехфазным? Ну, теперь есть (4-1)! = 6 возможных различных расположений проводников, что означает, что, если вы пытаетесь заставить что-то вращаться в плоскости, вы можете соединить вещи способом, который не согласуется с этим. Таким образом, если бы у вас был асинхронный двигатель с шестью обмотками, можно было бы подключить его таким образом, который бы ужасно вибрировал и вращался с половиной нормальной скорости, а не просто выбирал одно или другое направление. Это не плюс.

Но предположим, что ваш ротор имел три степени свободы вращения вместо одной. При шестифазном и соответствующем механическом расположении магнитных полюсов вы можете вызывать вращение (крен, наклон и рыскание) в плавающем сферическом роторе фиксированного положения. Поскольку, насколько мне известно, такой вещи не существует, это не может считаться полезным приложением. (Может быть, в среде с нулевой гравитацией, где магнитные полюсы вращаются вокруг какого-то тела? Но тогда как они все подключены к одной и той же шестифазной линии переменного тока?) Конечно, в четырехмерном пространстве, где мы могли бы такая система и все же переводить все три направления вращения на какую-то другую нагрузку за пределами нашего сферического расположения статор / ротор, это расположение может быть полезным.

Между тем, в пространстве 3 + 1 я работаю в области промышленной силовой электроники, и я видел системы, которые используют трансформаторы с фазовым сдвигом, о которых упоминали другие ответы. С точки зрения номенклатуры, никто из тех, с кем я говорил, не описал бы использование трансформатора с фазовым сдвигом для генерации еще трех несинфазных цепей переменного тока, которые создают «шестифазный». (По моей математике у вас было бы пятнадцать фаз, но этот язык все еще не использовался.) При трехфазном подключении через выпрямитель к крышке вы получаете шесть импульсов тока за цикл. Для системы такого типа вы получили бы двенадцать импульсов, поэтому такую ​​систему назвали бы двенадцатью импульсами.

(Как правило, двенадцатимпульсный выпрямитель – это два шестиимпульсных выпрямителя. Если у вас два электропривода, вы можете напрямую соединить их шины постоянного тока и питать каждый с различным трехфазным набором. Или вы можете получить автономный выпрямитель для одного комплекта и подает свой вход постоянного тока в оставшийся привод.)

Если вы сравниваете шестиимпульсный выпрямитель с двенадцатимпульсным выпрямителем с одинаковыми нагрузками, то каждый импульс тока должен быть меньше, чтобы компенсировать увеличение количества из них, приводящих одну и ту же нагрузку. Это делает общий ток вне линии более похожим на синусоидальную волну, то есть гармоники уменьшаются. Пульсация на колпачках также ниже, но я никогда не знал, чтобы кто-то был сильно обеспокоен этим.

Большие улучшения гармоник могут быть достигнуты с восемнадцати импульсной системой и тремя выпрямителями. (36-фазный!) При более высоких напряжениях и мощностях может существовать еще большее количество параллельных выпрямителей. В этом документе по линии ЧРП среднего напряжения упоминается 54-импульсный выпрямитель на 11 кВ!

TL; DR

Трехфазная мощность дает нам одну степень свободы вращения, которая является пределом того, что полезно в трехмерном пространстве.

Что лучше для частного дома – однофазный или трехфазный ввод?

Если вы планируете подключить частный дом к электрическим сетям, то стает вопрос о том, какой ввод в дом выбрать. В данной статье рассмотрим, что лучше для частного дома – однофазный или трехфазный ввод. Если сравнивать нагрузку современных бытовых электроприборов с нагрузкой электроприборов двадцатилетней давности, то можно сделать вывод, что количество потребляемой электроэнергии сегодня выросло в несколько раз. Причем наблюдается тенденция постоянного увеличения потребляемой электрической энергии на душу населения. Это связано, прежде всего, с тем, что в каждом доме появилось огромное количество бытовых электроприборов, характеризующихся большой мощностью и соответственно большим количеством потребляемой электрической энергии. Если раньше лимит нагрузки электропроводки одной квартиры (дома) был 8-10 А, то сейчас такого лимита хватит для одного электрического чайника, нагрузка которого составляет 10 А. Чем отличает однофазный электрический ввод от трехфазного? Практически все бытовые электроприборы рассчитаны для работы в однофазной сети переменного тока. То есть для подключения бытового электроприбора необходимо одна фаза и нулевой проводник. Однофазный ввод – одна фаза и нулевой проводник, трехфазный ввод – соответственно три фазы и нулевой проводник. Исходя из этого, можно сделать вывод, что принципиальное отличие трехфазного ввода от однофазного ввода – это количество фаз.

Преимущества трехфазного ввода в частном доме

Преимущества трехфазного ввода в частном доме очевидны. Вы можете одну фазу использовать для питания электропроводки дома, вторую фазу для питания наиболее мощный бытовых приборов дома, например кухни, а третью для электроснабжения гаража и других вспомогательных помещений на территории частного дома. Кроме того, у вас есть еще одно преимущество – возможность подключения трехфазных потребителей электрической энергии, что особенно актуально для частного дома. Например, трехфазный сварочный аппарат, электрическая плита, обогреватель, водяной насос, а также другие устройства с асинхронными трехфазными двигателями (молотилки для зерна, компрессоры и т.п.). Основное преимущество использования трехфазных электроприборов – это отсутствие перекоса фаз в электрической сети, так как нагрузка данных электроприборов равномерно распределяется на три фазы электрической сети. Следует отметить, что при использовании трехфазного ввода стает вопрос о равномерном распределении нагрузки однофазных бытовых электроприборов частного дома. В противном случае, то есть при значительной несимметричности нагрузок, возможен перекос фаз, в частности перекос фазных напряжений. Следовательно, при проектировании трехфазной электропроводки частного дома необходимо произвести правильное распределение нагрузки бытовых однофазных электроприборов. Кроме вышеперечисленного следует выделить еще одну характерную особенность трехфазного ввода в частный дом – значительно больший размер учетно-распределительного электрического щитка по сравнению с однофазным щитком. В первую очередь это связано с тем, что трехфазный счетчик значительно больше однофазного. Что касается модульных защитных аппаратов, то для трехфазных автоматических выключателей, устройств защитного отключения необходимо значительно больше модульных мест в распределительном электрическом щите. Кроме того, схема электропроводки частного дома с трехфазным вводом характеризуется большим, по сравнению с однофазной проводкой, количеством линий и соответственно защитных аппаратов, для которых также необходимо предусмотреть место в квартирном щитке. Проблема большого размера трехфазного учетно-распределительного щитка частного дома решаема. Не обязательно устанавливать щиток внутри дома, его можно установить на улице. Если вы решили установить распределительный щиток на улице, то обратите особое внимание на степень защиты корпуса IP. Как правило, степень защиты корпуса щитка, предназначенного для монтажа вне помещений – IP31 или IP54. Для обеспечения удобства обслуживания электропроводки частного дома можно предусмотреть установку нескольких распределительных щитков. Например, на улице можно установить щиток типа ЩРУН-3/12, в котором будет расположен прибор учета электрической энергии, а также вводные аппараты защиты. В доме будет установлен небольшой пластиковый бокс Тусо 68112 СП 12, рассчитанный на 12 модульных мест, в котором будут расположены аппараты защиты линий электропроводки дома. В гараже или другом сооружении на территории частного дома может быть установлен еще одни аналогичный щиток. В общем, вы можете спроектировать схему электропроводки частного дома в соответствии со своими потребностями и удобством дальнейшего обслуживания. Что касается лимитов потребляемой мощности, то в данном случае существует заблуждение о том, что трехфазный ввод – это значительно больший лимит потребляемой мощности. В данном случае все зависит от установленных норм энергоснабжающей компании, которая осуществляет подключение частных домов к электрическим сетям. В соответствии с действующими техническими условиями подключения частных домов, может быть установлен одинаковый лимит потребления мощности, как для однофазного ввода, так и для трехфазного. Какой все-таки выбрать ввод  одно- или трехфазный? Если лимит потребления мощности одинаковый, как для однофазного, так и трехфазного ввода, то следует руководствоваться потребностью в использовании трехфазных бытовых электроприборов. Если в хозяйстве у вас нет трехфазных бытовых электроприборов, и в будущем вы не планируете их использовать, то проводить в дом трехфазный ввод не имеет смысла. Кроме вышесказанного, следует отметить, что подключение трехфазного ввода – это довольно кропотливый процесс, который несколько сложнее процедуры подключения однофазного ввода электрической сети. Это, в первую очередь обусловлено тем, что использование трехфазного ввода предусматривает большие требования к пожарной безопасности дома и других сооружений на его территории.

Что, черт возьми, такое трехфазное питание (и как его получить)?

Недавно я переехал в свой магазин, и в дополнение к большим проблемам, от аренды вилочного погрузчика до лишения сна, нам также пришлось иметь дело с такими вещами, как трехфазное питание, разновидность подачи питания, часто используемая для большого оборудования. В старом магазине он был, а в новом – нет. Так что, черт возьми, такое трехфазное питание и как вы можете преобразовать оборудование, чтобы перейти с более распространенного однофазного на трехфазное и наоборот? Читать дальше.

Для нас воздействие было ограниченным, потому что только у воздушного компрессора был трехфазный двигатель. Некоторое сварочное оборудование работало от трехфазного тока, но его можно легко перенастроить для работы от трехфазного или однофазного тока.

Но сначала краткое объяснение трехфазного питания.

Переменный ток действует так же, как следует из его названия, и циклически чередуется: сначала течет в одном направлении в цепи, а затем в обратном направлении, чтобы течь в другом. При этом величина подаваемого напряжения непрерывно изменяется от положительной до отрицательной максимальной амплитуды.В США и других странах с мощностью 60 Гц этот цикл повторяется 60 раз в секунду. Представьте себе синусоидальную волну: амплитуда подаваемого напряжения дважды за цикл проходит через ноль, и в эти моменты подаваемая мощность отсутствует. Хотя это не имеет значения для многих электроприборов, это имеет серьезные последствия для более крупного оборудования, особенно для двигателей.

Трехфазное питание обеспечивает три переменных тока – по существу, три отдельные электрические сети, равномерно разделенные по фазовому углу.То есть моменты времени, в которые каждая ветвь переменного тока достигает максимального напряжения, разделены 1/3 времени полного цикла. На практике это означает, что общая мощность, подаваемая всеми тремя переменными токами, остается постоянной. В большинстве установок три фазы имеют общую нейтральную ветвь.

Для потребителей электроэнергии стабильность подачи электроэнергии является основным преимуществом. Конструкция трехфазных двигателей с одним набором обмоток для каждой фазы является высокоэффективной и позволяет трехфазным двигателям потреблять значительно меньший ток, чем эквивалентный однофазный двигатель.

Домашние любители и владельцы небольших магазинов часто сталкиваются с проблемой трехфазного оборудования без трехфазного обслуживания. К счастью, есть несколько способов оживить это оборудование – часто большое, ценное и весьма полезное.

1. Замените двигатель однофазным двигателем: Когда имеется только одна или две машины и двигатель имеет конфигурацию, к которой вы действительно можете добраться, это может быть самым простым решением проблемы. Основным недостатком является то, что эквивалентный однофазный двигатель (эквивалентный с точки зрения эксплуатационного фактора и мощности) потребляет значительно больше тока и будет больше по размеру.Еще один минус – довольно высокая стоимость новых электродвигателей-гигантов.

2. Преобразователи статической фазы: Преобразователь статической фазы – это просто способ пуска трехфазных двигателей. Трехфазный двигатель не может запуститься от однофазного источника питания, но может работать от него после запуска. Это достигается за счет уменьшения на 2/3 номинальной мощности и сокращения ожидаемого срока службы двигателя. При запуске статический преобразователь временно обеспечивает третью ветвь трехфазного питания за счет разряда пусковых конденсаторов.Когда двигатель набирает нужную скорость, статический преобразователь просто пропускает однофазный источник питания, к которому он подключен. Мне не совсем понятно, какие приложения подходят для статического фазового преобразователя, и все, кого я спрашивал об этом, предостерегали от его использования. Логично, что нагрузка, которая не сильно пострадает от потребления тока только на двух из трех обмоток (т. Е. Не на двигателе), или двигатель, который нагружен значительно ниже его номинальной мощности и не останавливается и не запускается часто, были бы единственными реальными кандидатами.Однако статические преобразователи дешевле вращающихся фазовых преобразователей.

3. Поворотный преобразователь фазы: Поворотный преобразователь представляет собой трехфазный электродвигатель с некоторыми схемами запуска и управления, которые вместе действуют как генератор, производящий почти сбалансированное трехфазное электричество. Двигатель, называемый холостым двигателем, работает без нагрузки на подаваемой однофазной мощности. Как описано выше, трехфазный двигатель может работать на однофазном электричестве с пониженной выходной мощностью, но он не может запуститься на однофазном без дополнительной помощи.Для запуска холостого двигателя используются либо какие-либо механические средства, такие как шнур питания или однофазный двигатель, либо некоторые электрические средства – статический преобразователь фазы. Когда он вращается, он получает питание от двух из трех наборов обмоток от однофазного источника питания и, поскольку вращающийся электродвигатель является генератором, генерирует третью ногу. Вуаля: трехфазное питание для магазина. Это эффективный способ питания нескольких частей трехфазного оборудования при наличии вращающегося преобразователя подходящего размера.К этому типу системы относится одно предостережение, заключающееся в том, что обычно нельзя запускать более одной загрузки одновременно. Кроме того, определенные нагрузки относятся к разным классам «твердости для пуска» и требуют роторных преобразователей, размер которых превышает соответствующий коэффициент. Для воздушных компрессоров, считающихся одной из самых сложных пусковых нагрузок, рекомендуемый коэффициент составляет не менее 2. В моем случае это означало роторный преобразователь мощностью 10 л.с., что даже не из дешевых.

4. Частотно-регулируемый привод : Используя ту же технологию, что и инверторы, вырабатывающие напряжение 110 В от автомобильного прикуривателя, частотно-регулируемые приводы используют инверторы для синтеза трехфазной энергии.Инверторы создают близкое приближение к синусоиде, используя транзисторы для переключения потока тока. Поскольку инвертор создает отдельный источник переменного тока от своей входной мощности, он может выдавать переменный ток с произвольной частотой, а также с произвольным соотношением фаз. Таким образом, частотно-регулируемый привод, или ЧРП, используемый в качестве преобразователя фазы, может не только синтезировать чистую и сбалансированную трехфазную мощность, но также может изменять частоту вырабатываемой мощности. При питании трехфазного оборудования от частотно-регулируемого привода скорость двигателя можно регулировать, изменяя частоту, при этом обеспечивая полную мощность.Это изящный трюк. Что должно быть очевидным как общая тема для каждого из этих решений, частотно-регулируемые приводы не особенно дешевы.

Я решил просто заменить двигатель своего воздушного компрессора на однофазный. Пришлось несколько перенастроить стартер двигателя, но это был довольно простой процесс. Если бы в цехе было больше трехфазного оборудования, я бы, наверное, получил роторный преобразователь (который можно построить и купить). Если бы у нас был тип горизонтальной мельницы с трехфазным двигателем и регулировкой скорости только посредством выбора шкива, я бы очень серьезно посмотрел на частотно-регулируемый привод, обеспечивающий почти бесступенчатое регулирование скорости для этой машины.

Что такое трехфазная система? Определение и типы

Определение: Система с тремя фазами, т.е. ток будет проходить по трем проводам, и будет один нейтральный провод для передачи тока короткого замыкания на землю, известна как трехфазная система. Другими словами, система, которая использует три провода для генерации, передачи и распределения, известна как трехфазная система. Трехфазная система также используется как однофазная, если от нее отсоединены одна из их фазы и нейтральный провод.Сумма линейных токов в 3-фазной системе равна нулю, а их фазы различаются под углом 120º

Трехфазная система состоит из четырех проводов, т. Е. Трех токоведущих проводов и одной нейтрали. Площадь поперечного сечения нейтрального проводника составляет половину живого провода. Ток в нейтральном проводе равен сумме линейного тока трех проводов и, следовательно, равен √3, умноженному на составляющие тока нулевой последовательности фаз.

Трехфазная система имеет несколько преимуществ, например, она требует меньше проводов по сравнению с однофазной системой.Он также обеспечивает непрерывное питание нагрузки. Трехфазная система имеет более высокий КПД и минимальные потери.

Трехфазная система индуцирует в генераторе трехфазное напряжение равной величины и частоты. Он обеспечивает бесперебойное питание, т. Е. Если одна фаза системы нарушена, то оставшиеся две фазы системы продолжают подавать питание. Величина тока в одной фазе равна сумме тока в двух других. фазы системы.

Разность фаз трех фаз 120º необходима для правильной работы системы. В противном случае система выйдет из строя

Типы соединений в трехфазной системе

Трехфазные системы подключаются двумя способами: звездой и треугольником. Их подробное объяснение показано ниже.

Звездное соединение

Для соединения звездой требуется четыре провода, в которых есть три фазных провода и один нейтральный провод.Такой тип подключения в основном используется для передачи на большие расстояния, поскольку он имеет нейтральную точку. Нейтральная точка передает несимметричный ток на землю и, следовательно, уравновешивает систему.

Трехфазные системы, соединенные звездой, выдают два разных напряжения, то есть 230 В и 440 В. Напряжение между одной фазой и нейтралью составляет 230 В, а напряжение между двумя фазами равно 440 В.

Соединение треугольником

Соединение в треугольник имеет три провода, нейтральная точка отсутствует.Соединение треугольником показано на рисунке ниже. Линейное напряжение при соединении треугольником равно фазному напряжению.

Подключение нагрузок в трехфазной системе

Нагрузки в трехфазной системе также могут подключаться по схеме звезды или треугольника. Трехфазные нагрузки, подключенные по схеме треугольник и звезда, показаны на рисунке ниже.

Трехфазная нагрузка может быть сбалансированной или несбалансированной. Если три нагрузки (импедансы) Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, тогда трехфазная нагрузка называется сбалансированной.В состоянии баланса все фазы и линейные напряжения равны по величине.

Трехфазная электрическая мощность

Теория

Трехфазная электроэнергия – это распространенный метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи энергии в электрических сетях во всем мире. Он также используется для питания больших двигателей и других тяжелых нагрузок. Трехфазная система обычно более экономична, чем эквивалентная однофазная или двухфазная система при том же напряжении, потому что в ней используется меньше проводящего материала для передачи электроэнергии.Трехфазная система была изобретена Галилео Феррари, Михаилом Доливо-Добровольским и Николой Тесла в конце 1880-х годов.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений на расстоянии одной трети цикла друг от друга. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между фазами обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные нагрузки с более низким напряжением. В высоковольтных распределительных сетях обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах:

  • Фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки.Это дает возможность уменьшить размер нейтрального проводника; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки.
  • Передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.
  • Трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей.

Пример двухфазного домохозяйства

Рисунок: Двухфазная система для дома, из заметок Эдди.

В типичном домохозяйстве на 120 вольт электричество поступает от энергокомпании в однофазном и высоком напряжении. Трансформатор берет эту мощность и понижает ее до 240 вольт с нейтральным ответвлением посередине. Питание с двух концов дает 240 вольт для систем с высокими требованиями, таких как сушилка для одежды. Подача питания от центральной нейтральной вершины к любой фазе дает 120 вольт для большинства домашних нужд.

Пример трехфазного самолета

Рисунок: Трехфазная система с интегрированным приводным генератором G450 с самолета Эдди.

В авиационном генераторе переменного тока обычно имеется три выхода, по одному для каждой фазы, и общая нейтраль. В отличие от домашнего примера, напряжения обычно не комбинируются. Системы самолета с высокими требованиями будут использовать все три фазы для получения большей мощности, чем может обеспечить одна фаза. Например, двигатель с высокими требованиями может иметь три набора обмоток, чтобы использовать все три фазы.

Трехфазная система

– обзор

2 Многоуровневые модели: общая разработка

Рассмотрим трехфазную систему, схематически показанную на рис.1, на котором межфазные поверхности между фазами сложны и могут изменяться во времени. Пусть характерные масштабы длины фаз, называемых α- β- и γ-фазами соответственно, существенно отличаются друг от друга. Тогда по отношению к фазам α и β -фаза γ считается непрерывной, а β-фаза называется дисперсной, но, в свою очередь, по отношению к β- и γ-фазам, β-фаза является непрерывной, а γ-фаза считается дисперсной.Пусть ψ – скалярная величина, которая в фазах обозначается как ψ α , ψ β и ψ γ . Изменение ψ внутри фаз описывается уравнениями баланса

Рисунок 1. Трехфазная система с трехуровневой пространственной иерархией

(1) ρi∂ψi∂t + ∇∘ (ji) = πi, i = α, β, γ

, где j i – плотность потока, а π i – объемная плотность источника ψ .Транспорт через интерфейсы αβ, – и βγ – описывается граничными условиями

(2) nij∘ (ji − ρiψiwij) + nij∘ (ji − ρjψjwij) = σij, i, j = α, βandi , j = β, γ

, где W ij – скорость интерфейса ij , σ ij обозначает поверхностную плотность источника величиной ψ на ij -интерфейс, а n nJ – нормальный единичный вектор к интерфейсу ij .

Предположим, что можно определить такие объемы пространственного усреднения

(3) Vα = constantLα3 и Vβ = constantLβ3.

для фаз α, – и β , связанных с координатами x α и x β , что условия

(4) λα≪Lα≪∧αиλβ≪ Lβ≪∧β

(5) β∞λαи∧λ∞λβ

удовлетворяются. Затем, следуя процедуре, представленной Lakatos (2001) для двухуровневой модели, молекулярная (одноуровневая) математическая модель системы может быть преобразована в трехуровневую с помощью модифицированной техники объемного усреднения.В этом случае среднее фазовое 〈..〉 α интенсивного количества ψ в α -фазе определяется обычным образом (Whitaker, 1967, Slattery, 1967, Gray, 1975)

( 6) 〈ψα〉 α (xα, t) = 1Vα∫VααψαdV

, где V α = V αα + V βα , V αα и Vp βα – парциальные объемы α- и β -фаз в V α , соответственно.Среднее по фазе 〈..〉 α количества ψ в фазе β принимает вид

(7) 〈ψβ〉 α (xα, t) = ∫0vβmax 〈ψβ〉 pnβ (Vβ, xα , t) VβdVβ

, где 〈.〉 P обозначает среднее значение ψ A по β-фазовому элементу (частице):

(8) 〈ψβ〉 p = 1Vβ∫VβψβdV⋅

В уравнении (7) ) функция nβ: R0 + × R3 × R0 + → R0 + называется функцией плотности заселенности β-частиц, которая в данном случае определяется следующим образом: – такая функция, что равенство

(9 ) ∫0Vβmaxg (Vβ) nβ (Vβ, t, xα) dVβ = 1K∑k = 1Kg (Vβk)

выполняется для каждой непрерывной и ограниченной функции g (.), где K – количество β-частиц. С помощью этой функции V α n β (V β , t, x α ) dV β выражает количество частиц, имеющих объем ( V β , V β + dV β ) в момент времени t в объеме усреднения V α , связанном с координатой x α . Пространственное усреднение 〈..〉 β p относительно β- и γ- фаз выводится аналогично.

Применяя теперь по очереди операторы усреднения 〈..〉 α и 〈..〉 β к уравнениям (1) – (2), и учитывая, что в силу соотношений (3) – (5),

(10) 〈〈 ..〉 α〉 β = 〈..〉 α

, а также соответствующие теоремы об усреднении объема и общие теоремы переноса, мы получаем следующую иерархию уравнений модели. Движение ψ в фазе α , т.е.е. на a-уровне описывается уравнением

(11) 〈ρα〉 α∂ 〈ψα〉 α∂t + 〈ρα〉 α∇∘ 〈jα〉 α− 〈πα〉 α = −∫0vβmax 〈ψβ〉 pdVβdtnβdVβ + + ∫0Vβmaxnβ∫Aβ (Vβ) 〈jβ〉 β∘nβdAdVβ − ∫0Vβmaxnβ∫Aβ (Vβ) 〈σαβ〉 βnβ∘dAdVβ

, где члены в левой части уравнения (11) описывают изменение величины ψ в фазе α- , в то время как члены правой части описывают изменения I ψ из-за изменения объема β-частиц, перенос ψ через αβ -интерфейс и образование ψ плотностью поверхностного источника σ αβ соответственно.Здесь функция плотности населения определяется уравнением баланса населения

(12) ∂nβ∂t + ∇∘ (〈vβ〉 pnβ) + ∂∂Vβ (dVβdtnβ) = 〈πβ〉 pnβ

, описывающим поведение β -частицы, представленные на уровне α в виде точечных стоков, погруженных и движущихся в α-фазе. Аналогично, уравнения на β-уровне:

(13) 〈ρβ〉 β∂ 〈ψβ〉 ∂t + 〈ρβ〉 β∇∘ 〈jβ〉 β− 〈πβ〉 β = −∫0Vγmax 〈ψγ〉 PdVγdtnγdVγ ++ ∫ 0Vγmaxnγ∫Aγ (Vγ) jγ∘nγdAdVγ − ∫0Vγmaxnγ∫Aγ (Vγ) σβγnγ∘dAdVγ

и

(14) ∂nγ∂t + ∇∘ (〈vγ〉 Pnγ) + ∂∂Vγ (dV) 〉 Pnγ.

Наконец, уравнение на уровне γ

(15) ργ∂ψγ∂t + ∇∘ (vγργψγ + qγ) = πγ

описывает изменение количества ψ внутри γ -частиц. Здесь q γ обозначает неконвективную составляющую плотности потока, которая может иметь сложную природу в зависимости от структуры частиц. Уравнения (11) – (15) дополняются соответствующими граничными и начальными условиями. Граничные условия для уравнений (13) – (14) описывают связь системы с окружающей средой, в то время как граничные условия для уравнения.(15) описывают связь между внутренним миром частицы γ и ее непрерывным фазовым окружением.

Объяснение трехфазного электричества – инженерное мышление

объяснение трехфазного электричества

Как работает трехфазное электричество? В этой статье мы объясним, как работает трехфазное электричество, мы начнем с основ однофазного генератора переменного тока, а затем добавим вторую и третью фазы, чтобы понять, как работает трехфазное электричество.Мы также расскажем, почему и где используется трехфазное питание, а также почему мы не используем больше фаз. Прокрутите вниз, чтобы просмотреть видеоурок

Простой генератор переменного тока (без катушек)

Итак, сначала давайте начнем с простого генератора переменного тока, мы начнем с одной фазы, чтобы понять, что происходит, а затем добавим другие фазы, пока не дойдем до трех фаз.

Обмотка катушки генератора переменного тока

Давайте возьмем медный провод и намотаем его на две катушки, затем разместим эти катушки друг напротив друга внутри статора и соединим концы вместе, чтобы создать законченную цепь.

Вращающееся магнитное поле внутри генератора

Теперь, если мы поместим магнит между этими катушками и начнем вращать магнит, то магнитное поле будет мешать свободным электронам внутри медной проволоки, и начнет течь электрический ток. Мы рассмотрели, как движутся свободные электроны в нашей предыдущей статье об основах электричества, поэтому, пожалуйста, проверьте это, если вы еще этого не сделали. щелкните здесь, чтобы просмотреть видео и статью о том, как работает электричество.

При вращении магнита меняется и полярность магнитного поля.Как вы можете видеть на иллюстрации, северный и южный полюсы вращаются, и, вращаясь, они проходят через катушки, которые заставляют электроны двигаться.

Магнитное поле нейтральное, минимальная и максимальная напряженность

Обратите внимание, что линии магнитного поля имеют овальную форму с каждой стороны и пересекаются через центральную ось магнита. Вы можете думать, что одна сторона является положительной, а другая – отрицательной, и между этими овалами магнитное поле нейтрально. Вы можете видеть, что интенсивность магнитного поля увеличивается с обеих сторон до центра, где оно достигает максимальной силы, а затем снова уменьшается, пока не вернется в нейтральную точку.

По мере того, как магнитное поле вращается через катушку, катушка будет испытывать возрастающую напряженность положительной половины магнитного поля. Во время этой возрастающей интенсивности свободные электроны в медной катушке будут выталкиваться и начнут двигаться все быстрее и быстрее в одном направлении, пока не достигнет максимальной точки магнитного поля, затем, когда магнитное поле уменьшается, начнется поток электронов. замедлить полностью, пока не достигнет нейтральной точки, где не будут течь электроны.Затем идет отрицательная сторона магнитного поля, поскольку оно проходит через свое намерение оттягивать свободные электроны назад. Снова поток электронов будет течь все быстрее и быстрее до точки максимума магнитного поля, а затем он вернется к нейтральной точке.

Вот почему электричество переменного тока называют переменным током, потому что ток электронов чередуется в направлении назад и вперед, как прилив на море.

Генератор синусоидального переменного тока

Если бы мы изобразили на графике скорость электронов, текущих во время вращения, то мы получили бы картину синусоидальной волны.В этой синусоидальной волне вы можете видеть, что электроны в начале неподвижны в нейтральной зоне, а затем скорость увеличивается через положительную половину до максимума. Затем он уменьшается до нейтрального положения, когда электроны снова не текут, а затем наступает отрицательная половина, где электроны ускоряются до максимальной точки, а затем замедляются, пока магнит не совершит 1 полный оборот, где это будет повторяться.

частота синусоидальной волны

Это полное вращение называется циклом, а количество циклов в секунду называется частотой, которая измеряется в герцах.Вероятно, вы видели, что на ваших электротоварах написано 50 Гц или 60 Гц, это означает, что генератор электростанции совершает полный оборот 50 или 60 раз в секунду. Направление тока меняется 50 или 60 раз в секунду. Когда это написано на электротехнической продукции, это просто говорит пользователю, к какому типу электричества он должен быть подключен.

Ток через генератор и лампу

Теперь вернемся к синусоиде, которую мы видели ранее. Этот график тока также представляет мощность, и если мы подключим лампу к цепи, мы увидим, что она будет увеличивать яркость вплоть до пика, а затем уменьшать яркость до нейтральной точки, в которой лампа выключена, поскольку ток не течет. , но затем он снова увеличивается в яркости, поскольку электроны начинают течь через него в противоположном направлении, пока он снова не достигнет нейтральной точки.

В нейтральной точке цикла лампа не излучает свет, в точках увеличения и уменьшения в цикле лампа тусклая. Лампа горит только полностью и ярко светится в максимальные моменты циклов. Это означает, что свет постоянно мигает и гаснет.

Двухфазный генератор переменного тока

Чтобы улучшить это, мы можем добавить еще один набор катушек или вторую фазу в генератор и разместить эти 120 градусов поворота от первого набора катушек, а затем подключить это к другой лампе.Это вращение означает, что катушки испытывают изменяющуюся напряженность магнитного поля в разные моменты времени. Первая катушка достигает максимального тока и яркости, и по мере ее уменьшения вторая катушка начнет увеличиваться.

Это улучшило освещение, но все еще есть зазор, который вызовет мерцание, поэтому мы можем добавить третий набор катушек или третью фазу, и это будет означать, что одна из ламп почти всегда имеет максимальную яркость, поэтому освещение почти постоянный.Это основы трехфазного электричества. Это означает, что передается больше мощности и достигается более стабильная скорость.

Трехфазный генератор переменного тока

Между фазами все еще есть небольшие промежутки, и вы можете добавлять все больше и больше фаз, чтобы заполнить эти промежутки, но становится все дороже и дороже поддерживать все эти кабели, поэтому трехфазное электричество стало широко распространенным, поскольку это хороший компромисс между предоставленной мощностью и стоимостью строительства.

В реальном мире вы не собираетесь использовать три лампы на разных фазах для создания освещения.Все лампы в ваших домах работают в однофазном режиме, но они мерцают, просто они включаются и выключаются так быстро, что человеческий глаз не увидит этого, если вы не запишите лампу в замедленном темпе.

Более практичным применением является питание электрических асинхронных двигателей и другого коммерческого и промышленного оборудования, поскольку трехфазный двигатель обеспечивает большую мощность для этих элементов, что означает, что вы можете качать воду выше и запускать двигатели быстрее.

Трехфазное распределение электроэнергии

Мощность обычно генерируется и распределяется по трем фазам, и трансформаторы используются для изменения напряжения. Если вы хотите узнать, как работают трансформаторы, мы также рассмотрели это, ссылки приведены в видеоописании ниже.

Одна из интересных вещей, связанных с трехфазным питанием, заключается в том, что вы можете подключаться ко всем трем фазам и питать большое промышленное оборудование, или вы также можете подключаться только к одной из фаз, а также питать небольшие электрические товары.

трехфазное распределение электроэнергии в здании

Обычно так большие многоэтажки и небоскребы распределяют электричество по зданию. Двигатели лифтов и насосы кондиционеров нуждаются в трехфазном питании, а компьютеры и офисное оборудование – в однофазном питании.Таким образом, они распределяют трехфазное питание по зданию, а затем отводят от него по мере необходимости.

То же самое происходит с распределением электроэнергии по городу. Дома будут подключаться только к одной фазе, потому что они не требуют большой мощности, тогда как большие здания будут подключены к трем фазам, поскольку им требуется много энергии.

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия – распространенный метод передачи электроэнергии.Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока.Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.Наконец, трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей. Три – это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора.Токи являются синусоидальными функциями времени, все с одинаковой частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но для получения более подробной информации см. «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением.Другая система, обычно встречающаяся в Северной Америке, – это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

Большой кондиционер и т. Д.оборудование использует трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагревательные нагрузки сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

Во многих странах Европы печи рассчитаны на трехфазное питание.Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, такие как жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети – это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод – использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может привести к перегреву нагрузок двигателя, а в некоторых случаях и к перегреву.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается путем создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° – 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи – это новейшая разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность – это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивали Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило на недостаточное время для разработки удовлетворительного учета энергии.
  • Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система – это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример – трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле – ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в многоквартирных домах может быть распределено напряжение 120 В (между фазой и нейтралью) и 208 В (между фазой). Основные однофазные приборы, такие как духовки или варочные панели, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 В; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

Руководство по питанию (одно-, разделенное и трехфазное)

Для электрически ненастроенных, трехфазное и однофазное питание можно рассматривать по тем же принципам, что и механическое питание. Несмотря на различия, у них есть одна общая черта – они передают мощность с помощью давления и потока. Обсуждая электрическую мощность, давление относится к силе, а поток – к скорости.

Вы рассчитываете мощность, передаваемую через однофазную и трехфазную сети, следующим образом: давление, умноженное на расход, или сила, умноженная на скорость.

Когда дело доходит до механической мощности, люди используют несколько разных терминов вместо слов «сила» и «скорость». Например, термины «фут-фунты» и «фунты на квадратный дюйм» описывают силу. Между тем, термины «скорость вращения» и «галлоны в минуту» относятся к скорости.

Что касается электроэнергии, то терминология становится более ограниченной. Например, только один термин «напряжение» описывает силу. Между тем, только два термина – «ток» и «амперы» – описывают скорость.

В прошлые десятилетия стандартом подачи электроэнергии был постоянный ток (DC), при котором мощность текла в одном направлении.В современном мире стандартом подачи электроэнергии является переменный ток (AC), при котором поток энергии имеет переменное направление.

Стандарт мощности был изменен с постоянного тока на переменный, поскольку последний обеспечивает более эффективную подачу энергии на большие длины и расстояния. Частота переменного тока различается в зависимости от страны:

  • 60 Герц (циклов в секунду) – частота переменного тока в США.
  • 50 Гц (циклов в секунду) – частота переменного тока во многих других странах.

В механической мощности уравнение мощности представляет собой произведение фут-фунта (давления) и скорости вращения (скорости). В электроэнергетике уравнение мощности представляет собой произведение напряжения (силы) на ток (расход).

В домашних условиях наиболее часто используемая силовая цепь состоит из однофазной двухпроводной сети переменного тока (AC), которая питает все, от компьютеров и бытовой техники до телевизоров, фенов и вентиляторов. Большинство установок имеют два провода – нейтральный и силовой.Питание проходит между двумя проводами, начиная с провода питания.

Что такое однофазный (двух- или двухфазный) и трехфазный?

Различия между однофазными, двухфазными и трехфазными системами сводятся к их конфигурациям, которые определяют уровень напряжения, подаваемого на оборудование на принимающей стороне. Чем тяжелее груз, тем выше требования.

Что такое однофазное питание?

Однофазная трехпроводная система – это система распределения питания переменного тока, которая экономит материал проводов в однофазной системе.Для распределительного трансформатора требуется только одна фаза на стороне питания. Трансформатор, который питает трехпроводную распределительную систему, содержит однофазную первичную входную обмотку.

В США и других округах есть разные уровни стандартного напряжения. В США стандартное однофазное напряжение составляет 120 В. Во многих других странах стандартное однофазное напряжение составляет 230 В. Оба состоят из одного провода напряжения – 120 В или 230 В – и одного нейтрального провода.

Что такое двухфазное питание?

Двойная фаза – также известная как разделенная фаза – в основном то же самое, что и однофазная. Двойная фаза состоит из переменного тока (AC) с двумя проводами. В Соединенных Штатах типичная система электропитания в домах состоит из двух силовых проводов на 120 В – фазы A и фазы B, которые сдвинуты по фазе на 180 градусов. Многие предпочитают этот подход из-за его гибкости.

В нагрузках с низким энергопотреблением, таких как освещение, телевизор, стереосистема и компьютерная периферия, питание подается от одной из двух цепей питания на 120 В.В нагрузках, которые используют большое количество энергии, таких как стиральная машина, посудомоечная машина, кондиционер и обогреватели, одна силовая цепь 240 В действует как источник питания.

Что такое трехфазное питание?

Трехфазное питание – это силовая цепь, состоящая из трехпроводной цепи переменного тока. Большинство коммерческих зданий в Соединенных Штатах имеют трехфазную цепь питания. Схема питания обычно состоит из четырех проводов – 208 Y / 120 В – расположение считается наиболее плотным и гибким.

По сравнению с однофазным, трехфазный источник питания обеспечивает большую мощность – в 1,732 раза больше, чем однофазная – при том же токе:

  • В нагрузках с низким энергопотреблением, таких как освещение, телевидение, радио, компьютер и сканер, питание может подаваться от любой из трех однофазных цепей питания на 120 В.
  • Для нагрузок со средней мощностью, таких как водонагреватели и осушители воздуха, питание может подаваться от любой из трех однофазных цепей питания на 208 В.
  • Нагрузки, требующие больших объемов энергии, включая обогреватели, кондиционеры и сверхмощное гаражное оборудование, питаются от одной трехфазной цепи питания 208 В.

Большинство промышленных предприятий в Соединенных Штатах используют трехфазные четырехпроводные схемы питания, поскольку эта схема – 480 Y / 277 В – является самой плотной и мощной. По сравнению с трехфазным двигателем на 208 В трехфазный на 480 В обеспечивает значительно больший источник питания с таким же током или с пониженным на 43% током.Преимущества этой установки заключаются в следующем:

  • Снижение затрат на строительство благодаря меньшим размерам электрических устройств и схем.
  • Снижение затрат на электроэнергию за счет сохранения электрических токов, которые преобразуются в тепло, а не теряются.

Если учесть задействованное мощное оборудование, трехфазные системы ответственны за самые невероятные достижения в области архитектурной инженерии, которых когда-либо достигало человечество.

Разница между энергосистемой США и Европы

Энергетические системы в Северной Америке, Великобритании, континентальной Европе и Океании различаются.

Европейская энергосистема

В Европе в большинстве энергосистем используются трехфазные сети 230 В / 400 В. Основное исключение из этого правила – на фермах и в сельских деревнях, где для получения электроэнергии используются однофазные установки. Исключение связано с тем, что в сельской местности обычно имеется доступ только к одному высоковольтному проводу.

В Соединенном Королевстве федеральный закон требует, чтобы на строительных площадках электроинструменты и переносные фонари подавались через системы с центральным отводом напряжением 55 В. Подобные устройства используются с оборудованием на 110 В, для которого не требуется нейтральный провод. Цель здесь – снизить вероятность поражения электрическим током, который часто представляет собой серьезную угрозу на открытом воздухе, особенно в сырые и дождливые дни.

Одна из самых распространенных строительных машин в США.K. – переносной трансформатор, особенно тот, который преобразует энергию между однофазными 240 В и 110 В. Электропитание на строительных площадках обеспечивается напрямую через генераторные установки. Одним из дополнительных преимуществ такой компоновки является то, что лампы накаливания на 110 В – типичные для этой установки – имеют нити накаливания, которые более прочны и лучше приспособлены для выполняемой работы, чем нити нити ламп на 240 В.

В антиподном сообществе, которое предпочитает недорогие варианты, электрические сети обеспечивают однопроводные линии передачи с заземлением (SWER) для удаленных нагрузок.

Североамериканская энергосистема

Для жилых домов и небольших коммерческих объектов в США и Канаде трехпроводные однофазные системы являются наиболее распространенным источником электроэнергии. Установка позволяет работать двумя способами:

  • 120 В между нейтралью
  • 240 В от линии к линии

Первый из них подает питание на стандартные розетки и заземленные светильники. В более тяжелом оборудовании, таком как холодильники, духовки, посудомоечные машины, обогреватели и другие приборы, требующие более мощных источников энергии, используется второе.

Положение о коммутации управляющих двухфазных цепей. Обратный провод не имеет защиты автоматического выключателя. Таким образом, нейтральный провод должен использоваться исключительно цепями питания противоположной линии. Нейтраль может использоваться двумя цепями противоположных линий, если имеется перемычка для подключения двух выключателей, поскольку это позволяет обоим отключиться одновременно, а также предотвращает прохождение 120 В по цепям 240 В. В исключительном варианте терминологии 220 В называется однофазным в Соединенных Штатах, но не за рубежом.

Какие основные различия существуют между двух- и трехфазным питанием?

В зданиях, где используются трехфазные источники питания, инженеры разработали электрические системы, обеспечивающие балансировку нагрузок. Это позволяет избежать дисбаланса в течение дня, поскольку разные стороны используют легкие, средние и тяжелые грузы. Инженеры также применили тот же принцип к источникам питания, которые они распределяют по разным зданиям.

В Великобритании на одну фазу подается нейтраль при токах до 100 А.В Германии и других странах Европы каждая недвижимость получает три фазы и нейтраль. Однако номинал предохранителя в Германии ниже, и он перетасовывается, чтобы предотвратить влияние, которое повышенные нагрузки могут оказать на первую фазу.

В США и Канаде часто наблюдается высокий уровень предложения дельты. В этой схеме одна обмотка имеет центральный отвод, что позволяет использовать три разных уровня напряжения. Основное назначение этого источника питания, подключенного по схеме треугольника, – обеспечить питание двигателей большой мощности, которым требуется вращающееся поле.

Однофазные нагрузки

За исключением систем с высоким перепадом треугольника, однофазная нагрузка может работать между любыми двумя фазами. Когда однофазные нагрузки распределяются по фазам системы, это сохраняет баланс нагрузок и создает более управляемую ситуацию для проводников. В сбалансированной системе звезды, состоящей из трех фаз и четырех проводов, три проводника и нейтраль системы имеют однородное напряжение.

Когда питающий трансформатор получает обратные токи из домов и зданий потребителей, эти токи совместно делят нейтральный провод.Если все возвращающие нагрузки равномерно распределены по каждой из трех фаз, нейтральный провод будет пропускать обратный ток, равный нулю. Однако использование мощности трансформатора может оказаться неэффективным, если вторичная сторона трансформатора имеет несимметричную фазную нагрузку.

Если в нейтрали питания возникает разрыв, напряжение между фазой и нейтралью не сохраняется. Более низкое напряжение будет на фазах с более высокими нагрузками, а более высокое напряжение будет на фазах с более низкими нагрузками.

Несбалансированные нагрузки

В трехфазной системе, где токи в проводах под напряжением не равны или не образуют идеального фазового угла 120 градусов, нагрузка несимметрична, поскольку потери мощности выше, чем в сбалансированной системе.

Электродвигатель относится к особому классу, когда речь идет о трехфазных нагрузках. Трехфазный асинхронный двигатель, применяемый в различных отраслях промышленности, обеспечивает высокую скорость и пусковой момент. Трехфазные двигатели, известные своей эффективностью, превосходят однофазные двигатели аналогичного номинала и напряжения.Трехфазный двигатель, требующий меньшего количества обслуживания и относительно низкую стоимость, служит дольше и меньше вибрирует, чем однофазный.

Трехфазные системы часто также обеспечивают питание электрического освещения, электрических котлов и других нагрузок резистивного отопления. По всей Европе к трехфазному питанию подходят бытовые электроплиты и отопительные приборы. Вы также можете подключить нагреватели между нейтралью и фазой, в которых отсутствует трехфазный доступ. В местах, где трехфазное питание недоступно, конфигурация с расщепленной фазой позволяет получить доступ к удвоенному значению напряжения для тяжелых нагрузок.

Двухфазная система использует два напряжения переменного тока, разделенных фазовым сдвигом на 90 градусов. Некоторые из первых общественных кондиционеров, а также самые первые генераторы на Ниагарском водопаде работали на двухфазных системах. Трансформатор Скотт-Т может использоваться для соединения двухфазных систем с трехфазными системами. Двухфазные системы в значительной степени были заменены трехфазными системами, но некоторые остатки двухфазных систем все еще существуют.

Какие бывают трехфазные конфигурации? Цепи звезда (Y) и треугольник (Δ)

Трехфазные цепи бывают двух конфигураций – звезда (Y) и треугольник (Δ).В конфигурации “звезда” используются три, а иногда и четыре провода, в то время как в схеме “треугольник” используется только три провода. В звездообразных конфигурациях дополнительный четвертый провод обычно заземляется и предлагается в качестве нейтрали.

Ни трехпроводный, ни четырехпроводной варианты не учитывают заземляющий провод, который проходит по линиям передачи с целью защиты от неисправностей. В нормальных условиях заземляющий провод даже не пропускает ток.

При одновременном использовании однофазной и трехфазной нагрузки вступает в силу четырехпроводная конфигурация “звезда”.Примером этого может быть случай, когда источник питания питает свет, а также обогреватели. В местах, где муфты потребителей имеют общую нейтраль и имеют разное количество фазных токов, результирующие токи передаются по общей нейтрали.

Дельта соединяет обмотку между разными фазами в трехфазной конфигурации. Звезда соединяет каждую обмотку в источнике питания между фазой и нейтралью. В этих конфигурациях будет работать один трехфазный или три однофазных трансформатора.

В системе с открытым треугольником, также известной как V-система, конфигурация состоит из двух трансформаторов. Если трансформатор выходит из строя или становится злокачественным в замкнутом треугольнике, который состоит из трех однофазных трансформаторов, этот треугольник может работать как разомкнутый треугольник. Два трансформатора в разомкнутом треугольнике не только проводят ток для своих соответствующих фаз, но и пропускают ток третьей фазы.

Для того, чтобы система “треугольник” могла обнаруживать паразитные токи, необходимо заземление.Зигзагообразный трансформатор часто защищает дельта-конфигурацию от скачков напряжения. Зигзагообразный трансформатор возвращает токи короткого замыкания на землю.

Как проверить трехфазное напряжение

Чтобы иметь трехфазное электрическое питание, у вас должна быть установка с тремя проводами подключения для передачи. Электроэнергетические компании Северной Америки вырабатывают трехфазные токи, которые передают энергию по электрическим сетям, и это снабжает энергией города, поселки и пригороды на всей территории Соединенных Штатов и Канады.

В жилых домах и небольших офисных зданиях однофазное питание является наиболее распространенным источником энергии. На стадионах и промышленных предприятиях трехфазное питание является стандартным источником питания. Две схемы подключения трансформаторов, работающих от трехфазного тока, известны как треугольник и звезда. Между ними есть небольшая разница в напряжении, и все зависит от проводки.

Шаги, необходимые для проверки напряжения на двигателе, легко выполнить:

  • Выключите выключатель на двигателе.Снимите винты, которыми крышка крепится к разъединителю, и отложите крышку в сторону.
  • Переместите мультиметр на переменное напряжение. Присоединяемые провода зонда к следующим выводам подключаются – общий и вольтный. Если мультиметр имеет функцию автоматического выбора диапазона, переходите к следующему шагу. Если нет, выберите диапазон напряжения, который превышает предполагаемое напряжение.
  • Проверьте внутреннюю часть распределительной коробки на двигателе. Должно быть два набора проводов. Однажды набор должен включать три входящих провода, а другой должен состоять из трех исходящих проводов.
  • Входящие провода должны быть подключены к клемме, имеющей следующие три символа – L1, L2 и L3. В качестве альтернативы терминал может перечислить их как Line 1, Line 2 и Line 3.
  • Выходящие провода должны быть подключены к клемме, имеющей следующие три символа – T1, T2 и T3. В качестве альтернативы терминал может перечислить их как «Нагрузка 1», «Нагрузка 2» и «Нагрузка 3».
  • Из трех фаз тока каждая фаза проходит по проводу и обозначена входом и выходом соответствующим номером.Например, L3 и T3 представляют третью фазу.
  • Проверьте пары “L” и “T” с помощью щупов мультиметра. Поместите щуп на L1 и L2, затем посмотрите на отображение напряжения. Повторите этот шаг с комбинацией L1 и L3, а затем L2 и L3. Напряжение для каждой из этих пар должно быть одинаковым.
  • Когда вы запускаете этот тест на парах T – T1 и T2, T1 и T3, а также T2 и T3 – напряжение для каждой пары должно быть нулевым.
  • Включите размыкающий выключатель.Еще раз проверьте пары T. Напряжение для каждой пары должно быть таким же, как для пар L.

Если у вас есть свободная клемма нейтрали, проверьте однофазное напряжение между ней и L1. Повторите тест между нейтралью и L2 и нейтралью и L3. Тестируемое здесь напряжение должно составлять половину от того, что выходит для пар линий.

В вращающемся преобразователе фаз одна фаза трехфазного тока может иметь другое напряжение, чем остальные две. В условиях нагрузки, которые связаны с работающими двигателями, напряжение будет изменяться, но этого следовало ожидать.

Когда вы проводите проверку напряжения, обращайте пристальное внимание на то, что вы делаете, и не позволяйте себе отвлекаться. Проведение этих тестов может быть опасным.

На некоторых двигателях выключатель такой же, как выключатель. Следовательно, переключение разъединителя в положение «включено» фактически приведет к включению двигателя.

Дополнительная информация об электроэнергетике

В сегодняшнем мире высоких технологий и высоких технологий доступ к электроэнергии в любое время и в любых условиях не является роскошью.Это обязательно. Global Electronic Services выполняет сервисные работы по полному спектру промышленной электроники, двигателей и другого высокомощного оборудования.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *