В каком году и кто создал транзистор: История транзистора – Мастерок.жж.рф — LiveJournal

Содержание

История транзистора – Мастерок.жж.рф — LiveJournal

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Рождение твердотельной электроники можно отнести к 1833 году. Именно тогда Майкл Фарадей, экспериментируя с сульфидом серебра, обнаружил, что проводимость данного вещества (а это был, как мы теперь называем, полупроводник) растет с повышением температуры, в противоположность проводимости металлов, которая в данном случае уменьшается. Почему так происходит? С чем это связано? На эти вопросы Фарадей ответить не смог.
Тонкий металлический проводник, с помощью которого осуществлялся контакт с поверхностью кристалла, внешне очень напоминал кошачий ус.

Кристаллический детектор Пикарда так и стали называть —кошачий ус.

Чтобы вдохнуть жизнь в детектор Пикарда и заставить его устойчиво работать, требовалось найти наиболее чувствительную точку на поверхности кристалла. Сделать это было непросто. На свет появляется множество хитроумных конструкций кошачего уса облегчающих поиск заветной точки, но стремительный выход на авансцену радиотехники электронных ламп надолго отправляет детектор Пикарда за кулисы.

И все же кошачий ус намного проще и меньше вакуумных диодов, к тому же намного эффективнее на высоких частотах. А что если заменить вакуумный триод, на котором была основана вся радиоэлектроника того времени, на полупроводник? Возможно ли это? В начале ХХ века подобный вопрос не давал покоя многим ученым.

Советская Россия. 1918 год. По личному распоряжению Ленина в Нижнем Новгороде создается радиотехническая лаборатория. Новая власть остро нуждается в беспроволочной телеграфной связи. К работе в лаборатории привлекаются лучшие радиоинженеры того времени — М. А. Бонч-Бруевич, В. П. Вологдин, В. К. Лебединский, В. В. Татаринов и многие другие. Приезжает в Нижний Новгород и Олег Лосев.

После окончания Тверского реального училища в 1920 году и неудачного поступления в Московский институт связи Лосев согласен на любую работу, только бы приняли в лабораторию. Его берут посыльным. Общежития посыльным не полагается.

17-летний Лосев готов жить в помещении лаборатории, на лестничной площадке перед чердаком, только бы заниматься любимым делом.

С раннего возраста он страстно увлекался радиосвязью. В годы Первой мировой войны в Твери была построена радиоприемная станция. В ее задачи входило принимать сообщения от союзников России по Антанте и далее по телеграфу передавать их в Петроград. Лосев часто бывал на радиостанции, знал многих сотрудников, помогал им и не мыслил свою дальнейшую жизнь без радиотехники. В Нижнем Новгороде у него не было ни семьи, ни нормального быта, но было главное — возможность общаться со специалистами в области радиосвязи, перенимать их опыт и знания. После выполнения необходимых работ в лаборатории ему разрешали заниматься самостоятельным экспериментированием.

В то время интерес к кристаллическим детекторам практически отсутствовал. В лаборатории никто особо не занимался этой темой. Приоритет в исследованиях был отдан радиолампам. Лосеву очень хотелось работать самостоятельно. Перспектива получить ограниченный участок работы по лампам его никак не вдохновляет. Может быть, именно по этой причине он выбирает для своих исследований кристаллический детектор. Его цель — усовершенствовать детектор, сделать его более чувствительным и стабильным в работе. Приступая к экспериментам, Лосев ошибочно предполагал, что в связи с тем, что некоторые контакты между металлом и кристаллом не подчиняются закону Ома, то вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания.

В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно, должен обязательно присутствовать падающий участок. Любой грамотный специалист не стал бы ожидать усиления от детектора. Но вчерашний школьник ничего этого не знает. Он меняет кристаллы, материал иглы, аккуратно фиксирует получаемые результаты и в один прекрасный день обнаруживает искомые активные точки у кристаллов, которые обеспечивают генерацию высокочастотных сигналов.

Все с детства знают, что то-то и то-то невозможно, но всегда находится невежда, который этого не знает, он-то и делает открытие — шутил Эйнштейн.
Свои первые исследования генераторных кристаллов Лосев производил на простейшей схеме.

Испытав большое количество кристаллических детекторов, Лосев выяснил, что лучше всего генерируют колебания кристаллы цинкита, подвергнутые специальной обработке. Для получения качественных материалов он разрабатывает технологию приготовления цинкита методом сплавливания в электрической дуге естественных кристаллов. При паре цинкит — угольное острие, при подаче напряжения в10 В получался радиосигнал с длиной волны 68 м. При снижении генерации реализуется усилительный режим детектора.

Первыми изобретенными транзисторами, как ни странно, были полевые. Австро-венгерский физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевого транзистора, который основан на электростатическом эффекте поля. Полевые транзисторы намного опередили биполярные, может быть из-за более простого принципа их работы. Сам полевой транзистор был запатентован в 1934 году немецким физиком Оскаром Хейлом.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» – огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 – 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радиолаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).
Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния в природе очень большие, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого – в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Поначалу при производстве транзисторов лишь каждый пятый получался не бракованным, но технология быстро развивалась. Уже в 1953 году вышел первый транзисторный слуховой аппарат, который ознаменовал начало коммерческого применения нового радиоэлемента. Через год в продажу поступил транзисторный радиоприемник.

В 1956 году Джон Бардин, Уильям Шокли и Уолтер Брайтейн были удостоены нобелевской премии за свое открытие. В 1958 году, когда пара транзисторов была помещена на один кремниевый кристалл, в мире появилась первая интегральная схема. Сегодня на одном кристалле их помещается более миллиарда.

С изобретением транзистора маховик научно-технического прогресса был запущен с новой силой. В 1960 году Sony выпустила портативный телевизор. В 1971 появился карманный калькулятор. В 1983 году с изобретением мобильного телефона началась эра мобильной связи.

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

[источники]Источники:
http://scsiexplorer.com.ua/index.php/istoria-otkritiy/601-istorija-tranzistora.html
http://electrik.info/main/fakty/622-istoriya-tranzistorov.html
http://www.kit-e.ru/articles/elcomp/2006_9_198.php 

История за изобретение полевых транзисторов

Никто, конечно, можно представить любые электронные устройства без присутствия транзисторов. В этом случае Какова идея изобретения транзисторов? Кто были люди за свои изобретения и достижения? Какова реальная цель изобретения полевых транзисторов? И как она появиться? Каковы текущие приложения и достижений этих транзисторов? Вы когда-нибудь задумывались об этом? Если да, то этот пишут поможет вам узнать больше о интересный рассказ за изобретение транзисторов field-effect.

Перед входом в его изобретение часть, давайте проведем краткий взгляд на то, что полевые транзисторы. Полевые транзисторы униполярные, появившихся в основном от биполярных транзисторов. Он используется как транзистор, но его эффективность является, что он контролирует теплопроводность материала с помощью электрического поля.

Хотя есть слишком много людей, участвующих в этом изобретении, следует отметить несколько. Юлиус Эдгара Лилиенфельда, Oskar Хайль, Джон Бардин, Уолтер Хаузер Браттейн и Уильям Шокли внесли основной вклад в изобретение полевой транзистор.

Изобретение

До начала XX века, в самом деле, не было ни малейшего представления о том принципе, что привело к полевой транзистор.

Два человека запатентовали свои идеи на это изобретение.

Вклад Юлий Эдгар Lilienfield

Первый человек — Юлиус Эдгара Лилиенфельда, который был Австро-венгерский физик. Позже он переехал в США и стал гражданином США. В 1905 году он начал работать в Лейпцигском университете в кафедры физики.

Его работы интерес был в выполнении электрических частиц или электронов в вакууме. Его первый вклад в научное общество было сделано с идентификации поля электронной эмиссии.

Он был один, чтобы изобрести полевой транзистор или ФЕТ, как это широко известно. Его изобретения включают электролитический конденсатор, который был изобретен в тот же период 1920. Он утверждал патентов для различных работ, среди которых он был предоставлен патент для FET полевой транзистор на 28 января 1930 года.

Основываясь на одной из его открытий, которые был похож на рентгеновские трубки, любого оптического излучения, испускаемого попадания электронов на металлической поверхности был назван как Лилиенфельд излучения.

Хайль Оскар и его вклад

В отличие от Лилиенфельд Oskar Хайль был инженер-электрик. Он закончил свое обучение в университете Джорджа-Август. Докторскую степень была присуждена ему за его работу по молекулярной спектроскопии в 1933 году.

Основываясь на докладах различных патентов, выданных ему, Oskar Хайль считается одним из изобретателей полевых транзисторов. Другие изобретения, которые записываются по его являются трансформатор движения воздуха и Хайль трубки.

В год 1963 года, накопив большой опыт он инициировал его компании в Калифорнии, США.

Вклад Уильям Шокли

Хотя принцип полевых транзисторов была впервые запатентована Лилиенфельд и Хайль, практические полупроводникового устройства, такие как junction ворота полевой транзистор или JFET были разработаны лет спустя после транзистора эффект наблюдался, объяснил и продемонстрировал Уильям Шокли и его командой в Bell Labs в 1947 году.

Шокли усилия по коммерциализации транзистор был путь, преодолев вклад в научное общество. Во время второй мировой войны Шокли работал в исследовательских лабораториях радар в Нью-Джерси. Шокли был построен первый рабочий транзистор. Это был Германий точки транзистор серии.

Транзисторов, которые в настоящее время работают в электрических устройствах, все, полевые ТРАНЗИСТОРЫ. Полевые ТРАНЗИСТОРЫ, металло-оксидный полупроводник транзисторы field-effect. Они были впервые предложены Dawon Kahng в 1960 году и этот транзистор во многом заменил JFET и гораздо более глубокое воздействие на развитие электронной.

Как работает полевой транзистор

В полевой транзистор электрическое поле создается путем слабого электрического сигнала в нижней части транзистор, который также передается на другие части полевой транзистор.

В нижней части транзистор заполнено вверх с избытком электронов. В Центральной или базового региона, количество электронов является слишком мало когда по сравнению с нижней частью полу провода. Есть две стороны нашли, что известны как источник и сток. Исходный сторона является формой региона, где электроны ввести внутри, а так же на другой регион, слива, электроны стоки из. Обычно поток электронов производится от одной стороны к другой.

Ток не отмечен рядом база региона. Ток способствует тонкий канал вдоль другого региона.

На базе полу провода электрода связан или прилагается. Тонкий слой окиси металла отделяет этот электрод от остальной части. Наиболее распространенные окиси тяжелых металлов используется это диоксид кремния. Электрод часто рассматривается как «ворота». Ворота это, где мы пройти слабый электрический сигнал в полу дирижер.

Благодаря отталкивающим действием электронов истощение зоны получает сформирована база региона. Проходя отрицательный заряд поможет полностью предотвратить прохождение электроэнергии через провод полу.

Хотя транзисторы имеют различные приложения, которые проще, они могут быть использованы в сложных местах тоже. Они также могут вести себя как усиления устройства.

Основываясь на заряд передается полу дирижер, тока, протекающего через другой регион может быть либо меньше или больше. Как еще один напряжения, подключенных к нему, есть возможные пути дальнейшего сделать его больше. Полевые транзисторы или ФЕТ часто используются в электрических устройствах, таких как микрофоны, микроволновые печи, телевизоры, радиоприемники и даже в автомобилях. Они имеют широкое применение в качестве несущей зарядов. Хотя есть много других полупроводники, кремния служит лучшим для использования в полевых транзисторов.

История открытия p-n перехода, или с чего начинался транзистор

1956 год. В Стокгольмском концертом зале три американских ученых Джон Бардин, Вильям Шокли и Уолтер Браттейн получают Нобелевскую премию «за исследования полупроводников и открытие транзисторного эффекта» –  настоящий прорыв в области физики.  Отныне их имена навсегда вписаны в мировую науку. Но более чем за 15 лет до этого, в начале 1941 года молодой украинский ученый Вадим Лашкарев экспериментально обнаружил и описал в своей статье физическое явление, которое, как оказалось, впоследствии получило название p-n переход (p-positive, n-negative). Он же в своей статье раскрыл и механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы.

Официально история транзистора звучит так: первое сообщение в печати о появлении полупроводникового усилителя-транзистора появилось в американской прессе в июле 1948 года. Его изобретатели – американские ученые Бардин и Браттейн. Они пошли по пути создания так называемого точечного транзистора на базе кристалла германия n-типа. Первый обнадеживающий результат они получили в конце 1947 г. Однако прибор вел себя неустойчиво, его характеристики отличались непредсказуемостью, и поэтому практического применения точечный транзистор не получил.

Прорыв произошел в 1951 году, когда Вильям Шокли создал свой более надежный плоскостной транзистор n-p-n типа, который состоял из трех слоев германия n, p и n типа, общей толщиной 1 см. Уже через несколько лет значимость изобретения американских ученых стала очевидной, и они были отмечены Нобелевской премией.

Задолго до этого, еще перед началом Великой Отечественной войны в 1941 году Лашкарев проводит  серию успешных экспериментов и открывает р-n переход и раскрывает механизм электронно-дырочной диффузии, на основе которых под его руководством в начале 50-х годов, были созданы первые в Украине (тогда часть СССР) полупроводниковые триоды – транзисторы.

Говоря научным языком, p-n переход – это  область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрическая проводимость материала зависит от того, насколько прочно ядра его атомов удерживают электроны. Так, большинство металлов являются хорошими проводниками, поскольку имеют огромное количество слабосвязанных с атомным ядром электронов, которые легко притягиваются положительными зарядами и отталкиваются отрицательными. Движущиеся электроны и есть носители электрического тока. С другой стороны, изоляторы, не пропускают ток, так как электроны в них прочно связаны с атомами и не реагируют на воздействие внешнего электрического поля.

Полупроводники ведут себя иначе. Атомы в кристаллах полупроводников образуют решетку, внешние электроны которой связаны силами химической природы. В чистом виде полупроводники подобны изоляторам: они или плохо проводят ток, или не проводят вообще. Но стоит добавить в кристаллическую решетку небольшое количество атомов определенных элементов (примесей), как их поведение кардинально меняется.

В некоторых случаях атомы примеси связываются с атомами полупроводника, образуя лишние электроны, избыток свободных электронов придает полупроводнику отрицательный заряд. В других случаях атомы примеси создают так называемые “дырки”, способные “поглощать” электроны. Таким образом возникает недостаток электронов и полупроводник становится положительно заряженным. При соответствующих условиях полупроводники могут проводить электрический ток. Но в отличие от металлов они проводят его двояким образом. Отрицательно заряженный полупроводник стремится избавиться от лишних электронов, это проводимость  n-типа (от negative – отрицательный). Носителями заряда в полупроводниках такого типа являются электроны. С другой стороны, положительно заряженные полупроводники притягивают электроны, заполняя “дырки”. Но, когда заполняется одна “дырка” рядом возникает другая – покинутая электроном. Таким образом, “дырки” создают поток положительного заряда, который направлен в сторону, противоположную движению электронов. Это проводимость р-типа (от positive – положительный). В полупроводниках обоих типов так называемые не основные носители заряда (электроны в полупроводниках р-типа и “дырки” в полупроводниках п-типа) поддерживают ток в направлении, обратном движению основных носителей заряда.

Внесение примесей в кристаллы германия или кремния позволяет создать полупроводниковые материалы с желаемыми электрическими свойствами. Например, введение незначительного количества фосфора порождает свободные электроны, и полупроводник приобретает проводимость n-типа. Добавление атомов бора, наоборот, создает дырки, и материал становится полупроводником р-типа.

В дальнейшем оказалось, что полупроводник, в который введены примеси, обретает свойство пропускать электрический ток, т.е. обладает проводимостью, величина которой может при определенном воздействии изменяется в широких пределах.

Когда в США был найден способ для осуществления такого воздействия электрическим путем, появился транзистор (от первоначального названия трансрезистор). Тот факт, что 1941 году Лашкарев опубликовал результаты своих открытий в статьях «Исследование запирающих слоев методом термозонда» и «Влияние примесей на вентильный фотоэффект в закиси меди» (в соавторстве со своей коллегой  К.М. Косоноговой), в связи с военным временем не попал в поле зрения научного мира. Предположительно, начавшаяся  «холодная война» и опустившийся на Советский Союз «железный занавес» сыграли свою роль в том, что Лашкарев так и не стал Нобелевским лауреатом. Кстати сказать, Лашкарев разработал, находясь в Сибири во время войны, купроксные диоды, которые применялись в армейских радиостанциях и добился их промышленного выпуска.

В дополнение к двум первым работам, Лашкарев в соавторстве с В.И.Ляшенко в 1950 году опубликовал статью «Электронные состояния на поверхности полупроводника», в которой были описаны результаты исследований поверхностных явлений в полупроводниках, ставшие основой работы интегральных схем на базе полевых транзисторов.

В 50-е годы Лашкареву также удалось решить проблему массовой выбраковки монокристаллов германия. Он по новому сформулировал технические требования к этому элементу, так как предыдущие были неоправданно завышены. Тщательные исследования, проведенные Лашкаревым и Миселюком в Институте физики АН УССР в Киеве, показали, что уже достигнутый уровень технологии монокристаллов германия позволял создать точечные диоды и триоды с необходимыми характеристиками. Это позволило ускорить промышленный выпуск первых в бывшем СССР германиевых диодов и транзисторов.

Так, именно под руководством Лашкарева в начале 50-х в СССР было организовано производство первых точечных транзисторов. Сформированная В.Е. Лашкаревым  научная школа в области физики полупроводников становится одной из ведущих в СССР. Признанием выдающихся результатов стало создание в 1960 г. Института полупроводников АН УССР, который возглавил В.Е. Лашкарев.

“Настанет время, когда на этом кристаллике, что нам показал Вадим Евгеньевич, можно будет разместить всю ЭВМ!”, – напророчил академик Сергей Лебедев, создавший первый в континентальной Европе компьютер – МЭСМ. Так и случилось. Но это произошло через двадцать с лишним лет, когда появились большие интегральные схемы БИС, содержащие на кристалле десятки и сотни тысяч транзисторов, а позднее – сверхбольшие интегральные схемы СБИС со многими миллионами компонентов на кристалле, открывшие человеку путь в информационную эру.

русские пионеры – без признания и наград. Сможет ли Россия конкурировать? История инноваций в царской, советской и современной России

Глава 6

Полупроводниковая промышленность: русские пионеры – без признания и наград

Транзисторы – одно из важнейших открытий ХХ века. Их изобретение было таким же стимулом для развития промышленности, как изобретение парового двигателя. Но мало кому на Западе известно, что первым человеком в мире, продемонстрировавшим, как полупроводниковые кристаллы могут усиливать и создавать высокочастотные радиосигналы, был русский изобретатель. Этот же человек в 1920-х годах создал транзисторный радиоприемник, провел важные исследования в области светодиодов. Несколько десятилетий спустя некоторые западные исследователи, узнавшие о его работе, были поражены, насколько близко он подошел к созданию транзисторов. Но, несмотря на это, сегодня в числе мировых лидеров по производству транзисторов, компьютерных чипов или диодов нет ни одной российской компании. Причина этого провала объясняется политическими, экономическими, институциональными факторами. Но вовсе не техническими.

«Мы знакомы с плодами выдающейся работы, которая велась в области физики твердого тела в Советском Союзе, и знаем имена многих ваших ученых, которые внесли значительный вклад в наши знания», – отмечал Джон Бардин, нобелевский лауреат по физике, в ходе своего визита в Москву в 1960 году.

Его интуиция и ход эксперимента были просто удивительными.

Эгон Лёбнер, американский ученый, специалист в области физики твердого тела, о работе Олега Лосева по изучению электролюминесценции, на 30 лет опередившей свое время

Полупроводники – сердце революции, произошедшей в области электронного приборостроения в последние 60 лет. Транзисторы являются одним из видов приборов с полупроводниками, сегодня миллиарды транзисторов используются в устройствах связи, компьютерах, других приборах, давно заменив вакуумные лампы, применявшиеся ранее. Они выполняют задачу регулирования и усиления электрического тока. В большинстве случаев транзисторы обладают рядом преимуществ по сравнению с вакуумными трубками, в частности малым размером, надежностью, эффективностью. И низкой ценой. Полупроводниковые технологии стимулировали интеллектуальную мощь человека, как паровой двигатель умножил его физические возможности. Подобно тому как паровой двигатель был, вероятно, величайшим изобретением XVIII века, транзистор стал величайшим открытием ХХ столетия{97}.

Большинство людей, знакомых с историей полупроводниковых технологий, относят ее зарождение к послевоенному периоду. Изобретение транзистора обычно приписывают американским ученым Уильяму Шокли, Уолтеру Хаузеру Браттейну и Джону Бардину, о чьей работе Лаборатория Белла объявила в 1948 году (в 1956 году они получили Нобелевскую премию по физике). В 1954 году компания Texas Instruments выпустила на рынок первый транзисторный радиоприемник. Однако очень немногим на Западе известно, что пионером в области исследований полупроводников был русский ученый Олег Лосев, который еще в 1922 году в Нижнегородской радиолаборатории, до переезда ее в Ленинград, создал действующие транзисторные радиоприемники и передатчики{98}.

Хотя у Лосева не было университетского образования, он провел исследование, которое документально отражено в научной литературе (Лосев опубликовал 43 научные статьи, имел 16 патентов и авторских свидетельств).

Лосев был первым человеком в мире, который продемонстрировал, что полупроводниковые кристаллы могут усиливать и создавать высокочастотные радиосигналы{99}. В 1922 году он сделал радиопередатчик на кристаллах цинкита и детекторный приемник, в роли которого был угольный волосок. Позднее в роли приемника выступила стальная игла. Радиоприемник потреблял очень мало энергии: для питания было достаточно трех-четырех батареек для карманного фонаря. Радио Лосева было известно как «кристадин» и пользовалось популярностью среди радиолюбителей, которых во многих странах становилось все больше и больше. В США ежемесячный журнал Radio News в 1924 году опубликовал статью, в которой говорилось:

«Генерирующие кристаллы – это явление не новое, так как еще в 1906 году их изучали известные ученые, но лишь недавно русскому инженеру м-ру О. В. Лосеву удалось найти им интересное применение. Создание аппарата, с помощью которого могут производиться колебания, генератором которых выступает кристалл, кажется довольно простым и должно очень заинтересовать наших читателей»{100}.

Транзисторный радиоприемник Лосева был настоящим технологическим прорывом, но у него были недостатки. Радиус его действия был ограниченным, он не отличался надежностью и время от времени по непонятным причинам переставал работать. Теория его действия была не до конца понятна. В то время кристадин не составлял конкуренции радиоприемникам с вакуумными трубками, хотя радиолюбителям он и пришелся по душе.

Затем Лосев сделал еще одно важное открытие. Выяснив, как посредством кристаллов генерировать радиосигналы, он начал экспериментировать с разными видами кристаллов, чтобы лучше понять это явление. В январе 1923 года, экспериментируя с контактом на основе пары «карборунд – стальная проволока», он заметил, что при подаче тока «в месте контакта наблюдалось слабое зеленоватое свечение»{101}. Поначалу Лосев не уделил особого внимания этому явлению. Однако затем он начал под микроскопом изучать действие тока на карборунд. Он экспериментировал с изменением полярностей, напряжения, кристаллами разного состава и структуры{102}. Способность производства света в кристалле постоянно улучшалась, и он опубликовал полученные результаты исследований в научных журналах на русском, немецком и английском языках{103}. В Германии его работа была замечена учеными кругами, начали говорить о «свечении Лосева». Фактически открытие Лосева было изобретением светоизлучающего диода. (Подобное световое излучение наблюдал в 1907 году Генри Джозеф Раунд. Лосев заново открыл его и продвинулся гораздо дальше в изучении его характеристик.) За свое «световое реле» Лосев получил авторское свидетельство. Как полагал ученый, устройство можно было использовать для «быстрой телеграфной и телефонной коммуникации, передачи изображений и других целей»{104}. Он попытался объяснить действие светодиода с точки зрения квантовой теории Эйнштейна, назвав это «внутренним фотоэлектрическим эффектом». Он даже написал Эйнштейну письмо с просьбой помочь разработать теоретическое обоснование, но ответа не получил{105}.

В биографии Лосева есть эпизоды, покрытые тайной. Известно, что его отец был офицером царской армии, имел дворянское происхождение{106}. С подобным социальным статусом Лосев должен был очень осторожно вести себя при советском режиме, когда технические специалисты, «чужеродные» по своему происхождению, вызывали у властей особое подозрение. Многие из этих людей завершили свою жизнь за решеткой. Несмотря на свое благородное генеалогическое древо, Лосев был беден, постоянно пребывал в поисках заработка. На короткое время ему представился шанс. После периода «военного коммунизма», когда были закрыты все частные предприятия, советская власть сделала небольшое послабление в виде «новой экономической политики» (нэп). С 1921 по 1927 год в стране были разрешены некоторые виды независимой экономической деятельности, в частности небольшие магазины и фирмы. При этом за государством сохранялись «командные высоты» в экономике, особенно в вопросах управления тяжелой промышленностью. Именно в период нэпа Лосев разработал свой транзисторный радиоприемник кристадин. Он надеялся, что сможет наладить его коммерческий выпуск. В 1924 году он разместил рекламу своих радио– и детекторных приемников, даже продал некоторое их количество{107}. Известно, что в общей сложности Лосев сделал более 50 радиоприемников.

Однако через несколько лет в отношении частных предприятий началось закручивание гаек. Положение Лосева оказалось сомнительным вдвойне: бывший дворянин, к тому же активно вовлеченный в «буржуазную нэпманскую экономическую деятельность». Он постарался «уйти в тень». Какое-то время работал курьером в радиоинституте № 9 (впоследствии «Позитрон»), жил там же, под чердачной лестницей. Но продолжал заниматься исследованиями, и сотрудники института с пониманием относились к Лосеву.

Когда американский ученый русского происхождения Эгон Лёбнер в лаборатории RCA (Radio Corporation of America) в 1950-х годах начал работать над изучением явления электролюминесценции, он натолкнулся на научные работы Лосева тридцатилетней давности. Реакция на эти публикации была следующей: «Его исследование было проведено настолько точно, а его публикации настолько ясны, что сегодня совсем не сложно определить, что же он на самом деле сделал… Его интуитивный выбор и ход эксперимента были просто удивительными»{108}. Лёбнер признал, что когда он и его коллеги в RCA проводили исследования с целью коммерческого применения светодиодов, они «следовали технике Лосева»{109}.

Лосев разработал основы теории увеличения силы тока с помощью кристаллов с точки зрения «проникновения свободных электронов в пласты кристалла со слабой проводимостью». Главное, он сделал карборундовый кристалл с четырьмя электродами. Лосев обратил внимание на то, что при подаче тока на одну пару электродов на другой паре происходит усиление тока. Очень хочется назвать это устройство «транзистором» (этого слова не существовало, когда Лосев проводил свои эксперименты). Он представил результаты своей работы на научной встрече в Ленинграде, позднее опубликовал их в журнале «Вестник электротехнологии»{110}. 56 лет спустя рассудительный восторженный русский ученый-физик написал после прочтения его статьи: «В этом Лосев чрезвычайно близко подошел к созданию транзистора, он обнаружил изменение в проводимости между двумя парами контактов, когда на одну из них подается электрический ток»{111}.

Можно ли считать, что именно Лосев изобрел транзистор? Это было бы не вполне корректно, поскольку работы Лосева носили прикладной характер, он ничего не знал о физической теории, обосновывающей принцип действия транзистора, хотя и обладал удивительной интуицией. Он не мог в полном объеме объяснить того, что он сделал, – такие объяснения появятся гораздо позднее. Для движения вперед Лосеву была необходима помощь физиков-теоретиков и безопасное место для проведения исследований и разработок, где он мог бы полностью протестировать свои идеи и усовершенствовать их. Однако сбыться этому было не суждено по целому ряду причин.

Где Лосев мог бы найти поддерживающую среду, которая была ему необходима? На Западе двумя наиболее возможными вариантами были бы частная компания или научная лаборатория, возможно, в каком-нибудь университете. Лосеву обе эти возможности были недоступны. Он больше не мог продавать свои радиоприемники, к 1930-м годам в Советском Союзе уже не существовало частного промышленного сектора. Авторские свидетельства (часто называемые «патентами»), которые Лосев получил в СССР на свои изобретения, не обеспечивали ему монопольного права с точки зрения их возможного коммерческого использования. Фактически инновации Лосева принадлежали государству, а оно никак их не внедряло.

В советской России в то время существовал свой академический научный истеблишмент, некоторые из исследовательских баз были очень хорошими. Но у Лосева за плечами не было ни университетского диплома, ни научных степеней. (Ведущий российский физик Абрам Иоффе позднее добился присуждения ему, по сути, почетной научной степени, но это произошло только в 1938 году и было недостаточно, чтобы Лосев мог занять должность, которой он заслуживал.) Когда Лосев был вынужден оставить работу в институте, он устроился в одно из медицинских учреждений[28], где его научные изыскания никого не интересовали. С 1935 по 1940 год ему не удалось опубликовать ни одной научной статьи. Хотя Лосев и был талантливым человеком, он не представлял, как продвигать собственные интересы (или, возможно, опасался это делать), и, казалось, с пренебрежением относился к «прикладным исследованиям», хотя именно они удавались ему лучше всего. Он стремился получить работу в каком-нибудь научно-исследовательском институте{112}. Личная жизнь Лосева складывалась неудачно, два его брака распались. Во время Второй мировой войны Лосеву предложили эвакуироваться из блокадного Ленинграда, но он отказался. Лосев умер от голода, ему было 39 лет, и в иных обстоятельствах он мог бы трудиться еще не один десяток лет. Но Лосев не был членом советского научного сообщества и для продолжения исследовательской работы у него не было возможностей.

Лидером российской науки в области полупроводников считался академик Абрам Иоффе, ректор знаменитого Физико-технического института в Ленинграде, который сегодня носит его имя. Институт часто называют колыбелью советской физики. Это было место научного становления многих знаменитых ученых, в том числе лауреатов Нобелевской премии.

Начиная с начала 1930-х годов Иоффе возглавлял отделение института, занимавшееся полупроводниками{113}. После Второй мировой войны Иоффе организовал самостоятельный Институт полупроводников[29]. В СССР это было типичной практикой: как только ученые замечали, что определенная тема начинает интересовать международную научную общественность, организовывался отдельный институт в этой области. Ленинградский физтех был колыбелью порядка десятка таких институтов. В них занимались качественными теоретическими исследованиями, но ученые, работавшие там, не организовали ни одного коммерческого предприятия, которое было бы успешно на международном рынке. Советский режим ценил Иоффе как ученого (он был лауреатом Сталинской премии), но его постоянно сопровождала скрытая критика за то, что из стен его лабораторий выходило крайне мало прикладных разработок, не считая некоторых военных проектов, технологий, имевших коммерческую значимость на мировом рынке.

Эта критика была справедливой. История физики полупроводников полна моментов, когда русские ученые своими исследованиями вносили важный вклад в это направление науки. Когда Джон Бардин, которому вместе с Шокли и Браттейном обычно приписывают изобретение транзистора, в 1960 году посетил Советский Союз, он отмечал: «Мы знакомы с результатами потрясающей работы в области физики твердого тела, которая была проделана в Советском Союзе, знаем имена многих ваших ученых, которые внесли большой вклад в наши знания»{114}. Однако другой аспект – и гораздо более важный с точки зрения влияния на судьбу государства – заключается в том, что в истории промышленных полупроводниковых технологий у России более чем скромная роль. Современная Россия – это гигант теоретической физической мысли, включая физику полупроводников, и в то же время карлик в части высоких промышленных технологий. Трудно найти более наглядный пример пропасти, которая лежит между российскими научными достижениями и промышленными технологиями, чем область полупроводников.

В начале XXI века Физико-технический институт имени А. Ф. Иоффе возглавлял Жорес Алферов, лауреат Нобелевской премии по физике в 2000 году, полученной за развитие полупроводниковых гетероструктур. Несмотря на научное достижение Алферова, Россия продолжает значительно отставать в коммерческом применении транзисторов. Осознавая этот недостаток, российское правительство в 2010 году приняло решение о создании аналога Кремниевой долины – Сколково. В качестве руководителя Научно-консультативного комитета фонда «Сколково» с российской стороны был назначен Жорес Алферов, защитник традиционного формата организации российской науки, в котором центральную роль играют академические институты. Российское правительство могло бы выбрать более подходящую кандидатуру на роль главы консультативного комитета Сколково, чем Алферов, известный консервативными политическими и научными взглядами. Политические взгляды Алферова иллюстрирует его высказывание в июне 2012 года, когда он назвал «современной цивилизованной европейской страной» Республику Беларусь, о которой бывшая госсекретарь США Кондолиза Райс отозвалась как о «последней настоящей диктатуре в сердце Европы»{115}.

Сегодня в числе крупнейших мировых производителей компьютерной техники и чипов нет ни одной российской компании. Электронная промышленность, основанная на транзисторах и получившая распространение во всем мире, является областью, в которой Россия играет удивительно скромную роль.

В противоположность этому в США связи между лабораторными исследованиями в области транзисторов, научными кругами и бизнесом были очень тесными. Об изобретении транзистора объявила Лаборатория Белла, являющаяся частью корпорации AT&T[30], в которой работали Уильям Шокли и Уолтер Браттейн. Несколько американских ученых – пионеров в области исследования транзисторов – были серьезно вовлечены в коммерческое производство. Шокли основал собственную компанию, и хотя она потерпела неудачу на рынке, несколько ее бывших сотрудников создали другие компании, в том числе Intel – одного из лидеров отрасли. Бардин консультировал несколько компаний, в течение многих лет был членом совета директоров Xerox. Пути этих ученых, получивших Нобелевскую премию по физике в 1956 году, позднее разошлись: Шокли раздражал Браттейна и Бардина своими претензиями на первенство. Но каждый из них остался верен союзу академических исследований и частного производства – подходу, который отсутствовал в Советском Союзе.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Уильям Брэдфорд Шокли

Уильям Брэдфорд Шокли (англ.  William Bradford Shockley; 13 февраля 1910 года, Лондон — 12 августа 1989 года, Стэнфорд) — американский физик, исследователь полупроводников, лауреат Нобелевской премии по физике 1956 года. В годы Второй мировой войны Шокли участвовал в создании американской школы исследования операций и в разработке тактики стратегических бомбардировок. В январе 1948 года Шокли изобрёл плоскостной биполярный транзистор, а затем создал научную теорию, объяснявшую его работу. В 1956 году Шокли основал названную его именем лабораторию, которая стала одним из истоков Кремниевой долины.

В личности Шокли сочетались талант теоретика и преподавателя, культ собственного интеллекта и тела, неукротимая тяга к соперничеству и глухота к мнениям и интересам других людей. Психическая неуравновешенность, свойственная Шокли с младенчества, с годами усилилась и стала причиной неудачи в бизнесе. В 1960-е годы Шокли увлёкся идеями евгеники и начал публичную кампанию против «вырождения» американской нации. Его расистские теории, отвергнутые обществом, разрушили научную репутацию Шокли, привели к фактическому изгнанию из научного сообщества.

Происхождение. Детство (1910—1928)

 

Уильям Брэдфорд Шокли родился в необычной семье. Отец и мать Шокли познакомились, когда ему было 52 года, ей 30. Оба получили превосходное для своего времени образование. Уильям Шокли-старший, потомок пилигримов с «Мейфлауэра», сын шкипера-китобоя, окончил Массачусетский технологический институт и сколотил небольшое состояние, работая горным инженером — сначала в Калифорнии, а затем в Китае. В зрелые годы он забросил инженерное дело и занялся спекуляциями на акциях горнорудных компаний. Мать окончила Стэнфордский университет и стала первой в США женщиной — горным инспектором. После свадьбы в январе 1908 года супруги Шокли переехали в Лондон, поближе к биржевым интересам Уильяма Шокли-старшего. Семья вела праздный, богемный образ жизни, и не соглашалась умерить свои расходы даже тогда, когда стало ясно, что бизнес мужа не приносит дохода. Летом 1909 года, когда мать была беременна Уильямом-младшим, Уильяму-старшему пришлось отправиться на заработки в геологоразведочную экспедицию на Амур. Он вернулся в Лондон незадолго до родов, которые оказались неожиданно долгими и тяжёлыми

Шокли родился физически здоровым, но вскоре родители обратили внимание на странности в его умственном и душевном развитии. Подробные дневники, которые вели отец и мать, свидетельствуют о том, что уже в пять месяцев ребёнок произнёс собственное имя, Билли, а в двенадцать месяцев умел считать до четырёх и узнавал буквы алфавит. Одновременно с этим Уильям был склонен к припадкам слепой, неуправляемой агрессии. Он кусал родителей, бился в конвульсиях, однажды сильно ударился головой о чугунную батарею. Он стал опасен, прежде всего для самого себя. Телесные наказания и психологические эксперименты не помогали, наёмные няньки в доме Шокли долго не задерживались, но хуже всего было то, что уверенные в собственном «педагогическом даре» родители не давали Уильяму общаться со своими сверстниками.

В 1913 году семья от безденежья вернулась в США и обосновалась в Калифорнии. Родители долго не желали отдавать сына в школу. Только в восемь лет Уильям пошёл в публичную школу, а год спустя — в дорогую частную «Военную академию Пало-Альто». К удивлению родителей, в закрытом интернате Уильям не только отлично учился, но и неплохо себя вёл. В 1922 родители, планировавшие вновь уехать в Лондон, забрали сына из школы, и только в 1924 году Уильям, пропустив средние классы, вернулся в школу. 18 мая 1927 года он сдал приёмные экзамены в Калифорнийский университет в Лос-Анджелесе. 26 мая того же года Уильям Шокли-старший умер от инсульта, оставив жене и сыну достаточно средств на экономную, но безбедную жизнь.

Университетские годы (1928—1936)

 

К восемнадцати годам Шокли достиг пика физической формы, которую поддерживал постоянными тренировками, и даже снимался в рекламе спортивных тренажёров. Примерно тогда же сформировалась доминирующая черта характера Шокли — неукротимая тяга к соперничеству. Осенью 1928 года Шокли перешёл из университета в Калифорнийский технологический институт — в те годы небольшой колледж, занимавшийся исключительно фундаментальной наукой под руководством нобелевского лауреата Роберта Милликена. Четыре года обучения Шокли в Калтехе совпали с периодом формирования квантовой механики, и именно на ней Шокли и сосредоточился. Учебный план Шокли составил будущий дважды нобелевский лауреат Лайнус Полинг, а наибольшее влияние на Шокли, с его слов, оказали преподаватели теоретической физики Уильям Хаустон[en] и Ричард Толмен.

В 1932 году Шокли поступил в докторантуру Массачусетского технологического института (MIT). Его научными руководителями стали вначале Джон Слейтер, а с 1933 года — ученик Карла Комптона Филипп Морзе. Морзе был не только блестящим преподавателем и организатором, но и человеком со связями — он входил в кружок ведущих инженеров и менеджеров Bell Labs, посещавших вместе подпольные заведения Нью-Йорка. Морзе познакомил Шокли с его будущим шефом Мервином Келли и с Уолтером Браттейном. Тогда же, в августе 1933 года, 23-летний Шокли женился на Джин Альберте Бейли, а в марте 1934 года Джин родила девочку, Аллисон Шокли.

Сверстник и товарищ Шокли по MIT Фредрик Зейтц отмечал, что к 1932 году Шокли развился в блестящего интеллектуала, способного с первой попытки решать сложные научные задачи, но при этом был совершенно не способен к восприятию чужих точек зрения. Уже тогда, по мнению Зейтца, в уме Шокли возникла навязчивая идея «власти избранных», отрицание демократии ради торжества интеллектуальной элиты. Шокли дополнял собственную «интеллектуальную исключительность» ежедневными физическими тренировками, по примеру Морзе занимался альпинизмом и спелеологией.

Весной 1936 года, когда Шокли завершал работу над докторским дипломом, в США продолжалалась Великая депрессия. Университеты прекратили наём новых сотрудников, а Шокли надо было кормить семью. Поэтому, когда Келли предложил Шокли работу в нью-йоркском исследовательском центре Bell Labs с начальной зарплатой 310 долларов в месяц, Шокли немедленно согласился. После защиты диплома Шокли в июне 1936 года вся семья переехала в Нью-Йорк и обосновалась на 17-й улице.

Ранние работы на Bell Labs (1936—1942)

 

Шокли начал работу на Bell Labs в лаборатории вакуумных ламп Клинтона Дэвиссона. Уже в первый год работы у Дэвиссона Шокли опубликовал восемь научных работы и изобрёл устройство для фокусировки лучей в лучевой трубке. Bell Labs была одной большой фабрикой патентов, в которой карьеры сотрудников определялись не столько их вкладом в науку, сколько способностью генерировать патентуемые идеи. В историю же вошли не патенты Шокли, а его короткая статья 1938 года «О токах в проводниках, наведённых движущимся точечным зарядом».

К 1938 году рабочие частоты вакуумных ламп выросли настолько, что периоды колебаний стали сопоставимы с временем пролёта электрона между электродами. Радиотехникам потребовалась новая модель, описывающая не ток электронов от катода к аноду, но ток, наведённый этими электронами на электроды лампы. Традиционный анализ требовал трудоёмкого интегрирования напряжённости поля по теореме Гаусса. По Шокли, этот расчёт можно было заменить простой формулой, не требующей интегрирования. Независимо от Шокли к аналогичному решению пришёл Саймон Рамо[en][29]. После публикации его работы в 1939 году модифицированная формула стала известна как теорема Шокли — Рамо Она оказалась применима не только к вакуумным лампам, но и к емкостям колебательных контуров, к газонаполненным (ионизационные камеры) приборам и полупроводникам (солнечные батареи).

Вторая мировая война (1939—1945)

В межвоенные десятилетия, в эпоху формирования квантовой и ядерной физики, наука резко помолодела. В годы, когда Шокли начинал научную деятельность, считалось, что физики обычно совершают открытия в возрасте до 35 лет. Дирак и Эйнштейн утверждали, что «физик умирает к тридцати годам». Анализ, проведённый в 2011 году, подтвердил, что 31 % нобелевских лауреатов по физике межвоенных лет были награждены за открытия, сделанные в возрасте до 30 лет, 78 % — за открытия, сделанные в возрасте до 40 лет. Возраст интеллектуального расцвета Шокли, с 29 до 35 лет, пришёлся на Вторую мировую войну. Шокли отдал свои лучшие годы не фундаментальной науке, но решению военно-прикладных задач.

Атомный проект

 

См. также: Деление ядра

26 января 1939 года Нильс Бор сделал в Вашингтоне публичное сообщение об открытии деления атомного ядра. Превращение урана, облучённого медленными нейтронами, в изотоп бария, открыли Отто Ган и Фриц Штрассман, а теоретическое объяснение открытия сформулировали Лиза Мейтнер и Отто Фриш. Шокли, Браттейн и Джеймс Фиск посетили семинар Бора в Колумбийском университете и донесли услышанное до руководства Bell Labs, но вряд ли могли рассчитывать, что частный научно-прикладной институт займётся вопросами ядерной физики. Однако в мае 1940 года Келли поручил Шокли и Фиску проработать вопрос о возможности генерации ядерной энергии. Несколько дней спустя Шокли самостоятельно пришёл к идее замедления нейтронов в реакторе, сложенном из слоёв обогащенного урана, графита и воды. Через два месяца Шокли и Фиск доложили Келли о том, что уран действительно может служить источником промышленной энергии, изотопов для «грязных» бомб и о принципиальной возможности создания атомной бомбы.

Сразу после этого доклада Bell Labs прекратила свой ядерный проект — скорее всего, по указке правительства. Доклад Шокли и Фиска, вероятно, был известен британским и канадским ядерщикам, но в самих США его держали в секрете от собственных физиков. Обнародовать свою работу Шокли и Фиск не могли, так как в стране уже действовал мораторий на публикации по ядерной физике. Они подали патентную заявку на разработанную ими схему реактора, а состоявшаяся после войны экспертиза показала, что именно Шокли и Фиск являются авторами первой работоспособной схемы реактора. Со слов Фиска, правительство США решило не допустить того, чтобы стратегически важный патент оказался в частной собственности: правительство надавило на AT&T, и компания тихо отказалась от борьбы за патент на реактор.

Работы на ВМФ США

См. также: Битва за Атлантику (1939—1945)

Весной 1942 года Морзе пригласил, а фактически мобилизовал, Шокли на должность директора по исследованиям недавно созданной группы по противолодочным операциям (англ. Anti-Submarine Warfare Operations Research Group, ASWORG). В течение последующих полутора лет Шокли занимался исследованием операций противолодочных сил и атлантических конвоев. По мнению биографа Шокли Джоэла Шуркина, лето 1942 года стало лучшим периодом в жизни Шокли, за которым последовала необратимая деградация.

Вначале Морзе поручил Шокли разобраться с проблемой неэффективности авиаударов по подводным лодкам. Глубинные бомбы, сбрасываемые с самолётов, на практике были намного менее эффективными, чем те же бомбы, сбрасываемые с надводных кораблей. Несколько дней спустя Шокли нашёл ответ: эсминцы сбрасывали бомбы на подводные цели, самолёты — на надводные, однако взрыватели авиационных глубинных бомб устанавливались на стандартную флотскую глубину срабатывания для подводных целей — 75 футов (25 м). По рекомендации Шокли взрыватели авиационных бомб установили на глубину срабатывания 35 футов, и через два месяца флот сообщил, что эффективность поражения подлодок с воздуха выросла в пять раз. Однако вскоре, когда группа Шокли занялась вопросами поиска подлодок и оценкой эффективности противолодочных радаров, стало ясно, что флотская отчётность недостоверна. Чтобы понять, насколько она недостоверна, физикам и математикам пришлось переселиться на военно-морские базы и летать в Атлантику с боевыми экипажами, одновременно обучая лётчиков новейшей тактике патрулирования.

«Нащупав» реальное положение дел в противолодочной авиации, группа Шокли выполнила два исследования, определившие тактику ВМФ США на заключительном этапе битвы за Атлантику. Во-первых, Шокли доказал, что использование радара повышает вероятность обнаружения подводной лодки в три раза, и сделал вывод о том, что немцы не используют имевшиеся на подводных лодках детекторы радиолокационного излучения. Наибольшую вероятность обнаружения цели, по мнению группы Шокли, имели медленные патрульные самолёты с постоянно включенными радарами, ведущие поиск вдали от берегов США. Флот последовал этой рекомендации, оборудовал все патрульные самолёты радарами и запретил пилотам отключать их. Во-вторых, изучив статистику действий немецкой авиации против атлантических конвоев, группа Шокли сделала вывод о том, что немецкая авиация не использует радары при поиске целей. Как следствие, в условиях ограниченной видимости и в тумане конвои могли не опасаться обнаружения с воздуха.

Группе Шокли довелось делать и нежелательные для ВМФ открытия. Сотрудник Шокли, изучавший эффективность пеленгации радиопередатчиков немецких подлодок, установил, что достижения американских радистов существенно превосходили расчётную точность триангуляции. Когда Морзе доложил о странном выводе руководству ВМФ, тему срочно закрыли: аналитик Шокли случайно вышел на другой, глубоко засекреченный источник информации — взломанные англичанами немецкие шифры.

Работы на ВВС США

См. также: Стратегические бомбардировки в период Второй мировой войны

В течение 1943 года союзники выиграли битву за Атлантику, и в январе 1944 года Шокли перешёл из подчинения ВМФ в группу консультантов стратегической авиации. Весной и летом 1944 года Шокли разрабатывал программу обучения лётчиков навыкам ориентации и бомбометания по индикатору кругового обзора бортового радара. Облетев вдоль и поперёк район учебных полётов в Северной Каролине, Шокли составил карту характерных примет местности и их радиолокационных профилей, по которым тренировали лётчиков дальней авиации. Обучение по программе Шокли занимало 85 лётных часов, по окончанию программы бомбардиры должны были укладывать бомбы в радиусе 500 м (1700 футов) от расчётной цели — ночью, со средних высот на крейсерской скорости. Промахи обычно свидетельствовали не об ошибках лётчиков, а о неточности радиолокационных карт.

В сентябре 1944 — феврале 1945 года Шокли предпринял уникальное для того времени кругосветное путешествие. Он посетил коллег в Англии, провёл несколько недель на авиабазах в Индии, а затем вылетел на захваченный у японцев Сайпан для оценки боевой эффективности бомбардировок Японии новейшими B-29. Январь 1945 года Шокли провёл на Цейлоне, составляя радиолокационные карты для налётов на Осаку и Нагою. В марте 1945 года эти карты пошли в дело. По мнению командующего ВВС генерала Арнолда, неожиданно раннее (2 сентября 1945 года) окончание войны было, в том числе, личной заслугой Шокли.

В феврале 1945 года по инициативе Арнолда вернувшийся в США Шокли стал советником военного министра и сосредоточился на оценке эффективности стратегических бомбардировок Германии и Японии. Шокли придерживался мнения о том, что реальная эффективность бомбардировок Германии была меньше, чем признавалось официально, но, в отличие от своего британского учителя и коллеги Патрика Блэкетта, Шокли не отрицал целесообразности этих бомбардировок. Эффективность налётов на Японию была намного ниже, и Шокли рекомендовал «изучить альтернативы». Неизвестно, имел ли Шокли в виду атомные бомбардировки, знал ли он о действительном состоянии Манхэттенского проекта — но о том, что такие работы ведутся, он не мог не знать. Уже после Хиросимы военные поручили Шокли оценить, насколько Советский Союз отставал от США в разработке ядерного оружия. Шокли дал пессимистический ответ: «на три года». В действительности СССР испытал первую атомную бомбу на четыре года позже США, 29 августа 1949 года.

Изобретение транзистора (1946—1950)

Война изменила отношение Шокли к собственному месту в науке. Шокли навсегда отошёл от чистой науки, сосредоточившись на прикладных, практических задачах. Он сохранил дар теоретика, но теория интересовала его исключительно как средство, ведущее к практической цели — созданию полупроводниковых приборов. Война отрицательно повлияла на психику Шокли, его брак с Джин Бейли был близок к распаду. В 1942 и 1947 годах Джин родила Шокли двух сыновей, но к концу войны супругов не связывало ничего, кроме ответственности за детей. 6 ноября 1943 года, во время одного из редких отпусков, Шокли предпринял неудачную попытку застрелиться. Поводы к самоубийству, причины глубокой депрессии Шокли в этот день остались неизвестны. Шокли никогда более не предпринимал попыток самоубийстваx: вероятно, он решил, что судьба дала ему второй шанс. В бога Шокли не верил. В первые два-три года после войны Шокли, со слов очевидцев, вёл себя безупречно, но в декабре 1947 года в его жизни произошёл другой кризис. Изобретение точечного транзистора, в котором Шокли не принимал участия, побудило Шокли начать теоретическую проработку гипотетического плоскостного транзистора — работу, которая принесла ему Нобелевскую премию.

Транзистор Бардина и Браттейна

Весной 1945 года Шокли вернулся в Bell Labs и собрал рабочую группу по разработке полупроводниковых приборов. В сентябре 1945 года, основываясь на работах Карла Ларка-Хоровица, сузил выбор перспективных полупроводников до двух — германия и кремния. В январе 1946 года Шокли задал единственно возможное, как тогда казалось, направление поиска — разработку гипотетического полевого транзистора, прибора, в котором внешнее электростатическое поле затвора управляет током в массиве полупроводника. По всем расчётам, такой прибор должен был работать, но эксперимент опроверг надежды Шокли. Все 34 сотрудника лаборатории Шокли сосредоточились на одной цели — выяснение причин «одной из величайших неудач в истории науки»[66]. В октябре 1945 года к работе присоединился блестящий теоретик Джон Бардин[66]. 19 марта 1946 года Бардин впервые объяснил произошедшее в терминах теории поверхностных состояний[67], а в следующие несколько месяцев Бардин и Браттейн экспериментально подтвердили эту гипотезу[68]. Шокли был раздосадован: до войны он сам занимался поверхностными состояниями, и должен был бы учесть их — но не сделал этого[69]. Он устранился от работы над «полевым транзисторов», а Бардин, Браттейн и их помощники продолжили опыты, с каждым шагом отдаляясь от направления, заданного Шокли[70][71]. Шокли проявил интерес к их работам только в октябре-ноябре 1947 года, но по-прежнему не принимал в них активного участия[72][73].

16 декабря 1947 года Браттейн собрал первый работоспособный точечный транзистор, а 23 декабря продемонстрировал руководству Bell Labs, в том числе Шокли, транзисторный усилитель. Рано утром 25 декабря над Нью-Джерси начался обильный снегопад, сделавший дороги непроходимыми, но Шокли всё же сумел добраться до лаборатории, чтобы ещё раз посмотреть на установку Браттейна. Он понял, что упустил, возможно, главное открытие своей жизни. Патентные эксперты компании подтвердили, что все личные права на изобретение принадлежат Бардину и Браттейну, но не Шокли. Со слов Браттейна, Шокли попытался торпедировать их патентную заявку: «Он позвонил по очереди Бардину и мне и … и заявил, что иногда люди, выполняющие работу, не получают того, что им причитается. Он считал, что в состоянии [сам, единолично] запатентовать всё, начиная с полевого эффекта…». Браттейн отшутился: «Славы хватит на всех», Бардин затаил обиду. Взаимное недоверие, порождённое минутной паникой Шокли, стало началом конца лаборатории Шокли в Bell Labs. Идея Шокли «запатентовать всё» провалилась, так как патент на принцип действия полевого транзистора уже принадлежал Юлиусу Лилиенфельду.

Существуют косвенные признаки того, что в начале 1948 года Шокли угрожал компании судебным иском, если та не сделает его соавтором заявки. Скорее всего, переговоры окончились компромиссом: авторство изобретения осталось за Бардином и Браттейном, но в публичных заявлениях Bell Labs изобретателями назывались трое: Бардин, Браттейн и Шокли. Внутренняя инструкция Bell Labs предписывала, чтобы на всех фото для прессы Бардин, Браттейн и Шокли появлялись вместе, как равные соавторы. На первой публичной демонстрации транзистора именно Шокли отвечал на вопросы журналистов, став на время лицом компании. Так, ещё до присуждения Нобелевской премии 1956 года, в американском обществе сложился миф о «трёх изобретателях» первого транзистора, и миф о Шокли как о «первом среди равных»

Транзистор Шокли

Главный творческий прорыв состоялся не тогда, когда я пытался изобрести транзистор, а когда я конструировал установку для экспериментов с поверхностными явлениями в точечных транзисторах. Внезапно до меня дошло, что экспериментальная структура и есть транзистор. Именно она и была запатентована как плоскостной транзистор. Я был удручён тем, что, зная всё необходимое для этого изобретения, я целый год не мог соединить части целого — до тех пор, пока не появился раздражитель в лице точечного транзистора.  — Уильям Шокли, 1972

 

Ревность к успеху коллег и озлобление собственными ошибками подстегнули волю Шокли[. 25 декабря 1947, вернувшись домой, Шокли мысленно вернулся к уже посещавшей его идее создания монолитного транзистора. Точечные контакты транзистора Бардина и Браттейна, как справедливо полагал Шокли, были нестабильны и ненадёжны. Взамен, решил Шокли, следовало буквально загнать эти контакты в толщу проводника. В последующие две недели, заполненные научными совещаниями в Нью-Йорке и Чикаго, Шокли мысленно перебрал ряд конфигураций гипотетического транзистора, но ни одна из них не выдержала проверку расчётами. Среди отвергнутых идей была и трёхслойная конфигурация, придуманная Шокли 1 января 1948 года в номере чикагского отеля «Бисмарк», и ставшая впоследствии известная как плоскостной или биполярный транзистор.

23 января 1948 Шокли понял, что, возможно, допустил ошибку. Его анализ не учитывал роли неосновных носителей, также как не учитывал их Бардин. Возможно, подумал Шокли, что инжекция неосновных носителей в полупроводник (дырок в полупроводник n-типа или электронов в полупроводник p-типа) запускает в нём каскад образований электронно-дырочных па. Если это верно, то трёхслойная полупроводниковая структура может усиливать ток. Шокли не сразу осознал значение этого вывода, да и не имели средств экспериментально проверить его. Он продолжал работать в одиночку, скрывая свои работы от Бардина. 18 февраля в Bell Labs состоялся научный семинар, на котором Джон Шайв продемонстрировал вариант точечного транзистора, контакты которого были расположены на противоположных сторонах германиевой пластинки. Между прототипом Шайва и гипотетическим трёхслойным транзистором Шокли был всего один шаг. Опасаясь, что Бардин и Браттейн сумеют сделать его, Шокли решил раскрыть свои карты. Он вышел к доске и сделал короткий, убедительный доклад-экспромт о своей концепции биполярного транзистора. Все присутствующие, включая Бардина, были поражены красотой идеи. Браттейн с трудом скрыл возмущение тем, что Шокли фактически противопоставил себя коллективу, работая дома, в тайне от коллег.

Шокли поручил изготовление опытной транзисторной структуры технологу Моргану Спарксу. Спаркс стал «руками» Шокли, так же как Браттейн был «руками» Бардина. Работы шли медленно: Bell Labs бросила все силы на доводку точечного транзистора, а работы по технологиям плавки, очистки и легирования полупроводников финансировались по остаточному принципу. Шокли был по-прежнему загружен заказами Пентагона и не мог сосредоточиться на технологических проблемах, а Бардина он к «плоскостной» теме не допускал[95]. Только год спустя, 7 апреля 1949 года, Спаркс, Гордон Тил и Боб Микуляк вырастили в тигле первую трёхслойную p-n-p-структуру для демонстрации «транзисторного эффекта»[96]. 16-18 июня 1949 года Шокли, Браттейн, Пирсон и Спаркс обнародовали проверенное практикой изобретение, а в январе 1950 года Спаркс и Гордон Тил сумели изготовить трёхслойную структуру с относительно тонким слоем базы, пригодную для изготовления радиочастотных транзисторов[97]. Год спустя выращенный по методу Тила и Спаркса плоскостной, или биполярный, транзистор Шокли пошёл в серию и полностью вытеснил с рынка точечный транзистор Бардина и Браттейна.

В 1949—1950 годах, одновременно с работой над плоскостным транзистором, Шокли писал свою первую и, как оказалось, единственную книгу[98]. Книга объёмом в 551 страницу была впервые издана в Нью-Йорке в ноябре 1950 года под названием «Электроны и дырки в полупроводниках»[98][99] (англ. Electrons and holes in semiconductors, в русском переводе 1953 года «Теория электронных полупроводников: Приложения к теории транзисторов»[100])). Шокли собирался назвать её «Дырки и электроны в полупроводниках», но редколлегия издательства предпочла переставить слова. Книга Шокли опередила развитие технологии примерно на пять лет: описанные в ней биполярные транзисторы существовали только в виде опытных образцов[96]. По ней обучались студенты практически всех университетов англоязычных стран[96], она, по мнению Жореса Алфёрова, стала «настольной книгой по обе стороны Атлантического океана»[101], а по мнению Джона Молла[en] — «библией для целого поколения исследователей и преподавателей»[102]. Экспоненциальное уравнение вольт-амперной характеристики полупроводникового диода стало известна как «формула диода Шокли», а модель рекомбинации носителей p-n-перехода, дополненная в 1952—1954 годах Робертом Холлом[en] и коллегой Шокли Уильямом Ридом — как «модель Шокли — Рида — Холла» (сокращённо ШРХ)[103].

Вторая половина жизни (1950—1989)

Кризис среднего возраста (1950—1955)

События декабря 1947 года, по мнению Зейтца, запустили необратимый процесс деградации личности Шокли К 1950 году он переживал кризис среднего возраста[105]. Он редко появлялся в семье, проводя большую часть времени в разъездах. Он отказался от предложения Ванневара Буша перейти на постоянную работу в Пентагон, а работа на Bell Labs его не удовлетворяла[106]. Бывшие коллеги и сверстники давно получили повышение, а Шокли досталась почётная, но не влиятельная, должность директора по найму новых сотрудников[107]. Руководители Bell Labs ценили способность Шокли распознавать таланты, но они также знали, что Шокли не способен руководить коллективом, и не допускали его до командных должностей[108]. Бездушие и своеволие Шокли дорого обошлись компании: он выжил из Bell Labs не только Бардина, но и десятки менее известных специалистов, искренне считая, что они не удовлетворяют его стандартам Когда Шокли объявил о предстоящем уходе из Bell Labs, руководство института вздохнуло с облегчением, а Мервин Келли взялся лично помогать Шокли в поиске нового места. Калифорнийский университет в Беркли и Йельский университет предложили Шокли кафедры, но карьера профессора его не интересовала[110]. Шокли предвидел, что будущее — за частными бизнесом, и искал инвесторов, согласных профинансировать его собственное предприятие[110]. Последним вкладом Шокли в патентную сокровищницу Bell Labs стало изобретение в начале 1955 года (совместно c Джорджем Дэйси и Чарлзом Ли) первой технологии массового производства диффузионных меза-транзисторов[111]. 8 сентября 1955 года Шокли подал Келли заявление об увольнении[112].

В феврале 1953 года медики диагностировали у Джин Шокли рак матки[113]. Шокли по-своему принял участие в лечение нелюбимой жены: операции и облучения изотопами были для него этапами очередного, непредсказуемого эксперимента[114]. В июне 1953 года, когда Джин лежала в радиологическом отделении нью-йоркской больницы, Шокли прямо в палате объявил ей, что уходит из семьи[113]. Поступок, шокировавший коллег Шокли, не имел очевидных причин. Других женщин у Шокли не было. Возможно, что Шокли хладнокровно спланировал собственную жизнь в старости, когда ему самому мог потребоваться медицинский уход: больной жене в этой схеме места не нашлось[115]. В сентябре-октябре 1953 года, во время командировки в Париж, Шокли завёл роман с некоей француженкой, но после возвращения в США его настигла глубокая депрессия[116]. Дневники Шокли за 1954 год и первую половину 1955 года заполнены свидетельствами душевного надрыва: Шокли, вероятно, впервые в жизни, попытался заглянуть в глубину собственной души и понял, что вряд ли выживет в одиночку[117].

Весной 1954 года друзья-альпинисты познакомили Шокли с тридцатидевятилетней Эмми Леннинг[118]. Леннинг была высококвалифицированной медсестрой психиатрического профиля, преподавателем и соавтором учебника по уходу за душевнобольными[119]. Она, к удивлению Шокли, владела основами исследования операций, но более всего Шокли поразило её понимание человеческой души[120]. После полутора лет переписки и редких встреч (Леннинг в 1955 году преподавала в Огайо, а Шокли в Стэнфорде) случайно начавшийся роман перерос во взаимную любовь[121]. 23 ноября 1955 года Шокли женился во второй раз. Когда студенты Леннинг спросили Шокли, чем же она так привлекла его, Шокли пытался отшутиться, а затем сказал: «Потому, что она понимает людей лучше, чем кто-либо другой»[122]. Леннинг стала не просто спутницей жизни Шокли, но его постоянным секретарём, советником, а потом сиделкой[123]. Несмотря на психологическую подготовку, клинический опыт и житейскую мудрость, она до конца жизни закрывала глаза на пороки Шокли, искренне считая его «душевным, отзывчивым и восприимчивым» человеком[124].

Катастрофа 1961 года

После ухода «восьмёрки» Шокли пришёл к заключению, что в 1956 он нанял «не тот сорт людей»[150]. Он скорректировал свои требования к кандидатам, на этот раз поставив на первое место их готовность выполнять приказы[151]. Таких идеальных, послушных, исполнителей он нашёл в Европе[151]. Ядро нового коллектива Shockley составили люди с немецкими именами — Ганс Квиссер[en], Курт Хюбнер, Адольф Гётцбергер и другие. Им, в отличие от «вероломной восьмёрки», удалось сработаться с Шокли — об этом свидетельствуют и воспоминания сотрудников Шокли этого периода, и созданные на фирме Шокли научные работы, например, выведенная в 1961 году фундаментальная формула Шокли — Квиссера[en], описывающая предельную эффективность солнечных батарей. Лаборатория существовала на государственные гранты, занимаясь в основном исследованиями надёжности полупроводников[152]. Заработать прибыль на науке Шокли не мог, да и не стремился. К 1960 году штат лаборатории вырос до 110 человек, а убыток — до одного миллиона долларов в год[151]. Разочарованный в Шокли Бекманн продал лабораторию компании Clevite. По мнению Forbes, Бекманн подобно кукушке подбросил покупателю отравленное «яйцо», но время показало, что это «яйцо» было бесплодным[151]. Названная именем Шокли лаборатория просуществовала ещё шесть лет, но так и не принесла прибыль ни одному из её владельцев[153].

23 июля[154] 1961 года Шокли, Леннинг и тринадцатилетний сын Шокли Ричард разбились в автокатастрофе[155][156]. Ричард, вылетевший при ударе из машины, почти не пострадал, а Шокли и Леннинг надолго выбыли из строя[155]. После месяца, проведённого на больничной койке, Шокли почти год ходил на костылях и так и не смог полностью восстановиться физически[157]. По мнению Зейтца, опубликованному в Nature после смерти Шокли, именно полученные в 1961 году повреждения головного мозга обусловили странности в поведении Шокли и его навязчивые идеи о вырождении человечества, впервые проявившиеся в 1963 году[158].

В 1962—1965 годах Шокли постепенно удалился от дел Shockley Laboratories. В августе 1963 года он стал профессором физического факультета в Стэнфорде[159][154]. Научные интересы Шокли (физика полупроводников) почти не пересекались с исследовательской программой физфака (исследования атомного ядра), поэтому никто не возражал, когда в 1965 году личный друг Шокли профессор Джон Линвилл[en] организовал перевод Шокли на инженерный факультет, на именную профессорскую ставку, основанную на пожертвование А.  М. Понятова[159]. По соглашению с деканом факультета, обязательная учебная нагрузка Шокли была ограничена одним днём в неделю[159]. В остальное время Шокли был вправе заниматься делами Shockley Laboratories и консультировать студентов-дипломников и докторантов[159]. Шокли, справедливо считавший себя отличным наставником, немедленно согласился[159]. К концу 1965 года он полностью сосредоточился на преподавании, а в 1966 году переселился в «профессорское гетто» Стэнфорда — эксклюзивный квартал, в котором жили управляющие и старшие профессора университета[160].

Полемика о евгенике (1963—1969)

В мае 1963 году Шокли, отвечая на вопрос журналиста о возможности ядерной войны, неожиданно заявил, что цивилизованный мир катится в сторону, противоположную эволюции: «компетентные люди» ограничивают рождаемость, а «некомпетентные» активно плодятся[161]. Из этого, со слов Шокли, экспромта родилась идея противодействия «вырождению нации»[162]. В январе 1965 года Шокли впервые обобщил свою позицию в публичной лекции: человечеству угрожают три катастрофы: «ядерная война, голод и генетическое угасание человеческой расы, отказавшейся от эволюционной отбраковки наименее жизнеспособных особей»[163]. Шокли утверждал, что интеллект наследуется, но не умножается, потому что «безответственные личности производят почти в четыре раза больше потомков, чем более ответственные … Эволюция повернула вспять»[164]. Безответственных, заявил Шокли, следует стерилизовать или направлять на принудительный аборт[165]. В интервью U.S. News & World Report в июле 1965 году Шокли впервые коснулся расового вопроса: «Да, есть выдающиеся негры, которыми мы по праву гордимся, но неужели и они — выходцы из многодетных семей? Что же происходит [с чернокожим населением] в целом? Мы этого не знаем»[166]. Шокли, блестяще владевший статистикой, был уверен, что ответы на эти вопросы сводятся к простому расчёту вероятностей[165].

После перепечатки этой публикации в университетском журнале коллега Шокли по Стэнфорду, нобелевский лауреат Джошуа Ледерберг организовал кампанию против «лженаучного оправдания классовой и расовой предвзятости» Шокли[167]. Никто не отрицал утверждений Шокли о том, что научная проработка вопросов наследственности человека крайне слаба, никто не отрицал пороков системы социального обеспечения, но, по мнению Ледерберга, сама постановка вопроса была безответственной, провокационной и «тоталитарной» — а потому Шокли следовало замолчать[168]. Критика, наполненная ярлыками вроде «лженаука», «сфабрикованный», «шулерство»[169], лишь укрепила Шокли в собственном мнении и в существовании влиятельных сил, препятствущих научному изучению наследственности. Критики недооценили целеустремлённость, трудолюбие и научный кругозор Шокли. За год он основательно изучил весь корпус работ по медицинской генетике и социологии, и в октябре 1966 детально изложил свою позицию на годовом собрании Национальной академии наук[170]. Председатель академии, старый товарищ Шокли Фредерик Зейтц осторожно поддержал его, а академики-генетики высказались не только против выводов Шокли, но и против финансирования работ по «наследованию сложных эмоциональных и интеллектуальных факторов»[171].

В январе 1967 года полемика вокруг идей Шокли выплеснулась в газеты[172]. За «письмами в редакцию» Шокли и его противников следовали демонстрации протеста, подстёгивавшие интерес прессы, а затем Шокли развернул кампанию публичных дебатов[173]. Все эти встречи проходили примерно по одному сценарию: Шокли проигрывал оппонентам в аргументах, но оставался до конца хладнокровным, а оппоненты срывались на оскорбления — в результате, последнее слово всегда оставалось за Шокли[173]. В январе 1968 года Шокли нашёл влиятельного, активного союзника — профессора психологии университета в Беркли Артура Дженсена[en]. Весной 1969 года Дженсен опубликовал в Harvard Educational Review статью «Насколько мы можем повысить IQ и успеваемость в школе?»[174]. Отвечая на поставленный в названии вопрос, Дженсен утверждал, что детям с низким IQ свойственны генетические и социальные пороки, делающие обучение бесперспективным[175]. Также, как и Шокли, Дженсен немедленно попал под огонь коллег и общественных активистов, однако, в отличие от физика Шокли, психолог Дженсен «играл на своём поле»[175]. Дженсен временно вернул дебаты в русло научной дискуссии в среде профессионалов, но затем в конфликт вступили радикально настроенные студенты[176]. Кампания Шокли и Дженсена совпала по времени со студенческими протестами 1969 года против войны во Вьетнаме, которые в Стэнфорде были особенно ожесточёнными[177]. Шокли был вынужден временно покинуть Стэнфорд, а его запланированные выступления в других городах были одно за другим отменены: организаторы опасались массовых беспорядков против «реакционного» лектора[17

 

Маргинализация (1969—1986)

 

Шокли забросил преподавание физики, взамен предложив руководству Стэнфорда собственную программу по исследованию наследственности[178]. Спонсорами програмы стали реакционный Pioneer Fund[en], его основатель Уиклифф Дрейпер[en] и управляющий Гарри Уайр[en][179]. В 1969—1976 они перечислили 175 тысяч долларов на гранты Шокли, и ещё 55 тысяч — на счета учреждённого Шокли фонда[180], но этих средств не хватало[181]. Национальная академия наук отказала Шокли в поддержке, а в 1971 году запретила своим членам обращаться в академию в поисках финансирования — имея в виду именно Шокли[182]. После этого решения Шокли разорвал отношения с Зейтцем, обвинил его в «лысенковщине» и до самой смерти не мог простить ему «измену»[183]. Отказ в финансировании не помешал Шокли сохранить за собой звание профессора в Стэнфорде и два личных кабинета в университете, остававшиеся в его распоряжении даже после ухода на пенсию в 1975 году (обычно почётные профессора сохраняли за собой один пожизненный кабинет)[123].

В начале 1972 года на Шокли обрушился гнев чернокожей части Стэнфорда[184]. В январе-феврале 1972 года вандалы разграбили один из кабинетов Шокли и его автомобиль[184]. Затем чернокожие студенты потребовали собрать совет чернокожих же преподавателей, чтобы изгнать Шокли из университета[184]. Ректорат Стэнфорда и ACLU осторожно поддержали Шокли, но за пределами университета ему уже не давали слова[185]. Йельский и Гарвардский университеты отменили запланированные дебаты с участием Шокли, Лидский университет отобрал у Шокли уже выданный почётный докторский диплом[186].

В 1980 году Роберт Грэм[en] основал в окрестностях Сан-Диего «банк спермы гениев»[187][188]. К узкому кругу (три человека) Нобелевских лауреатов, якобы сдавших в «банк» сперму ради улучшения человеческой породы, примкнул и Шокли[189]. Рассчитывая вновь оказаться в центре внимания, Шокли открыто заявил о «мастурбации в пробирку», но реакция прессы оказалась сдержанно-презрительной[190]. К этому времени Шокли окончательно испортил отношения с журналистами. Вероятно, единственным журналистом, которому Шокли доверял, был чернокожий Сил Джонс, писавший на медицинский темы[191]. В 1974 году Джонс опубликовал в Modern Medicine детальную статью о методах, применявшихся Дженсеном и Шокли[192]. Шокли был приятно удивлён полнотой статьи и компетентностью её автора, которого он искренне считал «исключением из правил», и продолжил сотрудничество с Джонсом. В августе 1980 года Playboy опубликовал пространное интервью, взятое Джонсом у Шокли — возможно, самое скандальное и самое откровенное интервью для каждого из участников[193]. Большинство вопросов и ответов так или иначе касались вопросов расы и расизма:

Шокли: … Люди, утверждающие, что моя риторика — это расизм, выдают желаемое за действительное. Ни в моих статьях, ни в устных выступлениях нет никакого расизма. Джонс: То есть вы просто считает, что белая раса интеллектуально превосходит чёрную? Шокли: Статистически, да. Но не в частных случаях.[194]

Скандал вызвали не эти, уже приевшиеся, слова о наследственности и статистике, а откровения Шокли о собственных детях и о первой жене:

Сравнительно с моими [интеллектуальными] способностями, мои дети — значительный регресс (англ. regression). Моя первая жена, мать моих детей, никогда не достигла такого образовательного уровня, которого достиг я … младший сын [Ричард Шокли] добился в физике степени доктора, но я думаю, что в некотором смысле его выбор был ошибочным: он вряд ли когда-либо достигнет высот, к которым его обязывает его фамилия…

Такого унижения собственных детей, а не абстрактных статистических единиц, публика Шокли не простила. Шокли пытался объяснить, что под «регрессом» он имел в виду статистическую регрессию, но его уже никто не слушал[196]. Публика считала его выжившим из ума маргиналом, «безумным профессором», «доктором бип-бип». В 1981 году Шокли подал в суд на журналиста, якобы исказившего его в газете его высказывания. Суд оценил репутацию Шокли в один доллар[198]. Пять лет спустя, после поездки в ЮАР, единственное место в мире, где Шокли ещё давали слово, он окончательно стал персоной нон грата в академической среде США.

Реальный вклад Шокли в изучение наследственности человека оказался скудным. Шокли не проводил оригинальные исследования, но лишь обобщал уже собранные массивы информации. По мнению Дженсена, основной заслугой Шокли было то, что, приняв на себя огонь критики, Шокли отвёл его от самого Дженсена, Ричарда Хернстина[en] и их коллег.

Смерть

В 1987 году медики выявили у Шокли рак простаты и назначили ему консервативную лучевую терапию. Вскоре Шокли начал испытытывать трудности при ходьбе, а затем мучительные боли во всём теле: рак метастатировал в кости. В 1988 году Шокли окончательно слёг. Эмми перевезла его в хоспис и переехала туда сама. Последние месяцы жизни Шокли провёл в полусумеречном состоянии на морфиновой капельнице. Со слов Эмми Шокли, воспроизведённых в некрологе от имени Стэнфордского университета, ещё за несколько дней до смерти Шокли продолжал работу по теме евгеники, которую считал более важной, чем его работы по физике.

Род Шокли пресёкся: у него было трое детей, но лишь одна внучка, выросшая в Японии дочь Ричарда Шокли. Дети Шокли узнали о смерти отца из газет: Шокли запретил жене сообщать что-либо его детям не только при его жизни, но даже после смерти, а Эмми не смела нарушить волю мужа. Эмми Шокли пережила мужа на семнадцать лет. Она до самой смерти поддерживала дом в таком состоянии, в каком его оставил Шокли, и только в 1996 году передала домашний архив Шокли Стэнфордскому университету. Эмми Леннинг Шокли завещала городу Оберн принадлежавший ей участок леса в 28 акров, при условии, что нём будет учреждён «Мемориальный парк нобелевского лауреата Уильяма Б. Шокли и его супруги Эмми Л. Шокли». В марте 2009 года муниципалитет решил принять подарок, но NAACP и ACLU выразили протест: «это [решение] оскорбительно для цветных людей и для всех жителей округа с IQ ниже ста»

 

Изобретения Алфёрова — на каждом шагу

Академик Жорес Алферов, 1983 год. Фото: ITAR-TASS

У каждого современного человека в кармане лежит сотовый телефон. Он ездит по навигатору, пользуется Интернетом, расплачивается пластиковой картой. И даже не догадывается, что всё это стало возможным благодаря изобретениям Жореса Алфёрова.

Славное время

Ему повезло начать свою научную работу в легендарную у физиков эпоху зарождения «эры полупроводников». Эти материалы начали изучать ещё в 30-е годы прошлого века, но настоящий бум, сопровождавшийся потрясающими научными открытиями, случился как раз в 50-60-е. И одним из тех, кто добился исключительных результатов, был Алфёров.

Свою первую награду — орден «Знак Почёта» — он получил в 1959 году за германиевые силовые выпрямители тока для подводных лодок. Но затем он увлёкся не простыми полупроводниками, а многокомпонентными — их свойства открывали фантастические перспективы. Жорес Алфёров стал изучать полупроводниковые гетероструктуры — две или больше тонких плёнок, состоящих из близких по параметрам кристаллической решётки веществ, выращенных друг на друге.

Меняя состав веществ, удавалось получить структуры с заданными физическими свойствами. Этой темой занимались во всём мире, но именно группа Жореса Алфёрова сумела разработать промышленную технологию выращивания гетероструктур.

Спасибо за ГЛОНАСС

В 1963 году он одним из первых на планете создал полупроводниковый лазер, который, правда, работал только при сверхнизких температурах жидкого азота. Но спустя шесть лет прибор уже мог работать при комнатной температуре — и тут первенство принадлежит исключительно команде Алфёрова. Этот лазер сейчас используется повсюду: для записи и воспроизведения компакт-дисков, для считывания штрих-кода на кассах в магазинах, для передачи сигнала по оптоволокну — это позволяет охватить весь мир сетью Интернет.

Именно за создание гетероструктур Жорес Алфёров вместе с немцем Гербертом Крёмером и получил в 2000 году Нобелевскую премию по физике. Фото: CG/FMS

Гетероструктуры, разработанные Жоресом Алфёровым, применяются в мобильных телефонах — из них состоит сверхвысокочастотный усилитель сигнала, без которого сотовая связь невозможна. А ещё — светодиоды и фотодиоды, освещающие наши дома, используемые в светофорах и фарах автомобилей. Быстрые диоды и быстрые транзисторы, которые нужны в спутниковой радиосвязи — благодаря им работают в том числе GPS и ГЛОНАСС. ИК-порт и технология «Блю рей» — это тоже гетероструктуры. И, наконец, солнечные батареи — от маленьких в детских игрушках до огромных на космических станциях.

Именно за создание гетероструктур, применяемых в высокочастотных схемах и оптоэлектронике, Алфёров вместе с немцем Гербертом Крёмером и получил в 2000 году Нобелевскую премию по физике.

Физико-технический институт имени А. Ф. Иоффе. Академик Жорес Алферов (в центре) среди научных сотрудников одной из лабораторий. Фото: Юрий Белинский /ТАСС

На этом учёный не успокоился. Последние десятилетия он посвятил созданию гетероструктур для солнечных батарей нового поколения. Экспериментальные образцы уже обладают рекордным КПД, но теперь нужно изобрести технологию, пригодную для массового производства.

К сожалению, ученики Жореса Алфёрова будут биться над этой проблемой уже без своего великого учителя. Но можно не сомневаться, они решат задачку. И тогда электричество, произведённое из света, заменит атомную и углеводородную энергетику и войдёт в каждый дом. Подобный прорыв наверняка будет отмечен Нобелевской премией — и тот, кто её получит, обязательно в своей Нобелевской лекции не раз помянет Жореса Алфёрова добрым словом.

Забытый день рождения ЭВМ. 4 декабря 1948 года в СССР была подана заявка на изобретение цифровой электронно-вычислительной машины

Ровно 70 лет назад Башир Рамеев и Исаак Брук представили проект цифровой вычислительной машины, на его основе подали заявку на изобретение и к 16 февраля 1950 года получили авторское свидетельство на это изобретение (см фото). Проект поражает любого читателя и сегодня: он написан вполне современным языком и явно свидетельствует об изрядной проницательности и дальновидности его авторов. Что очень важно, несмотря на объективные сложности, предложенная ЭВМ не осталась на бумаге, как очень многие другие заявки: в 1952 году на ней уже начали выполнять расчеты. Но давайте же обо всем по порядку.

Би-Би-Си, инженер-«самоучка» и Исаак Брук

В 1947 году западные радиостанции в СССР еще не глушились. Поэтому Башир Рамеев, недоучившийся студент МЭИ (был выгнан в 1938 году как сын «врага народа»), периодически слушал Би-Би-Си. И однажды услышал передачу о вычислительной машине ЭНИАК — первом цифровом компьютере, созданном в США к концу 1945 года. Загоревшись идеей, он обратился с ней к Исааку Бруку, член-корреспонденту Академии наук, и в мае 1948 года был принят инженером-конструктором в Лабораторию электросистем Энергетического института академии. Вскоре он и Брук совместно представили необычный проект программируемого компьютера.

Чтобы понять его своеобразие, стоит вспомнить, что собой представляли первые западные компьютеры. Тот же ЭНИАК (ENIAC) весил 27 тонн и содержал 17 468 электронных ламп. Каждую неделю две-три из них обязательно сгорали, останавливая работу машины. Гарантированное бесперебойное время ее работы было равно всего лишь 20 часам, поэтому слишком длинные вычисления было просто невозможно довести до конца. Половину времени ЭНИАК вообще не мог работать: искали (кстати, непростое дело) и меняли сгоревшие лампы.

ENIAC, вторая половина 40-х годов

Поэтому в описании проекта Рамеева и Брука недаром делается упор на следующее: «замена электронных ламп… значительно упрощает конструкцию,  увеличивает надежность и долговечность, улучшает эксплуатационные качества машины.  Особенно перспективным… является применение кристаллических диодов [полупроводниковых — А.Б.]…  Миниатюрные размеры кристаллических диодов, их пригодность для очень высоких частот, отсутствие накаленного катода, с которым связаны ограниченный срок службы и большой расход энергии…  позволит осуществить в высшей степени компактные и дешевые вычислительные блоки, годные не только для стационарных, но и для передвижных устройств». По тем временам это было революционное предложение: 70 процентов электронных ламп будущего компьютера предлагалось заменить на полупроводниковые диоды.

Диод — это электронный элемент, обладающий различной проводимостью в зависимости от направления прикладываемого к нему электрического тока.

Если напряжение приложено к диоду со стороны одного из двух его электродов, то ток течет через него, а если со стороны иного электрода — диод закрыт, ток через него почти не течет. Полупроводниковый диод, предложенный Рамеевым и Бруком как заменитель ламп, отличался от электровакуумных аналогов в лучшую сторону тем, что его, в отличие от лампы, для начала работы не надо греть, что снижает как расход энергии, так и вероятность деградации и выхода из строя от длительного нагрева.

Член-корреспондент АН СССР Исаак Брук, 1957 год

Увы, дальше начались сложности. Рамеев в 1949 году был призван в армию, и Брук остался без человека, умеющего «руками» работать с электроникой. Ученый начал лихорадочно искать кадры из выпускников вузов. Найти удалось лишь десяток. Насколько острой была кадровая ситуация, видно из того, что Юрий Рогачев, один из найденных Бруком талантов, даже не успел к тому времени закончить среднюю школу!

Поэтому Брук был вынужден создавать малую версию своей машины, М-1. Да и на ее создание санкция академии была дана только 22 апреля 1950 года. Не последнюю роль сыграла нужда в таких машинах для расчетов военных. Первые биты ею были обработаны в декабре 1950 года, на 10 дней раньше, чем у другого «первенца», советского компьютера МЭСМ, созданного в Киеве.

Машина М-1, рабочий прототип

Использование полупроводниковых диодов позволило переключать элементную базу из состояния «0» (состояние изолятора) в состояние «1» (проводника) довольно быстро и с малыми затратами энергии. Если ЭНИАК потреблял 174 киловатта, то М-1 — лишь 8 киловатт, занимая только четыре квадратных метра. 27-тонный американский предшественник на этом фоне выглядит настоящим монстром.

Резко отличало М-1 и наличие (впервые в компьютерной индустрии) не только «медленной» памяти, аналога современного жесткого диска (на магнитном барабане), но и «быстрой», аналога современной оперативной памяти. Ею служили электростатические трубки, отдаленно похожие на те, что использовались в телевизорах. Сами полупроводниковые диоды в нашей стране еще не начали выпускать, поэтому применялись немецкие, полученные по репарациям. Не надо думать, что кто-то Бруку их возил, — напротив, найдены они были случайно, на складах МЭИ, куда попали уже совершенно неизвестным способом.

Автоматическая цифровая вычислительная машина (краткое описание). Блок-схема. Член-корр. АН СССР И.С. Брук. Инженер Б.И. Рамеев. Москва, август 1948 года

Более крупная версия компьютера, на той же полупроводниковой основе, заработала с начала 1953 года и предсказуемо называлась М2 (считается, что М значило «малая», и даже М2 была куда меньше ЭНИАК). К 1956 году была сделана и М3, занимавшая уже три квадратных метра и ставшая первой серийной ЭВМ этой линейки. Выпускавшиеся на ее основе первые отечественные серийные ЭВМ второго поколения (то есть полупроводниковые) широко разошлись по научным и военным учреждениям страны. Более того, на основе чертежей М3 была собрана первая цифровая ЭВМ в Венгрии (1958 год) и Китае (1957 год). В конце 50-х на основе лаборатории Брука был создан существующий по сию пору Институт электронных управляющих машин (ИНЭУМ).

Идея использовать полупроводники для уменьшения размеров и потребления энергии ЭВМ циркулировала в те же годы и на Западе. Уже в 1953 году в Манчестерском университете появился экспериментальный Transistor Computer — основная часть его элементной базы была полупроводниковой, а не ламповой. Однако в нем, как и в советском М-1, еще было некоторое количество ламп, поэтому чисто полупроводниковым он не был. К тому же ранние транзисторы, которые использовал Transistor Computer, имели надежность еще ниже, чем лампы — рекордно длительное время его работы без поломок составляло не более полутора часов, что резко уступало параметрам М-1, использовавших полупроводниковые диоды, более отработанные к тому времени. Американский TRADIC 1954 года был понадежнее британского аналога, и тоже содержал лампы.

Первым полностью полупроводниковым компьютером был британский Harwell CADET, но он заработал только в 1955 году.

Для чего применялись первые советские ЭВМ?

Благодаря малым габаритам и энергопотреблению машины Брука стали использовать не только для специализированных расчетов военно-прикладного значения. Еще в проекте 1948 года, написанном им совместно с Рамеевым, ученый описал пользу компьютера как для чисто военных расчетов (как в случае с ЭНИАК), так и для решения задач криптографии, обеспечения нерасшифровываемой специальной военной и правительственной связи. Там же было предложено использовать ЭВМ для моделирования метеорологических процессов и более точного прогноза погоды (в то время эта тема  рассматривалась как в первую очередь военная). По всем этим направлениям советские ЭВМ вполне успешно использовались уже с 1950—1960-х.

Если тот же ЭНИАК применялся для создания термоядерной бомбы (советская создавалась без цифровых компьютеров), то «эмки» разошлись по научным учреждениям, которые не могли себе позволить огромных специально построенных машинных залов.

Кроме научных расчетов, Брук предложил их использовать как управляющие машины сложных индустриальных и энергетических установок, оперировать которыми вручную было чрезвычайно трудно — слишком много для этого надо было учитывать параметров. Например,  электростанций, химических реакторов и тому подобного. Как бы сейчас сказали, он впервые предложил внедрение промышленных компьютеров.

Если М-1 и М-2 были построены в одном экземпляре и потеряли практическое значение уже в 1960-х, то линия ЭВМ М-3, с рядом модификаций, была востребована до конца 1960-х годов и оказалась весьма долгоживущей.

Ну и где же российские Apple и IBM?

Несмотря на довольно бодрый старт и создание в СССР первых в истории компьютеров на полупроводниковой базе, поддерживать столь же высокий темп развития компьютерной техники в нашей стране не удалось. Проблемы начались после появления микропроцессоров — базовые элементы первых компьютеров с начала 70-х стало возможно размещать на одной кремниевой микросхеме (до того надо было собирать процессор из многих микросхем). Здесь уже нельзя было вручную собирать элементную базу — слишком уж мелкими деталями приходилось оперировать. Требовались радиоэлектронные фабрики, со временем — и вакуумные камеры для выращивания нужных кремниевых кристаллов. В то же самое время сменилась парадигма технологической гонки СССР со странами Запада. Сталинскому Советскому Союзу конца 40-х — начала 50-х никто не продал бы ЭНИАК: машину, на которой рассчитывают параметры водородной бомбы, не экспортируют. А за пределами США во времена Брука и Рамеева работающих цифровых ЭВМ вообще не было. Поэтому, чтобы иметь хоть какие-то компьютеры, их приходилось делать самим.

Брежневская эпоха резко изменила ситуацию. СССР вышел на масштабный экспорт нефти, и на высшем уровне многие технические проблемы захотели решить методом покупки технологии и оборудования на Западе — это было если не дешевле, то точно проще, чем создавать такие технологии внутри страны. Так появились ВАЗ, КАМАЗ и первые ЭВМ на базе клонов западных микропроцессоров. Оборудование для выпускавших их заводов тоже завозилось из-за рубежа.

Именно на этапе начала массового производства ЭВМ разрыв между нашей страной и Западом начал резко нарастать.

Купленная у «Фиата» платформа «Жигулей» устаревала десятки лет, а быстро прогрессирующие компьютеры — раз в несколько лет. Покупать за рубежом платформы можно было до бесконечности — они все равно постоянно отставали от последних западных. Время, нужное на внедрение в производство западных клонов, оказалось равно времени разработки на Западе новых машин.

Уже в конце 1970-х появились персональные компьютеры Apple (Apple I и II), а позднее — и других фирм. Сходные конструкции предлагались и в СССР — тот же «Микро-80», но реакция руководства страны на такие предложения была довольно сдержанной. Заместитель министра радиопромышленности СССР Николай Горшков в 1980 году сказал авторам «Микро»: «Ребята, хватит заниматься ерундой. Персонального компьютера не может быть. Могут быть персональный автомобиль, персональная пенсия, персональная дача. Вы вообще знаете, что такое ЭВМ? ЭВМ — это 100 квадратных метров площади, 25 человек обслуживающего персонала и 30 литров спирта ежемесячно!» Этими словами он не только вошел в историю, но и продемонстрировал ряд причин отставания советской электронной отрасли.

Чтобы успевать в технологической гонке с Западом, надо все время бежать просто для того, чтобы оставаться на том же самом месте. А чтобы догонять, надо бежать вдвое быстрее. Чиновники в Министерстве радиопромышленности просто не понимали, что в отрасли происходит быстрый прогресс, а молодые конструкторы никак не могли повлиять на мнение чиновников. Впрочем, некоторые клоны решений Apple и IBM даже успели запустить в производство в СССР, но они тут же устаревали, а после распада СССР компьютерная отрасль пришла в полное небрежение. Российский бизнес в 1990-х был готов вкладывать деньги в торговлю компьютерами, но никак не в такое капиталоемкое дело, как разработка и производство, например, новых процессоров.

В то же время в последние годы стали появляться объективные предпосылки к серьезному улучшению ситуации в отечественной радиоэлектронике. Сейчас, как и когда-то в советское время, во многих отраслях не приходится рассчитывать на поставки из-за рубежа. С другой стороны, наконец-то резко замедлился темп развития кремниевой электроники по всему миру. В таких условиях, даже без вложения крупных средств, вполне возможно создание систем, по уровню приближающихся к продукции лидеров мировой микроэлектроники. Скажем, отрабатываемый сейчас восьмиядерный «Эльбрус-8СВ» использует 28-нанометровый технологический процесс. Это значит, что разрешение оборудования, делающего полупроводниковые кристаллы для таких процессоров, равно 28 миллиардным метра, и примерно таким же по размеру выходит и минимальный возможный размер полупроводниковых элементов процессора.

9 июля 2015. Сервер Эльбрус – 4.4, процессор МЦСТ КПИ на стенде госкорпорации

В мире процессоры по 28-нанометровому техпроцессу начали делать только с 2011 года — тот же Intel Sandy Bridge или AMD Bulldozer. Конечно, на массовый гражданский рынок выйти тому же «Эльбрусу» не удастся — для этого нужны огромные капиталовложения, да и смысл таких действий неясен: это надо было делать десятилетия назад, когда рынок еще не был поделен. Однако свою нишу в обеспечении ряда госучреждений и силовых структур «Эльбрус» вполне может найти и сегодня.

Главный урок, который можно извлечь из всей этой истории, состоит в том, что для преуспевания в высокотехнологичной отрасли абсолютно необходимо наличие у страны талантливых научно-технических кадров и желание ее элиты придумывать и производить сложные продукты самостоятельно, несмотря на то что дело это часто крайне хлопотное. Если и то и другое у страны есть, то ни отказ в поставке сложных импортных компонентов, ни нехватка средств и специалистов не смогут помешать. 

 Александр Березин

Транзистор – изобретение, опередившее свое время

Многие изобретения задуманы одновременно несколькими разными людьми, потому что время «подходящее», а это означает, что существует техническая и научная основа, а также есть спрос и деловой потенциал для изобретения.

Однако транзистор – это изобретение, которое было изобретено задолго до того, как пришло время. Он был изобретен в 1947 году, и даже несколько лет спустя научная конференция сочла это настолько странным достижением, что не было включено в документацию.Сами изобретатели считали, что транзистор может быть использован в каких-то специальных приборах и, возможно, в военной радиоаппаратуре. Тем не менее, транзистор является основополагающим для всех современных технологий, включая телекоммуникации, передачу данных, авиацию и аудио- и видеоаппаратуру.

Три человека, Уолтер Браттейн, Джон Бардин и Уильям Шокли, разделили Нобелевскую премию по физике за прорыв, достигнутый ими 23 декабря 1947 года. В некоторых отношениях четвертый человек был ответственен за открытие транзистора в то время.Марвин Келли, который тогда возглавлял Bell Laboratories, собрал трио. Келли считал, что работа с такой неизвестной группой материалов, как полупроводники, требует сочетания различных специальностей: блестящего теоретика Браттейна, опытного знатока материалов Бардина и очень опытного экспериментатора Шокли, который также был сильным теоретиком. Цели проекта были очень общими.

Bell Laboratories в США входила в состав одной из ведущих телефонных компаний мира AT&T.Компания поняла, что транзистор может использоваться для приложений, далеких от телекоммуникаций в самом строгом смысле, и решила, возможно, чтобы избежать обвинений в использовании монопольного положения на своем внутреннем рынке, предложить лицензии на разумных условиях всем компаниям, которые хотели бы подать заявку. . Взамен этим компаниям было предложено внести свои собственные патенты в общий патентный пул.

В компьютерах, а также в радио и телевизионном оборудовании использовались электронные лампы, которые были относительно громоздкими и потребляли значительное количество энергии.Однако дизайнеры знали, как сделать их меньше, а фабрики знали, как изготавливать их надежно и с низкими затратами. С другой стороны, новые транзисторы были хрупкими, не выдерживали высоких температур и требовали гораздо более сложных уравнений при проектировании. Телефонные станции даже не использовали трубки. Это были чрезвычайно надежные чудеса машиностроения, основанные на реле и шатунах.

Незадолго до того, как Бриттен, Бардин и Шокли были удостоены Нобелевской премии, появилось первое крупное применение транзистора.Это была небольшая портативная радиостанция, которую даже назвали транзистором по названию компонента, который сделал это возможным. Texas Instruments, которая была первой компанией, представившей радио такого типа, в конечном итоге добилась известности в новой полупроводниковой промышленности. Второй компанией, которая станет гигантом индустрии бытовой электроники, была японская. Эта компания, основанная после Второй мировой войны, имела международные амбиции и поэтому выбрала английское название Sony.

Уильяма Шокли не было в тот день, когда транзистор заработал впервые.В своем гневе, по крайней мере, согласно легендам, он затем сел и изобрел несколько различных разновидностей транзисторов. Они были основаны на том, как были созданы три контакта транзистора? пайкой, диффузией под действием тепла и т. д. Все эти варианты основаны на методе, используемом для создания различных слоев, через которые ток контролируется сигналом к ​​электроду в середине из трех. Менее чем через десять лет был разработан другой принцип, названный эффектом поля, в котором регулируется размер канала, через который протекает ток.Швед по имени Дж. Торкель Уоллмарк, который в то время работал в RCA в США, сыграл ключевую роль в этом изобретении.

Автор: Bengt-Arne Vedin

23 декабря 1947: Транзистор открывает дверь в цифровое будущее

1947: Джон Бардин и Уолтер Браттейн при поддержке коллеги Уильяма Шокли демонстрируют транзистор в Bell Laboratories в Мюррей-Хилл, Нью-Джерси.

Его называют самым важным изобретением 20 века.Транзистор, также известный как транзистор с точечным контактом, представляет собой полупроводниковое устройство, которое может усиливать или переключать электрические сигналы. Он был разработан для замены электронных ламп.

Электронные лампы были громоздкими, ненадежными и потребляли слишком много энергии. Поэтому исследовательское подразделение компании AT&T, Bell Labs, начало проект по поиску альтернативы.

Почти за десять лет до того, как был разработан первый транзистор, Шокли, физик из Bell Labs, работал над теорией такого устройства. Но Шокли не смог построить работающую модель.Его первый полупроводниковый усилитель имел «небольшой цилиндр, тонко покрытый кремнием, установленный рядом с небольшой металлической пластиной».

Итак, Шокли попросил своих коллег, Бардина и Браттейна, вмешаться. Одной из проблем, которые они заметили при первой попытке Шокли, была конденсация на кремнии. Они погрузили его в воду и предположили, что у первоначального прототипа есть металлический наконечник, «который будет вставлен в кремний, окруженный дистиллированной водой». Наконец, было усиление – но, к сожалению, на тривиальном уровне.

После дополнительных экспериментов германий заменил кремний, что увеличило усиление примерно в 300 раз.

Спустя несколько модификаций у Браттейна металлическое золотое острие было расширено в германий. Это привело к лучшей способности модулировать усиление на всех частотах.

Окончательный вариант точечного транзистора имел два золотых контакта, слегка соприкасавшихся с кристаллом германия, который находился на металлической пластине, подключенной к источнику напряжения. Также известный как «маленький пластиковый треугольник», он стал первым работающим твердотельным усилителем.

Бардин и Браттейн продемонстрировали транзистор должностным лицам Bell Lab 23 декабря 1947 года. Сообщается, что Шокли назвал его «великолепным рождественским подарком». Но сам Шокли не присутствовал, когда это произошло, и, как говорят, он был огорчен поражением в тот день.

Но он отомстил. Шокли продолжал работать над идеей и дорабатывать ее. В начале 1948 года он придумал биполярный или переходной транзистор, превосходное устройство, пришедшее на смену точечному типу.

Bell Labs публично анонсировала первый транзистор на пресс-конференции в Нью-Йорке 30 июня 1948 года.

Транзистор пришел на смену громоздким электронным лампам и механическим реле. Это изобретение произвело революцию в мире электроники и стало основным строительным блоком, на котором зиждутся все современные компьютерные технологии.

Шокли, Бардин и Браттейн разделили Нобелевскую премию по физике 1956 года за транзистор, но трио так и не работало вместе после первых нескольких месяцев их первоначального создания транзистора.

Шокли покинул Bell Labs и основал Shockley Semiconductor в Маунтин-Вью, Калифорния, – одну из первых высокотехнологичных компаний в том, что позже станет Силиконовой долиной.

Браттейн остался сотрудником Bell Labs. Бардин стал профессором Университета Иллинойса в 1951 году и получил вторую Нобелевскую премию по физике в 1972 году за первое успешное объяснение сверхпроводимости.

Источник: Различный

Фото: Уильям Шокли, Джон Бардин и Уолтер Браттейн работают в Bell Labs в конце 1940-х годов.
Предоставлено Alcatel-Lucent / Bell Labs

См. Также:

  • 21 февраля 1947 г .: «Take a Polaroid» входит в английский язык
  • 16 апреля 1947 г .: Взрыв корабля вызывает трехдневный огненный дождь и смерть
  • 28 апреля 1947 года: Кон-Тики отправляется в плавание из Перу в Полинезию
  • 17 июня 1947 года: Pan Am запускает кругосветную службу
  • 24 июня 1947 года: они прибыли из … космического пространства ?
  • 6 июля 1947 г .: АК-47, универсальный убийца
  • 8 июля 1947 г .: инцидент в Розуэлле привел к спору о НЛО
  • авг.18, 1947: Рождение Крутой (То есть Компания)
  • 15 сентября 1947: Жужжание Ассоциации вычислительной техники
  • 24 сентября 1947: MJ-12 – Мы не одни … или мы ?
  • 3 октября 1947 г .: рождение «гигантского глаза» Паломара
  • 14 октября 1947 г .: звуковой барьер Йегера Махса
  • 2 ноября 1947 г .: еловый гусь … или дорогая индейка?
  • 23 декабря 1970: Всемирный торговый центр занял первое место.

Нобелевская премия по физике 1956 года – Джон Бардин, Уолтер Х. Браттейн и Уильям Шокли

Ученые Bell Labs Джон Бардин, Уолтер Браттейн и Уильям Шокли получили Нобелевскую премию 1956 года. Премия по физике за изобретение транзистора, небольшого полупроводникового устройства, которое изменит мир.

Сегодня транзисторы есть везде, где можно найти электронные устройства, включая спутники и космические корабли. Транзистор – это рабочая лошадка электронной техники, устройство, ознаменовавшее начало цифровой эпохи. Вследствие этого были созданы целые отрасли промышленности, основанные на полупроводниках. Действительно, телекоммуникации, какими мы их знаем, были бы невозможны, если бы не транзистор.

Изобретатели транзистора исследовали свойства полупроводников, чтобы увидеть, могут ли они найти приемлемую замену электронным лампам и электромеханическим реле, используемым в телефонных сетях того времени.Электромеханические реле сделали полностью автоматический набор номера телефона и коммутацию реальностью, но реле имели низкую скорость. В то время в электронной промышленности в качестве диодов и триодов широко использовались вакуумные лампы. Они тоже многое сделали в телефонии, но на них нельзя было положиться.

Под руководством Мервина Келли, директора по исследованиям Bell Labs в то время, группа физиков приступила к изучению полупроводников, чтобы увидеть, смогут ли они создать прочную альтернативу, которая могла бы в конечном итоге заменить комбинацию реле и трубки в телефонных сетях.Это окажется одной из самых замечательных технических одиссей в истории науки и техники.

Первый транзистор, когда-либо собранный. Он был назван точечным транзистором, потому что усиление происходило, когда два заостренных металлических контакта прижимались к поверхности полупроводникового материала.

Полупроводники обычно представляют собой искусственные изделия, изготовленные из таких элементов, как германий или кремний, хотя природные, такие как сульфид свинца, известны давно. В отличие от проводников, таких как металлы, которые имеют множество свободных электронов, переносящих электрический ток, кремний и германий имеют очень мало носителей заряда.Однако добавление небольших количеств определенных примесей – процесс, называемый легированием – может изменить количество носителей заряда. Например, когда в кремний добавляется крошечный кусочек фосфора, получается хороший полупроводник с электронами, отданными фосфором, действующим в качестве носителей заряда. Полупроводники, полученные таким образом, называются полупроводниками n-типа, поскольку заряд носителей отрицательный.

Более замечательный тип полупроводников образуется, когда, например, небольшое количество бора легируется кремнием.Бор обеспечивает положительно заряженный носитель, отнимая электрон у кремния. Вместо электрона остается дырка, и эта дырка может перемещаться внутри полупроводника, действуя как носитель положительного заряда. Эти полупроводники называются полупроводниками р-типа .

В лабораторной записной книжке Уолтера Браттейна записаны события 23 декабря 1947 года, когда был открыт эффект транзистора.

Полупроводник может содержать как дырки, так и электроны, размещенные в таких пропорциях, что преобладает носитель одного или противоположного типа.Техническое значение полупроводников во многом связано с взаимодействием дырок и электронов.

Бардин, Браттейн и Шокли протестировали различные комбинации полупроводников p-типа и n-типа в различных условиях. Они надеялись найти конфигурацию, которая позволила бы тонкому слою полупроводника регулировать большой ток между двумя электродами.

16 декабря 1947 года Бардин, Браттейн и Шокли сумели создать первый рабочий транзистор, теперь известный как транзистор с точечным контактом.В канун Рождества, во время демонстрации, когда физики говорили в микрофон, подключенный к цепи с их транзистором, входной сигнал был усилен примерно в восемнадцать раз. Наступила новая эра в электронике, и изобретение транзистора стало основой электронной эры.

Крошечный мощный транзистор – Los Angeles Times

Маленькому электронному устройству, которое вызвало один из самых драматических технологических взрывов в истории, в воскресенье исполняется 60 лет. Скромный транзистор и его потомок, полупроводниковый чип, который сделал возможной цифровую революцию, сегодня затрагивают почти все аспекты нашей жизни.

Вокруг нас миллиарды и миллиарды транзисторов тихо работают в компьютерах, мобильных телефонах, радиоприемниках, телевизорах, принтерах, копировальных аппаратах, проигрывателях компакт-дисков, автомобилях – во всем, где есть электроника. Транзисторы сделали возможным освоение космоса и революцию в области персональных компьютеров. (По словам Билла Гейтса: «Без изобретения транзистора я совершенно уверен, что ПК не существовал бы в том виде, в каком мы его знаем сегодня».) Без транзисторов не было бы iPod или портативных мобильных телефонов. Без интернета. Не было бы полупроводниковой индустрии с многомиллиардным оборотом, Intel, Nokia, Microsoft или Google.Нет Кремниевой долины.

Сегодня самые сложные кремниевые чипы могут содержать более 1 миллиарда транзисторов каждый – и мы производим миллиарды новых чипов каждый год. Понимать цифры практически невозможно. Каждый год мы производим транзисторов примерно в 10 миллионов раз больше, чем звезд в Млечном Пути.

Транзистор – это небольшой электронный переключатель, способный усиливать электрический ток, изобретенный Джоном Бардином, Уолтером Браттейном и Уильямом Шокли в Bell Labs в Нью-Джерси 24 декабря.16 января 1947 года. Они установили первый транзистор, используя скрепку, немного германия и золотую фольгу, и обнаружили, что он усиливает электрический ток стократно. На какое-то время они держали открытие при себе и показали устройство своему начальству незадолго до Рождества. Бардин, Браттейн и Шокли получили Нобелевскую премию по физике в 1956 году.

Современная электроника зародилась в 1906 году, когда Ли де Форест обнаружил, что наэлектризованная сетка, помещенная между двумя электродами в вакууме, может усиливать электрический ток и действовать как переключатель.Полученные в результате электронные лампы вскоре стали рабочей лошадкой электроники, используемой в радиоприемниках и телефонных системах. К концу Первой мировой войны Western Electric производила 1 миллион электронных ламп в год.

Пик технологии вакуумных ламп пришелся на создание первого цифрового компьютера ENIAC, построенного между 1944 и 1946 годами в Пенсильванском университете. ENIAC был колоссальной машиной – примерно 100 футов в длину, 10 футов в высоту и 3 фута в глубину – состоял примерно из 100 000 деталей, в том числе 18 000 электронных ламп.Легенда гласит, что при включении ENIAC свет в западной Филадельфии потускнел. Трубка выходила из строя каждые несколько дней, и ее приходилось заменять. Это была обратная сторона электронных ламп; они потребляли огромное количество энергии и часто терпели неудачу.

Исследователи Bell Labs предвидели эту проблему и в середине 1940-х годов создали команду, чтобы найти замену. Целью было создать твердотельное устройство, в котором не было бы вакуума, волокон и движущихся частей. Команда сделала ставку на полупроводники – такие материалы, как кремний и германий, которые проводят электричество при определенных условиях.К декабрю 1947 года исследователи нашли золото.

Первым коммерческим продуктом, в котором использовались транзисторы, был слуховой аппарат, сделанный в 1952 году. Журнал Fortune объявил 1953 год «Годом транзисторов», а к 1954 году компания Texas Instruments представила транзисторный радиоприемник. В 1958 году Джек Килби из Texas Instruments построил первую интегральную схему, которая объединила несколько транзисторов на кремниевом кристалле – еще одна веха в истории полупроводников.

Из этого относительно скромного начала произошли изменения, сопоставимые с промышленной революцией.Многие уже слышали о законе Мура, который стал мантрой цифровой эпохи. Впервые предложенный соучредителем Intel Гордоном Муром в 1960-х годах, он гласит, что количество транзисторов на кристалле (и, следовательно, его вычислительная мощность) удваивается каждые два года, а цена чипа падает вдвое. Более четырех десятилетий действует закон Мура, стимулирующий невероятный технологический рост, миниатюризацию и богатство.

Сегодня современный чип содержит более 1 миллиарда транзисторов, размещенных на площади размером с человеческий ноготь.

С экономической точки зрения, если бы цена автомобиля соответствовала падению цены на транзистор, мы бы платили меньше за машину, чем за кусок пиццы.

В ближайшие несколько лет вопрос в том, сможет ли полупроводниковая промышленность поддержать этот неумолимый прогресс. Дальнейшая усадка транзисторов оказывается проблематичной, поскольку преодолеваются определенные фундаментальные физические барьеры. В то же время открываются новые границы. Задача заключается в создании эффективных транзисторов, которые используют и усиливают свет вместо электричества, что обеспечит гораздо более высокую скорость обработки.

Итак, в свой 60-летний юбилей ответьте на звонок по мобильному телефону, включите компьютер, включите iPod – и в процессе произнесите тост за невероятный транзистор, скромный электронный переключатель, который за два поколения людей навсегда изменил нашу жизнь , работай и играй.

История транзистора и транзисторного компьютера

Изобретение транзисторов – одно из важнейших достижений 20, -го, -го века. Фактически, большинство электронных устройств, используемых в повседневной деятельности, основаны на транзисторах.От простого калькулятора до сложных систем сигнализации – этот крохотный электронный компонент внес большой вклад в развитие электроники и электронных коммуникаций.

Эра транзисторов

Транзисторы – это полупроводниковые устройства, которые выполняют две основные функции в электронной схеме – усилитель и переключатель. До эры транзисторов электронные лампы преимущественно использовались в качестве усилителя или переключателя в первой половине двадцатого века. Однако требования к высокому рабочему напряжению, высокое энергопотребление и высокое тепловыделение привели к тому, что вакуумные лампы со временем стали неэффективными и ненадежными.Не говоря уже о том, что эти трубки громоздкие и хрупкие, потому что корпус сделан из стекла. Чтобы решить эту дилемму, разные производители провели годы исследований в поисках подходящей замены.

Наконец, в декабре 1947 года трое физиков из Bell Laboratories успешно изобрели первый рабочий транзистор. Джон Бардин, Уолтер Браттейн и Уильям Шокли потратили годы исследований, чтобы наконец разработать рабочий точечный транзистор. В 1948 году Шокли усовершенствовал устройство, превратив его в транзистор с биполярным переходом, который широко использовался в 1950-х годах.Их изобретение было настолько важным, что Бардин, Браттейн и Шокли были удостоены известной Нобелевской премии в 1956 году.

Эволюция транзисторов

Как и любое другое устройство, транзисторы претерпели несколько нововведений. Еще в конце 1950-х годов германий сыграл решающую роль в разработке транзисторов. Однако у транзисторов на основе германия есть серьезные недостатки, связанные с утечкой тока и непереносимостью температур выше 75 ° C. Кроме того, германий редок и дорог.Это побудило исследователей Bell Labs искать лучшую альтернативу.

Гордон Тил громкое имя в эволюции транзисторов. Американский инженер Bell Labs, Тил разработал метод производства чистых кристаллов германия, которые будут использоваться в транзисторах на основе германия. Точно так же Тил экспериментировал с кремнием в качестве возможной замены германия. В 1953 году он вернулся в Техас после того, как ему предложили должность директора по исследованиям в Texas Instruments (TI). [1] Используя свой опыт и знания в области полупроводниковых кристаллов, он продолжил работу над очищенным кремнием как заменой германия.В апреле 1954 года Тил и его команда в TI разработали первый кремниевый транзистор, о котором было объявлено миру в мае того же года. Из-за своих превосходных характеристик кремний постепенно вытеснил германий в качестве полупроводника, используемого для транзисторов.

С появлением кремниевых транзисторов исследователи из Bell Labs достигли еще одного прорыва, разработав транзистор, который может превзойти по характеристикам транзистор с биполярным переходом. В 1959 году Мохамед Аталла и Давон Канг изобрели полевой транзистор металл-оксид-полупроводник (MOSFET) с более низким энергопотреблением и более высокой плотностью, чем биполярный транзистор.Эти ценные характеристики значительно сделали полевой МОП-транзистор, который с тех пор стал самым широко производимым устройством в истории. [2]

Преобразование компьютерных технологий

Изобретение транзисторов было революционным в миниатюризации компьютеров. Как и в более ранних электронных устройствах, в компьютерах первого поколения в качестве переключателей и усилителей использовались электронные лампы. После появления транзисторов производители также использовали небольшие устройства для создания более эффективных компьютеров меньшего размера.В последующие годы электронные лампы были полностью заменены транзисторами, что дало начало второму поколению транзисторных компьютеров.

Первым компьютером, который использовал транзисторы, был Манчестерский университет Transistor Computer . Транзисторный компьютер был построен в качестве прототипа, состоящего из 92-точечных транзисторов и 550 диодов, и начал полностью функционировать в 1953 году. В 1955 году была представлена ​​полноразмерная версия этого компьютера с 200-контактными транзисторами и 1300 диодами. .Хотя в большинстве схем использовались транзисторы, это устройство не считалось полностью транзисторным компьютером, поскольку в его тактовом генераторе все еще использовались электронные лампы. [3]

В середине 1950-х годов начали появляться похожие машины. Позже дизайн Манчестерского университета был принят компанией Metropolitan-Vickers, которая в 1956 году произвела семь машин, использующих биполярные переходные транзисторы. Однако устройство под названием Metrovick 950 не было коммерчески доступным и использовалось только внутри компании.Точно так же Bell Labs представила устройство TRADIC в 1954 году, [4] , но, как и транзисторный компьютер, TRADIC использовал электронные лампы в качестве тактовой энергии.

Созданный для ВВС США в 1955 году компьютер управления Burroughs Atlas Mod 1-J1 был первым компьютером, полностью отказавшим от электронных ламп, и эта модель была первым полностью транзисторным компьютером. В 1956 году Массачусетский технологический институт также разработал TX-0 , свой собственный транзисторный компьютер. Транзисторные компьютеры начали появляться и в других частях мира.Первым устройством, появившимся в Азии, стал японский ETL Mark III , выпущенный в 1956 году. DRTE , выпущенный в 1957 году, и австрийский Mailüfterl , выпущенный в 1958 году, были первыми транзисторными компьютерами в Канаде и Европе соответственно. В 1959 году Италия также выпустила свой первый транзисторный компьютер Olivetti Elea 9003 , который позже стал доступен на частном рынке. [5]

Хотя транзисторные компьютеры появились во всем мире в 1950-х годах, они не были коммерчески доступны до 1959 года, когда компания General Electric выпустила модель General Electric 210 .Следовательно, другие производители также представили свои собственные флагманские модели транзисторных компьютеров. IBM 7070 и RCA 501 были одними из первых выпущенных моделей. [6] Крупномасштабные компьютеры также следовали этой тенденции. Philco Transac модели S-1000 и S-2000 были одними из первых коммерчески доступных крупномасштабных транзисторных компьютеров.

Эволюция конструкции транзисторов привела к серьезным изменениям в конструкции компьютеров.Производство компьютеров на транзисторах росло со временем, поскольку технология стала доступной на рынке. В конце концов, интегральные схемы были приняты в 1960-х, уступив место третьему поколению компьютеров.

Маленький размер, большие изменения

Транзисторы стали выдающимися с момента их изобретения более 70 лет назад. Эта технология подтолкнула изобретение и развитие многих других электронных устройств. Скромный размер транзистора не скрывает значимости его вклада в развитие технологий.Транзистор, несомненно, изменил облик электронных схем и привел к значительным изменениям в мире, особенно в компьютерных технологиях.

Источники:

[1] Майкл Риордан, «Утраченная история транзистора», 30 апреля 2004 г., https://spectrum.ieee.org/tech-history/silicon-revolution/the-lost-history-of-the-transistor Accessed 20 окт 2020
[2] Википедия. «History of the Transistor», N.d., https://en.wikipedia.org/wiki/History_of_the_transistor, дата обращения 20 октября 2020 г.
[3] Википедия.«Transistor Computer», Nd, https://en.wikipedia.org/wiki/Transistor_computer, дата обращения 20 октября 2020 г.
[4] «The Transistor» Nd, http://www.historyofcomputercommunications.info/supporting-documents/a .5-the-transistor-1947.html Проверено 20 октября 2020 г.
[5] Википедия. «Transistor Computer», Nd, https://en.wikipedia.org/wiki/Transistor_computer, дата обращения 20 октября 2020 г.
[6] «The Transistor» Nd, http://www.historyofcomputercommunications.info/supporting-documents/a .5-the-transistor-1947.html По состоянию на 20 октября 2020 г.

Полупроводниковый транзистор – История полупроводникового транзистора

Современный электронный транзистор – это полупроводниковое устройство, обычно используемое для усиления или переключения электронных сигналов. Транзистор сделан из цельного куска полупроводникового материала, по крайней мере, с тремя выводами для подключения к внешней цепи. Напряжение или ток, приложенные к одной паре выводов транзистора, изменяют ток, протекающий через другую пару выводов.Поскольку управляемая (выходная) мощность может быть намного больше управляющей (входной) мощности, транзистор обеспечивает усиление сигнала. Транзистор является основным строительным блоком современных электронных устройств и используется в радио, телефонах, компьютерах и других электронных системах. Некоторые транзисторы упакованы индивидуально, но большинство из них находится в интегральных схемах.

Как это часто бывает со многими изобретениями, транзистор является результатом работы многих изобретателей, и только последний, или самый умный, получает всю славу.В данном случае это были американцы Джон Бардин, Уильям Шокли и Уолтер Браттейн, получившие Нобелевскую премию по физике в 1956 году за изобретение транзистора, который был назван самым важным изобретением ХХ века

Но кто был первым?

Начало исследований полупроводников ознаменовано отчетом Майкла Фарадея 1833 года об отрицательном температурном коэффициенте сопротивления сульфида серебра. Это первое наблюдение любого свойства полупроводника.В своей статье 1833 года «Экспериментальные исследования электричества» Фарадей (см. Портрет рядом) раскрыл это наблюдение. Это наблюдение отличалось от обычных свойств металлов и электролитов, в которых сопротивление возрастает с температурой.

Следующим важным исследователем в области полупроводников является французский физик-экспериментатор Эдмон Беккерель. В 1839 году он сообщил о наблюдении фотоэдс в платиновых электродах, покрытых хлоридом серебра. В его эксперименте платиновый электрод, покрытый AgCl, был погружен в водный раствор азотно-кислотного электролита.Освещение электрода генерировало фотоэдс, которое изменяло ЭДС, создаваемую ячейкой, фактически оно создавало восстановительный (катодный) фототок на электроде, покрытом AgCl; это было первое зарегистрированное фотоэлектрическое устройство. Фотоэдс создавалось на контакте металл-полупроводник Ag / AgCl.

В 1873 году английский инженер-электрик Уиллоуби Смит (1828–1891) (см. Портрет рядом) открыл фотопроводимость селена. Первоначально он работал с подводными кабелями.Он начал эксперименты с селеном из-за его высокого сопротивления, что оказалось подходящим для его подводной телеграфии. Различные экспериментаторы измеряли сопротивление селеновых стержней, но сопротивление, измеренное ими в различных условиях, совершенно не согласовывалось. Затем Смит обнаружил, что сопротивление фактически зависит от интенсивности падающего света. Когда селеновые стержни помещали в коробку с закрытой сдвижной крышкой, сопротивление было максимальным. Когда на пути света помещались очки разных цветов, сопротивление варьировалось в зависимости от количества света, проходящего через стекло.Но когда крышку сняли, проводимость увеличилась. Он также обнаружил, что этот эффект не был вызван колебаниями температуры. В 1874 году немецкий физик Фердинанд Браун (см. Портрет рядом), 24-летний выпускник Берлинского университета, изучал характеристики электролитов и кристаллов, проводящих электричество. в Вюрцбургском университете. Когда он исследовал кристалл галенита (сульфида свинца) острием тонкой металлической проволоки, Браун заметил, что ток свободно течет только в одном направлении.Он обнаружил эффект выпрямления в точке контакта между металлами и некоторыми кристаллическими материалами.
Braun продемонстрировал это полупроводниковое устройство аудитории в Лейпциге 14 ноября 1876 года, но оно не нашло полезного применения до появления радио в начале 1900-х годов, когда оно использовалось в качестве детектора сигнала в «кристаллическом радиоприемнике». Распространенное описательное название «детектор кошачьих усов» происходит от тонкого металлического зонда, используемого для электрического контакта с поверхностью кристалла.Браун больше известен разработкой осциллографа с электронно-лучевой трубкой (ЭЛТ) в 1897 году, известной как «трубка Брауна» ( Braunsche Röhre на немецком языке). Он разделил Нобелевскую премию 1909 года с Гульельмо Маркони за его вкладов в развитие беспроводной телеграфии , главным образом в разработку перестраиваемых схем для радиоприемников. Первым человеком, применившим полупроводники в практических целях, был бенгальский эрудит сэр Джагадиш Чандра Бос ( 1858-1937). Джагадиш Чандра Бос (см. Портрет рядом) был гениальным физиком, биологом, ботаником, археологом и писателем-фантастом.Для приема излучения он использовал множество различных металлических полупроводниковых переходов, последовательно подключенных к высокочувствительному гальванометру. Он изобрел несколько полупроводниковых устройств, первым из которых был его детектор Galena , который он изобрел некоторое время в течение 1894-1898 годов и продемонстрировал в дискурсе Королевского института в 1900 году. В этом устройстве пара точечных контактов (кошачьи усы) в этот корпус с галенитом был последовательно подключен к источнику напряжения и гальванометру. Это устройство могло обнаруживать любые виды излучения, волны Герца, световые волны и другое излучение .Он назвал свой точечный контактный детектор галенита «искусственной сетчаткой» (потому что при соответствующем расположении он мог бы обнаруживать только световые волны), универсальным радиометром. Позже компания Bose получила первый в мире патент на полупроводниковое устройство, а именно на детектор Galena . Среди других его новаторских твердотельных полупроводниковых приемников – спиральный пружинный когерер и железо-ртутный железный когерер (детектор) с телефоном. Между 1902 и 1906 годами – американский телефон и телеграф , инженер-электрик Гринлиф Уиттиер Пикард (1877-1956) (см. соседний портрет) протестировали тысячи образцов минералов, чтобы оценить их ректификационные свойства.Кристаллы кремния от Westinghouse дали одни из лучших результатов. 20 августа 1906 года он подал в США патент на «Средство для получения интеллектуальной связи с помощью электрических волн» на кремниевый точечный детектор (диод), и в ноябре того же года он был присужден (см. Патент США 836531 Пикард). Вместе с двумя партнерами Пикард основал компанию Wireless Specialty Apparatus Company для продажи кристаллических радиодетекторов «кошачьих усов». Вероятно, это была первая компания, которая производила и продавала кремниевые полупроводниковые устройства.Другой американский изобретатель – Генри Данвуди получил патент на систему с точечным детектором из карборунда (карбида кремния) всего через несколько недель после Пикарда.

В 1915 году американский физик Мэнсон Бенедикс обнаружил, что кристалл германия можно использовать для преобразования переменного (переменного тока) тока в постоянный (постоянный ток), то есть выпрямляющих свойств кристаллов германия. Таким образом, германий был добавлен к списку полупроводников. До этого это был небольшой список, состоящий из кремния, селена и теллура.

В 1927 году американцы Л.О. Грондал и П. Гейгер изобрел выпрямитель из оксида меди. Патент США 1640335 был выдан Грондалу 23 августа 1927 года.

В 1925 году знаменитый изобретатель Юлиус Лилиенфельд (см. Фото рядом) подал заявку на патент в Канаде, а в следующем году в США, описывая устройство, очень похожее на транзистор MESFET, которое он тогда назвал Метод и устройство для управления электрическими токами. (см. Патент США 1745175 Лилиенфельда).
Юлиус Эдгар Лилиенфельд (1882–1963) был выдающимся человеком в области физики и электроники.Австрийский еврей Лилиенфельд родился в Лемберге в Австро-Венгрии (ныне Львов в Украине). Он получил образование (доктор физико-математических наук) и прожил в Германии до середины 1920-х годов, когда решил эмигрировать в США. Помимо вышеупомянутого патента на первый транзистор, он был держателем нескольких других патентов в этой области – патента США 18 «Устройство для управления электрическим током» от 1928 года на тонкопленочный MOSFET-транзистор; Патент США 1877140 «Усилитель электрического тока» от 1928 года на твердотельное устройство, в котором ток регулируется пористым металлическим слоем, твердотельная версия вакуумной лампы; Патент США 2013564 «Электролитический конденсатор» от 1931 года на первый электролитический конденсатор.Когда Браттейн, Бардин и Шокли пытались получить патент на свой транзистор, большинство их требований было отклонено именно из-за патентов Лилиенфельда. В 1934 году другой немецкий ученый – Оскар Хайль (1908–1994), инженер-электрик и изобретатель, подал заявку на Патент Германии на раннее устройство, подобное транзистору, описывающее возможность управления сопротивлением в полупроводниковом материале с помощью электрического поля, которое он назвал Улучшения или относящиеся к электрическим усилителям и другим устройствам управления и устройствам .В 1935 году Хайль получил британский (см. Рисунок из британского патента), бельгийский и французский патенты на свое устройство. В 1939 году Уильям Шокли и Уолтер Браттейн, исследователи из Bell Telephone Labs в Нью-Джерси, предприняли неудачную попытку построить телефонную трубку. Полупроводниковый усилитель путем вставки крошечной управляющей сетки в слой оксида меди. Вторая мировая война положила конец их экспериментам. Однако в 1947 году тот же Браттейн, на этот раз вместе с Джоном Бардином, изобрел точечный транзистор (см. Фото первого транзистора, сделанного из германия).Уильяма Шокли (руководителя группы) в то время там не было, и он не получил признания за изобретение, что сильно его разозлило. Это хорошо. Точечный транзистор был сложен в изготовлении и не очень надежен. Это был не тот транзистор, который хотел Шокли, поэтому он продолжил работу над своей собственной идеей, которая привела к переходному транзистору , который было проще в изготовлении и который работал лучше. Бардин и Браттейн подали заявку на патент 17 июня 1948 года, а патент был выдан 3 октября 1950 года (см. Патент).

Уильям Шокли подал заявку на свой первый патент на переходной транзистор почти одновременно – в США. Патент 2569347 был подан 26 июня 1948 г. и выдан 25 сентября 1951 г. (см. Первый патент Шокли).

Джон Бардин (1908–1991), Уильям Брэдфорд Шокли (1910–1989) и Уолтер Хаузер Браттейн (1902–1987) (см. Нижнюю фотографию) разделили Нобелевскую премию по физике в 1956 году «за исследования полупроводников и их открытие транзисторного эффекта ».

Бардин (слева), Шокли (в центре) и Браттейн (справа)

Так как же работает транзистор?

Конструкция транзистора позволяет ему работать как усилитель или переключатель.Это достигается за счет использования небольшого количества электричества для управления затвором при гораздо большей подаче электроэнергии, что очень похоже на поворот клапана для управления подачей воды. Транзисторы
состоят из трех частей, называемых базой , коллектором и эмиттером . База – это устройство управления затвором для большего источника электроэнергии. Коллектор – это более крупный источник питания, а эмиттер – это выход для этого источника.Посылая переменные уровни тока от базы, можно регулировать количество тока, протекающего через затвор от коллектора. Таким образом, очень небольшое количество тока может использоваться для управления большим током, как в усилителе. Тот же процесс используется для создания двоичного кода для цифровых процессоров, но в этом случае необходим порог напряжения в пять вольт, чтобы открыть коллекторный затвор. Таким образом, транзистор используется как переключатель с двоичной функцией: пять вольт – включено, менее пяти вольт – выключено.

Портал Sony Group – КАПСУЛА ВРЕМЕНИ, том 12

1959. Уолтер Браттейн бросает отцовский взгляд на своего ребенка. Слева – Ивама-сан, который начал разработку транзисторного телевизора
годом ранее.

Кадзуо Ивама, четвертый президент Sony. Прошло 25 лет с тех пор, как Ивама-сан скончался, еще будучи президентом. Вклад Ивамы-сан в разработку транзистора гарантирует, что всякий раз, когда люди слышат его имя, они естественно думают о транзисторе.

Транзистор был изобретен в 1948 г. доктором. Шокли, Бардин и Браттейн из Bell Laboratories. Четыре года спустя материнская компания Western Electric объявила, что предоставит патентные права на транзистор. Ибука-сан, который предвидел потенциал этого неизвестного компонента, принял решение изготовить транзисторный радиоприемник и подписал контракт с Western Electric. И хотя Western Electric получила лицензию на патент, Sony пришлось искать собственный путь для разработки и производства.

В 1954 году 35-летний Ивама-сан, который в то время был членом совета директоров, вызвался возглавить группу по исследованиям транзисторных радиотехнических средств и уехал в США. Он посетил завод Western Electric и прислал десятки страниц письменных наблюдений, которые сегодня известны как отчет Ивама. После многих испытаний и невзгод Sony выпустила первый в Японии транзисторный радиоприемник в 1955 году. Транзисторный радиоприемник проложил путь германию к кремнию и от радио к телевидению.

Позже трое врачей Bell посетили Sony.Демонстрация изобретателям того, что Sony продолжает расширять границы транзисторов, должно быть, подбодрила всех в Sony. В частности, Ивама-сан, должно быть, гордился тем, что показал результаты своих исследований доктору Браттейну и доктору Шокели. Когда д-р Браттейн посетил Sony в 1990 году, он сказал: «История полупроводников долгая, но у нее есть захватывающее будущее. Я благодарен Sony за то, что она нашла применение транзистору и выпустила бесчисленное количество продуктов».

Оставить комментарий