В чем разница между постоянным и переменным током: «Чем переменный ток отличается от постоянного?» – Яндекс.Кью

Содержание

Разница между переменным и постоянным током – Разница Между

Электроэнергия может поставляться либо какпеременный ток (переменный ток) или как постоянный ток (DC), главное отличие между переменным и постоянным током, в постоянном токе электроны непрерывно теку

Основная разница – переменный ток против постоянного тока

Электроэнергия может поставляться либо какпеременный ток (переменный ток) или как постоянный ток (DC), главное отличие между переменным и постоянным током, в постоянном токе электроны непрерывно текут в одном направлении в то время как, в переменном токе электроны периодически колеблются взад и вперед.

Что такое постоянный ток

В постоянном токе электроны текут только в одном направлении. Постоянный ток может быть сформирован путем соединения двух точек с разными электрическими потенциалами с проводником. Электроны будут затем течь от более отрицательного потенциала к менее отрицательному потенциалу, пока потенциалы поддерживаются. Например, если мы соединяем две точки с электрическими потенциалами -2 В и -5 В, электроны будут течь от конца -5 В до конца -2 В.

По историческим причинам Направлениеток берется в направлении, противоположном направлению потока электронов. Направление тока в приведенном выше примере составляет от -2 В до -5 В. В этом направлении ничего не течет: это просто соглашение.

Что такое переменный ток

В переменном токе электроны колеблются взад и вперед. Дома обычно питаются от переменного тока. Здесь проводник соединен между потенциалом, который периодически меняет свое значение, и потенциалом, который остается на уровне 0 В. Изменяющийся потенциал меняет свое значение между положительными и отрицательными значениями, так что электроны в проводнике перемещаются взад и вперед. Разность потенциалов, приложенная к проводнику, затем изменяется

синусоидально:

Как напряжение изменяется во времени в цепях переменного (синего) и постоянного (красного)

Большая часть электронного оборудования работает с постоянным током. Часто переменный ток от источника необходимо преобразовать в постоянный ток, прежде чем устройство сможет использовать ток. Основная причина использования переменного тока для передачи (а не постоянный ток) заключается в том, что исторически было легко изменить напряжение переменного тока с помощью трансформатора. Это означало, что электричество могло передаваться на большие расстояния при высоком напряжении и небольшом токе. Когда электричество передается с меньшим током, потери мощности во время передачи значительно ниже. При подаче электричества в дома можно использовать трансформатор, чтобы легко преобразовать меньший ток с высоким напряжением в линиях электропередачи в больший ток с меньшим напряжением, используемым в домах.

Поскольку ток постоянно колеблется, мощность, рассеиваемая на любом устройстве, подключенном к переменному току, также будет периодически меняться. Однако для переменных токов напряжение может быть охарактеризовано одним числом, называемымсреднеквадратичное (среднеквадратичное) напряжение

, Для синусоидальный Переменный ток, среднеквадратичное напряжение может быть дано в терминах максимального напряжения (

В чем разница между постоянным и переменным током.

Что такое переменный ток

Электрическим током называется перенос заряда или движение заряженных частиц между точками, с разными электрическими потенциалами. Переносить электрический заряд могут ионы, протоны и/или электроны. В повседневной жизни практически везде применяется движение электронов по проводникам. Обычно встречаются две разновидности электричества – переменное и постоянное. Важно знать, чем постоянный ток отличается от переменного.

Постоянный и переменный ток

Любое явление, которое нельзя увидеть или «пощупать» непосредственно, легче понять с помощью аналогий. В случае с электричеством можно рассмотреть воду в трубе как самый близкий пример. Вода и электричество текут по своим проводникам – проводам и трубам.

  • Объём протекающей воды – сила тока.
  • Давление в трубе – напряжение.
  • Диаметр трубы – проводимость, обратная сопротивлению.
  • Объём на давление – мощность.

Давление в трубе создаётся насосом – сильнее насос качает, давление выше, воды течёт больше. Диаметр трубы больше – сопротивление меньше, воды протекает больше. Источник выдаёт напряжение больше – электричества протекает больше. Провода толще – сопротивление меньше, ток выше.

Для примера можно взять любой химический источник питания – батарейку или аккумулятор. На его клеммах имеются обозначения полюсов: плюс или минус. Если к батарейке, через провода и выключатель подключить соответствующую лампочку, то она загорится. Что при этом происходит? Минусовая клемма источника испускает электроны – элементарные частицы, несущие отрицательный заряд. По проводам, через разъёмы выключателя и спираль лампы они движутся к положительной клемме, стремясь уровнять потенциал клемм. Пока цепь замкнута по разъёмам выключателя и батарейка не села – по спирали бегут электроны и лампочка горит.

Направление движения зарядов остаётся неизменным всё время – от минуса к плюсу. Это и есть постоянный ток, он может быть пульсирующим – слабеть или увеличиваться.

По многим причинам применение только постоянного напряжения нецелесообразно : взять хотя бы невозможность использовать трансформаторы. Поэтому к настоящему времени сложилась система подачи и потребления переменного напряжения питания, под которую и создаются бытовые приборы.

Существует простой ответ, какова разница между постоянным и переменным током. В этом примере с лампочкой на одной клемме источника питания напряжение всегда будет равно нулю. Это нулевой провод, а вот на другом – фазном, напряжение изменяется. И не только по величине, но и по направлению – с плюса на минус. Электроны не текут стройными рядами в одну сторону, наоборот мечутся вперёд-назад, одни и те же частицы пробегают по спирали накаливания туда-сюда и производят всю работу.

Изменение направления движения электричества и даёт само понятие «переменный».

Дополнительные параметры сети

Помимо напряжения, силы, мощности и сопротивления/проводимости появляются два новых признака, описывающих процессы. Эти параметры являются обязательными, как и первые четыре. При изменении любого из них изменяются свойства всей цепи.

  • Форма.
  • Частота.

Большую роль играет вид графика изменения напряжения. В идеале он имеет вид синусоиды с плавными переходами от значения к значению. Отклонения от синусоидальной формы могут привести к снижению качества энергии.

Частота – это количество переходов из одного крайнего состояния в другое за определённое время. Европейский стандарт в 50 Гц (герц) означает, что напряжение меняет плюс на минус 50 раз за секунду, а электроны сто раз поменяют направление движения. Для справки: увеличение частоты в два раза приводит к четырёхкратному уменьшению габаритов устройств .

Если в розетке переменный ток 50 Гц и 220 В (вольт), то это значит, что максимальное напряжение питания в сети достигает 380 В. Откуда это? В постоянной сети значение напряжения неизменно, а при переменке оно то падает, то растёт. Вот эти 220 В и являются значением действующего напряжения синусоидального тока с амплитудой в 380 В. Потому так важна форма изменения значений, что при сильном отличии от синусоиды сильно изменится и действующее напряжение.

Практическое значение различий

Вот такой он, переменный и постоянный ток. В чем разница, разобраться не так уж сложно. Различие есть и очень большое. Источник постоянного тока не позволит подключить сварочный, да и любой другой, трансформатор. При расчёте изоляции или конденсаторов на пробой берётся не действующее, а максимальное значение напряжения. Ведь наверняка может возникнуть мысль: «а зачем в сети 220 вольт конденсаторы на 400?». Вот и ответ, в сети 220 В напряжение доходит и до 380 В при нормальной работе, а при небольшом сбое и 400 В не предел.

Ещё один «парадокс». Конденсатор имеет бесконечное сопротивление в сети постоянного тока, и проводимость в сети переменного, чем выше частота, тем меньше сопротивление конденсатора. С катушками иначе – увеличение частоты вызывает рост индуктивного сопротивления. Это их свойство используется в колебательном контуре – основе всей связи.

Движение электронов в проводнике

Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения.

Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).

Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.

Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.

Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).

История изучения

Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.

Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.

Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.

Основные закономерности и силы в электрическом токе

Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.

Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).

Движение зарядов при этом совершается работа

Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
.

В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).

Разновидности, характеристики и единицы измерения

Электрический ток может быть или переменным , или постоянным .

Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.

Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).

В последние десятилетия очень большое распространение получил . Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.


Почти все современные генераторы производят трёхфазный электроток.

  • Сила и количество тока

Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.

В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.

Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).

  • Электрическое сопротивление

Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.

  • Электрическая емкость

Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).

  • Мощность и работа электрического тока

Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).

Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.

Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность (скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.

Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.

Для того, чтобы замерять мощность электроцепи используют ваттметр

Какой вид тока эффективнее и какая между ними разница?

Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.

В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.

Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.

Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).

Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.

Любой грамотный инженер должен без запинки ответить какой ток в розетке — постоянный или переменный. Физике в технических ВУЗах уделяют особое внимание! А вот большинство обычных граждан может прожить всю жизнь и не знать этого. И абсолютно зря! В наше время есть необходимый минимум знаний, которым должен обладать любой современный образованный человек. Какой тип тока в розетке нужно знать так же, как таблицу умножения.

Виды электрического тока в быту

Для полного понимания картины приведу немного теории, которую будет очень полезно знать. Электрический ток — это направленное движение электрических зарядов. Он может возникать в замкнутой электрической цепи. Различают:

Постоянный ток или DC — Direct Current. Международное обозначение (-).
Постоянный ток течёт в одном направлении, а величина его слабо меняется со временем. Яркий пример, который Вы можете встретить у себя дома или в квартире — ток от электрических батареек или аккумуляторов.

Переменный ток . обозначение или AC — Alternating Current. Международное обозначение (~).
Переменный ток периодически изменяется по величине и направлению. Один период изменения в секунду — это Герц. Соответственно частота переменного тока — это количество периодов в секунду. В России и Европе используемая частота — 50 Гц, в США — 60 Гц. Переменный ток используется для работы различных электроприборов.

Какой ток в бытовых розетках

Разобравшись в теории — перейдём непосредственно к ответу на вопрос — какой ток в розетке — переменный или постоянный? Думаю Вы уже и сами догадались — конечно же переменный ток . Рабочее напряжение в сети — 220-240 Вольт. Сила переменного тока в обычных квартирах ограничивается величиной в 16 А (Ампер), но в некоторых случаях встречается и до 25 А. По мощности тока стандартное ограничение — 3,5 кВт.

Для более мощной электрической техники используют уже трехфазные сети с напряжением 380 Вольт с силой тока до 32А.

Сам по себе электрический ток представляет собой ничто иное, как происходящее в упорядоченном виде движение всех заряженных частиц в газах, электролитах и металлических объектах. К данным элементам, несущим определенный заряд, относятся ионы и электроны. Сегодня мы постараемся прояснить, чем отличается переменный ток от постоянного , ведь на практике приходится часто сталкиваться с обоими видами.

Характеристики постоянного тока

Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.

Область применения – большинство и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.

В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка . Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Двигатели асинхронной конструкции, работающие с переменным током, значительно надежнее и отличаются более простой конструкцией, чем аналоги постоянного тока.

Преобразование переменного тока в постоянный

Для варианта подобной трансформации оптимальный способ – использование выпрямителей:

  • Подключение диодного моста – первый шаг в этой процедуре. Конструкция из 4 диодов с необходимой мощностью способствует процессу своеобразного срезания верхних границ уже знакомых нам синусоид переменного вида. Таким образом достигается получение однонаправленного тока.


Изменения в результате снижения пульсации отображены в синем цвете.

  • устанавливаются для уменьшения рабочего уровня пульсации в случае возникшей необходимости.

Преобразователь постоянного тока в переменный

В данном случае процесс выглядит достаточно сложным. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

Высокие цены на подобное устройство обусловлены сложностью конструкции. Стоимость в значительной степени обусловлена максимальной мощностью тока на выходе.

Применяется в довольно редких ситуациях. Например, в случае необходимости подсоединить к электросети автомобиля какой-то инструмент или приборы.

Виды тока

Среди видов электрического тока различают:

Постоянный ток:

Обозначение (-) или DC (Direct Current = постоянный ток).

Переменный ток:

Обозначение (

) или AC (Alternating Current = переменный ток).

В случае постоянного тока (-) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.

В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «-».

В случае переменного тока (

) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.

При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты – герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.

Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.

Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами

Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.

О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.

Преобразователи переменного постоянного тока. Устройство.

Василий Сонькин

Если вдоль всего Садового кольца встанут люди, возьмутся за руки, и одновременно будут шагать в одну сторону, то через каждый перекресток будет проходить много людей. Это постоянный ток. Если же они будут делать пару шагов вправо, потом влево, через каждый перекресток пройдет много людей, но это будут одни и те же люди. Это переменный ток.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди – получается ток.

Генератор – как насос для воды, а провод – как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток – это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает – это и есть смена направлений движения. А 220 вольт – это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток – это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Что такое переменный ток и чем он отличается от тока постоянного

Переменный ток. в отличие от тока постоянного. непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами равномерное магнитное поле. т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки – нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя явление электромагнитной индукции. можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, – значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки – противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Построение графика переменной ЭДС

Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой. а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока – самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Период, амплитуда и частота – параметры переменного тока

Переменный ток характеризуется двумя параметрами – периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um – общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока. однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i. е и u – общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени – T/4 его амплитудному значению. Ток также достигает своего амплитудного значения но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды. необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем.

Если мы имеем переменный ток. частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока – период, амплитуду и частоту. – которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.

Круговая частота обозначается буквой #969 и связана с частотой f соотношением #969 = 2#960 f

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается р а мка в 1 секунду, и выражает собой ско р ость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна #969 = 360°f.

Итак, мы пришли к выводу, что #969 = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2 #960 радиан, где #960 =3,14. Таким образом, окончательно получим #969 = 2 #960 f. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

Наш сайт в Facebook:

В чем разница между переменным током и постоянным?

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Чем постоянный ток отличается от переменного и как преобразовывается?

Постоянный ток.

Постоянный ток — характеризует движение частиц в определенном направлении, его напряжение или сила имеют одно и то же значение. Источниками постоянного тока могут выступать: аккумуляторы, батарейки или генераторы, где он выпрямляется за счет коллектора. Постоянный ток применяется часто, с ним работают: бытовые приборы, зарядные устройства, его применяют в двигателях и аккумуляторах.

Переменный ток.

Чаще всего используется переменный ток, по величине и направлению он постоянно изменяется, с равными промежутками времени. Переменный ток может быть однофазным и многофазным. Для выработки переменного тока используют генераторы. Он используется в: радио, телевидении, телефонии, широко применяется в промышленности.

Преобразование.

В розетках мы получаем переменный ток, но электрическим приборам необходим — постоянный.

Для преобразования одного вида в другой используются специальные выпрямители. Преобразование может происходить как из переменного в постоянный ток, так и наоборот.

Выработка тока.

Генератор постоянного и переменного тока.

Генератор превращает механическую энергию в электрическую энергию. Тот ток, который получается после такого процесса, бывает постоянным и переменным. Устройство генератора постоянного тока простое и понятное, оно состоит из неподвижного статора, имеющего вращающийся ротор, и оснащено дополнительной обмоткой. Благодаря движениям ротора происходит выработка электрического тока. За счет действий ротора, совершаемых в магнитном поле, генератор переменного тока дает энергию. Главное преимущество такого генератора, это быстрое вращение движущего элемента. Скорость ротора быстрее в сравнении с генератором переменного тока.

Синхронный и асинхронный генератор.

Генератор переменного тока разделяют на синхронный и асинхронный. Их отличие, это возможности, которые они предоставляют. Конструкция синхронного генератора намного сложнее, чем в асинхронном. Он производит ток более чистый, пусковые загрузки переносятся легко. Такие конструкции подключают к технике, которая переносит перепады напряжения не очень хорошо.

Что касается асинхронных генераторов, то конструкция намного проще, из-за этого они легко справляются с короткими замыканиями. Их часто используют для питания техники сварочного типа и электрических инструментов. Высокоточную технику к такому устройству подключать не нужно.

Однофазный и трехфазный генератор.

Во внимание обязательно стоит брать характеристику тока, который вырабатывается. Однофазный генератор работает на 220В, а вот трехфазный 380 В

Любой покупатель, должен это знать и при покупке такой конструкции обращать на это внимание. Однофазные модели можно встретить в бытовых нуждах, для такого назначения они используются часто. А вот трехфазные генераторы питают энергией большие объекты, здания, сооружения, деревня и поселки.

Какими должны быть розетки

Размеры розеток, их тип, материал, из которого они изготовлены, зависят в первую очередь от назначения розеток, токов и напряжений, на которые они рассчитаны. Устройства, работающие при постоянном напряжении, имеют полярные вилки. Поэтому и розетки для них должны быть полярными. Тогда даже неопытный пользователь не сможет перепутать, где «+» и «–».

Переменный ток в цепи представляет собой электрический поток заряженных частиц, направление и скорость которых периодически изменяется во времени по определенному закону.

Инструкция

Обратитесь к общему понятию переменного тока в электрической цепи, описанному в школьном учебнике. Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Это означает, что величина силы тока в сети переменного тока изменяется по закону синуса или косинуса. Собственно говоря, это отвечает тому току, что течет в бытовой электрической сети. Однако синусоидальность тока не является общим определением переменного тока и не до конца объясняет природу его протекания.

Нарисуйте на листе бумаги график синусоиды. По данному графику видно, что значение самой функции, выражаемой силой тока в данном контексте, изменяется от положительного значения к отрицательному. Причем время, через которое происходит смена знака, всегда одно и то же. Это время называется периодом колебаний тока, а обратная ко времени величина – частотой переменного тока. Например, частота переменного тока бытовой сети составляет 50 Гц.

Обратите внимание на то, что обозначает смена знака функции физически. На самом деле, это означает лишь то, что в какой-то момент времени ток начинает течь в противоположную сторону

Причем, если закон изменения синусоидальный, то смена направления движения происходит не скачком, а с постепенным торможением. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Как известно, направление тока задается направлением положительно заряженных частиц в цепи. Таким образом, в цепи переменного тока заряженные частицы через определенное время изменяют направление своего движения на противоположное.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами. {SOURCE}

{SOURCE}

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют

Обращайте внимание на свое тело. Если вы замети

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

{SOURCE}

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Что такое электрический ток?

Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами — в металлах это электроны, в электролите — ионы, а в газе — и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.

Таблица величин

Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.

Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А)

Что очень важно, при трансформации, т.е. уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально

Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.

История

Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов. И хотя сейчас этого может показаться до смешного мало — это был настоящий прорыв. Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.

Никола Тесла

Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, — «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».

Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.

А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь — это была огромная потеря энергии при передаче. В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало. В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.

Именно с этого момента и начинается та самая «война токов».

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц)

Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Сварка с применением постоянного тока

Сварочные аппараты на постоянке поддерживает 2 режима работы — процесс соединения с прямой и обратной полярностью. Пользуясь такими установками необходимо регулярно следить за их режимом работы, так как одни металлы схватываются на прямой, а другие на обратной полярности.

Наиболее широко применяется прямая полярность. Сварной кратер получается глубоким и узким. Подача тепла уменьшается, скорость прохода увеличивается. Применяется для нарезки металла, имеет стабильную дугу, в результате образуется качественное соединение. Используется во время работы со сталью, толщиной от 4 мм. Большинство материалов свариваются именно на прямой полярности.

Обратная полярность применяется для соединения тонких металлов средней толщины. Электросварочный шов не глубокий, но достаточно широкий. При этой полярности нельзя пользоваться электродами, которые чувствительны к перегреву.

Основными достоинствами сварки с постоянным напряжением является:

  1. Отсутствие брызг расплавленного металла.
  2. Устойчивость дуги электрического тока.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени

Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц

Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в трансформаторные подстанции, которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

Отличия электродов постоянного тока и переменного

Электроды условно не различаются. Но постоянный поток энергии не подходит для соединения переменным током. Электросварочные материалы, которые рассчитаны для переменки, успешно применяются и для электросварки с помощью постоянного электричества. Образующиеся электроды эксперты называют универсальными.

Универсальные электроды характеризуются:

  • Хорошей и стабильной дугой, которая даже повторно легко зажигается.
  • Объемной выработкой работы.
  • Высокой рентабельностью.
  • Небольшой степенью разбрызгивания.
  • Хорошим отделением примесей.
  • Возможностью доброкачественно сварить загрязненные, окисленные, ржавые и влажные материалы.
  • Простейшими требованиями к устройству и работнику.

Особенностью универсальных электросварочных электродов является, возможность изготавливать соединение металлических изделий, даже если присутствует большое расстояние между частями металлов. Они отлично подходят для электросварки коротких швов и точечного прихвата.

Сравнивая сварку на постоянном и переменном напряжении, преимуществ больше у аппаратов с постоянным потоком энергии. Экономятся сварные материалы, так как разбрызгивание минимальное. Постоянку просто и легко использовать в работе, применяется для тонкостенных изделий. Воздействие погодных условий не влияет на устойчивость дуги, обеспечивая высокую производительность. Все участки на сооружении провариваются, в итоге специалист получает качественный и аккуратный рубец.

Устройство с переменкой обеспечивает хорошее качество соединения, простоту и удобство сварочного процесса. Оборудование, которое работает на данном виде напряжения стоит намного дешевле.

Основным различием переменного и постоянного электричества является то, что на электрод во время работы подается ток или переменно с частотой 50 Гц или постоянно. В конструкции сварочного аппарата постоянного потока есть выпрямители в виде диодов, которые выпрямляют электричество на выходе и создают знакопостоянное пульсирующее значение. Современные полупроводниковые выпрямители гарантируют высокую результативность и высокий показатель полезного действия. Следовательно, более качественная сварка получится с применением постоянного потока. Как показала практика, электроды переменки — прошлый век.

Сварочный ток — самый главный параметр, от которого зависит качественное соединение. Подбирать диаметр электрода необходимо с учетом толщины металла. И отталкиваясь от его диаметра, выставляется электричество. Эту информацию можно найти на упаковке. Точных и конкретных настроек напряжения нет — каждый мастер ориентируется на свои чувства и выставляет нужный параметр напряжения.

В специальных магазинах очень широкий выбор электродов для дуговой электросварки

Покупая, обращайте внимание на качество продукции и наличие лицензии

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока. измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление. измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Основные отличия между электрическими машинами постоянного и переменного тока

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение.

По данным от maxon motors, электрические машины постоянного тока имеют ограничения по времени эксплуатации коллекторно-щеточного, срок службы которого составляет в среднем 1000 – 1500 часов. При перегрузке срок службы составляет менее 100 часов, а при нормальных (номинальных) условиях эксплуатации может достигать и 15 000 часов. Скорость вращения таких машин ограничена процессами коммутации в коллекторно-щеточном узле и не превышает 10 000 об/мин.

Электрические машины постоянного напряжения имеют хорошую надежность и легкую управляемость, но страдают довольно приличными потерями. КПД снижается из-за сопротивления в обмотках, вихревых токов, потерь в щеточно-коллекторном узле.

Асинхронные электродвигатели используют другой принцип – на катушки статора подается переменное напряжение, которое создает вращающееся магнитное поле, а магнитное поле ротора индуцируется магнитным полем статора. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели. Они используют немного другой принцип работы – катушки статора все так же запитываются переменным напряжением, а в ротор через контактные кольца подается постоянный ток (или используют постоянные магниты). Таким образом, магнитные поля статора и ротора сцепляются и машина вращается. Синхронный электродвигатель имеет жесткую механическую характеристику и скорость вращения ротора соответствующую скорости вращения магнитного поля статора в отличии от асинхронных машин, в которых присутствует скольжение (разница между скоростью вращения магнитного поля статора и реальной скоростью ротора).

Электродвигатели переменного тока предназначены для работы с определенной точкой на механической характеристике. Эта точка соответствует максимальной производительности двигателя. При работе в другой точке механической характеристики КПД машины резко снизится. Асинхронные электродвигатели переменного тока потребляют дополнительную энергию для создания магнитного поля путем индукции тока в роторе. Следовательно, двигатели переменного тока менее эффективны, чем двигатели постоянного тока. Фактически, машина постоянного тока на 30% эффективнее машины переменного тока из-за того.

Преимущества и недостатки аппаратов переменного тока для сварки

Характеристики сварочного тока напрямую влияют на процесс сварки и качество соединения. Самые простейшие аппараты варят переменным током, но есть и продвинутые версии AC/DC, способные переключаться с “постоянки” на “переменку”. Чтобы понять преимущества и недостатки работы аппаратов на переменном токе, сравним их с моделями, вырабатывающими постоянное напряжение.

В этой статье:


Различие переменного и постоянного тока

Во всех электрических сварочных аппаратах используется кабель массы и держателя/горелки. Один конец является плюсом, а второй — минусом. При замыкании контактов и удержании их на расстоянии 3-5 мм, образуется электрическая дуга, которой выполняется плавление кромок основного металла. При этом подается дополнительный присадочный металл для заполнения ширины шва:

  • у полуавтоматов — проволока с катушки;
  • у РДС сварки — покрытые электроды;
  • у аргоновых моделей — проволока, подаваемая свободной рукой сварщика.

  • Но в сварочных агрегатах, генерирующих постоянный и переменный ток, внутри происходят разные физические процессы, определяющие характеристики сварочной дуги. Природа тока при этом тоже отличается.

  • Что такое переменный ток. В переменном токе есть частота или колебания. В бытовой сети — это 50 Гц. Это означает, что движущиеся хаотично электроны, перемещающиеся по синусоиде, способны поменять свое направление до 100 раз в секунду (2 раза за цикл). Аппараты, работающие на переменном токе обозначаются как AC (alternating current).
  • Что такое постоянный ток. В постоянном токе электроны (отрицательно заряженные частицы, движущиеся от минуса к плюсу) перемещаются только в одном направлении. Движение не хаотичное, а упорядоченное. Здесь нет колебаний (частот), напряжение более стабильно. Сварочные аппараты, работающие на постоянном токе обозначаются как DC (direct current).
  • Что такое полярность?

    Говоря о постоянном токе, стоит упомянуть о полярности. Полярность — это направление движения отрицательно заряженных частиц. В физике они всегда движутся от клеммы минуса к клемме плюса. У переменного тока такой четко заданной направленности нет.

    В сварочных аппаратах, работающих на постоянном токе, сварщик может выбрать, в какое гнездо установить разъем держателя (горелки), а в какой кабель массы. Поскольку электроны всегда движутся от минуса к плюсу, в каждом случае сварочный ток получит определенные свойства.

    При прямой полярности (держатель на минус, а масса на плюс) отрицательно заряженные частицы перемещаются от держателя к изделию. Это содействует:

  • скорейшему прогреву металла;
  • повышает глубину проплавления;
  • экономит расход покрытого электрода.
  • Прямая полярность актуальна для сварки толстых сталей.

    Обратная полярность подразумевает подключение держателя к плюсу, а кабеля массы к минусу. Это запускает электроны в обратном порядке — тепло концентрируется не на изделии, а на кончике электрода, снижая тепловложение на изделии. Обратная полярность применяется при сварке тонких листов железа, чтобы избежать прожогов. Но использование обратной полярности ведет к перегреву кончика электрода и его ускоренному плавлению.

    Какие аппараты какой ток вырабатывают

    Теперь рассмотрим, какие сварочные аппараты вырабатывают переменный или постоянный сварочный ток.

    Трансформаторы

    Выпрямители

    Инверторы

    Именно трансформаторы вырабатывают переменный ток для сварки. Для этого в их конструкции используется две обмотки — первичная и вторичная. Они наматываются на стальной сердечник, который значительно утяжеляет массу аппарата. Переменный ток из бытовой сети 220 V или трехфазной 380 V поступает на первичную обмотку. За счет большого количества витков возникает электромагнитное поле с концентрацией на сердечнике. На вторичную обмотку подается уже сниженное напряжение около 70-90 V и увеличенная сила тока до 160-300 А, в зависимости от количества витков обмотки трансформатора.

    Трансформаторы используются только для РДС сварки покрытыми электродами. В зависимости от мощности сварочного тока определяется толщина проплавляемого металла.

    Сварочные выпрямители содержат внутри две обмотки трансформатора, но дополнены блоком выпрямления, преобразовывающим переменный ток в постоянный. Чаще всего преобразователи рассчитаны на сеть 380 V, чтобы равномерно нагружать фазы питания.

    Выпрямители используются на производствах и в мастерских, где требуется качественный провар толстых металлов 5-20 мм. Но за счет массивной конструкции занимают много места. Часто комплектуются колесами для перемещения по цеху. Чтобы подать их на высоту, предусмотрены петли под крюк крана или тельфера.

    Инверторы бывают на 220 и 380 V. У них входящий переменный ток с частотой 50 Гц выпрямляется и сглаживается при помощи фильтра. Затем ток возвращается снова в переменный, но его частота значительно возрастает и составляет 20-50 кГц. Есть модели, способные вывести частоту до 100 кГц. После этого ток снова преобразовывается в постоянный и фильтруется.

    Такой процесс обеспечивает чрезвычайно ровный ток, содействующий стабильному горению дуги и высокому качеству шва. Инверторные аппараты применяются при сварке ММА, MIG, TIG. Благодаря компактности внутренних узлов некоторые инверторы весят всего 3-4 кг. Большинство бытовых моделей для РДС не превышает по массе 10 кг. Но есть и промышленные версии с силой тока 400-500 А и весом 30-50 кг.

    Большинство инверторных аппаратов работают только с постоянным током, но есть профессиональные версии AC/DC, способные переключаться на переменный ток. Это расширяет их возможности применения.


    Разница между сваркой переменным и постоянным током

    Понимая отличия переменного и постоянного тока, а также особенности сварочных аппаратов, вырабатывающие их, рассмотрим разницу в сварке.

    Сварка переменным током

    Сварка постоянным током

    Дуга на переменном токе горит менее стабильно, возможно случайное затухание при небольшом изменении зазора между электродом и изделием. Присутствует характерный треск. Манипулировать дугой сложнее, порой она “гуляет”, труднее задавать форму шва.

    При сварке на переменном токе присутствует разбрызгивание металла, дуга “плюется”. Электроды на переменном токе расходуются быстрее. Во время выполнения потолочных и вертикальных швов перенос присадочного металла осложняется, некоторая его часть скапывает под действием силы тяжести вниз.

    Но сварочные аппараты, работающие на переменном токе, стоят дешевле выпрямителей и инверторов. У них простейшая конструкция и внутренние узлы, которые легко переносят суровые условия на стройке, в гараже, цеху. Ломаться здесь практически нечему — может только сгореть обмотка от перегрева. Если не перегревать трансформатор, то он будет служить долгие годы.

    Аппараты не боятся пыли, а регулировка силы тока осуществляется приближением или отдалением первичной обмотки от вторичной. Все элементы простые и надежные, оборудование имеет повышенную ремонтопригодность с низкой стоимостью комплектующих.

    Сварка на постоянном токе отличается стабильной дугой, шов вести легче, контролируя чешуйчатость, ширину и высоту валика. Дуга не трещит, а шелестит. Жидкий металл разбрызгивается меньше, капля лучше переносится на изделие. Постоянный ток более удобен для сварки не только в нижнем, но и в вертикальном и в потолочном положении.

    Когда входящее напряжение “скачет”, аппараты с постоянным током теряют только силу рабочего тока, но дуга остается стабильной. Качество шва уже не зависит на 100% от опытности сварщика, а обеспечивается лучшими характеристиками сварочного тока.

    Но инверторы стоят дороже, чем трансформаторы. У них более сложное внутреннее оснащение и дорогостоящий ремонт. Инверторные сварочные аппараты чувствительны к пыли и ударам, тряске. При использовании на стройке или в цеху следует быть осторожным, а также регулярно продувать внутренние схемы от пыли.

    Области применения

    Исходя из этого сравнения работы аппаратов с переменным и постоянным током можно сделать вывод, что трансформатор подойдет для периодической сварки неответственных конструкций из малоуглеродистых сталей. Желательно, чтобы сварка велась в нижнем положении. При этом у сварщика должна быть определенная квалификация, иначе швы будут очень плохими. Трансформатор “выживет” в строительных условиях, частых транспортировках, запыленных помещениях. Это оптимальный варит для дачи, гаража, чтобы сэкономить.


    Источник видео: Виталий М

    Но трансформаторы с переменным током могут пригодиться и для профессиональных задач. Например, при сварке покрытыми электродами алюминия или ржавого металла, который невозможно очистить. Они лучше инверторов, поскольку постоянное изменение направления движения электронов содействует разрушению оксида алюминия или загрязнений на поверхности. Постоянный ток на такое не способен (только в сочетании с импульсом)

    Инверторы лучше подойдут для новичков, чтобы учиться варить. С ними легче работать во всех пространственных положениях, а также сваривать:

  • мало и высокоуглеродистую сталь;
  • нержавеющую сталь;
  • чугун.
  • Изменение полярности поможет сварить тонкий металл 1-2 мм без прожогов. Но за инверторами требуется более тщательный уход и бережное обращение, иначе частые поломки дорого обойдутся.

    Для профессиональной деятельности или частной мастерской лучше купить сварочные аппараты AC/DC. Переключаясь с переменного на постоянный ток, вы сможете качественно варить любые металлы и наслаждаться приятным шелестом электрической дуги.

    Советы по выбору

    Выбирая сварочный аппарат переменного тока, обращайте внимание на следующие характеристики:

  • Сила тока. Для металлов 3-5 мм достаточно 200 А. Если требуется сваривать стали сечением до 10 мм, следует купить трансформатор с показателями в диапазоне 250-300 А.
  • Вес. При частом перемещении по рабочей площадке выбирайте легкие модели до 8-10 кг. Для стационарного использования подойдут любые, независимо от удельного веса и конструкции.
  • Вольтаж (V). Для гаража и дачи достаточно модели на 220 V. В мастерскую лучше взять 380 V.
  • Продолжительность нагрузки. Сокращенно обозначается ПН и указывает в процентах, сколько аппарат способен варить на максимальном токе без перерыва. Например, показатель ПН 60% означает, что нагружать трансформатор можно по 6 минут из 10. Если работа включает процесс сборки, шлифовки, то хватит и ПН 40%. Для постоянной сварки лучше найти модели с ПН 80-100 %.
  • Напряжение холостого хода. Бывает 30-90 V. Чем выше — тем легче зажечь дугу, но тем опаснее держаться за изделие в процессе сварки.
  • Не забудьте про качественную маску для сварки, чтобы хорошо видеть сварочную ванну и защитить при этом глаза. Чтобы швы были прочные даже на переменном токе, важны хорошие электроды. Лучше выбирайте с рутиловым или основным покрытием. Они отлично плавятся и содействуют переносу капли металла. Никогда не покупайте для “переменки” электроды с целлюлозным покрытием.

    Толщина металла, мм Диаметр электрода, мм Сила тока, А
    1-2 2 25-100
    3-4 3 90-150
    5-6 4 150-200

    Ответы на вопросы: преимущества и недостатки аппаратов переменного тока для сварки

    Как регулировать силу тока трансформатора? СкрытьПодробнее

    Регулировка силы тока возможна двумя способами. Первый — плавный, путем вращения рукоятки на корпусе. Она сводит и разводит катушки первичной и вторичной обмотки между собой, от чего изменяется электромагнитное поле. Если нужно убавить ток — вращайте ручку против часовой стрелки. Для добавления силы тока, крутите ручку по часовой стрелке.

    Второй способ — ступенчатый. Он есть только у промышленных версий и заключается в переключении витков обмотки. Механизм действует быстро, но не позволяет установить точных значений. У большинства трансформаторов нет дисплея, поэтому дугу нужно пробовать на черновом металле каждый раз после изменения настроек.

    Как уменьшить ток, если ручка уже накручена до упора? СкрытьПодробнее

    Бывает, что сила тока убавлена до минимума, а металл все-равно прожигается. Тогда используют дополнительное приспособление — сталистую пружину, фиксируемую между прижимом массы и изделием. Ее витки создают дополнительное сопротивление, снижая силу тока. Но при этом пружина греется, поэтому расположите ее на негорючей поверхности или подвесьте.

    Можно ли на переменном токе заварить трещину на чугуне? СкрытьПодробнее

    Лучше использовать аппараты с постоянным током. Но если такой возможности нет, намотайте в один ряд поверх покрытого электрода оголенную медную проволоку. Она будет плавиться и добавляться вместе с присадочным металлом, смягчая сплав. Это сократит количество микротрещин при остывании чугуна.

    Трансформатор сильно тарахтит, что делать? СкрытьПодробнее

    Да, аппараты на переменном токе сильно гудят и тарахтят. Работать рядом целый день не комфортно. Снизить шум можно, установив аппарат на резиновый коврик, плотно стянув все соединения на корпусе, подложив в соприкасающиеся металлические части кожуха прослойки асбеста.

    Что делать, если произошло короткое замыкание обмотки трансформатора? СкрытьПодробнее

    Если сам проводник целый, потребуется перемотать катушку трансформатора с нанесением нового слоя изоляции. В случае обрыва проводника нужна новая обмотка. Лучше доверить эту работу сервисному центру.

    Остались вопросы

    Оставьте Ваши контактные данные и мы свяжемся с Вами в ближайшее время

    Обратная связь


    В чем разница переменного тока и постоянного?

    Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи – объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

    Сложности визуализации

    Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

    Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

    Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

    Аналогия

    Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

    Напряжение как давление

    Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.

    Ток как поток

    Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

    Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку – как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

    Постоянный ток

    Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

    Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. Мощность нагрузки измеряется в ваттах и ​​равна: P = U × I.

    Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

    Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.

    Постоянный и переменный ток: разница в производстве и использовании

    Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

    Широко распространенным примером может служить любое транспортное средство – мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

    Направление движения

    Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

    У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и ветряные турбины. Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.

    Частота

    Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

    Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

    Векторная математика

    Ток и напряжение не только постоянно меняются – их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому – 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

    Коэффициент мощности

    Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ – угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

    Разница между постоянным и переменным током в расчетах очевидна – они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

    Сварочные аппараты

    Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

    Разница между переменным и постоянным током – Разница Между

    Разница Между 2021

    Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки вре

    Содержание:

    Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки постоянных магнитов на провод. Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов.

    Переменный ток и постоянный ток – это две различные формы токов, которые используются для передачи электроэнергии по всему миру. Оба тока одинаковы, так как для передачи электричества используются потоки электронов, но на этом сходство заканчивается. Переменный ток – это наиболее распространенный тип электроэнергии, который передается электростанциями и используется для питания зданий, офисов, домов и т. Д.

    Постоянный ток (DC) был преобладающей формой электричества, которое использовалось в 19го века и был также использован в первой коммерческой передаче электроэнергии Томаса Эдисона. Постоянный ток означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки на провод постоянных магнитов, которые помогают электронам оставаться на устойчивом пути. Первоначально постоянный ток назывался «гальваническим током». Постоянные токи протекают в проводниках, таких как провода, но также могут проходить через полупроводники, изоляторы или даже через вакуум. Постоянные токи могут быть получены с использованием таких источников, как батареи, термопары и солнечные элементы. Химическая энергия внутри батареи обладает достаточной мощностью, чтобы толкать электроны, а не тянуть, в результате чего энергия течет в одном направлении.

    Постоянный ток чаще всего встречается в приложениях, которые требуют малой мощности и могут работать от батарей или солнечных батарей. Однако другое популярное приложение, в котором используются постоянные токи, – это автомобили, в которых большинство автомобильных деталей работают от постоянного тока и преобразовываются из переменного тока с использованием генераторов переменного тока. DC был прекращен как основной метод питания домов и зданий, поскольку они не могли путешествовать на большие расстояния без потери энергии. Мощность и напряжение в постоянном токе остаются неизменными в стабильных условиях, в результате чего скорость передачи энергии источником остается неизменной. Напряжения постоянного тока имеют ненулевую временную кривую напряжения и всегда положительны, но могут увеличиваться и уменьшаться.

    Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов. Сегодня переменный ток используется для передачи электроэнергии и электроэнергии в домах, офисах и т. Д., Так как его легче транспортировать. Никола Тесла заслужил звание за разработку основ электроснабжения переменного тока благодаря своим линиям электропередачи переменного тока. Мощность переменного тока обычно течет в форме синусоидальной волны, но также может течь в форме трапеции, треугольника и квадрата. Радио и аудио сигналы являются примерами переменного тока.

    Электростанции производят переменные токи с помощью вращающихся турбин, которые создают магнитные поля, которые толкают и тянут электроны, заставляя их чередоваться в потоке. Постоянное нажатие и вытягивание постоянно изменяет магнитную поляризацию, в результате чего электроны также меняют направление. Напряжение переменного тока также постоянно изменяется между положительным и отрицательным. Переменный ток подает ток и напряжение в синусоидальной форме волны, что приводит к пиковому значению (VP) и минимальному значению. Постоянное изменение направления известно как частота тока и измеряется в герцах. AC обычно имеет частоту 50 Гц или 60 Гц, в зависимости от страны.

    Переменный ток стал основным методом питания по сравнению с постоянным током из-за возможности легко производить и передавать. Переменные характеристики переменного тока сводят к минимуму потери энергии из-за сопротивления в проводниках при передаче на большие расстояния. Напряжения переменного тока легче производить и передавать по сравнению с напряжениями постоянного тока. Конденсатор пропустит напряжение переменного тока, но заблокирует сигнал постоянного тока, в то время как индуктор пропустит напряжение постоянного тока и заблокирует сигнал переменного тока. Мощность переменного тока больше подходит для таких устройств, как лампы и обогреватели, в то время как постоянный ток больше подходит для электронной схемы. Переменный ток может быть преобразован из одного напряжения в другое с помощью трансформатора, тогда как постоянный ток может быть преобразован в переменный ток с помощью электродвигателя-генератора или электронной инверторной цепи.

    Постоянный ток (DC)

    Переменного тока (переменного тока)

    Передача энергии

    Напряжение постоянного тока не может путешествовать очень далеко и начинает терять энергию

    Безопаснее переносить на большие расстояния по городу и обеспечить большую мощность

    Поток электронов

    Течет в одном направлении

    Продолжайте переключать энергию вперед и назад

    Вызывает поток электронов

    Установленные магниты на проводе

    Вращающиеся магниты вдоль провода

    частота

    0 частота

    От 50 Гц до 60 Гц; в зависимости от страны

    направление

    Электричество течет в одном направлении

    Энергия постоянно меняет направление

    Текущий

    Это ток постоянной величины

    Это величина, изменяющаяся со временем

    Типы

    Чистый и пульсирующий

    Синусоидальный, Трапециевидный, Треугольный, Квадратный,

    Нашел в

    Аккумуляторы, солнечные батареи

    Генератор переменного тока и электростанции

    Фактор силы

    Всегда 1

    Лежит между 0 и 1

    В чем разница между переменным током и постоянным током?. Статьи компании «SECURITY59»

    Переменный ток или постоянный ток, который является лучшим? Это проблема, которая уже привела к одному из главных научных конфликтов, когда-либо виденных человеческой историей.

    Отец постоянного тока Томас Эдисон защищал идею о том, что это лучший способ взять энергию где угодно, в то время как сторонником альтернативного тока был никто иной, как Никола Тесла.

    Эта великая дискуссия вызвала массовый переполох, и в споре было несколько зрелищных тонов, и самым известным был Томас Эдисон, поражающий электрическим током животных с переменным током, пытаясь таким образом доказать опасность передачи электроэнергии.

    Но в чем большая разница между переменным током и постоянным током? Теперь мы узнаем различия и в каких ситуациях каждая из них более эффективна.

    Разница в переменном и постоянном токе  

    Электрический ток – это смещение электрического заряда проводником упорядоченным образом, как от гнезда для провода электрооборудования.

    Когда мы говорим о постоянном или постоянном токе, мы должны представить, что этот электрический заряд или электроны движутся в одном направлении, всегда начиная с генератора, который является началом линии, и до конца линии, которая является электрическим оборудованием.

    Переменный ток немного отличается, вместо того, чтобы заряд, движущийся в одном направлении, продвигается и убирается, не останавливая, электроны изменяют направление примерно на 120 в секунду в переменном токе.

     

    Когда использовать переменный или постоянный ток?

    Одним из преимуществ, благодаря которым переменный ток доминирует при передаче энергии от генерирующих станций к дому всех людей, является именно его эффективность преодоления больших расстояний. С переменным током можно увеличивать напряжение, а не постоянный ток.

    Для передачи электрической энергии на расстояние 1 км с помощью постоянного тока потребуется в 10 раз больше энергии, чтобы получить тот же результат, что и для переменного тока.

    Постоянный ток необходим для электронного оборудования, так как отрицательный и положительный заряды находятся на разных проводах, а в электронном оборудовании есть несколько компонентов, которые нуждаются в специальном питании с положительным или отрицательным зарядом.

    То есть в переменном токе положительный и отрицательный в основном вместе в потоке, в то время как в постоянном токе положительный и отрицательный заряд разделены в разных проводниках.  

    Шрифт конвертера безопасности

    Обычно электронное оборудование, такое как сотовые телефоны или ноутбуки, имеет свои собственные источники, но другому оборудованию, такому как электронные защитные устройства, нужны запасные источники, которые преобразуют переменный ток из розетки в постоянный ток.

    Чтобы решить эту проблему, Security представила преобразователь Бастион, который выходит за рамки преобразования переменного тока в постоянный ток. Думая о проблеме потери эффективности переменного тока, источник преобразователя преобразует переменный ток в постоянный 24 вольт, который может перемещаться на большее расстояние, а затем уменьшается через редуктор мощности до 12 вольт, который является правильным напряжением для питания самого большого часть электронного охранного оборудования.

    В чем разница между переменным и постоянным током

    Что такое переменный ток (AC)?

    AC или переменный ток относится к шкале напряжения или тока, размер и направление которой регулярно и периодически меняются с течением времени.

    Диаграмма формы сигнала переменного тока показана на рисунке ниже :

    Что такое постоянный ток (DC)?

    Постоянный ток, называемый постоянным током ,, также известный как «постоянный ток». Величина и направление постоянного тока остаются неизменными.Общие источники питания постоянного тока включают батареи, свинцово-кислотные батареи и сухие батареи.

    Форма сигнала постоянного тока показана на рисунке ниже:

    Несколько основных понятий о текущем :

    Возьмем для примера синусоидальный переменный ток:

    • Пик: Максимальное значение синусоидального переменного тока в цикле, обозначаемое как Vpk.
    • среднее значение: Форма волны синусоидального переменного тока симметрична, поэтому среднее значение синусоидального переменного тока за цикл равно 0.Такое среднее значение не может описать характеристики переменного тока. Поэтому мы часто рассчитываем абсолютное среднее значение переменного тока, формула выглядит следующим образом:
    • Мгновенное значение: Его также можно выразить как:
      ω – угловая частота переменного тока, ϕ – начальный фазовый угол переменного тока.
    • Допустимое значение: Действующее значение переменного тока обычно определяется тепловым эффектом тока, и формула имеет следующий вид:

    Обратите внимание, что следующие сигналы также относятся к переменному току, и все они могут быть преобразованы в синусоидальные волны с помощью преобразования Фурье.

    Поскольку величина и направление постоянного тока постоянны, пиковое значение, мгновенное значение, эффективное значение и среднее значение постоянного тока равны константе.

    В чем разница между переменным и постоянным током?

    Теперь мы используем питание 12 В постоянного тока и 12 В переменного тока для анализа разницы между мощностью постоянного и переменного тока в зависимости от потерь, использования, измерения и безопасности.

    Loss
    DC: Постоянный ток больше подходит для передачи на большие расстояния и большой емкости.Поэтому передача HVDC стала горячей темой.
    AC: Цепь переменного тока имеет параметры индуктивности, поэтому при передаче на большие расстояния потери велики.

    Используйте стабильность напряжения постоянного тока
    , без большого шума, он подходит для использования электронных продуктов. (например, телевизоры, радиокомпьютеры и т. д.)
    Электропитание переменного тока для прохождения через выпрямитель / импульсный источник питания в источник постоянного тока может использоваться для электронных продуктов.

    Измерьте разницу между 12 В переменного тока и постоянного тока:
    A) с помощью цифрового универсального измерения, соответственно, при измерении файла напряжения 20 В переменного тока и 20 В постоянного тока результаты будут разными.
    B) простой метод измерения: с помощью стилуса (нестандартной ручки) на проводе крайней плоти, 12 В переменного тока будет отображаться, а 12 В постоянного тока – нет.

    Безопасность
    12 В постоянного тока безопаснее, чем 12 В переменного тока. Сопротивление тела уменьшилось, когда 12 В переменного тока все еще может привести к смерти, 12 В постоянного тока не будет в 100%. Однако степень опасности поражения электрическим током для человеческого тела в основном зависит от силы тока, проходящего через человеческое тело, и продолжительности времени подачи энергии.

    Пиковое значение
    В зависимости от схемы напряжения мгновенное пиковое напряжение постоянного и переменного тока 12 В переменного тока не совпадает, мгновенное пиковое напряжение (прямое напряжение 12 В) ≡ 12 В, мгновенное пиковое напряжение:

    О схеме выпрямителя и инвертора

    Выпрямитель: Преобразование переменного тока в постоянный называется выпрямителем.Принципиальная схема однофазного мостового выпрямителя представлена ​​ниже. VT1 и VT4 – это набор переключателей. VT2 и VT3 – еще один набор переключателей. Два набора переключателей включаются поочередно для получения постоянного тока.

    Цепь инвертора: Преобразование постоянного тока в переменный называется схемой инвертора. Принципиальная схема однофазного мостового инвертора показана ниже. S1 и S2 – один набор цепей; S3 и S4 – еще один набор схем. В простых случаях для резистивной нагрузки поочередно включаются два набора переключателей, чтобы получить переменный ток на обоих концах нагрузки.

    Примечания: Чтобы получить хорошие формы сигналов для схем выпрямителя и инвертора, в реальных условиях следует использовать фильтры.

    Seeed Fusion является пионером в области мгновенных онлайн-предложений по производству и сборке печатных плат. Если вы обнаружите необходимость превратить свои схемы в настоящие профессиональные печатные платы, Seeed Fusion предложит вам быстрые и доступные прототипы или высокоуровневые разработки для массового производства. Получите мгновенное предложение онлайн.

    Продолжить чтение

    Разница мощности постоянного и переменного тока | Тех

    Электроэнергия бывает двух видов: постоянного и переменного тока.

    Есть два метода электрического тока. Это постоянный ток (DC) и переменный ток (AC).
    Постоянный ток – это метод, при котором электричество всегда течет в определенном направлении по сравнению с потоком река.Он относится к потоку электричества, полученному от батарей, батарей, солнечных элементов и т. Д.
    С другой стороны, переменный ток (AC) – это метод, в котором положительная и отрицательная стороны постоянно периодически переключаются, и соответственно меняется направление потока электричества. Это поток электричество, полученное от генератора или розетки. Электроэнергия, производимая на электростанциях и отправляемая в дома, также передается как переменный ток.
    На схеме ниже показан поток электроэнергии постоянного и переменного тока.

    В постоянном токе напряжение всегда постоянно, а электричество течет в определенном направлении. Наоборот, в переменном токе напряжение периодически меняется с положительного на отрицательное и с отрицательного на положительный, и направление тока также периодически меняется соответственно.
    В постоянном токе напряжение всегда постоянно, а электричество течет в определенном направлении. Наоборот, в переменном токе напряжение периодически меняется с положительного на отрицательное и с отрицательного на положительный, и направление тока также периодически меняется соответственно.

    Характеристики блока питания постоянного тока

    Постоянный ток, при котором электричество всегда течет в постоянном направлении, имеет следующие достоинства и недостатки.

    Преимущества

    • Нет опережения или задержки в цепи
    • Реактивная мощность не генерируется
    • Может хранить электроэнергию

    Недостаток

    • Сложное прерывание тока
    • Трудно преобразовать напряжение
    • Сильный электролитический эффект

    В переменном токе направление тока постоянно меняется.Поэтому, когда конденсатор или индуктор включен в цепь, например, есть задержка или опережение тока, протекающего в нагрузку в зависимости от поведения напряжения.
    Однако при постоянном токе напряжение и направление тока всегда постоянны, поэтому поведение конденсаторов и катушек также всегда постоянна. Следовательно, в округе Колумбия нет опережения или задержки в схема.
    В переменном токе (AC) направление тока переключается, поэтому не все электричество проходит через нагрузка, и некоторая мощность генерируется просто перемещаясь туда и обратно между нагрузкой и источником питания.Этот называется реактивной мощностью.
    При постоянном токе все электричество проходит через нагрузку, потому что ток всегда течет с постоянным током. направление. Это изображение выталкиваемого гребешка. Следовательно, реактивная мощность не генерируется и мощность можно эффективно использовать.
    Еще одним преимуществом постоянного тока является то, что он может накапливаться в батареях, батареях, конденсаторах и т. Д.

    С другой стороны, у постоянного тока тоже есть свои недостатки.Один из них – это то, что трудно прервать электрический ток. Поскольку к постоянному току всегда прикладывается постоянное напряжение, особенно при высоком напряжении, в момент прерывания могут возникнуть такие проблемы, как дуга (искры), или может возникнуть риск поражения электрическим током. в окрестностях.
    В случае переменного тока, когда напряжение переключается с положительного на отрицательное или с отрицательного на положительное, напряжение на мгновение падает до нуля. Если вы стремитесь к моменту, когда напряжение низкое, вы можете прервать ток безопаснее, чем с постоянным током.
    Кроме того, при преобразовании постоянного напряжения необходимо один раз преобразовать его в переменный, а затем снова обратно в постоянный. Для этого По этой причине оборудование для преобразования постоянного напряжения больше и дороже, чем переменного тока.
    Еще одним недостатком постоянного тока является сильная коррозия подземных труб и изоляторов, необходимых для передача энергии. Поскольку электричество всегда течет в одном и том же направлении на постоянном токе, коррозия передачи энергии оборудования увеличивается из-за электростатической индукции и электрической коррозии.
    Это постоянный ток, который исходит из хранимых предметов, таких как батареи, батареи и конденсаторы. Следовательно, продукты с питанием от батареек совместимы с постоянным током.
    С другой стороны, источником питания в обычном доме является переменный ток, но то, что используется в электронных устройствах. например, компьютеры и бытовая техника, например телевизоры, имеют постоянный ток. Для запуска таких устройств требуется кондиционер от розетка преобразуется в постоянный ток с помощью конденсаторов и других устройств.
    Однако в центрах обработки данных, где в основном используется постоянный ток, использование источников постоянного тока продвигается, чтобы для уменьшения потерь при преобразовании переменного тока в постоянный.

    Характеристики блока питания переменного тока

    AC, с его циклическим положительным и отрицательным напряжением, имеет следующие преимущества и недостатки.

    Преимущества

    • Меньше потери мощности из-за передачи высокого напряжения
    • Легко трансформируется
    • Легко отключить при подаче электроэнергии
    • Не нужно беспокоиться о положительном и отрицательном напряжении

    Недостатки

    • Требуется более высокое напряжение, чем заданное напряжение
    • Под воздействием катушек и конденсаторов
    • Не подходит для передачи на сверхдальние расстояния

    Особенно при передаче мощности на большие расстояния, например, от электростанции в городскую зону, очень высокое напряжение 600000 В (вольт) используется для повышения эффективности передачи.Это связано с тем, что потери мощности намного больше, когда мощность передается при низком напряжении.
    Это связано с тем, что когда электричество подается на провод той же длины (сопротивления) в течение того же времени, выделяется тепло пропорционально квадрату тока. Поскольку тепло – это энергия, которая ускользает, это потеря мощности.
    Например, если вам нужна мощность 3000 Вт (ватт), если напряжение составляет 100 В, вам потребуется 30 А (ампер) тока, но если напряжение 1000 В, вам потребуется всего 3 А.
    Другими словами, если напряжение увеличивается в 10 раз, величина тока будет уменьшена до 1/10, а результирующая потеря мощности может быть уменьшена до 1/100 или квадрата 1/10.По этой причине для передачи на большие расстояния используются очень высокие напряжения.
    Конечно, напряжение как таковое нельзя использовать в домах и офисах. Подача напряжения составляет 100000 В для крупных заводов, 6600 В для зданий и 200 или 100 В для домов и офисов.
    Следовательно, напряжение, подаваемое с электростанции, необходимо снизить в соответствии с регионом или местоположением.
    По сравнению с постоянным током, переменный ток может быть легко преобразован трансформаторами с использованием трансформаторов, что делает его более подходящим для электроснабжения в качестве инфраструктуры.

    Еще одно преимущество переменного тока состоит в том, что его легко отключить во время подачи питания, поскольку время, в которое напряжение падает до нуля, приходит периодически.
    Его также можно использовать, не различая положительный и отрицательный, как бытовой блок питания (розетку), что упрощает подключение и работу устройств.
    С другой стороны, переменный ток требует более высокого напряжения, чем заданное напряжение для требуемого количества тепла, потому что значение напряжения всегда меняется, и бывают моменты, когда напряжение падает до нуля.
    Форма волны переменного напряжения синусоидальная, а максимальное напряжение в √2 раза больше рабочего значения. Характеристики изоляции и характеристики оборудования должны быть выше действующего значения.
    Другой характеристикой переменного тока является то, что на него сильно влияют катушки и конденсаторы. Катушки и конденсаторы генерируют напряжения, которые заставляют ток течь в направлении, противоположном направлению тока, вызывая опережение или запаздывание тока в цепи.
    Электроэнергия, вырабатываемая и отправляемая на электростанцию, представляет собой переменный ток.На электростанции одновременно посылаются три волны переменного тока, причем форма волны переменного тока смещена на 120 градусов. Этот вид электричества называется трехфазным переменным током.

    Есть два типа переменного тока: однофазный и трехфазный. Трехфазный переменный ток используется в первую очередь для передачи электроэнергии высокого напряжения. Когда он подается в бытовую розетку, он преобразуется в одну фазу вместе с преобразованием напряжения.
    AC используется в общих источниках питания (розетках) и используется в двигателях, не требующих деликатного управления, таких как пылесосы и вентиляторы.
    С другой стороны, двигатели для кондиционеров, стиральных машин, холодильников и т. Д. Не используют мощность переменного тока как таковую, а используют инверторы для точного управления.

    Соответствующие технические знания

    Поставщики и ресурсы беспроводной связи RF

    О компании RF Wireless World

    Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

    Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

    Статьи о системах на основе Интернета вещей

    Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей.В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
    Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
    • Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Интеллектуальная система парковки на базе Zigbee. • Система умной парковки на основе LoRaWAN


    RF Статьи о беспроводной связи

    В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


    Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


    Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


    Основы и типы замирания : В этой статье описываются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


    Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤


    Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


    5G NR Раздел

    В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
    • Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


    Учебные пособия по беспроводным технологиям

    В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ >>


    Учебное пособие по 5G – В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
    Учебное пособие по основам 5G. Частотные диапазоны руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


    В этом руководстве GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS-вызовов и восходящая линия связи PS-вызовов.
    ➤Подробнее.

    LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


    RF Technology Stuff

    Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
    ➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF-фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤ОсновыWaveguide


    Секция испытаний и измерений

    В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.УКАЗАТЕЛЬ испытаний и измерений >>
    ➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест на соответствие устройства WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


    Волоконно-оптическая технология

    Волоконно-оптический компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
    ➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


    Поставщики беспроводных радиочастотных устройств, производители

    Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

    Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители радиокомпонентов >>
    ➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


    MATLAB, Labview, встроенные исходные коды

    Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
    ➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


    * Общая информация о здоровье населения *

    Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
    СДЕЛАЙТЕ ПЯТЬ
    1. РУКИ: часто мойте их.
    2. КОЛЕНО: Откашляйтесь
    3. ЛИЦО: не трогайте его
    4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
    5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

    Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


    RF Беспроводные калькуляторы и преобразователи

    Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
    ➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


    IoT-Интернет вещей Беспроводные технологии

    Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
    См. Главную страницу IoT >> и следующие ссылки.
    ➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



    СВЯЗАННЫЕ ЗАПИСИ


    RF Wireless Учебники



    Датчики разных типов


    Поделиться страницей

    Перевести

    AC vs.DC Что опаснее?

    Дата публикации: 25 сентября 2020 г. Последнее обновление: 25 сентября 2020 г. Абдур Рехман

    Многие люди спорят об интенсивности переменного и постоянного тока. Позвольте нам помочь вам выяснить, что из двух более опасно и почему.

    Далее мы обсудим причины поражения электрическим током, опасные уровни переменного и постоянного тока и их опасное воздействие на наш организм.

    Мы только что выпустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по разработке энергетических систем.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, и получите от этого пользу.

    Разница между переменным и постоянным током:

    AC:

    Переменный ток, известный как переменный ток, – это ток, который меняет свое направление в течение определенного периода времени.

    В качестве движущей силы тока принимается напряжение. Напряжения переменного тока также меняют свое направление или «полярность» через некоторое время.

    Переменный ток течет в форме синусоиды.Количество циклов, завершенных за секунду, называется «частотой».

    Следовательно, частота 50 Гц означает, что ток проходит 50 циклов за одну секунду.


    DC:

    Постоянный или постоянный ток – это ток, который не меняет своего направления и течет по прямому пути, при этом полярность остается постоянной.

    Поскольку постоянный ток не течет синусоидами и не меняет направление, у него нет частоты.


    Что вызывает электрический шок? Ток или напряжение?

    Поражение электрическим током вызвано током, а не напряжением.

    Ток – это поток зарядов, который движется от точки с более высоким потенциалом к ​​точке с низким потенциалом. Эти заряды проходят через тело, когда человек контактирует с источником электрической энергии.

    Напряжение, однако, не менее важно, поскольку оно определяет величину тока.

    Это можно понять из закона Ом , в котором четко указано, что напряжение и ток прямо пропорциональны друг другу,

    Почему человеческое тело ощущает поражение электрическим током?


    Прежде всего, человеческое тело обладает собственным сопротивлением электрическому току, которое изменяется по всему телу.Кожа имеет максимальное сопротивление около 100000 Ом, в то время как внутреннее тело имеет сопротивление не менее 300-500 Ом.

    Тело ощущает поражение электрическим током в основном из-за эффекта нагрева и стимуляции нервов и мышц. Сопротивление тела току вызывает рассеивание энергии, что приводит к тепловому эффекту или даже ожогам.

    Когда происходит разрушение тканей кожи, тело обеспечивает ток с низким сопротивлением, потому что наша кровь, мышцы и органы содержат много ионов, которые помогают току проходить.

    Этот поток зарядов внутри тела сопровождается мышечными сокращениями и фибрилляцией желудочков.

    Некоторые важные факторы

    При потливости или влажности кожа значительно снижает сопротивление, что приводит к увеличению интенсивности поражения электрическим током, поскольку через нее проходит больше тока.

    Некоторые значения сопротивления кожи можно увидеть из этой таблицы:

    Состояние Сопротивление (Ом)
    Сухой мокрый
    Палец 40К-1М 4К-15К
    Трос для захвата руки 15К-50К 3К-6К
    Захват для большого пальца 10–30 000 2К-5К
    Palm Touch 3К-8К 1К-2К
    Ручное погружение 200-500

    * Эта таблица составлена ​​на основе данных, разработанных Kouwenhoven and Milnor

    Человеческий жир обладает высокой сопротивляемостью.Таким образом, для двух человек с разными жирами в организме человек с более высоким процентом жира в организме испытает менее серьезный шок по сравнению с человеком с меньшим содержанием жира.

    Переменный ток может вызывать стимуляцию потовых желез и вызывать потоотделение, таким образом снижая сопротивление нашего тела, что, как следствие, увеличивает ток разряда.

    Продолжительность поражения электрическим током также важна. Тяжесть травм увеличивается с течением времени. Даже небольшой ток 0.При длительном удерживании 4 мА может быть болезненным. Фибрилляция может произойти за 0,2 секунды при 500 мА, а при 75 мА – за 0,5 секунды.

    Давайте теперь всесторонне поговорим о переменном и постоянном токе.

    Среднеквадратичные и пиковые значения :

    Как обсуждалось выше, переменное напряжение и ток могут быть представлены в форме синусоидальной волны. Можно заметить, что синусоидальная волна имеет два пика, минимальный пик и максимальный пик.

    Значения текущего напряжения на этих пиках известны как пиковые значения, которые являются наивысшими значениями, достигаемыми в процессе.


    Что касается среднеквадратичных значений (среднеквадратичных значений), это значения переменного тока и напряжения, которые производят такой же уровень теплового эффекта, как и постоянный ток. Среднеквадратичное значение может рассматриваться как значение переменного тока, эквивалентное постоянному току, и определяется по формуле:

    .

    Поскольку постоянный ток не имеет синусоидальной формы сигнала, он не будет иметь никакого среднеквадратичного значения, и будет поддерживаться только постоянное пиковое значение.

    Одинаковый уровень мощности переменного и постоянного тока :

    Предположим, у нас есть 220 В, действующее значение, переменного тока и 220 В постоянного тока, что, по вашему мнению, будет более опасным?

    Что ж, для 220 В, являющегося среднеквадратичным значением для переменного тока, его пиковое значение будет 311 В, следовательно, в какой-то момент он будет иметь более высокое значение тока.

    Следует иметь в виду, что поражение электрическим током вызывает не напряжение, а ток. Помимо напряжения, ток также будет зависеть от сопротивления тела.

    Следовательно, значение сопротивления имеет большее значение, чем одинаковые уровни мощности переменного и постоянного тока. Чем меньше сопротивление пути тока, тем сильнее будет поражение электрическим током.

    Опасные значения и последствия переменного и постоянного тока:

    Опасные значения и эффекты переменного и постоянного тока:

    переменный ток 50/60 Гц постоянного тока Эффект
    0.4 мА 1 мА Легкое ощущение
    1-10 мА 5,2-62 мА Болезненное ощущение
    10-16 мА 76 мА Паралич рук, невозможно освободить захват
    23-30 мА 90 мА Паралич дыхания, затрудненное дыхание
    75-250 мА 500 мА Фибрилляция желудочков, сердце начинает трепетать

    Из приведенной выше таблицы видно, что как переменный, так и постоянный ток приводят к серьезным и опасным для жизни результатам.Однако мы также можем видеть, что требуется большая величина постоянного тока, чтобы вызвать тот же эффект, по сравнению с переменным током.

    Влияние частоты :

    Отпускающий ток – это максимальное значение тока, при котором человек может отпустить проводник с помощью мышц, на которые воздействует ток. При определении этого значения не менее важна частота тока.

    Определено NFPA 70E.

    50 Гц переменного тока гораздо более опасен, чем 2000, 4000 или 5 Гц переменного тока той же величины.Причина в том, что при частоте 50 и 60 Гц электрические импульсы от разряда стимулируют мышцы тела и влияют на нашу нервную систему.

    Например, 50 мА переменного тока, 50 Гц достаточно, чтобы вызвать фибрилляцию желудочков (сердце перестает работать и бьется нерегулярно), в то время как 150 мА постоянного тока потребуется для достижения того же эффекта. [1]

    В общем, постоянного тока требуется больше, чтобы вызвать тот же эффект, что и переменный.


    В заключение мы хотели бы подчеркнуть, что переменный и постоянный ток опасны для нас.К электричеству нельзя относиться легкомысленно.

    Однако свойства переменного тока вызывать мышечные сокращения, фибрилляцию желудочков и другие серьезные повреждения в гораздо меньшей степени, чем постоянный ток, делают его более смертоносным, чем постоянный ток.

    Мы должны избегать любого прямого контакта с электричеством и не позволять другим делать то же самое. Крайне важно знать об опасности поражения электрическим током и мерах предосторожности, необходимых для предотвращения такого инцидента.

    Перед работой с электрооборудованием обязательно используйте мультиметр для предварительной проверки уровней напряжения и тока.Важно знать причины, чтобы обезопасить себя от поражения электрическим током. Одна из причин – неисправное и плохо обслуживаемое оборудование.

    Также необходимо иметь соответствующие СИЗ, такие как резиновые сапоги и перчатки.

    Другая опасность – это вспышка дуги в электрической системе. Вот почему электробезопасность и профилактика имеют решающее значение для любого коммерческого или промышленного объекта.

    Мы надеемся, что эта статья окажется полезной для наших читателей. Пожалуйста, не стесняйтесь давать свои ценные предложения в комментариях ниже.Спасибо.

    Артикул:

    [1] Бернштейн Т. Расследование предполагаемых случаев поражения электрическим током и возгораний, вызванных внутренним напряжением. IEEE Ind Appl. 1989. 25 (4): 664–8. [Google Scholar]


    • Об авторе

      Абдур Рехман – профессиональный инженер-электрик с более чем восьмилетним опытом работы с оборудованием от 208 В до 115 кВ как в сфере коммунальных услуг, так и в промышленных и коммерческих помещениях.Особое внимание он уделяет вопросам защиты энергосистем и инженерным исследованиям.

    Текущая война: почему Westinghouse (AC) победил Эдисона (DC)?

    Поскольку сообщества по всей Калифорнии сталкиваются с массовыми отключениями электроэнергии и бушуют дебаты о том, как сохранить надежность сети, я решил пойти в кино, чтобы узнать некоторый исторический контекст нашей электросети, посмотрев The Current War: Director’s Cut в ночь открытия . Мои надежды были высоки, с таким известным актерским составом, но с фильмом все было в порядке.

    Жаль, что фильм не был более убедительным, потому что это увлекательная история, заслуживающая гораздо большего внимания. Фильм изображает «войну» конца 19, и века между Джорджем Вестингаузом и Томасом Эдисоном, которая в конечном итоге определила, какие технологии были использованы для создания основы электрической сети, которую мы используем сегодня. В то время как Эдисон отстаивал системы постоянного тока (DC), Westinghouse продвигал системы переменного тока (AC), и конкуренция между ними была жесткой.

    Выходя из театра, я не мог перестать задаваться вопросом: почему именно системы переменного тока Westinghouse победили системы постоянного тока Эдисона?

    Немного покопавшись, я нашел ответ.

    Предупреждение: этот пост содержит спойлеры, если такое есть для исторического фильма.

    переменный ток в сравнении с постоянным током

    Основное различие между электричеством переменного и постоянного тока заключается в том, что постоянный ток течет постоянно в одном направлении (отсюда «постоянный» ток) и не меняется с течением времени, в то время как переменный ток колеблется взад и вперед (отсюда «переменный» ток) и постоянно изменяется со временем. .

    Электроэнергия переменного тока чередуется с течением времени, в то время как электричество постоянного тока остается постоянным.

    В фильме объясняется, что основной проблемой для электричества постоянного тока Эдисона было то, что его нельзя было передавать на большие расстояния. В результате система Эдисона требовала установки электростанции примерно через каждую милю. Хотя это хорошо работает в густонаселенных районах, таких как Нью-Йорк (где находилась первая в США электростанция, построенная Эдисоном), эта модель была чрезвычайно дорогой и непрактичной в более сельских районах.

    Но я также знал, что сегодня некоторые из самых протяженных линий электропередачи в мире используют электричество постоянного тока.

    Так что же дает? Если электричество постоянного тока – отличный вариант для современных линий передачи на большие расстояния, почему Эдисон не мог передавать свою электроэнергию постоянного тока дальше?

    Трансформаторы сделали AC победителем

    Ответ на самом деле не столько в различиях между переменным и постоянным током, сколько в малоизвестном компоненте нашей электросети: трансформаторах.

    Что бы вы ни делали, передача электроэнергии связана с потерями энергии. (Если у вас нет сверхпроводника!) Но вы можете минимизировать эти потери, передавая электричество более высокого напряжения. Напряжение можно рассматривать как «толчок», который перемещает заряженные частицы и создает электрический ток – чем сильнее вы толкаете, тем меньше энергии вы теряете. Трансформаторы – это ключевая технология, используемая для изменения напряжения, чтобы вы могли активнее работать (и терять меньше энергии) при передаче электроэнергии.

    Производство и потребление электроэнергии происходит при более низких напряжениях, а трансформаторы используются для увеличения напряжения перед передачей (для уменьшения потерь энергии) и уменьшения напряжения до того, как электричество будет потреблено.

    Вы можете думать о высоковольтных линиях электропередачи как о пустом шоссе, по которому автомобили едут с высокой скоростью, а вы можете думать о линиях низкого напряжения как о переулках, по которым автомобили едут намного медленнее. Трансформатор – это соединение между линиями высокого и низкого напряжения, или, по аналогии с шоссе, это шоссе на съезде и съезде, которое соединяет переулки с шоссе.

    Трансформаторы являются важной частью сети – они повышают напряжение («повышающие трансформаторы») перед передачей на большие расстояния и снижают напряжение («понижающие трансформаторы») перед распределением электроэнергии потребителям для использования.Передача электроэнергии более высокого напряжения помогает минимизировать потери энергии.

    Изобретатели конца 19 -го века понимали, как делать трансформаторы, но круто здесь то, что трансформаторы работают только на электричестве переменного тока . Возвращаясь к фундаментальному различию между электричеством переменного и постоянного тока, которое я объяснил ранее, трансформаторам для работы требуется изменяющееся во времени напряжение, а поскольку постоянный ток является постоянным, а переменный ток изменяется во времени, трансформаторы работают только с электричеством переменного тока.

    В то время не существовало простого метода изменения напряжения постоянного тока, и это то, что (временно) обрекло постоянный ток на электричество. Поскольку не было возможности увеличить напряжение постоянного тока перед передачей, электричество постоянного тока не могло пройти очень далеко без больших потерь, что делало системы постоянного тока хуже, чем системы переменного тока.

    Высоковольтные линии электропередачи постоянного тока несут электроэнергию между границей Вашингтона и Орегона и Южной Калифорнией через Тихоокеанский округ Колумбия.

    Но DC вернулся

    Лишь намного позже инженеры разработали технологию, которую можно было использовать для эффективного преобразования переменного тока в постоянный, что помогло открыть эру высоковольтных линий электропередачи постоянного тока. Поскольку при передаче высокого напряжения постоянного тока потери энергии ниже, чем при передаче переменного тока на очень большие расстояния, самые длинные в мире линии передачи используют электричество постоянного тока. Например, в США есть высоковольтная линия электропередачи постоянного тока протяженностью 846 миль, соединяющая границу Вашингтона / Орегона с Южной Калифорнией.

    Westinghouse для победы

    Кульминация фильма наступает, когда Вестингауз играет в бильярд с Николой Тесла (да, изобретателем, в честь которого названа компания по производству электромобилей). Звонит телефон, и Вестингауз узнает, что его заявка на участие в Чикагской всемирной выставке 1893 года была принята.

    На этом игра для Эдисона окончена. Westinghouse и его системы электроснабжения переменного тока победили.

    Признание: я все время болел за Вестингауз

    Прежде чем закончить этот пост, я должен признать, что болел за Westinghouse на протяжении всего фильма.Так уж получилось, что мой дед всю свою карьеру проработал в Westinghouse Electric Corporation. Мой дед даже запатентовал множество изобретений (многие из которых были новыми технологиями для трансформаторов), и эти патенты принадлежали Westinghouse Electric Corporation.

    Но что еще больше усложняет ситуацию, дед моей жены работал в General Electric (которая является преемницей Edison). Так что, я думаю, хорошо, что моя жена не пришла посмотреть этот фильм со мной!

    9 причин, по которым DC может заменить AC

    Грегори Рид

    Электроэнергетика постоянного тока (DC) – это развивающаяся революционная технологическая область, которая может стимулировать экономический рост, вдохновлять на инновации, расширять возможности исследований и разработок, создавать рабочие места и одновременно способствовать экологической устойчивости.

    Технология и приложения

    постоянного тока обещают повышенную энергоэффективность, улучшенное качество и надежность электроэнергии, а также неотъемлемое соответствие с развитием возобновляемых и экологически чистых источников энергии.

    Мощность постоянного тока (DC)

    Электроэнергия постоянного тока начинает эволюционировать в сторону замены переменного тока в качестве всемирного стандарта инфраструктуры электроснабжения во многих приложениях по девяти причинам, перечисленным ниже:

    1. Питание постоянного тока значительно более энергоэффективно, чем питание переменного тока.
    • Электродвигатели и устройства постоянного тока имеют более высокий КПД и габаритные характеристики.
    • Освещение на основе постоянного тока (LED) на 75% эффективнее, чем освещение лампами накаливания.
    • Повышенный КПД, достигнутый в результате последних разработок в технологии преобразователей постоянного тока, позволяет улучшить доставку электроэнергии на большие расстояния.

    2. DC по своей природе совместим с возобновляемыми источниками энергии, такими как солнце и ветер. Эти возобновляемые источники генерируют электроэнергию с перерывами (когда светит солнце или дует ветер), для чего в некоторых приложениях требуются аккумуляторы (батареи) как часть системы, чтобы обеспечить надежное энергоснабжение, а также требуется интерфейс преобразования энергии в сеть.Солнечные фотоэлектрические системы по своей сути являются источником энергии постоянного тока, как и батареи, что делает постоянный ток более совместимым интерфейсом.

    3. Улучшена интеграция накопителей энергии. Хранение энергии необходимо для улучшения использования мощности возобновляемых источников энергии. Большинство технологий накопления энергии основаны на постоянном токе (в основном в виде аккумуляторных технологий), что создает возможности для повышения эффективности интеграции и снижения эксплуатационных потерь.

    4. Электронное оборудование работает от постоянного тока.При преобразовании мощности переменного тока в мощность постоянного тока потери составляют от 5% до 20%. Растущая зависимость от электронного оборудования создает большую потребность в источниках питания постоянного тока. Устранение этих потерь при преобразовании переменного тока в постоянный станет еще более важным и будет стимулировать переход на питание постоянного тока и потребует прогресса в новых технологиях преобразования энергии.

    5. Разрабатываются микросети постоянного и переменного тока и гибридного переменного / постоянного тока. Приложения микросетей могут эффективно интегрировать местное производство электроэнергии с основной энергосистемой для эффективного обслуживания определенных конечных нагрузок; повысить надежность, особенно в условиях аварийных событий; и создать возможности для покупки и продажи (чистые измерения) мощности, чтобы минимизировать затраты на электроэнергию для потребителя.

    6. Технология, необходимая для получения преимуществ питания постоянного тока в центрах обработки данных, в домах и общинах, значительно прогрессирует.

    • Электроэнергия постоянного тока уже используется в «нижней части пирамиды», например, в сельских районах Индии и Китая, потому что национальная электросеть (переменного тока) туда не доходит. Четыре штата Индии экспериментируют с электроснабжением домов постоянным током; Инициатива 2014 года, созданная и возглавляемая партнером проекта Business of Humanity® при финансовой поддержке центрального правительства Индии.

    • Кроме того, наиболее значительными новыми потребителями электроэнергии сегодня являются компании (Google, Apple, Visa и т. Д.) На «вершине пирамиды», которые управляют компьютерными центрами обработки данных и серверными фермами. Им требуется питание постоянного тока, потому что электронике требуется питание постоянного тока. Новые разработки для приложений постоянного тока создают инвестиции в местное производство электроэнергии постоянного тока, чтобы обеспечить круглосуточную надежность с нулевым временем простоя и повысить эффективность энергоснабжения.

    • Электромобили используют питание постоянного тока (аккумулятор), и их батареи можно заряжать с помощью постоянного тока за небольшую часть времени, необходимого для зарядки с использованием переменного тока.В Европе проектируются «умные деревни», использующие энергию постоянного тока, и предполагается, что электромобили будут частью системы хранения возобновляемой энергии.

    7. Новые технологии поддерживают чистое, локальное, распределенное производство электроэнергии постоянного тока. Солнечная энергия, ветер, чистая биомасса второго поколения и инновационные недорогие топливные элементы, использующие природный газ, идеально подходят для экологически чистой местной энергетики. Инфраструктура постоянного тока поможет улучшить интеграцию таких ресурсов в энергосистему и повысить их общую экономическую и экологическую ценность.

    8. Многие новые линии передачи на большие расстояния в США, Китае, Индии и Европе переходят на использование постоянного тока сверхвысокого напряжения (HVDC). В США новые линии электропередачи от крупных ветряных и солнечных электростанций на Среднем Западе и в западных штатах планируются как HVDC, в дополнение к появлению коммерческих проектов передачи HVDC по всему графству. В США и Канаде уже работает около 20 систем HVDC. Вся новая линия высоковольтной передачи в Китае планируется как HVDC, при этом десятки систем уже находятся в эксплуатации и более 20 новых систем находятся на стадии планирования.Европа расширяет и модернизирует большую часть своей передающей инфраструктуры, при этом HVDC является важной частью их планов, включая объединение стран и континентов. На определенном расстоянии передача энергии HVDC обходится дешевле, чем переменный ток, из-за недавно разработанных прорывных технологий с использованием силовых полупроводников. Другие эзотерические технические причины (такие как устранение «скин-эффекта», возникающего при работе с переменным током) и снижение потерь за счет усовершенствованной конструкции преобразователя мощности мотивируют переход к передаче постоянного тока.Более того, затраты на передачу HVDC меньше, потому что размеры (толщина) проводов могут быть меньше, и потому что требуется на один провод меньше (два полюса для постоянного тока против трех фаз для переменного тока). Следовательно, многие из основных причин, по которым мир перешел на AC на рубеже 20-го века, больше не актуальны. Сегодня есть веские экономические причины и стимулы, связанные с устойчивым развитием, для инвестирования в инфраструктуру постоянного тока.

    9. В Китае и Европе предусматриваются новые города и деревни, которые будут полностью питаться постоянным током.В новых приложениях, от инфраструктуры ресурсов и доставки до приложений конечного использования, во многих развивающихся частях мира рассматриваются комплексные концепции и работа системы постоянного тока. Поскольку мы стремимся электрифицировать более удаленные части земного шара, у использования инфраструктуры постоянного тока есть много преимуществ.

    Прочтите оставшуюся часть серии:
    – 9 причин, почему постоянный ток может заменить переменный ток: часть 2


    Грегори Рид, доктор философии, является директором инициативы в области электроэнергетики в инженерной школе Свонсона при Университете Питтсбурга, директором университетского центра энергетики и доцентом кафедры электроэнергетики факультета электротехники и электротехники Swanson School. Компьютерная инженерия.Он также является директором и техническим руководителем Объединения сетевых технологий Национальной лаборатории энергетических технологий Министерства энергетики США и первым членом программы послов энергетики Национальных академий наук и инженерии. Помимо этих ролей, он является владельцем и главным консультантом компании Power Grid Technology Consulting, LLC.

    Разница между генераторами переменного и постоянного тока: простое руководство

    Существует огромная разница между генераторами переменного и постоянного тока, хотя названия вам могут показаться одинаковыми.Эти два типа генераторов дают совершенно разные результаты. Оба они обеспечивают токи, но конечные токи различаются по способу их движения, их механизму, конструкции и использованию. Здесь Linquip объяснит разницу между генераторами переменного и постоянного тока и ответит на все вопросы, которые могут прийти вам в голову при чтении информации об этих двух генераторах. Давайте сначала кратко представим генераторы переменного тока и генераторы постоянного тока:

    Что такое генератор переменного тока?

    Генератор переменного тока считается электрическим генератором для преобразования механической энергии в электрическую.Эта энергия имеет форму переменного тока или альтернативной ЭДС. Они работают в соответствии с принципами электромагнитной индукции, согласно которым электродвижущая сила (ЭДС) генерируется в проводнике с током, который разрезает однородное магнитное поле. Это может быть достигнуто либо вращением проводящей катушки в статическом магнитном поле, либо вращением магнитного поля, содержащего неподвижный проводник. Предпочтительно, чтобы катушка оставалась неподвижной, поскольку от неподвижной обмотки якоря легче получать индуцированный переменный ток, чем от вращающейся обмотки.

    Что такое генератор постоянного тока?

    Генераторы постоянного тока преобразуют механическую энергию в электричество постоянного тока, что сокращенно от постоянного тока. Генераторы постоянного тока работают по принципу энергетически индуцированной электродвижущей силы.

    Подробнее о Linquip

    . Детали генератора постоянного тока: объяснение деталей, работы, типов, преимуществ и недостатков.

    Теперь давайте углубимся в разницу между генераторами переменного и постоянного тока и узнаем об их использовании. Затем вы сможете решить, какой из них соответствует вашим потребностям:

    Генератор переменного тока против генератора постоянного тока

    • Конструкция и механизм
    • Использование и обслуживание
    • Возможности подключения

    Переменный ток илиПостоянный ток: конструкция и механизм

    Генератор переменного и постоянного тока Diff BW с точки зрения конструкции заключается в том, что ток генераторов переменного тока проходит через неподвижную катушку. Ток остается в обратном направлении с помощью движущегося магнита. В генераторах постоянного тока катушка движется в фиксированном поле, и ток течет вместе с этим движением, поэтому для генераторов постоянного тока нет фиксированных катушек.

    Одно из сходств генераторов переменного и постоянного тока состоит в том, что они оба имеют контактные кольца (сделанные из металла), а также катушку якоря.Якорь подключается к внешней цепи с помощью соединения, которое напрямую влияет на тип производимого тока.

    Генератор переменного тока имеет два металлических кольца, которые вращаются вместе с катушкой якоря одновременно. Оба конца якоря соединены с отдельным контактным кольцом с угольной щеткой, чтобы обеспечить этот процесс. Но генераторы переменного тока содержат фиксированную щетку. Щетки – это элементы, принимающие ток, протекающий через контактные кольца. Однако и конец внешнего контура, и конец якоря соединены с одной щеткой.

    Еще одно различие между генераторами переменного и постоянного тока в этом отношении состоит в том, что в то время как генераторы переменного тока имеют 2 контактных кольца, генераторы постоянного тока имеют только одно. Два полукруглых металлических кольца в коммутаторе изолированы друг от друга. Концы якоря в генераторе постоянного тока подключены к половине коммутатора. Тогда каждое вращение на пол-оборота приводит к обратному направлению тока в якоре.

    При вращении якоря на 180 градусов между полюсами магнита ток переводится из его наивысшей точки в ноль.Кольца в генераторе переменного тока не имеют коммутаторов, в то время как генераторы постоянного тока имеют коммутаторы с разъемным кольцом. Кроме того, гладкая и непрерывная поверхность контактных колец переменного тока очень эффективна и не изнашивается быстро, в то время как обе щетки генератора постоянного тока менее эффективны, чем генератор переменного тока, поскольку они быстро изнашиваются. Эффективность щеток в генераторе переменного тока снижает вероятность короткого замыкания, но вероятность высока в генераторах постоянного тока.

    Хотя генераторы переменного и постоянного тока имеют разный подход к сбору и передаче индуцированных электродвижущих сил во внешней цепи, они оба используют электромагнитные принципы для достижения желаемого результата.Итак, есть еще одно различие между генератором переменного тока и генератором постоянного тока. Это различие связано с соединением якоря и внешней цепи в этих двух типах генераторов.

    Разница между генераторами переменного и постоянного тока: использование и обслуживание

    Выходное напряжение, создаваемое генераторами переменного тока, называется генераторами переменного тока. Обычная частота генераторов переменного тока составляет 60 Гц для Америки, Европы и Японии. Это выходное напряжение отличается по времени и амплитуде. Генераторы постоянного тока вырабатывают стабильное выходное напряжение, подходящее для питания больших двигателей.В то время как генераторы постоянного тока в основном используются для питания больших двигателей, генераторы переменного тока используются для более мелких. Вы можете приводить в действие свои домашние электроприборы с помощью переменного тока, такие как миксеры, электрические приборы и т. Д.

    Генератор переменного и постоянного тока Diff BW огромен с точки зрения обслуживания. Генераторы постоянного тока требуют постоянного обслуживания и менее надежны, в то время как генераторы переменного тока требуют минимального обслуживания и более надежны.

    Генераторы переменного тока и постоянного тока: возможность подключения

    Еще одно различие между генераторами переменного и постоянного тока заключается в их возможности подключения.Генераторы постоянного тока имеют конструкцию, которая обеспечивает бесшовное соединение с эффективным потоком энергии. В основном это потому, что им не нужен переключатель передачи. В случае генераторов переменного тока, однако, они требуют гораздо больше усилий для передачи электроэнергии в удаленные участки сети, что делает ее менее эффективной, когда дело доходит до подключения.

    Различные типы генераторов переменного и постоянного тока

    Генераторы переменного тока

    • Однофазный генератор
    • Синхронный генератор
    • Трехфазный генератор
    • Индукционный генератор

    Генераторы постоянного тока

    • Самовозбуждающийся генератор постоянного тока
      Генератор с последовательной обмоткой
      Генератор с параллельной обмоткой
      Генератор с комбинированной обмоткой
    • Генератор постоянного тока с раздельным возбуждением

    Генераторы переменного и постоянного тока имеют разные типы для различных целей и задач.Вот некоторые из них:

    Генераторы переменного тока

    имеют разные типы, такие как однофазные генераторы, синхронные генераторы, трехфазные генераторы, индукционные генераторы и т. Д.

    • Однофазные генераторы : Однофазные генераторы (также известные как однофазный генератор переменного тока) представляет собой электрический генератор переменного тока, который вырабатывает одно непрерывное переменное напряжение. Однофазные генераторы могут использоваться для выработки электроэнергии в однофазных электроэнергетических системах.
    • Синхронные генераторы : Синхронный генератор или генератор переменного тока – это электрическая машина, которая преобразует механическую энергию от первичного двигателя в электрическую энергию переменного тока с определенным напряжением и частотой. Синхронный двигатель всегда работает с постоянной скоростью, называемой синхронной скоростью.
    • Трехфазные генераторы : Трехфазные генераторы работают, производя три отдельные волны переменного тока, которые работают в последовательности, обеспечивая постоянный поток энергии и никогда не снижая уровень мощности. с однофазными генераторами.
    • Индукционные генераторы : Индукционный генератор также известен как асинхронный генератор, принцип работы которого аналогичен принципу работы генератора переменного тока. Единственная разница между обычным генератором переменного тока и индукционным генератором состоит в том, что индукционный генератор представляет собой вращающееся устройство. Он известен как асинхронный, потому что скорость асинхронного генератора меньше, чем у синхронного генератора. Они находят применение в миксерах и шлифовальных машинах.

    Генераторы постоянного тока в основном бывают двух типов: генератор постоянного тока с самовозбуждением и генератор постоянного тока с раздельным возбуждением.Их соединение якоря такое же, поэтому они относятся к генераторам постоянного тока.

    • Самовозбуждение: В самовозбуждающемся типе катушки возбуждения получают питание от генерируемого тока внутри генератора. Эти типы генераторов можно далее разделить на генераторы с последовательной обмоткой, генераторы с шунтирующей обмоткой и генераторы с комбинированной обмоткой. комбинация последовательной и шунтирующей обмоток
    • с раздельным возбуждением: В генераторе с раздельным возбуждением катушки возбуждения получают питание от независимого внешнего источника постоянного тока.

    Что лучше: генератор переменного тока или генератор постоянного тока?

    Выбор лучшего между генератором переменного тока и генератором постоянного тока во многом зависит от того, как вы хотите его использовать, и желаемого результата. Каждый из них имеет несколько преимуществ, позволяющих максимально использовать их, например:

    Преимущества генераторов постоянного тока

    • Плавное напряжение
    • Пригодность для больших двигателей
    • Простая конструкция

    Преимущества генераторов переменного тока

    • Пригодность для электрические приборы и малые двигатели
    • Незначительные потребности в обслуживании
    • Простое распределение выходной мощности с помощью трансформатора
    • КПД
    • Потери относительно меньше, чем у генераторов постоянного тока
    • Размер линии передачи может быть меньше из-за функции повышения
    • переменного тока генераторы можно легко повышать и понижать через трансформаторы.

    Оставить комментарий