Все формулы по физике которые понадобятся на егэ: Не найти нам нужных формул

Содержание

Формы для егэ по физике. Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

Формулы кинематики:

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Единый Государственный Экзамен охватывает информацию по всему курсу физики с 7 по 11 класс. Однако если некоторые формулы по физике для ЕГЭ неплохо запоминаются сами по себе, над другими приходится поработать. Мы рассмотрим некоторые формулы, которые полезны для решения различных задач.

Кинематика

Начнем традиционно с кинематики. Частая ошибка здесь – неверное вычисление средней скорости неравномерного прямолинейного движения. В данном случае задачи пытаются решать с помощью среднего арифметического. Однако все не так просто. Среднее арифметическое – только частный случай. А для нахождения средней скорости движения существует полезная формула:

где S – весь путь, пройденный телом за определенное время t.

Молекулярно-Кинетическая Теория (МКТ)

МКТ может поставить множество коварных «ловушек» для невнимательного школьника. Чтобы избежать этого, нужно свободно владеть формулами по физике для ЕГЭ в этой области.

Начнем с закона Менделеева-Клапейрона, использующегося для идеальных газов. Он звучит так:

где p –давление газа,

V – занимаемый им объем,

n – количество газа,

R – универсальная газовая постоянная,

T – температура.

Обратите внимание на примеры задач с применением этого закона.

Все представляют себе, что такое влажность. Значения относительной влажности ежедневно сообщаются в СМИ. На экзамене же пригодится формула: здесь ф – относительная влажность воздуха,

ρ – плотность водяного пара, находящегося в воздухе,

ρ0 – плотность насыщенного пара при конкретной температуре.

Эта последняя величина – табличное значение, поэтому оно должно быть в условии задачи.

Термодинамика

Термодинамика – отрасль, достаточно близкая к МКТ, поэтому многие понятия пересекаются. Термодинамика базируется на двух своих началах. Практически каждая задача этой области требует знание и применение первого начала термодинамики, выраженного формулой

Это формулируется следующим образом:

Количество теплоты Q, которое было получено системой, расходуется на совершение работы A над внешними телами и изменение ΔU внутренней энергии данной системы.

Сила Архимеда

Напоследок поговорим о поведении погруженных в жидкость тел. Очевидно, что на каждое из них действует сила тяжести, направленная вертикально вниз. Но в жидкости все тела весят меньше. Это обусловливается частичным компенсированием силы тяжести противоположно направленной силой Архимеда. Ее значение равно Таким образом, эта сила, старающаяся вытолкнуть тело из жидкости, зависит от плотности той самой жидкости и объема погруженной в нее части тела. Сила Архимеда действует и в газах, но вследствие ничтожности плотности газов ею обыкновенно пренебрегают.

ЕГЭ проверяет знания школьника в различных областях физики. Формулы для ЕГЭ по физике способствуют успешному решению задач (можно воспользоваться ) и общему пониманию основных физических процессов.

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ.
    После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

Секреты подготовки

Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает.

Почему-то не верится, что так мало школьников 11 класса желают стать:

  • инженерами;
  • ювелирами;
  • авиаконструкторами;
  • геологами;
  • пиротехниками;
  • экологами,
  • технологами на производстве и т.д.

Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

  • механику;
  • физику молекулярную;
  • электромагнетизм и электричество;
  • оптику;
  • физику атомную.

Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

Абсолютно необходимы для того, чтобы человек, решивший изучать эту науку, вооружившись ими, мог чувствовать себя в мире физики как рыба в воде. Без знания формул немыслимо решение задач по физике. Но все формулы запомнить практически невозможно и важно знать, особенно для юного ума, где найти ту или иную формулу и когда ее применить.

Расположение физических формул в специализированных учебниках распределяется обычно по соответствующим разделам среди текстовой информации, поэтому их поиск там может отнять довольно-таки много времени, а тем более, если они вдруг понадобятся Вам срочно!

Представленные ниже шпаргалки по физике содержат все основные формулы из курса физики , которые будут полезны учащимся школ и вузов.

Все формулы школьного курса по физике с сайта http://4ege.ru
I. Кинематика скачать
1. Основные понятия
2. Законы сложения скоростей и ускорений
3. Нормальное и тангенциальное ускорения
4. Типы движений
4.1. Равномерное движение
4.1.1. Равномерное прямолинейное движение
4.1.2. Равномерное движение по окружности
4.2. Движение с постоянным ускорением
4. 2.1. Равноускоренное движение
4.2.2. Равнозамедленное движение
4.3. Гармоническое движение
II. Динамика скачать
1. Второй закон Ньютона
2. Теорема о движении центра масс
3. Третий закон Ньютона
4. Силы
5. Гравитационная сила
6. Силы, действующие через контакт
III. Законы сохранения. Работа и мощность скачать
1. Импульс материальной точки
2. Импульс системы материальных точек
3. Теорема об изменении импульса материальной точки
4. Теорема об изменении импульса системы материальных точек
5. Закон сохранения импульса
6. Работа силы
7. Мощность
8. Механическая энергия
9. Теорема о механической энергии
10. Закон сохранения механической энергии
11. Диссипативные силы
12. Методы вычисления работы
13. Средняя по времени сила
IV. Статика и гидростатика скачать
1. Условия равновесия
2. Вращающий момент
3. Неустойчивое равновесие, устойчивое равновесие, безразличное равновесие
4. Центр масс, центр тяжести
5. Сила гидростатического давления
6. Давлением жидкости
7. Давление в какой-либо точке жидкости
8, 9. Давление в однородной покоящейся жидкости
10. Архимедова сила
V. Тепловые явления скачать
1. Уравнение Менделеева-Клапейрона
2. Закон Дальтона
3. Основное уравнение МКТ
4. Газовые законы
5. Первый закон термодинамики
6. Адиабатический процесс
7. КПД циклического процесса (теплового двигателя)
8. Насыщенный пар
VI. Электростатика скачать
1. Закон Кулона
2. Принцип суперпозиции
3. Электрическое поле
3.1. Напряженность и потенциал электрического поля, созданного одним точечным зарядом Q
3.2. Напряженность и потенциал электрического поля, созданного системой точечных зарядов Q1, Q2, …
3.3. Напряженность и потенциал электрического поля, созданного равномерно заряженным по поверхности шаром
3.4. Напряженность и потенциал однородного электрического поля, (созданного равномерно заряженной плоскотью или плоским конденсатором)
4. Потенциальная энергия системы электрических зарядов
5. Электроемкость
6. Свойства проводника в электрическом поле
VII. Постоянный ток скачать
1. Упорядоченная скорость
2. Сила тока
3. Плотность тока
4. Закон Ома для участка цепи, не содержащего ЭДС
5. Закон Ома для участка цепи, содержащего ЭДС
6. Закон Ома для полной (замкнутой) цепи
7. Последовательное соединение проводников
8. Параллельное соединение проводников
9. Работа и мощность электрического тока
10. КПД электрической цепи
11. Условие выделения максимальной мощности на нагрузке
12. Закон Фарадея для электролиза
VIII. Магнитные явления скачать
1. Магнитное поле
2. Движение зарядов в магнитном поле
3. Рамка с током в магнитном поле
4. Магнитные поля, создаваемые различными токами
5. Взаимодействие токов
6. Явление электромагнитной индукции
7. Явление самоиндукции
IX. Колебания и волны скачать
1. Колебания, определения
2. Гармонические колебания
3. Простейшие колебательные системы
4. Волна
X. Оптика скачать
1. Закон отражения
2. Закон преломления
3. Линза
4. Изображение
5. Возможные случаи расположения предмета
6. Интерференция
7. Дифракция

Большая шпаргалка по физике . Все формулы изложены в компактном виде с небольшими комментариями. Шпаргалка также содержит полезные константы и прочую информацию. Файл содержит следующие разделы физики:

    Механика (кинематика, динамика и статика)

    Молекулярная физика. Свойства газов и жидкостей

    Термодинамика

    Электрические и электромагнитные явления

    Электродинамика. Постоянный ток

    Электромагнетизм

    Колебания и волны. Оптика. Акустика

    Квантовая физика и теория относительности

Маленькая шпора по физике . Все самое необходимое для экзамена. Нарезка основных формул по физике на одной странице. Не очень эстетично, зато практично. 🙂

Все формулы для олимпиады по физике.

Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Работа, мощность, энергия

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

Формулы кинематики:

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Шпаргалка с формулами по физике для ЕГЭ

Шпаргалка с формулами по физике для ЕГЭ

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

И не только (может понадобиться 7, 8, 9, 10 и 11 классам). Для начала картинка, которую можно распечатать в компактном виде.

Шпаргалка с формулами по физике для ЕГЭ и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

А потом вордовский файл , который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.

Механика

  1. Давление Р=F/S
  2. Плотность ρ=m/V
  3. Давление на глубине жидкости P=ρ∙g∙h
  4. Сила тяжести Fт=mg
  5. 5. Архимедова сила Fa=ρ ж ∙g∙Vт
  6. Уравнение движения при равноускоренном движении

X=X 0 +υ 0 ∙t+(a∙t 2)/2 S=(υ 2 –υ 0 2) /2а S=(υ +υ 0) ∙t /2

  1. Уравнение скорости при равноускоренном движении υ =υ 0 +a∙t
  2. Ускорение a=(υ υ 0)/t
  3. Скорость при движении по окружности υ =2πR/Т
  4. Центростремительное ускорение a=υ 2 /R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона F=ma
  7. Закон Гука Fy=-kx
  8. Закон Всемирного тяготения F=G∙M∙m/R 2
  9. Вес тела, движущегося с ускорением а Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓ Р=m(g-a)
  11. Сила трения Fтр=µN
  12. Импульс тела p=mυ
  13. Импульс силы Ft=∆p
  14. Момент силы M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx 2 /2
  17. Кинетическая энергия тела Ek=mυ 2 /2
  18. Работа A=F∙S∙cosα
  19. Мощность N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υ Т

Молекулярная физика и термодинамика

  1. Количество вещества ν=N/ Na
  2. Молярная масса М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ P=nkT=1/3nm 0 υ 2
  5. Закон Гей – Люссака (изобарный процесс) V/T =const
  6. Закон Шарля (изохорный процесс) P/T =const
  7. Относительная влажность φ=P/P 0 ∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс) PV=const
  11. Количество теплоты при нагревании Q=Cm(T 2 -T 1)
  12. Количество теплоты при плавлении Q=λm
  13. Количество теплоты при парообразовании Q=Lm
  14. Количество теплоты при сгорании топлива Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики ΔU=A+Q
  17. КПД тепловых двигателей η= (Q 1 – Q 2)/ Q 1
  18. КПД идеал. двигателей (цикл Карно) η= (Т 1 – Т 2)/ Т 1

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q 1 ∙q 2 /R 2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R 2
  4. Поверхностная плотность зарядов σ = q/S
  5. Напряженность эл. поля бесконечной плоскости E=2πkσ
  6. Диэлектрическая проницаемость ε=E 0 /E
  7. Потенциальная энергия взаимод. зарядов W= k∙q 1 q 2 /R
  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙ε ε 0 /d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I 1 =I 2 =I, U 1 +U 2 =U, R 1 +R 2 =R
  19. Законы паралл. соед. U 1 =U 2 =U, I 1 +I 2 =I, 1/R 1 +1/R 2 =1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I 2 Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0) I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυ sinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI 2 /2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление X L =ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-X L) 2 +R 2

Оптика

  1. Закон преломления света n 21 =n 2 /n 1 = υ 1 / υ 2
  2. Показатель преломления n 21 =sin α/sin γ
  3. Формула тонкой линзы 1/F=1/d + 1/f
  4. Оптическая сила линзы D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=U з е
  2. Красная граница фотоэффекта ν к = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

  1. Закон радиоактивного распада N=N 0 ∙2 – t / T
  2. Энергия связи атомных ядер

E CB =(Zm p +Nm n -Mя)∙c 2

СТО

  1. t=t 1 /√1-υ 2 /c 2
  2. ℓ=ℓ 0 ∙√1-υ 2 /c 2
  3. υ 2 =(υ 1 +υ)/1+ υ 1 ∙υ/c 2
  4. Е = mс 2

Кинематика

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость перемещения:

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с высоты H :

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т. е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной из формул:

Динамика

Второй закон Ньютона:

Здесь: F – равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Сила упругости:

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g – ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Статика

Момент силы определяется с помощью следующей формулы:

Условие при котором тело не будет вращаться:

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

Гидростатика

Определение давления задаётся следующей формулой:

Давление, которое создает столб жидкости находится по формуле:

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Идеальный гидравлический пресс:

Любой гидравлический пресс:

КПД для неидеального гидравлического пресса:

Сила Архимеда (выталкивающая сила, V – объем погруженной части тела):

Импульс

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Молекулярная физика

Химическое количество вещества находится по одной из формул:

Масса одной молекулы вещества может быть найдена по следующей формуле:

Связь массы, плотности и объёма:

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Определение концентрации задаётся следующей формулой:

Для средней квадратичной скорости молекул имеется две формулы:

Средняя кинетическая энергия поступательного движения одной молекулы:

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Следствия из основного уравнения МКТ:

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Газовые законы. Закон Бойля-Мариотта:

Закон Гей-Люссака:

Закон Шарля:

Универсальный газовый закон (Клапейрона):

Давление смеси газов (закон Дальтона):

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С – большое) тела может быть рассчитана через удельную теплоёмкость (c – маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p V координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q , изменение внутренней энергии ΔU и работа газа A . Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q 1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q 2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T 1 и холодильника T 2 , достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S :

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L :

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h

Электростатика

Электрический заряд может быть найден по формуле:

Линейная плотность заряда:

Поверхностная плотность заряда:

Объёмная плотность заряда:

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Где: k – некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Напряженность электрического поля, которую создает заряженная плоскость:

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Электрическое напряжение это просто разность потенциалов, т. е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Определение потенциала задаётся выражением:

Потенциал, который создает точечный заряд или заряженная сфера:

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Для диэлектрической проницаемости вещества верно следующее:

Определение электрической ёмкости задаётся формулой:

Ёмкость плоского конденсатора:

Заряд конденсатора:

Напряжённость электрического поля внутри плоского конденсатора:

Сила притяжения пластин плоского конденсатора:

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Объёмная плотность энергии электрического поля:

Электрический ток

Сила тока может быть найдена с помощью формулы:

Плотность тока:

Сопротивление проводника:

Зависимость сопротивления проводника от температуры задаётся следующей формулой:

Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):

Закономерности последовательного соединения:

Закономерности параллельного соединения:

Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:

Закон Ома для полной цепи:

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Сила тока короткого замыкания:

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:

Мощность электрического тока:

Энергобаланс замкнутой цепи

Полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R 1 и R 2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

Электролиз

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q , прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Где: n – валентность вещества, N A – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Магнетизм

Сила Ампера , действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

Момент сил действующих на рамку с током:

Сила Лоренца , действующая на заряженную частицу движущуюся в однородном магнитном поле, рассчитывается по формуле:

Радиус траектории полета заряженной частицы в магнитном поле:

Модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:

Индукция поля в центре витка с током радиусом R :

Внутри соленоида длиной l и с количеством витков N создается однородное магнитное поле с индукцией:

Магнитная проницаемость вещества выражается следующим образом:

Магнитным потоком Φ через площадь S контура называют величину заданную формулой:

ЭДС индукции рассчитывается по формуле:

При движении проводника длиной l в магнитном поле B со скоростью v также возникает ЭДС индукции (проводник движется в направлении перпендикулярном самому себе):

Максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Индуктивность катушки:

Где: n – концентрация витков на единицу длины катушки:

Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока пронизывающего её, задаётся формулой:

ЭДС самоиндукции возникающая в катушке:

Энергия катушки (вообще говоря, это энергия магнитного поля внутри катушки):

Объемная плотность энергии магнитного поля:

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω 0:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U 1 , а на выходе U 2 , при этом число витков в первичной обмотке равно n 1 , а во вторичной n 2 , то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l :

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т. ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Оптика

Оптическая длина пути определяется формулой:

Оптическая разность хода двух лучей:

Условие интерференционного максимума:

Условие интерференционного минимума:

Закон преломления света на границе двух прозрачных сред:

Постоянную величину n 21 называют относительным показателем преломления второй среды относительно первой. Если n 1 > n 2 , то возможно явление полного внутреннего отражения, при этом:

Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Импульс фотона:

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение U з и элементарный заряд е :

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Второй постулат Бора или правило частот (ЗСЭ):

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К ) и потенциальная (П ) энергии электрона связаны с полной энергией (Е ) следующими формулами:

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Дефект массы:

Энергия связи ядра выраженная в единицах СИ:

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Закон радиоактивного распада:

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Выполняются следующие условия:

Энергетический выход такой ядерной реакции при этом равен:

Основы специальной теории относительности (СТО)

Релятивистское сокращение длины:

Релятивистское удлинение времени события:

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Энергия покоя тела:

Любое изменение энергии тела означает изменение массы тела и наоборот:

Полная энергия тела:

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Релятивистское увеличение массы:

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Равномерное движение по окружности

В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, a n – центростремительное ускорение, L – длина дуги окружности, t – время):

Расширенная PDF версия документа “Все главные формулы по школьной физике”:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

Секреты подготовки

Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает. Почему-то не верится, что так мало школьников 11 класса желают стать:

  • инженерами;
  • ювелирами;
  • авиаконструкторами;
  • геологами;
  • пиротехниками;
  • экологами,
  • технологами на производстве и т.д.

Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

  • механику;
  • физику молекулярную;
  • электромагнетизм и электричество;
  • оптику;
  • физику атомную.

Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

Математические формулы по алгебре и геометрии для ЕГЭ

Как выучить все формулы по математике к ЕГЭ

Чтобы сдать ЕГЭ по математике, необходимо знать математические формулы из школьного курса алгебры и геометрии.

Для того, чтобы запомнить формулы школьной математики, желательно держать в течение всего года на видном месте шпаргалку с красиво написанными формулами. Таким образом подключается зрительная память и формулы лучше запоминаются.

Проверяйте себя время от времени: попробуйте написать все важные математические формулы по памяти, а затем проверьте. На самом деле, формул, которые надо выучить наизусть, не так много. И целого учебного года вполне достаточно, чтобы все выучить.

Многие алгебраические, геометрические, тригонометрические формулы можно быстро вывести прямо на экзамене, если Вы их забыли. Но на это придется потратить какое-то время. Поэтому преимущество получают те школьники, которые выучили формулы.
Зная математические формулы наизусть, можно гораздо быстрей решить сложные задачи по алгебре, тригонометрии и геометрии на ЕГЭ.

Мы собрали самые важные формулы из школьного курса математики, которые надо выучить для успешной сдачи ЕГЭ.

Математические формулы школьного курса алгебры

 

Степени и корни

Формулы сокращенного умножения

Квадратный трехчлен: квадратное уравнение, формулы Виета, разложение на множители

Логарифмические формулы

Формулы тригонометрии

 

Основные формулы тригонометрии

Тригонометрические уравнения

Значения тригонометрических функций

Формулы приведения

Сумма и разность углов

Формулы двойного и тройного аргумента

Формулы половинного аргумента

Сумма и разность тригонометрических функций

Произведение тригонометрических функций

Формулы дифференциального исчисления

Формулы векторной алгебры из школьного курса математики

Формулы арифметической и геометрической прогрессии

Геометрические формулы школьного курса математики для ЕГЭ

Планиметрия

Стереометрия

Выучить формулы по математике – это еще не все, что надо для успешной сдачи ЕГЭ. Опыт решения задач, знания правил оформления заданий на экзамене не менее важны. Приглашаем всех школьников 11-х классов на курсы подготовки к ЕГЭ ПАРАГРАФ. С нами Вы подготовитесь к ЕГЭ наиболее продуктивно.


Учите формулы по математике и сдавайте ЕГЭ на максимальные баллы!

Подготовка к ЕГЭ по Физике самостоятельно на 100 баллов

Можно ли подготовиться к ЕГЭ по физике самостоятельно, имея только выход в интернет? Шанс всегда есть. О том, что делать и в каком порядке, рассказывает автор учебника «Физика. Полный курс подготовки к ЕГЭ» И. В. Яковлев.

Самостоятельная подготовка к ЕГЭ по физике начинается с изучения теории. Без этого невозможно научиться решать задачи. Надо сначала, взяв какую-либо тему, досконально разбираться с теорией, прочитать соответствующий материал.

Возьмем тему «Закон Ньютона». Надо прочитать про инерциальные системы отсчета, узнать, что силы складываются векторно, о том, как векторы проектируются на ось, как это может работать в простой ситуации – например, на наклонной плоскости. Надо выучить, что такое сила трения, чем отличается сила трения скольжения от силы трения покоя. Если вы не различаете их, то, скорее всего, ошибетесь в соответствующей задаче. Ведь задачи часто даются для того, чтобы понять те или иные теоретические моменты, поэтому с теорией надо разобраться максимально четко.

Для полного освоения курса физики мы рекомендуем вам учебник И. В. Яковлева «Физика. Полный курс подготовки к ЕГЭ». Вы можете приобрести его или читать материалы онлайн на нашем сайте. Книга написана простым и понятным языком. Хороша также тем, что теория в ней сгруппирована именно по пунктам кодификатора ЕГЭ.

А потом надо браться за задачи.
Первый этап. Для начала – берите самый простой задачник, и это задачник Рымкевича. Вам надо прорешать 10-15 задач по выбранной теме. В этом сборнике задачи достаточно простые, в одно-два действия. Вы поймете, как решать задачи по этой теме, и заодно запомнятся все формулы, которые нужны.

Когда вы готовитесь к ЕГЭ по физике самостоятельно – не надо специально зубрить формулы и писать шпаргалки. Эффективно всё это воспринимается только тогда, когда пришло через решение задач. Задачник Рымкевича, как никакой другой, отвечает этой первичной цели: научиться решать простые задачи и заодно выучить все формулы.

Второй этап. Пора переходить к тренировкам именно по задачам ЕГЭ. Лучше всего готовиться по замечательным пособиям под редакцией Демидовой (на обложке российский триколор). Эти сборники бывают двух видов, а именно – сборники типовых вариантов и сборники тематических вариантов. Рекомендуется начинать с тематических вариантов. Эти сборники построены следующим образом: сначала идут варианты только по механике. Они скомпонованы в соответствии со структурой ЕГЭ, но задания в них только по механике. Потом – механика закрепляется, подключается термодинамика. Затем – механика + термодинамика + электродинамика. Затем добавляется оптика, квантовая физика, после чего в этом пособии дается 10 полноценных вариантов ЕГЭ – на все темы.
Такое пособие, которое включает в себя около 20 тематических вариантов, рекомендуется в качестве второй ступени после задачника Рымкевича тем, кто самостоятельно готовится к ЕГЭ по физике.

Например, это может быть сборник
«ЕГЭ физика. Тематические экзаменационные варианты». М.Ю. Демидова, И.И. Нурминский, В.А. Грибов.

Аналогично используем сборники, в которых подобраны типовые экзаменационные варианты

Третий этап.
Если позволяет время, крайне желательно выйти на третью ступень. Это подготовка по задачам Физтеха, более высокий уровень. Например, задачник Баканиной, Белонучкина, Козела (издательство «Просвещение»). Задачи таких сборников серьезно превышают уровень ЕГЭ. Но для того чтобы успешно сдать экзамен, надо быть готовым на пару ступенек выше – по самым разным причинам, вплоть до банальной уверенности в себе.

Не надо ограничиваться только пособиями ЕГЭ. Ведь не факт, что на ЕГЭ задания повторятся. Могут быть задачи, которые раньше в сборниках ЕГЭ не встречались.

Как распределить время при самостоятельной подготовке к ЕГЭ по физике?
Что делать, когда у вас есть один год и 5 больших тем: механика, термодинамика, электричество, оптика, квантовая и ядерная физика?

Максимальное количество – половину всего времени подготовки – надо отвести на две темы: механику и электричество. Это доминирующие темы, самые сложные. Механика изучается в 9 классе, и считается, что школьники ее знают лучше всего. Но на самом деле это не так. Задачи по механике максимально сложны. А электричество – тема трудная сама по себе.
Термодинамика и молекулярная физика – тема довольно простая. Конечно, и здесь есть свои подводные камни. Например, школьники плохо понимают, что такое насыщенные пары. Но в целом опыт показывает, что таких проблем, как в механике и электричестве, здесь нет. Термодинамика и молекулярная физика на школьном уровне – более простой раздел. И главное – это раздел автономный. Его можно изучать без механики, без электричества, он сам по себе.

То же можно сказать про оптику. Геометрическая оптика проста – она сводится к геометрии. Надо выучить основные вещи, связанные с тонкими линзами, закон преломления – и всё. Волновая оптика (интерференция, дифракция света) присутствует в ЕГЭ в минимальных количествах. Составители вариантов не дают каких-либо сложных задач в ЕГЭ на эту тему.

И остается квантовая и ядерная физика. Школьники традиционно боятся этого раздела, и зря, потому что он самый простой из всех. Последняя задача из заключительной части ЕГЭ – на фотоэффект, давление света, ядерную физику – проще, чем другие. Надо знать уравнение Эйнштейна для фотоэффекта и закон радиоактивного распада.

В варианте ЕГЭ по физике есть 5 задач, где надо написать развернутое решение. Особенность ЕГЭ по физике в том, что сложность задачи не растет с ростом номера. Никогда не знаешь, какая задача окажется в ЕГЭ по физике сложной. Иногда сложной бывает механика, иногда термодинамика. Но традиционно задача по квантовой и ядерной физике – самая простая.

Подготовиться к ЕГЭ по физике самостоятельно – можно. Но если есть хоть малейшая возможность обратиться к квалифицированному специалисту, то лучше это сделать. Школьники, готовясь к ЕГЭ по физике самостоятельно, сильно рискуют потерять много баллов на экзамене, просто потому, что не понимают стратегию и тактику подготовки. Специалист знает, каким путем идти, а школьник может этого не знать.

Мы приглашаем вас на наши курсы подготовки к ЕГЭ по физике. Год занятий – это освоение курса физики на уровне 80-100 баллов. Успеха вам в подготовке к ЕГЭ!

Расскажи друзьям!

МЦКО

В Москве растет число выпускников, набравших больше 81 балла на экзамене по физике. В прошлом году они составляли 23% от всех участников. Как стать высокобалльником, на какие задания обратить внимание при подготовке и как избежать ошибок? На эти и другие вопросы отвечают председатель предметной комиссии ЕГЭ по физике города Москвы Татьяна Мельникова и ответственный секретарь предметной комиссии Лариса Капустина.

Много ли выпускников сдают физику в качестве предмета по выбору?

В Москве процент выпускников, которые сдают физику в качестве предмета по выбору, год от года остается примерно на одном и том же уровне — около 18% (это от 10,5 до 11,5 тысячи человек). В основном ее выбирают мальчики, они составляют около 80% сдающих. А в целом по стране физике отдают предпочтение примерно 23–25% выпускников.

Чем ЕГЭ по физике будет отличаться от экзамена прошлого года?

В этом году изменения в экзамене небольшие. Во-первых, в вопросе 24 по астрономии не будет указываться, сколько именно правильных утверждений из пяти представленных надо выбрать. Но из логики оценивания следует, что их не может быть меньше двух или больше трёх.

Во-вторых, появилась ещё одна задача с развёрнутым ответом по механике. Она, в отличие от задачи по механике в задании 29, повышенного, а не высокого уровня сложности, и оценивается максимум в два балла. Остальные задания с развёрнутым ответом по-прежнему оцениваются максимум в три балла.

Как эффективнее всего готовиться к экзамену?

Мы рекомендуем обратить внимание на задания из открытого банка ЕГЭ, представленные на сайте ФИПИ. Также при подготовке обязательно обратитесь к кодификатору ЕГЭ по физике. В нем приведены не только все элементы содержания, которые проверяются в экзаменационной работе, но и все формулы, которые понадобятся при выполнении задач.

Помните, что для всех заданий первой части ответом будет целое число или конечная десятичная дробь. Ответ записывайте в бланк ответов № 1 в тех единицах измерения, которые указаны в условии задачи.

При решении не забывайте пользоваться справочными материалами, указанными в начале контрольных измерительных материалов.

В задачах № 26 и № 27 иногда возникает необходимость в округлении результата. В этом случае в тексте задания указывается необходимая точность (например, «ответ округлите до десятых»).

В первой части есть задания повышенного уровня сложности на множественный выбор (задания № 5 по механике, № 11 по молекулярной физике и термодинамике и № 16 по электродинамике). В них из пяти утверждений, описывающий физически процесс или опыт, необходимо выбрать два верных. Не спешите с выбором, внимательно проанализируйте каждое из утверждений, для проверки некоторых из них воспользуйтесь формулами. Одно из утверждений обычно найти несложно, оно лежит на поверхности и описывает простые свойства физического процесса. Поиск второго требует более детального анализа и осмысления, а иногда и некоторых расчетов.

Мы рекомендуем проверять свои знания в онлайн-сервисе «Мои достижения» Московского центра качества образования. Задачи с развернутым ответом проверяют эксперты, которые могут провести видеоконсультацию и объяснить, какие ошибки были допущены.

Насколько сложно получить высокие баллы на ЕГЭ по физике?

Для получения максимального балла на ЕГЭ нужно научиться выполнять задания с развернутым ответом (в этом году в экзаменационной работе их будет шесть). Всего за их правильное выполнение можно получить 17 баллов. Критерии оценивания можно найти в демонстрационном варианте.

При решении задачи № 27 необходимо записать рассуждения, указать физические явления и законы, а главное, четко сформулировать полный ответ. Как правило, цепочка логических рассуждений, необходимая для объяснения, содержит не менее трех звеньев. Стоит отметить, что, согласно критериям оценивания, при неверном ответе, даже при полностью верных рассуждениях, максимальная оценка за такое решение не превысит одного балла.

Для того чтобы получить максимально возможные три балла в задачах 29–32, вам необходимо:

  • записать необходимые для решения формулы и физические законы;
  • описать все буквенные обозначения физических величин, используемых в решении, за исключением констант и физических величин из условия задачи;
  • сделать рисунок с указанием сил, действующих на тело, если это указано в условии;
  • провести необходимые преобразования и расчеты, при этом допускается решение «по частям»;
  • представить правильный ответ с указанием единиц измерения нужной величины.

Согласно критериям оценивания расчетных задач, отсутствие любого пункта из этого списка (рисунок, обозначения физических величин, математические преобразования и расчеты или ошибки в преобразованиях или расчетах, а также в указании единиц измерения) даже при правильном ответе снижает оценку на один балл.

Если же в решении всего одна ошибка в написании или применении физических формул или законов, оно не может быть оценено более чем в один балл.

Имейте в виду, что «авторское решение» не означает «единственно правильное». Ваше решение может быть принципиально другим

Например, очень часто задачу по механике можно решать из динамических и кинематических представлений, а можно — через законы сохранения энергии. Главное, чтобы решение соответствовало описанной в задаче ситуации и было доведено до конца без ошибок.

Какие ошибки чаще всего допускают ученики?

Всех участников ЕГЭ по физике условно можно разделить на четыре группы по уровню подготовки.

Первая — это выпускники с самым низким уровнем подготовки, то есть те, кто не достигает минимального балла (36). Они демонстрируют разрозненные знания и справляются лишь с некоторыми заданиями базового уровня, как правило, по механике и молекулярной физике. Таких в Москве в прошлом году было всего 3%.

Вторая группа, самая многочисленная, — это выпускники, набравшие от 36 до 60 итоговых баллов. В 2019 году в нее вошли 47% от всех сдающих экзамен. Эти выпускники справляются в основном с заданиями первой части, но не приступают ко второй. А если и приступают, то больше одной-двух формул не могут написать.

Для первой и второй групп типичная ошибка — слабое знание курса физики.

В третью группу входят выпускники, набравшие от 61 до 80 итоговых баллов. Это те, кого с удовольствием примут учиться на технические специальности. Таких выпускников в прошлом году было около 26%. Они весьма успешно выполняют задания первой части по всем разделам курса физики. Камнем преткновения для них, как правило, становятся графические задания на изменение физических величин в различных процессах по механике и электродинамике. И в решении задач высокого уровня второй части они также не очень успешны. К решению некоторых они не приступают вовсе либо не доводят его до конца, споткнувшись о математику.

Четвертая группа — это высокобалльники, выпускники, набравшие от 81 до 100 баллов. Их с нетерпением ждут в лучших вузах Москвы. В прошлом году они составляли 23% от всех сдающих физику. Можно похвалить столицу: больше нигде нет такого большого процента высокобалльников! И самое главное — доля таких участников у нас год от года увеличивается. Ошибок они допускают крайне мало, в основном по невнимательности: в первой части не в тех единицах могут представить ответ, во второй части из-за кажущейся очевидности пропускают логически важные моменты преобразований или вычислений, могут забыть подставить единицы измерения, использовать не начальную формулу или закон, а сразу то, что получается в результате преобразований. Но критерии проверки едины по всей стране, и приходится за всё это снижать баллы.

С чем чаще всего у выпускников возникают сложности?

Три года назад в школу вернули преподавание астрономии, и в контрольных измерительных материалах по физике появился вопрос, на который, как показывает статистика, далеко не все выпускники могут дать правильный ответ.

Астрономии посвящён всего один вопрос во всей работе ЕГЭ, но за его верное выполнение можно получить два первичных балла, а это означает, что итоговых баллов может быть даже четыре

Чтобы успешно справиться с этим заданием, нужно посмотреть в кодификаторе раздел «Элементы астрофизики» и «Механика», где есть необходимые для астрономических вычислений формулы первой и второй космических скоростей. Некоторые сведения можно почерпнуть из справочных материалов.

Обратите внимание, что упор в астрономических заданиях делается не на проверку знания огромного количества данных, а на умение анализировать представленный в виде таблицы материал. Хотя кое-что помнить все же полезно. Например, что такое «одна астрономическая единица» и чему она равна.

Какие рекомендации вы можете дать учителям?

В период подготовки к экзамену очень важно не оставлять учеников, стараться систематическими занятиями поддерживать набранную форму, решать различные задачи. При этом важно не только оценивать «правильно — неправильно», но и разбирать ошибки, повторяя наиболее западающие темы курса физики. Начиная с седьмого класса, когда идет изучение физики явлений, нужно чаще обращать внимание детей на мир вокруг нас и на место физических законов в нем.

А родителям выпускников?

Для выпускника в период подготовки к экзамену важно соблюдать распорядок дня, хорошо питаться, сочетать умственную и физическую нагрузку. Родители могут обеспечить ему все условия для этого.

Чтобы успешно сдать экзамен, нужно иметь не только хорошие знания, но и терпение, поэтому подготовка должна проходить в доброжелательной, спокойной атмосфере. Создать ее для ребенка — задача родителей.

https://mel.fm/ekzameny/9218743-ege_physics_guide

ЕГЭ по физике: советы — Учёба.ру

При решении вычислительных задач (как в первой, так и во второй части экзамена) вычисления бывают достаточно громоздкими, и в конечном итоге получается длинная формула. Даже если вы считаете, что получили правильный ответ в виде формулы, всегда доводите его до конца, производя вычисления. Многие ученики теряют баллы только на том, что неправильно подсчитывают конечную формулу.

В ЕГЭ по физике часто приходится работать с несистемными единицами, такими как миллиметры, электронвольты, пикофарады и т д. Чтобы не ошибиться в подстановке значений, всегда пишите величины с размерностью. Это поможет не забыть перевести величины в систему СИ.

Задания экзамена можно поделить на два типа: численные задачи и теоретические задачи. В численных задачах от вас потребуется работа с формулами, а в теоретических — с векторами, диаграммами, теоретическими утверждениями и т д. Во время подготовки обязательно тренируйтесь решать теоретические задания — по статистике, именно в них совершается большее количество ошибок.

На экзамене потребуется знание многих формул, но далеко не всех, которые были пройдены в школе. Во время подготовки внимательно изучите полный список формул, которые встретятся вам на экзамене, его можно найти в кодификаторе ЕГЭ на сайте ФИПИ.

Один из важнейших этапов решения задачи — это визуализация происходящих физических процессов. Старайтесь к каждой задаче сделать рисунок, поясняющий то, что происходит в условии. Правильно сделанный рисунок часто становится подсказкой к решению.

Во время подготовки к ЕГЭ большая часть учеников пользуется телефоном в качестве калькулятора. Не советуем привыкать к такому способу вычислений, ведь на экзамене считать придется на обычном калькуляторе, а его интерфейс сильно отличается от того, к чему вы привыкли, используя мобильный.

На экзамене задания представлены в 4-х различных блоках: механика, молекулярная физика, электродинамика и квантовая физика. На самом деле, задания из квантовой физики не являются такими уж сложными, просто эта тему начинают поздно проходить в школе, и результаты учеников в этом блоке оказываются очень низкими. Поэтому при подготовке обратите на эти задания особое внимание.

Есть темы, которые встречаются в экзаменационных вариантах чаще, есть темы, которые встречаются реже, но в ЕГЭ по физике существуют определенные темы, с которыми вам обязательно необходимо уметь работать. Например, темы «Сила» и «Энергия» очень часто попадаются во всех блоках экзамена, будь то механика, молекулярная физика, электродинамика или квантовая физика.

Все самые важные формулы по физике. Формулы по физике для егэ. Основные формулы световых квантов

Как правило, именно математику, а не физику принято считать королевой точных наук. Мы полагаем, что это утверждение спорно, ведь технический прогресс невозможен без знания физики и её развития. Из-за своей сложности она вряд ли когда-либо будет включена в список обязательных государственных экзаменов, но, так или иначе, абитуриентам технических специальностей приходится сдавать её в обязательном порядке. Труднее всего запомнить многочисленные законы и формулы по физике для ЕГЭ, именно о них мы расскажем в этой статье.

Секреты подготовки

Возможно, это связано с кажущейся сложностью предмета или популярностью профессий гуманитарного и управленческого профиля, но в 2016 году только 24 % всех абитуриентов приняли решение сдавать физику, в 2017 – лишь 16 %. Такие статистические данные невольно заставляют задуматься, не слишком ли завышены требования или просто уровень интеллекта в стране падает. Почему-то не верится, что так мало школьников 11 класса желают стать:

  • инженерами;
  • ювелирами;
  • авиаконструкторами;
  • геологами;
  • пиротехниками;
  • экологами,
  • технологами на производстве и т.д.

Знание формул и законов физики в равной степени необходимо для разработчиков интеллектуальных систем, вычислительной техники, оборудования и вооружения. При этом всё взаимосвязано. Так, например, специалисты, производящие медицинское оборудование, в своё время изучали углубленный курс атомной физики, ведь без разделения изотопов, у нас не будет ни рентгенологической аппаратуры, ни лучевой терапии. Поэтому создатели ЕГЭ постарались учесть все темы школьного курса и, кажется, не пропустили ни одной.

Те ученики, которые исправно посещали все уроки физики вплоть до последнего звонка, знают, что в период с 5 по 11 класс изучается около 450 формул. Выделить из этих четырех с половиной сотен хотя бы 50 крайне сложно, поскольку все они важны. Подобного мнения, очевидно, также придерживаются разработчики Кодификатора. Тем не менее, если вы одарены необыкновенно и не ограничены во времени, вам хватит 19 формул, ведь при желании из них можно вывести все остальные. За основу мы решили взять главные разделы:

  • механику;
  • физику молекулярную;
  • электромагнетизм и электричество;
  • оптику;
  • физику атомную.

Очевидно, что подготовка к ЕГЭ должна быть ежедневной, но если по каким-то причинам вы приступили к изучению всего материала лишь сейчас, настоящее чудо может совершить экспресс-курс, предлагаемый нашим центром. Надеемся, эти 19 формул также будут вам полезны:

Вы, наверное, заметили, что некоторые формулы по физике для сдачи ЕГЭ остались без пояснений? Мы предоставляем вам самим их изучить и открыть для себя законы, по которым абсолютно всё вершится в этом мире.

Абсолютно необходимы для того, чтобы человек, решивший изучать эту науку, вооружившись ими, мог чувствовать себя в мире физики как рыба в воде. Без знания формул немыслимо решение задач по физике. Но все формулы запомнить практически невозможно и важно знать, особенно для юного ума, где найти ту или иную формулу и когда ее применить.

Расположение физических формул в специализированных учебниках распределяется обычно по соответствующим разделам среди текстовой информации, поэтому их поиск там может отнять довольно-таки много времени, а тем более, если они вдруг понадобятся Вам срочно!

Представленные ниже шпаргалки по физике содержат все основные формулы из курса физики , которые будут полезны учащимся школ и вузов.

Все формулы школьного курса по физике с сайта http://4ege.ru
I. Кинематика скачать
1. Основные понятия
2. Законы сложения скоростей и ускорений
3. Нормальное и тангенциальное ускорения
4. Типы движений
4.1. Равномерное движение
4.1.1. Равномерное прямолинейное движение
4.1.2. Равномерное движение по окружности
4.2. Движение с постоянным ускорением
4.2.1. Равноускоренное движение
4.2.2. Равнозамедленное движение
4.3. Гармоническое движение
II. Динамика скачать
1. Второй закон Ньютона
2. Теорема о движении центра масс
3. Третий закон Ньютона
4. Силы
5. Гравитационная сила
6. Силы, действующие через контакт
III. Законы сохранения. Работа и мощность скачать
1. Импульс материальной точки
2. Импульс системы материальных точек
3. Теорема об изменении импульса материальной точки
4. Теорема об изменении импульса системы материальных точек
5. Закон сохранения импульса
6. Работа силы
7. Мощность
8. Механическая энергия
9. Теорема о механической энергии
10. Закон сохранения механической энергии
11. Диссипативные силы
12. Методы вычисления работы
13. Средняя по времени сила
IV. Статика и гидростатика скачать
1. Условия равновесия
2. Вращающий момент
3. Неустойчивое равновесие, устойчивое равновесие, безразличное равновесие
4. Центр масс, центр тяжести
5. Сила гидростатического давления
6. Давлением жидкости
7. Давление в какой-либо точке жидкости
8, 9. Давление в однородной покоящейся жидкости
10. Архимедова сила
V. Тепловые явления скачать
1. Уравнение Менделеева-Клапейрона
2. Закон Дальтона
3. Основное уравнение МКТ
4. Газовые законы
5. Первый закон термодинамики
6. Адиабатический процесс
7. КПД циклического процесса (теплового двигателя)
8. Насыщенный пар
VI. Электростатика скачать
1. Закон Кулона
2. Принцип суперпозиции
3. Электрическое поле
3.1. Напряженность и потенциал электрического поля, созданного одним точечным зарядом Q
3.2. Напряженность и потенциал электрического поля, созданного системой точечных зарядов Q1, Q2, …
3.3. Напряженность и потенциал электрического поля, созданного равномерно заряженным по поверхности шаром
3.4. Напряженность и потенциал однородного электрического поля, (созданного равномерно заряженной плоскотью или плоским конденсатором)
4. Потенциальная энергия системы электрических зарядов
5. Электроемкость
6. Свойства проводника в электрическом поле
VII. Постоянный ток скачать
1. Упорядоченная скорость
2. Сила тока
3. Плотность тока
4. Закон Ома для участка цепи, не содержащего ЭДС
5. Закон Ома для участка цепи, содержащего ЭДС
6. Закон Ома для полной (замкнутой) цепи
7. Последовательное соединение проводников
8. Параллельное соединение проводников
9. Работа и мощность электрического тока
10. КПД электрической цепи
11. Условие выделения максимальной мощности на нагрузке
12. Закон Фарадея для электролиза
VIII. Магнитные явления скачать
1. Магнитное поле
2. Движение зарядов в магнитном поле
3. Рамка с током в магнитном поле
4. Магнитные поля, создаваемые различными токами
5. Взаимодействие токов
6. Явление электромагнитной индукции
7. Явление самоиндукции
IX. Колебания и волны скачать
1. Колебания, определения
2. Гармонические колебания
3. Простейшие колебательные системы
4. Волна
X. Оптика скачать
1. Закон отражения
2. Закон преломления
3. Линза
4. Изображение
5. Возможные случаи расположения предмета
6. Интерференция
7. Дифракция

Большая шпаргалка по физике . Все формулы изложены в компактном виде с небольшими комментариями. Шпаргалка также содержит полезные константы и прочую информацию. Файл содержит следующие разделы физики:

    Механика (кинематика, динамика и статика)

    Молекулярная физика. Свойства газов и жидкостей

    Термодинамика

    Электрические и электромагнитные явления

    Электродинамика. Постоянный ток

    Электромагнетизм

    Колебания и волны. Оптика. Акустика

    Квантовая физика и теория относительности

Маленькая шпора по физике . Все самое необходимое для экзамена. Нарезка основных формул по физике на одной странице. Не очень эстетично, зато практично. 🙂

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Также давайте вспомним движение по кругу:

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

После статики можно рассмотреть и гидростатику:

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Основные формулы термодинамики и молекулярной физики

Последняя тема в механике – это “Колебания и волны”:

Теперь можно смело переходить к молекулярной физике:

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Переходим к постоянному электрическому току:

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Ну и, конечно, куда же без электромагнитных колебаний:

Основные формулы оптической физики

Переходим к следующему разделу по физике – оптика. Здесь даны 8 основных формул, которые необходимо знать. Будьте уверены, задачи по оптике – частое явление:

Основные формулы элементов теории относительности

И последнее, что нужно знать перед экзаменом. Задачи по этой теме попадаются реже, чем предыдущие, но бывают:

Основные формулы световых квантов

Этими формулами приходится часто пользоваться в силу того, что на тему “Световые кванты” попадается немало задач. Итак, рассмотрим их:

На этом можно заканчивать. Конечно, по физике есть ещё огромное количество формул, но они вам не столь не нужны.

Это были основные формулы физики

В статье мы подготовили 50 формул, которые понадобятся на экзамене в 99 случая из 100.

Совет : распечатайте все формулы и возьмите их с собой. Во время печати, вы так или иначе будете смотреть на формулы, запоминая их. К тому же, с основными формулами по физике в кармане, вы будете чувствовать себя на экзамене намного увереннее, чем без них.

Надеемся, что подборка формул вам понравилась!

P.S. Хватило ли вам 50 формул по физике, или статью нужно дополнить? Пишите в комментариях.

Более 50 основных формул по физике с пояснением обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Шпаргалка с формулами по физике для ЕГЭ

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

Для начала картинка, которую можно распечатать в компактном виде.

Механика

  1. Давление Р=F/S
  2. Плотность ρ=m/V
  3. Давление на глубине жидкости P=ρ∙g∙h
  4. Сила тяжести Fт=mg
  5. 5. Архимедова сила Fa=ρ ж ∙g∙Vт
  6. Уравнение движения при равноускоренном движении

X=X 0 +υ 0 ∙t+(a∙t 2)/2 S=(υ 2 –υ 0 2) /2а S=(υ +υ 0) ∙t /2

  1. Уравнение скорости при равноускоренном движении υ =υ 0 +a∙t
  2. Ускорение a=(υ υ 0)/t
  3. Скорость при движении по окружности υ =2πR/Т
  4. Центростремительное ускорение a=υ 2 /R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона F=ma
  7. Закон Гука Fy=-kx
  8. Закон Всемирного тяготения F=G∙M∙m/R 2
  9. Вес тела, движущегося с ускорением а Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓ Р=m(g-a)
  11. Сила трения Fтр=µN
  12. Импульс тела p=mυ
  13. Импульс силы Ft=∆p
  14. Момент силы M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx 2 /2
  17. Кинетическая энергия тела Ek=mυ 2 /2
  18. Работа A=F∙S∙cosα
  19. Мощность N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υ Т

Молекулярная физика и термодинамика

  1. Количество вещества ν=N/ Na
  2. Молярная масса М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ P=nkT=1/3nm 0 υ 2
  5. Закон Гей – Люссака (изобарный процесс) V/T =const
  6. Закон Шарля (изохорный процесс) P/T =const
  7. Относительная влажность φ=P/P 0 ∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс) PV=const
  11. Количество теплоты при нагревании Q=Cm(T 2 -T 1)
  12. Количество теплоты при плавлении Q=λm
  13. Количество теплоты при парообразовании Q=Lm
  14. Количество теплоты при сгорании топлива Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики ΔU=A+Q
  17. КПД тепловых двигателей η= (Q 1 – Q 2)/ Q 1
  18. КПД идеал. двигателей (цикл Карно) η= (Т 1 – Т 2)/ Т 1

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q 1 ∙q 2 /R 2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R 2
  4. Поверхностная плотность зарядов σ = q/S
  5. Напряженность эл. поля бесконечной плоскости E=2πkσ
  6. Диэлектрическая проницаемость ε=E 0 /E
  7. Потенциальная энергия взаимод. зарядов W= k∙q 1 q 2 /R
  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙ε ε 0 /d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I 1 =I 2 =I, U 1 +U 2 =U, R 1 +R 2 =R
  19. Законы паралл. соед. U 1 =U 2 =U, I 1 +I 2 =I, 1/R 1 +1/R 2 =1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I 2 Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0) I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυ sinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI 2 /2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление X L =ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-X L) 2 +R 2

Оптика

  1. Закон преломления света n 21 =n 2 /n 1 = υ 1 / υ 2
  2. Показатель преломления n 21 =sin α/sin γ
  3. Формула тонкой линзы 1/F=1/d + 1/f
  4. Оптическая сила линзы D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=U з е
  2. Красная граница фотоэффекта ν к = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Уравнения физики MCAT, которые вы должны знать в 2021 году

Сколько физики в MCAT?

Вам может быть интересно, сколько физики вы увидите на MCAT? Ваши знания физики будут задействованы в первом разделе MCAT: Химические и физические основы биологических систем. Согласно AAMC, вы можете ожидать, что примерно 25% вопросов в этом разделе будут касаться вводной физики.

Сколько вводной физики входит в MCAT?

Что мы подразумеваем под вводной физикой? Вы не будете использовать слишком сложные уравнения физики в этом разделе MCAT, скорее, вам нужно будет уметь применять концепции физики из своего двухсеместрового вводного курса университетской физики, чтобы продемонстрировать широкое понимание динамики в живых системах. .Вы можете ожидать увидеть связанные с физикой вопросы, основанные на отрывках, а также несколько отдельных отдельных вопросов по физике. Когда начинать подготовку к экзамену MCAT, отчасти будет зависеть от того, сколько знаний вы усвоили на вводных курсах физики.

AAMC определил ваше понимание того, как сложные живые организмы транспортируют материалы, воспринимают окружающую их среду, обрабатывают сигналы и реагируют на изменения – с точки зрения физических принципов – в качестве фундаментальной концепции MCAT.Примерно 40% раздела химии и физики будут сосредоточены на этой фундаментальной концепции и будут включать следующие категории контента, связанные с физикой:

4A – Поступательное движение, силы, работа, энергия и равновесие в живых системах

4B – Важность жидкостей для циркуляции крови, движения газов и газообмена

4C – Электрохимия и электрические цепи и их элементы

4D – Как свет и звук взаимодействуют с веществом

4E – Атомы, распад ядер, электронная структура и химическое поведение атомов

Более подробно изучите категории контента в MCAT с помощью руководства AAMC «Что входит в экзамен MCAT?»

Основные физические уравнения для MCAT

Есть много физических уравнений, но какие из них вам действительно нужно знать для MCAT? Продолжайте читать, чтобы ознакомиться с каждым физическим уравнением, которое рекомендует вам знать AAMC, с разбивкой по категориям контента:

4A – Поступательное движение, силы, работа, энергия и равновесие в живых системах

В этой категории контента основное внимание уделяется движение и его причины, а также различные формы энергии и их взаимопревращения.

1. Второй закон Ньютона: F = ma

  • Это уравнение является вторым законом Ньютона, который гласит, что результирующая сила (F), действующая на объект, пропорциональна его массе (м) и ускорению (а).

2. Работа с постоянной силой: W = Fd cosθ

  • Это уравнение описывает принцип рабочей энергии или работу (W), совершаемую постоянной силой (F) над объектом, который движется в определенном направлении. . В этом уравнении d – это расстояние, на которое объект перемещается, когда на него действует сила, а тета-косинус (cosθ) – это угол между силой и смещенным объектом.

3. Теорема о кинетической энергии работы: Wnet = ΔKE

  • Эта теорема утверждает, что сетевая работа (Wnet) в системе равна изменению кинетической энергии (ΔKE) движущегося объекта, частицы или системы объекты движутся вместе.

4. Кинетическая энергия: KE = ½ мв 2

  • Кинетическая энергия (KE) – это форма энергии, связанная с движением объекта. Эта энергия связана с определенной массой (m), движущейся с определенной скоростью (v).Кинетическая энергия пропорциональна квадрату скорости (v 2 ).

5. Потенциальная энергия: PE = mgh

  • Это уравнение описывает гравитационную потенциальную энергию (PE), которая зависит от положения объекта. Чтобы использовать это уравнение, вам потребуются масса объекта (м), ускорение свободного падения (g), которое составляет 9,8 м / с 2 на поверхности Земли, и высота объекта в метрах (ч). .

6. Потенциальная энергия: PE = ½kx 2

  • Сила упругости – это сила, возникающая в результате растяжения или сжатия объекта, например пружины.В этом уравнении потенциальной энергии (PE) k – жесткость пружины, а x – расстояние, на которое пружина растягивается. Жесткость пружины связана с ее жесткостью.

4B – Важность жидкостей для циркуляции крови, движения газов и газообмена

В этой категории содержания основное внимание уделяется поведению жидкостей, поскольку оно имеет отношение к функционированию легочной и кровеносной систем.

1. Закон Паскаля о гидростатическом давлении: P = ρgh

  • Этот закон применяется к статическим жидкостям и связывает давление с глубиной.Давление в жидкости на заданной глубине называется гидростатическим давлением, и это давление увеличивается с увеличением глубины под поверхностью. В этом уравнении P – гидростатическое давление, ρ – плотность жидкости, g – ускорение свободного падения (9,8 м / с 2 ), а h – глубина / высота жидкости в метрах.

2. Уравнение непрерывности: A ∙ v = constant

  • Непрерывность потока – фундаментальный принцип жидкостей. Поскольку масса в жидкой системе сохраняется, непрерывность потока также существует.В этом уравнении A – это площадь поперечного сечения потока, а v – скорость. Если площадь поперечного сечения в жидкостной системе изменится, скорость изменится обратно пропорционально, чтобы сохранить непрерывность.

3. Уравнение Бернулли: P + ½ρv 2 + ρgh = constant

  • Это уравнение позволяет анализировать жидкость, когда она движется через трубку, и связывает скорость жидкости с ее давлением. Для горизонтальной трубы с изменяющимся диаметром области, где жидкость движется быстро, будут находиться под меньшим давлением, чем области, где жидкость движется медленно.Уравнение Бернулли применяет принципы сохранения энергии к текущей жидкости. В этом уравнении P – гидростатическое давление, ρ – плотность жидкости, v – скорость, g – ускорение свободного падения (9,8 м / с 2 ) и h – высота жидкости в метрах.

4. Закон идеального газа: PV = nRT

  • Закон идеального газа описывает поведение идеального газа и объединяет идеи, найденные в различных других газовых законах. В этом уравнении P – давление газа, V – объем в литрах, n – количество газа в молях, R – универсальная газовая постоянная, а T – температура в Кельвинах.Значение R будет зависеть от единиц, которые вы используете в этом уравнении.

5. Закон Бойля: PV = константа, P 1 V 1 = P 2 V 2

  • Этот газовый закон гласит, что давление (P) газа обратно пропорционально его объему. (V) при постоянной температуре. Закон Бойля позволяет рассчитать, как изменится объем газа при изменении оказываемого на него давления, и наоборот.

6. Закон Чарльза: V / T = константа, V 1 / T 1 = V 2 / T 2

  • Этот газовый закон гласит, что объем (V) газа равен напрямую связана с его температурой (T) при постоянном давлении.Закон Чарльза позволяет рассчитать, как объем газа изменится при изменении его температуры, и наоборот.

7. Закон Авогадро: V / n = константа, V 1 / n 1 = V 2 / n 2

  • Этот газовый закон связывает объем газа с числом молей внутри газа. Объем (V) газа напрямую зависит от количества молей (n) в нем. При постоянной температуре и давлении большее количество молей будет занимать больший объем.Закон Авогадро позволяет рассчитать, как будет изменяться объем газа при изменении количества молей, и наоборот.

8. Закон Дальтона парциальных давлений: P Total = P 1 + P 2

  • Закон Дальтона гласит, что полное давление (P Total ), оказываемое газовой смесью, является суммой отдельных давлений (P 1 , P 2 и т. д.), оказываемых каждым газом в смеси.

4C – Электрохимия, электрические цепи и их элементы

В этой категории содержания подчеркивается природа электрических токов и напряжений, то, как энергия может быть преобразована в электрические формы, которые могут использоваться для выполнения химических преобразований или работы.Кроме того, в эту категорию входит то, как электрические импульсы могут передаваться в нервной системе на большие расстояния.

1. Закон Кулона: F = k ∙ (q 1 q 2 / r 2 )

  • Этот закон определяет силу между двумя электрически заряженными частицами. Электрическая сила (F) отталкивания или притяжения между частицами пропорциональна произведению зарядов (q) и обратно пропорциональна квадрату расстояния между ними (r 2 ).В этом уравнении k – постоянная Кулона.

2. Постоянный ток: I = ΔQ / Δt

  • Это уравнение позволяет рассчитать электрический ток (I) в цепи, когда электрический заряд (ΔQ) течет в течение времени Δt.

3. Закон Ома: I = V / R

  • Закон Ома связывает ток (I), протекающий по цепи, с напряжением (V) и сопротивлением (R). Ток равен напряжению, деленному на сопротивление в омах.

4.Удельное сопротивление: ρ = R ∙ A / L

  • Это уравнение удельного сопротивления демонстрирует, что удельное сопротивление (ρ) материала, такого как проволока, равно сопротивлению (R) материала в омах, умноженному на его поперечное сечение. площадь (A) и деленная на ее длину (L).

4D – Как свет и звук взаимодействуют с материей

Эта категория контента фокусируется на свойствах света и звука, на том, как взаимодействие света и звука с материей может использоваться организмом для восприятия окружающей его среды и как эти взаимодействия также можно использовать для создания структурной информации или изображений.

1. Энергия фотона: E = hf

  • Энергия (E) фотона в электромагнитной волне напрямую связана с частотой волны (f). В этом уравнении h – постоянная Планка.

2. Закон Снеллиуса: n 1 sinθ 1 = n 2 sinθ 2

  • Закон Снеллиуса описывает изменение направления светового луча, когда он движется из среды с одним показателем преломления ( n 1 ) в другую среду с другим показателем преломления (n 2 ).Угол (sinθ 1 ) падения на поверхность и угол (sinθ 2 ) преломления измеряются относительно нормали к поверхности.

3. Уравнение линзы: 1 / f = 1 / p + 1 / q

  • Изгиб световых лучей через тонкую линзу резюмируется уравнением линзы. В этом уравнении f – фокусное расстояние линзы, p – расстояние от объекта до линзы, а q – расстояние от изображения до линзы. Вам нужно будет знать соглашения о знаках для этого уравнения или когда определенные значения будут положительными или отрицательными: для выпуклой линзы фокусное расстояние всегда будет положительным, для вогнутой линзы фокусное расстояние всегда будет отрицательным.

4E – Атомы, распад ядра, электронная структура и химическое поведение атомов

В этой категории контента основное внимание уделяется субатомным частицам, атомному ядру, ядерному излучению, структуре атома и способам конфигурации любого конкретный атом можно использовать для предсказания его физических и химических свойств.

  • AAMC не ссылается на какие-либо конкретные физические уравнения, которые вам необходимо знать для этой последней категории содержания в разделе «Химические и физические основы биологических систем» MCAT.

Если вы чувствуете себя подавленным количеством физических уравнений, которые вам нужно знать для MCAT, обязательно ознакомьтесь с нашими полезными советами ниже. Чтобы посмотреть средние баллы и процентильные ранги для раздела химии и физики MCAT, загляните в наш блог Насколько сложен MCAT?

Хотите узнать о лучшем графике обучения MCAT? Посмотрите наше видео:

Советы по использованию физических уравнений во время MCAT

Совет № 1: Помните, вам не нужно быть гением физики, чтобы преуспеть в MCAT

Да, существует довольно много уравнения физики, которые вам необходимо запомнить и досконально понять, как их использовать для MCAT, но они являются лишь небольшой частью физических уравнений, существующих во Вселенной.Они также не являются самыми сложными из физических уравнений и обычно применимы к задачам, которые можно решить всего за несколько шагов. Вопросы по химии и физике MCAT будут вращаться вокруг простых физических уравнений и основополагающих концепций. Главное – понять, когда использовать эти уравнения и как использовать их быстро и уверенно. После запоминания каждого уравнения физики, которое вам нужно будет знать, решение как можно большего количества практических задач MCAT по химии и физике поможет вам понять, как применять эти уравнения.Имейте в виду, что уравнения физики, которые вам понадобятся, просты: если вы обнаружите, что решаете сложную многоступенчатую задачу и уже потратили несколько минут на вычисления, вам необходимо пересмотреть свой подход.

Совет № 2: Остерегайтесь единиц

Мы все были там: вы только что потратили пять минут на длительные вычисления, и, взглянув на варианты ответа, ваше решение не входит в число возможных ответов. Вы начинаете паниковать и беспокоиться о том, что потратили впустую пять драгоценных минут и до сих пор не знаете ответа.Часто правильный ответ дает быстрое преобразование единиц измерения; или вы могли просто использовать неправильные единицы в вашем уравнении. Понимание того, как переводить единицы измерения и обеспечение того, чтобы вы могли сделать это быстро без калькулятора, имеет важное значение для раздела химии и физики MCAT! Еще один совет: научитесь переупорядочивать уравнения для решения конкретной переменной, чтобы избежать ошибок в день тестирования.

Совет № 3: Примените свои знания физики

Концепции физики будут проверены в контексте живых систем.Поэтому типы вопросов, которые вы, возможно, видели на экзаменах по физике вводного уровня в колледже, скорее всего, не появятся в MCAT. Не будет никаких 30-минутных углубленных физических расчетов. Важно понимать, что вы будете применять фундаментальные концепции физики к человеческому телу, например, к отрывку о потоке жидкостей через аорту. Изучая концепции физики для MCAT, сосредоточьтесь на применении этих физических концепций к человеческому телу. Если вы не знаете, как концепция физики применима к живым системам, вам стоит это изучить.

Чтобы получить больше советов по MCAT, обязательно используйте наши вопросы по психологии и социологии MCAT, MCAT CARS и вопросы биологии MCAT и советы по биохимии, специально предназначенные для выполнения каждого раздела MCAT! Не забудьте ознакомиться с нашей надежной стратегией MCAT CARS!

Ознакомьтесь с кратким обзором:

Часто задаваемые вопросы

1. Какова длина раздела MCAT по химии и физике и в каком формате?

Секция химии и физики является первой из четырех секций MCAT.В этом разделе у вас будет 95 минут, чтобы ответить на 59 вопросов. Из этих 59 вопросов 44 основаны на отрывках. Вам будут представлены десять отрывков по химии и физике, и вам будет задано от четырех до семи вопросов на основе отрывков после каждого отрывка. Также будет 15 отдельных отдельных вопросов, разбросанных между отрывками. Хотите получить подробную информацию о том, как будет выделяться каждая минута в день тестирования? Загляните в наш блог «Как долго длится MCAT?»

2.Как я могу использовать диагностический экзамен, чтобы определить, сколько физики мне нужно будет изучать для MCAT?

Прежде чем вы сможете начать подготовку к экзамену MCAT, вам необходимо понять свой базовый уровень. Для этого нужно пройти полный диагностический тест MCAT. Цель состоит в том, чтобы точно понять, где вы стоите, когда приступаете к подготовке к MCAT. Для диагностики лучше всего использовать полный экзамен с веб-сайта AAMC. Убедитесь, что вы сдали практический экзамен за один присест в обстановке, имитирующей условия тестового дня.Просматривая результаты своей диагностики, оценивайте свои сильные стороны и области, в которых необходимо улучшить. Как вы ответили на вопросы, связанные с физикой? Вы рисовали пробел, когда дело касалось определенных физических уравнений или областей содержания? Удалось ли вам связать свои знания физики с вопросами о живых организмах и системах организма? Будьте честны с собой в отношении вашего уровня комфорта с физикой MCAT, когда вы просматриваете наш блог, который помогает вам определить общий вопрос «когда мне следует сдавать MCAT?». После установки целевой даты теста MCAT наметьте свои приготовления к MCAT с помощью нашего всеобъемлющего Руководство по расписанию обучения MCAT.

3. Какие методы запоминания физических уравнений мне понадобятся в день экзамена?

Изучая MCAT, вы можете обнаружить, что традиционные методы запоминания уравнений, такие как создание карточек, вам не подходят. Что еще можно попробовать? Вот несколько дополнительных методов, которые следует учитывать при подготовке к экзамену MCAT:

  • Запишите уравнение несколько раз на листе бумаги, пока вы не сможете произнести его вслух, не обращаясь к учебным материалам.
  • Попробуйте преобразовать уравнение в предложение, объясняющее то, что оно вам говорит.
  • Решите несколько практических задач, требующих использования уравнения.
  • Попробуйте сгруппировать несколько уравнений по темам, чтобы увидеть сходство между уравнениями, с которыми вы боретесь, и теми, с которыми вы уже справились.
  • Спросите друга, разработали ли они какие-нибудь запоминающиеся мнемонические устройства, чтобы запомнить уравнения физики, которые вам понадобятся для MCAT.

Помните, истинное понимание уравнения будет ключом к его запоминанию.Для любых уравнений, с которыми вы боретесь, углубитесь в каждую часть уравнения и поработайте, чтобы понять, как каждая часть работает вместе. Вы также можете попробовать вернуться к своим заметкам и просмотреть любые уравнения, относящиеся к основополагающим концепциям, которые вы узнали ранее. Пробелы в знаниях по темам, которые вы уже рассмотрели, могут ограничивать вашу способность изучать новые уравнения. Если вам действительно сложно, вы можете обратиться к репетитору MCAT.

4. Могу ли я использовать калькулятор при решении физических уравнений на MCAT?

Вы не сможете использовать калькулятор в каких-либо разделах MCAT, а это значит, что важно не заполнять типовые вопросы или практиковаться на экзаменах MCAT с помощью калькулятора.Важно, чтобы вы настроились на успех, завершив подготовку к MCAT в условиях, имитирующих условия дня теста. Используйте месяцы, предшествующие сдаче MCAT, чтобы повысить свою эффективность при выполнении мысленных вычислений и математических вычислений вручную.

5. Нужно ли мне знать, как рисовать бесплатные диаграммы тела для MCAT?

MCAT представляет собой тест с несколькими вариантами ответов и не содержит вопросов с бесплатными ответами, в которых будут проверяться ваши знания о том, как рисовать диаграммы.При этом базовые знания о том, как рисовать диаграммы свободного тела для расчета сил, безусловно, пригодятся при решении вопросов с несколькими вариантами ответов, связанных с физикой, поэтому не пренебрегайте этим навыком.

6. Достаточно ли AP Physics для решения связанных с физикой вопросов MCAT?

Ответ на этот вопрос, конечно же, будет зависеть от того, насколько хорошо вы прошли курс AP Physics. AP Physics должна дать вам те же вводные знания физики, которые вы получили бы на вводном курсе физики в университете.Используйте свой диагностический экзамен, чтобы действительно оценить свой уровень комфорта с помощью физических уравнений и концепций физики на MCAT. Если у вас хороший базовый балл по химическому и физическому разделу MCAT, вы можете расширить свои знания AP Physics, убедившись, что вы по-прежнему знаете необходимые уравнения, и закрепляя ключевые концепции в процессе обучения. Скорее всего, вам все еще нужно будет исследовать, как концепции фундаментальной физики соотносятся с живыми системами, поскольку это, возможно, не было подчеркнуто в вашем курсе AP Physics.

7. Почему только эти уравнения указаны как важные? Разве мне не нужно знать больше?

Да, вам могут понадобиться другие, но вы можете легче вывести или вывести их на основе этих важных. Если вы не знаете этих важных, вы не сможете вывести или вывести другие.

8. Когда мне следует сдавать MCAT?

Обязательно сдайте экзамен, когда будете готовы. Обычно это означает, что вы постоянно набираете 90-й процентиль на своих практических экзаменах.

Заключение

Почему физика включена в MCAT? Физика – это лишь один из многих строительных блоков, которые вам понадобятся как студенту-медику, чтобы узнать о физиологических функциях дыхательной, сердечно-сосудистой и неврологической систем при здоровье и болезнях. Таким образом, секция химии и физики MCAT – это ваша возможность продемонстрировать свое понимание того, как концепции фундаментальной физики будут применяться к вашей будущей карьере в медицине. Ключевым моментом вашего успеха на MCAT будет начало изучения и настоящего понимания каждого из физических уравнений, изложенных в этом блоге.

Для вашего успеха,

Ваши друзья в BeMo

BeMo Academic Consulting

Каждая таблица в таблице уравнений AP Physics 1, с пояснениями

Отличительной особенностью экзамена AP Physics 1 является то, что экзаменуемые имеют доступ к таблице уравнений и формул, которые можно использовать во время экзамена (который часто называют «таблицей уравнений AP Physics 1»).

Но справочные таблицы AP Physics 1 содержат и информации! Если вы еще не знакомы с таблицей формул до сдачи экзамена, вы можете потратить драгоценное время, пытаясь ориентироваться в различных уравнениях и помнить, когда и как их использовать.

Чтобы помочь вам, мы разработали таблицу уравнений PrepScholar Physics 1. Этот лист содержит все уравнения, которые вы увидите на фактическом листе уравнений AP Physics 1, а также дополнительных пояснений, которые помогут вам использовать его в качестве учебного пособия.

В оставшейся части этой статьи, , мы дадим вам подробное объяснение каждой таблицы с информацией, содержащейся в таблице формул AP Physics 1, и объясним, как ее можно использовать на экзамене .Мы также дадим вам три совета по использованию листа формул на экзамене и три совета по использованию листа формул при подготовке к экзамену.

2021 AP Test Changes из-за COVID-19

В связи с продолжающейся пандемией коронавируса COVID-19 тесты AP теперь будут проводиться в течение трех разных сессий с мая по июнь. Даты ваших экзаменов, а также то, будут ли они проводиться онлайн или в бумажном виде, будут зависеть от вашей школы. Чтобы узнать больше о том, как все это будет работать, а также получить самую свежую информацию о датах тестирования, онлайн-обзоре AP и о том, что эти изменения значат для вас, обязательно ознакомьтесь с нашей статьей часто задаваемых вопросов о AP COVID-19 на 2021 год.

Что вы увидите на экзамене AP 1 по физике? Вопросы по электричеству!

Экзамен AP Physics 1

Экзамен AP Physics 1 – это экзамен по алгебре, который оценивает понимание экзаменуемыми кинематики, динамики, кругового движения и гравитации, энергии, импульса, простого гармонического движения, крутящего момента и вращательного движения, электрического заряда. электрическая сила, цепи постоянного тока, механические волны и звук. По сути, экзамен AP Physics 1 проверяет ваше понимание основ классической механики!

Этот экзамен AP длится три часа и включает 50 вопросов с несколькими вариантами ответов и пять вопросов с бесплатными ответами , при этом каждый раздел оценивается в 50% от общей оценки экзамена. Раздел с множественным выбором длится 90 минут, а 50 вопросов в этой части теста разделены на два подраздела. Вот как они ломаются:

Раздел

Количество вопросов

1A

45 вопросов с несколькими вариантами ответов

5 вопросов с несколькими вариантами ответов

Пять вопросов с бесплатными ответами длятся 90 минут, а тема каждого отдельного вопроса с бесплатными ответами следующая:

Номер вопроса

Вопрос Тема / Формат

Вопрос 1

Опытный образец

Вопрос 2

Качественный / количественный перевод

Вопрос 3

Аргумент абзаца / короткий ответ

Вопрос 4

Краткий ответ

Вопрос 5

Краткий ответ

Таблица с уравнениями AP Physics 1 будет включена в вашу экзаменационную брошюру в день экзамена, и вы сможете использовать ее для справки в течение экзаменационного периода .

Поскольку нужно так много охватить, мы составили специальную версию таблицы формул PrepScholar. Он содержит всю информацию, которую вы увидите на исходном листе уравнений, а также объяснения каждого уравнения. Мы будем использовать эту таблицу с уравнениями в остальной части документа, поэтому обязательно загрузите ее сейчас.

Далее мы более подробно рассмотрим каждую таблицу с информацией, представленной на листе формул AP Physics 1.

Это официальный лист формул AP Physics 1, который вы получите в день тестирования.

Таблица формул AP Physics 1 с объяснениями

Таблица формул AP Physics 1 является ключевым ресурсом для ответов на вопросы этого экзамена по алгебре. Копия таблицы уравнений будет предоставлена ​​в вашем экзаменационном буклете во время экзамена (вы не можете приносить свои копии в экзаменационную комнату), , и она включает общие уравнения, которые рассматриваются на протяжении всего курса AP Physics 1.

Если вы еще этого не сделали, убедитесь, что вы загрузили таблицу формул PrepScholar, которую вы можете использовать в качестве учебного пособия. В день экзамена вам выдадут чистую копию официального учебного листа, но мы рекомендуем вам распечатать копию, которую вы можете пометить и использовать во время учебы!

Таблица уравнений AP Physics 1 построена в виде таблиц на основе следующих типов информации:

  • Константы и коэффициенты пересчета (страница 1)
  • Условные обозначения (стр.1)
  • Префиксы (страница 1)
  • Значения тригонометрических функций для общих углов (страница 1)
  • Уравнения, обычно используемые в физике для механики, электричества, волн, геометрии и тригонометрии (страница 2)

Лист уравнений предназначен для того, чтобы помочь вам быстро вспомнить константы, коэффициенты преобразования, символы, префиксы, значения и уравнения, которые могут вам понадобиться для решения задач во время экзамена. Важно помнить, что каждое уравнение, которое вы используете из таблицы уравнений, должно сопровождаться пояснениями и логическим развитием в ваших ответах на экзамене. Это означает, что вам нужно действительно понимать формулы и то, как их использовать, если вы хотите преуспеть в тесте AP Physics 1!

Как использовать формулы в таблице уравнений AP Physics 1

Чтобы помочь вам познакомиться с тем, как использовать таблицу уравнений AP Physics 1, мы разберем, как использовать следующие области таблицы уравнений по отдельности. В частности, мы рассмотрим следующие темы:

  • Константы и коэффициенты пересчета
  • Префиксы и обозначения единиц измерения
  • Значения тригонометрических функций
  • Уравнения механики, электричества, волн, геометрии и тригонометрии.

Давайте взглянем на основные разделы таблицы уравнений физики 1.

Константы и коэффициенты пересчета

Константы и коэффициенты преобразования отображаются в верхней части первой страницы таблицы уравнений, которую вы будете использовать на экзамене AP Physics 1. Это фиксированные значения, которые вам необходимо знать и использовать в формулах и уравнениях на экзамене.

Константы и коэффициенты преобразования, представленные в информационном листе AP Physics 1, включают массу протона, массу нейтрона, массу электрона, скорость света, величину заряда электрона, постоянную закона Кулона, универсальную гравитационную постоянную и ускорение свободного падения на поверхности Земли.

Итак, как вы будете использовать эти коэффициенты пересчета в день экзамена? Константы и коэффициенты преобразования могут использоваться на экзамене для преобразования одной единицы в другую с помощью умножения или деления. Это изменит единицы измерения без изменения значения этого измерения. Коэффициенты преобразования, указанные в таблице уравнений, можно использовать для преобразования длины, массы, времени, энергии, температуры, частоты, силы, мощности, заряда и сопротивления.

Условные обозначения, префиксы и значения тригонометрических функций

Таблицы символов единиц и префиксов можно комбинировать для выражения значений на экзамене AP Physics 1 .Таблица префиксов предоставляет научную нотацию или коэффициент данного префикса, префикса и соответствующего символа.

Звучит запутанно, но мы имеем в виду вот что. Например, в таблице указан префикс «тера», правильный коэффициент 10 12 и правильный символ «Т». Точно так же таблица символов единиц содержит название единицы и ее правильный символ , такой как «метр» и «м» или «кельвин» и «K».

Префиксы, включенные в информационный лист, используются при работе с очень большими или маленькими частями в вопросах экзамена .Префиксы указывают конкретную степень десяти и обычно используются для выражения измерений в сочетании с основным словом из таблицы символов единиц (например, киловатты, мегаджоули и т. Д.). Эта часть таблицы поможет вам лучше понять вопросы на экзамене, а также поможет вам перепроверить, чтобы убедиться, что вы используете правильные единицы в своих ответах на вопросы бесплатного ответа.

Наконец, значения тригонометрических функций будут иметь решающее значение, когда вы используете геометрические и тригонометрические уравнения для вычисления значения углов прямоугольного треугольника .В этой таблице представлены значения наиболее распространенных углов (sin, cos, tan) в различных градусах вплоть до угла 90 градусов. Вы должны понимать это, чтобы делать такие вещи, как анализ векторов!

Одна из самых важных частей вашего заявления в колледж – это то, какие уроки вы выбираете в старшей школе (в сочетании с тем, насколько хорошо вы успеваете в этих классах). Наша команда экспертов по поступлению в PrepScholar объединила свои знания в это единственное руководство по планированию расписания вашего школьного курса. Мы посоветуем вам, как сбалансировать ваше расписание между обычными курсами и курсами с отличием / AP / IB, как выбрать дополнительные уроки и какие классы вы не можете позволить себе не посещать.

Уравнения

Вторая страница листа формул AP Physics 1, предоставленного на экзамен, включает список общих уравнений, которые вам могут понадобиться на экзамене. Уравнения разделены на четыре раздела в зависимости от типа: механика, электричество, волны, геометрия и тригонометрия.

Ниже мы объясним, какие типы задач уравнения, включенные в каждый раздел таблицы уравнений, помогут вам решить.

Механический стол

Уравнения в таблице «Механика» можно использовать для расчета, описания, анализа, выражения, объяснения и составления заявлений и прогнозов по следующим вопросам на экзамене AP Physics 1:

  • Ускорение, включая радиальное ускорение, тангенциальное ускорение и ускорение объекта, взаимодействующего с другими объектами

  • Движение, включая линейное движение, угловое движение и движение отдельных объектов и двухобъектных систем

  • Сила (-а), включая силы контакта между объектами, такие как натяжение, трение, нормальное, плавучее и пружинное,

  • Гравитационная сила, включая гравитационную силу, которую два объекта оказывают друг на друга

  • Сила тяжести в различных контекстах

  • Изменение кинетической энергии, вычисление полной энергии системы, прогнозирование изменений общей энергии системы, вычисление внутренней потенциальной энергии, вычисление мощности

  • Импульс, момент количества движения, величина момента количества движения, изменение момента количества движения

  • Момент

Электроэнергетический стол

Уравнения в гораздо более короткой таблице электричества листа уравнений можно использовать для расчета и описания следующего на экзамене AP:

  • Величина электрического поля
  • Сохранение электрического заряда
  • Удельное сопротивление вещества
  • Сохранение электрического заряда в электрических цепях

Волновая таблица

В таблице формул AP Physics 1 есть одно уравнение, относящееся к волнам; это уравнение можно использовать для вычисления длины волны периодической волны.

Таблица геометрических и тригонометрических уравнений

Наконец, последний раздел таблицы уравнений содержит геометрические и тригонометрические уравнения, которые можно использовать для решения следующих задач:

  • Площадь прямоугольника
  • Площадь треугольника
  • Площадь и длина окружности
  • Объем прямоугольного сплошного
  • Объем и площадь цилиндра
  • Объем и площадь поверхности сферы
  • Значение углов прямоугольного треугольника

Поскольку в справочных таблицах AP Physics 1 содержится так много формул и уравнений, стоит потратить некоторое время на то, чтобы освоиться с ними, прежде чем сдавать экзамен. Мы поговорим о лучших способах ознакомления с содержанием таблицы уравнений ниже.

3 совета по использованию таблицы формул AP Physics 1 в качестве учебного пособия

Поскольку справочные таблицы AP Physics 1 будут доступны вам во время фактического экзамена, вы можете заранее воспользоваться этим ресурсом, используя его для подготовки к экзамену. Ознакомьтесь с нашими тремя советами по обучению с таблицей формул AP Physics 1 ниже!

Учебный совет 1. Делайте карточки с уравнениями

Практически гарантировано, что уравнения, приведенные в таблице формул AP Physics 1, появятся на экзамене. Хотя эти уравнения будут у вас под рукой во время сдачи экзамена, вы не захотите тратить драгоценное время экзамена на их расшифровку.

На листе уравнений представлен ключ символа, который поможет вам расшифровать то, что означает каждый символ в данном уравнении, но у вас будет больше времени, чтобы точно ответить на вопросы экзамена, если вы не должны использовать эту часть экзаменационного листа на протяжении всего экзамена.

Вместо для подготовки к экзамену используйте лист уравнений AP Physics 1 для создания карточек, которые помогут вам запомнить уравнения. Чтобы использовать лист уравнений в ваших интересах во время учебы, на каждой карточке должно быть уравнение из листа уравнений на одной стороне и ключ, который разбивает каждую переменную в уравнении на противоположной стороне. Если вы уже знаете, что означает « v », « K » или «U» в каждом уравнении на экзамене, вам не придется тратить время на использование таблицы уравнений для разбивки каждой переменной. в уравнении, которое необходимо использовать для решения проблемы.

Ищете помощь в подготовке к экзамену AP?

Наши индивидуальные онлайн-услуги по обучению AP могут помочь вам подготовиться к экзаменам AP. Найдите лучшего репетитора, получившего высокие баллы на экзамене, на который вы готовитесь!

Учебный совет 2: пройдите практический тест

Вероятно, лучший способ понять, как лучше всего использовать таблицу формул AP Physics 1 на реальном экзамене, – это пройти практический тест – или, по крайней мере, выполнить серию практических вопросов – используя лист в качестве ресурса.

Несмотря на то, что доступных практических экзаменов AP Physics 1 не так много, на CrackAP есть неофициальный. Вы также можете проработать FRQ по прошлым экзаменам, которые вы можете найти на веб-сайте College Board.

По мере практики подумайте о том, чтобы отметить, когда вам больше всего нужно ссылаться на таблицу с уравнениями, а затем потратьте дополнительное время на изучение имеющихся у вас заметок или карточек , относящихся к этим областям. Это поможет вам определить свои слабые стороны и укрепить их перед сдачей экзамена AP.

Учебный совет 3. Запомните раскладку

Если вы пришли на экзамен и еще не знакомы с макетом листа с уравнениями и с тем, какие уравнения включены, а какие нет, будет довольно сложно использовать лист в своих интересах во время экзамена.

Потратьте некоторое время на то, чтобы запомнить, какая информация находится где на листе уравнений, и , имея общее представление о том, какие уравнения и информация включены в таблицу, поможет вам точно знать, когда вы можете обратиться к листу уравнений для получения информации или напоминаний, поскольку вы сдаете экзамен .Запоминание информационного листа поможет вам работать более эффективно и организованно при сдаче экзамена AP Physics 1.

Как мы уже сказали, лучше всего использовать таблицу уравнений AP Physics 1, чтобы помочь вам узнать важные уравнения, которые вам нужно знать в день тестирования. Но на всякий случай, если вы этого не сделали, вот наши лучшие советы по использованию листа на реальном экзамене.

3 совета по использованию таблицы уравнений AP Physics 1 в день экзамена

Поскольку вам разрешено использовать PDF-файл CollegeBoard со списком формул AP Physics в день экзамена, вы должны быть уверены, что знаете , как использовать лист в своих интересах, когда вы фактически сдаете экзамен.Читайте наши три совета по использованию таблицы формул AP Physics в день экзамена!

Совет 1. Экономьте время

Так как экзамен AP Physics 1 рассчитан по времени, вы действительно не хотите тратить больше времени, чем это абсолютно необходимо, на попытки запомнить значения, формулы и уравнения во время экзамена. Если вы застряли и просто не можете вспомнить значение или часть уравнения, которые имеют решающее значение для ответа на вопрос, быстрое переключение на лист с уравнениями может помочь пробудить вашу память.

Совет 2. Быстрое преобразование

Константы и коэффициенты преобразования, которые обычно используются в физических задачах, немного сложны. Обычно они включают несколько десятичных знаков, экспонент и другие символы, которые может быть трудно запомнить перед экзаменом. Лист уравнений поможет быстро выполнить преобразование и запомнить правильные выражения для общих констант при решении задач теста.

Совет 3. Проверьте свою работу

При ответах на вопросы экзамена AP Physics 1 внимание к деталям имеет решающее значение.Но это может оказаться трудным при тестировании по времени, и, вероятно, проще случайно забыть включить символ, показатель степени или обозначение, чем вы думаете. Выделив несколько минут, чтобы проверить свою работу с помощью листа уравнений во время экзамена, вы сможете внести исправления и убедиться, что вы правильно написали формулы и уравнения, особенно в вопросах с бесплатными ответами.

Что дальше?

В этой статье рассматривается таблица уравнений физики 1, но знаете ли вы, что вы можете пройти два других курса физики AP, пока вы учитесь в средней школе ? Узнайте об AP Physics 1, 2 и C и о различиях между ними.

Если вам нужны ресурсы для курсов IB Physics, у нас тоже есть такие . Вот экспертное руководство по программе IB Physics. Мы также составили список лучших учебных материалов для Physics SL и HL.

Вам может быть интересно, насколько на самом деле сложна AP Physics 1. Чтобы получить ответ, ознакомьтесь с этой статьей, которая поможет вам выяснить, какие классы AP наиболее трудны для вас.

Хотите улучшить свой результат SAT на 160 баллов или ваш результат ACT на 4 балла? Мы написали руководство для каждого теста о 5 лучших стратегиях, которые вы должны использовать, чтобы улучшить свой результат.Скачать бесплатно сейчас:

GRE: предметный тест по физике (для испытуемых)

Обзор

  • Тест состоит примерно из 100 вопросов с пятью вариантами ответов, некоторые из которых сгруппированы в наборы и основаны на таких материалах, как диаграммы, графики, экспериментальные данные и описания физических ситуаций.
  • Цель теста – определить степень понимания испытуемыми основных принципов и их способности применять эти принципы при решении задач.
  • На большинство тестовых вопросов можно ответить, освоив первые три года обучения физике на бакалавриате.
  • В тесте преимущественно используется международная система единиц (СИ). Таблица с информацией, представляющей различные физические константы и несколько коэффициентов пересчета единиц СИ, представлена ​​в тестовой тетради.
  • Приблизительный процент результатов теста по основным темам содержания был установлен экзаменационной комиссией с учетом результатов общенационального опроса программ бакалавриата по физике.Проценты отражают определение комитетом относительного акцента, уделяемого каждой теме в типичной программе бакалавриата. Эти проценты приведены ниже вместе с основными подтемами, включенными в каждую категорию контента. В каждой категории подтемы перечислены примерно в порядке убывания важности для включения в тест.
  • Почти все вопросы теста будут относиться к материалам в этом списке; тем не менее, время от времени могут возникать вопросы по другим темам, не перечисленным здесь явно.
  • Тест по физике, проводимый с апреля 2021 года, дает три дополнительных балла в дополнение к общему баллу: (1) классическая механика, (2) электромагнетизм и (3) квантовая механика и атомная физика. Вопросы, на которых основываются промежуточные оценки, распределяются по всему тесту; они не откладываются и не помечаются отдельно, хотя несколько вопросов из одной области содержания могут появляться последовательно.

Характеристики содержимого

  1. КЛАССИЧЕСКАЯ МЕХАНИКА – 20%
    (например, кинематика, законы Ньютона, работа и энергия, колебательное движение, вращательное движение вокруг фиксированной оси, динамика систем частиц, центральные силы и небесная механика, трехмерная динамика частиц, лагранжиан и Гамильтонов формализм, неинерциальные системы отсчета, элементарные вопросы гидродинамики)
  2. ЭЛЕКТРОМАГНИТИЗМ – 18%
    (например, электростатика, токи и цепи постоянного тока, магнитные поля в свободном пространстве, сила Лоренца, индукция, уравнения Максвелла и их приложения, электромагнитные волны, цепи переменного тока, магнитные и электрические поля в веществе)
  3. ОПТИКА И ВОЛНОВЫЕ ЯВЛЕНИЯ – 9%
    (такие как свойства волн, суперпозиция, интерференция, дифракция, геометрическая оптика, поляризация, эффект Доплера)
  4. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ МЕХАНИКА – 10%
    (например, законы термодинамики, термодинамические процессы, уравнения состояния, идеальные газы, кинетическая теория, ансамбли, статистические концепции и расчет термодинамических величин, тепловое расширение и теплопередача)
  5. КВАНТОВАЯ МЕХАНИКА – 12%
    (такие как фундаментальные концепции, решения уравнения Шредингера (включая квадратные ямы, гармонические осцилляторы и водородные атомы), спин, угловой момент, симметрия волновой функции, элементарная теория возмущений)
  6. АТОМНАЯ ФИЗИКА – 10%
    (такие как свойства электронов, модель Бора, квантование энергии, атомная структура, атомные спектры, правила отбора, излучение черного тела, рентгеновские лучи, атомы в электрическом и магнитном полях)
  7. СПЕЦИАЛЬНАЯ ОТНОСИТЕЛЬНОСТЬ – 6%
    (например, вводные понятия, замедление времени, сокращение длины, одновременность, энергия и импульс, четыре вектора и преобразование Лоренца, сложение скоростей)
  8. ЛАБОРАТОРНЫЕ МЕТОДЫ – 6%
    (такие как анализ данных и ошибок, электроника, приборы, обнаружение излучения, статистика подсчета, взаимодействие заряженных частиц с веществом, лазеры и оптические интерферометры, анализ размеров, фундаментальные приложения вероятности и статистики)
  9. СПЕЦИАЛИЗИРОВАННЫЕ ТЕМЫ – 9%
    Ядерная физика и физика элементарных частиц (e.g., ядерные свойства, радиоактивный распад, деление и синтез, реакции, фундаментальные свойства элементарных частиц), конденсированное вещество (например, кристаллическая структура, дифракция рентгеновских лучей, тепловые свойства, электронная теория металлов, полупроводники, сверхпроводники), разное ( например, астрофизика, математические методы, компьютерные приложения)

Сдающие тест должны быть знакомы с некоторыми математическими методами и их приложениями в физике. Такие математические методы включают одномерное и многомерное исчисление, системы координат (прямоугольные, цилиндрические и сферические), векторную алгебру и векторные дифференциальные операторы, ряды Фурье, уравнения в частных производных, краевые задачи, матрицы и определители, а также функции комплексных переменных.Эти методы могут появляться в тесте в контексте различных категорий контента, а также в качестве случайных вопросов, касающихся только математики в указанной выше категории специализированных тем.

Загрузить учебник

Вернуться к содержанию теста

GCSE PHYSICS Equations – Полный список для печати

GCSE PHYSICS Equations – Полный список для печати – GCSE SCIENCE

Это список уравнений, которые могут вам понадобиться для
. ваш экзамен по физике GCSE.Перейдите по ссылке за дополнительной информацией.
Внизу страницы есть ссылки на уравнения
. которые разные экзаменационные комиссии использовали в прошлом.
Эти ссылки переведут вас на страницу который вы можете распечатать
, если хотите, чтобы вы могли пересмотреть эти уравнения.


Электричество

P = V x I. мощность = напряжение x Текущий.

В = I x R. напряжение = ток x сопротивление.

Q = I x t. заряд = ток x время.

E = V x Q. энергия = напряжение x заряд.

E = V x I x t. энергия = напряжение x ток x время.

Общая стоимость = количество единиц x стоимость за Блок.


Энергия

КПД (%) = (полезная энергия на выходе ÷ полная энергия дюйм) x 100.

GPE = mgh.GPE = масса x сила тяжести x высота.

KE = ½ мВ 2 . Кинетический Энергия = 0,5 x масса x скорость 2 .

W = F x d. работай сделано = сила x расстояние.

W = E. проделанная работа = переданная энергия.

P = E ÷ t. мощность = энергия ÷ время.

E = c x м х θ. энергия = удельная теплоемкость x масса x изменение температуры.


Силы и Движение

с = д ÷ т. скорость = расстояние ÷ время.

а = (v-u) ÷ t. ускорение = изменение по скорости ÷ времени.

F = м x а. Сила = масса x ускорение.

ш = м х г. вес = масса x сила тяжести.

р = м х в. импульс = масса x скорость.

(мв – mu) = F x т.изменение в импульс = Сила x время.

d = m v. Плотность = масса ÷ объем.

р = F ÷ a. давление = сила ÷ площадь.

м = F x d. момент = сила x перпендикулярное расстояние от вращаться.


Волны

v = f x λ. скорость = частота x длина волны.



gcsescience.ком GCSE Физика Расчеты Показатель gcsescience.com

Руководство к экзамену AP Physics 1

AP ® Physics 1 Exam – это экзамен на уровне колледжа, который проводится каждый год в мае после завершения курса Advanced Placement Physics 1 в вашей средней школе. Если вы наберете достаточно высокий балл, ваш балл AP Physics может принести вам кредит в колледже!

Ознакомьтесь с нашим руководством по AP Physics 1, чтобы получить необходимую информацию об экзамене:

Что на экзамене AP Physics 1?

Совет колледжа очень подробно описывает, что, по вашему мнению, должен охватывать ваш учитель AP на вашем курсе AP Physics 1.Они объясняют, что вы должны быть знакомы со следующими темами:

  • Кинематика
  • Динамика
  • Круговое движение и гравитация
  • Энергия
  • Импульс
  • Простое гармоническое движение
  • Крутящий момент и вращательное движение

В чем разница между AP Physics 1, 2 и C?
  • AP Physics 1 – это эквивалент первого семестра вводного курса на уровне колледжа по алгебре физики, охватывающего темы ньютоновской механики; работа, энергия и власть.

  • AP Physics 2 является эквивалентом второго семестра вводного курса на уровне колледжа, охватывающего темы механики жидкости; термодинамика; электричество и магнетизм; оптика; квантовая, атомная и ядерная физика.

  • AP Physics C: Механика и AP Physics C: Электричество и магнетизм Каждый из эквивалентен курсам колледжа по математической физике.

Для всестороннего обзора содержания ознакомьтесь с нашей книгой, AP Physics 1

AP Physics 1 Разделы и типы вопросов

Экзамен AP Physics 1 длится три часа и состоит из двух разделов: раздела с несколькими вариантами ответов и раздела с бесплатными ответами.

AP Physics 1 Раздел

Сроки

Количество вопросов

Множественный выбор

90 минут

  • 45 с одним выбором: отдельные вопросы и вопросы в наборах с одним правильным ответом
  • 5 вариантов выбора: дискретные вопросы с двумя правильными ответами

Бесплатный ответ

90 минут

  • 1 опытный образец
  • 1 качественный / количественный перевод
  • 3 коротких ответа (требуется аргумент длиной в абзац)
ИТОГО: 3 часа 55 вопросов
Примечание: Совет колледжа еще не объявил, будет ли цифровая версия экзамена AP Physics 1 2021 года действовать для будущих экзаменов.Для получения обновленной информации о цифровом тесте и его формате посетите страницу AP Physics 1 на веб-сайте College Board.

AP Physics 1 Множественный выбор

За каждым вопросом с одним выбором следуют четыре возможных ответа, только один из которых правильный. Для вопросов с множественным выбором необходимо выбрать два из перечисленных вариантов ответа, чтобы ответить на вопрос правильно.

AP Physics 1 Вопросы бесплатного ответа

Раздел бесплатных ответов состоит из пяти вопросов, состоящих из нескольких частей, которые требуют, чтобы вы выписали свои решения и продемонстрировали свою работу.В отличие от раздела с множественным выбором, который оценивается компьютером, раздел бесплатного ответа оценивается учителями средней школы и колледжа. У них есть инструкции по присуждению частичных баллов, поэтому вы все равно можете получать частичные баллы, если не ответите правильно на каждую часть вопроса.

Можете ли вы использовать калькулятор на экзамене AP Physics?

Вам разрешается использовать калькулятор на всем экзамене AP Physics 1, включая разделы с множественным выбором и свободными ответами.Можно использовать научные или графические калькуляторы при условии, что они не имеют каких-либо неутвержденных функций или возможностей (список утвержденных графических калькуляторов доступен на веб-сайте College Board).

Что находится в таблице уравнений AP Physics 1?

Таблица уравнений, обычно используемых в физике, будет предоставлена ​​вам на месте экзамена. Посмотрите, как выглядит таблица формул AP Physics 1 здесь.

Как оценивается AP Physics 1?

балла AP оцениваются от 1 до 5.Колледжи обычно хотят получить 4 или 5 баллов на экзамене AP Physics I, но некоторые могут дать оценку 3 балла. Вот как учащиеся набрали на тесте в мае 2020 года:

AP Physics 1 Оценка

Значение

2020 Доля тестируемых

5

Высоко квалифицированный

8.8%

4

Хорошо квалифицированный

17,9%

3

Квалифицированный

24,8%

2

Возможно квалифицированный

26.5%

1

Нет рекомендаций

21,9%

Источник: College Board

.

Каждый тест имеет изогнутую форму, поэтому баллы меняются от года к году, но, как мы видим выше, в мае 2020 года около 50% тестируемых набрали 1 или 2 балла. Вам нужно усердно учиться и готовиться к этому сложному экзамену.

Как я могу подготовиться?

классов AP – это здорово, но для многих студентов этого недостаточно! Для тщательного изучения содержания и стратегии AP Biology выберите вариант подготовки AP, который лучше всего подходит для ваших целей и стиля обучения.


The Staff of Princeton Review
Более 35 лет учащиеся и семьи доверяют изданию Princeton Review помочь им попасть в школу своей мечты. Мы помогаем учащимся преуспеть в старшей школе и за ее пределами, предоставляя им ресурсы для получения более высоких оценок, более высоких результатов тестов и более сильных заявлений в колледж. Следуйте за нами в Twitter: @ThePrincetonRev.

формул, которые вам понадобятся для общего научного теста ASVAB

Если вы хотите поступить в армию или пройти тест на профессиональную подготовку в своей школе, вам необходимо знать, какие у вас самые лучшие навыки, а общий научный тест ASVAB разработан для выявления ваших навыков, связанных с наукой. , в таких областях, как решение проблем, стратегическое мышление и абстракция.Раздел «Общие науки» охватывает множество различного содержания на самом базовом уровне, и мы разработали для вас таблицу формул с самыми основными формулами, которые вам понадобятся для решения задач при прохождении этого теста. 2} \) \ (F = \ text {Электрическая сила} (N) \)
\ (k = \ text {Константа Кулона} = 8.2 \)
\ (q_n = \ text {Charge} n \; (C) \)
\ (r = \ text {Расстояние между зарядами} (м) \) \ (n = \ dfrac {c} {a} \) \ (n = \ text {показатель преломления} \)
\ (c = \ text {скорость света в вакууме} (м / с) \)
\ (a = \ text {скорость света в среде} (м / с) \) \ (\ lambda = \ dfrac {c} {f} \) \ (\ lambda = \ text {длина волны} (м) \)
\ (c = \ text {скорость света} (м / с) \)
\ (f = \ text {частота} (1 / с) \) \ (Q = m \ cdot s \ cdot \ Delta t \) \ (Q = \ text {Переданное тепло} (Дж) \)
\ (m = \ text {mass} (g) \)
\ (s = \ text {удельная теплоемкость} (Дж / г \ cdot K) \)
\ (\ Delta t = \ text {изменение температуры} (K) \) \ (B = \ dfrac {\ mu_o I} {2 \ pi r} \) \ (B = \ text {Величина магнитного поля} (T) \)
\ (\ mu_o = \ text {проницаемость свободного пространства} (T \ cdot m / A) \)
\ (I = \ text {Величина электрического тока} (A) \)
\ (\ pi \ приблизительно 3. +] = \ text {Концентрация водорода} (моль / л) \) \ (14 = pH + pOH \) \ (pH = \ text {десятичный кологарифм водорода} \)
\ (pOH = \ text {десятичный кологарифм гидроксида} \)

Формулы с использованием рисунка выше:

Формула 1:

\ [\ theta_1 = \ theta_2 \]

где

\ [\ theta_1 = \ text {угол падающего луча} \] \ [\ theta_2 = \ text {угол отражения} \]

Формула 2:

\ [n_1 \ cdot \ sin (\ theta_1) = n \ cdot \ sin (\ theta_3) \]

где

\ [n_1 = \ text {показатель преломления среды 1} \] \ [\ theta_1 = \ text {угол падающего луча} \] \ [n = \ text {показатель преломления среды} n \] \ [\ theta_3 = \ text {угол преломления} \]

Полный список курсов по физике | Физика

Номер курса
Название курса
Описание
ФИЗ 0030 Основы физики A

Знакомит с механикой движения.Предназначен для концентраторов в других естественных науках, кроме физики, в том числе для студентов доврачебных курсов PHYS0030 применяет алгебру, геометрию, тригонометрию и аналитическую геометрию. Студентам с большим опытом в области математического анализа следует подумать о том, чтобы вместо этого взять PHYS0050 или PHYS0070. Состоит из лекций и лаборатории.

Рекомендуется: MATH0090 или MATH0100.

PHYS 0040 Основы физики B

Этот курс знакомит с фундаментальными элементами электрических и магнитных явлений, оптики и волновой оптики, а также с избранными темами современной физики.Материалы вводятся через лекции, семинары и лабораторные занятия. Обсуждаемые темы включают в себя: электрическую силу, поле и потенциалы, схемы и элементы схем, магнитные поля и магнитные явления, индукцию, электромагнитные волны, оптику, интерференцию и дифракцию, дуальность волны-частицы и фотоэлектрический эффект, а также радиоактивность. Курс преподается на уровне, предполагающем знакомство с алгеброй и тригонометрией, но без математического анализа. Студентам с сильным опытом в области математического анализа следует рассмотреть возможность использования PHYS0060.Настоятельно рекомендуется PHYS0030 или сильное образование в области механики средней школы.

PHYS 0060 Основы электромагнетизма и современной физики

Этот курс представляет собой основанное на исчислении введение в принципы и явления электричества, магнетизма, оптики и концепции современной физики. Он предназначен для концентраторов науки и подчеркивает концептуальное понимание принципов физики и развитие навыков вычислений, необходимых для применения этих принципов к физической вселенной.

Предпосылка: PHYS0050.

PHYS 0112 Чужие миры: поиск внеземных планет и внеземной жизни

Курс будет охватывать значительные достижения в обнаружении и описании
внесолнечных планетных систем за последние почти 30 лет. Мы будем изучать методы обнаружения планет за пределами нашей солнечной системы, свойства экзопланет, открытых на данный момент, и перспективы будущих открытий, уделяя особое внимание поиску «аналогов Земли» и последствиям для астробиологии.

За последние 30 лет в нашем понимании планет произошла революция.
Первая экзопланета была открыта в 1988 году, и сегодня мы знаем о тысячах планет
за пределами нашей солнечной системы. Большое разнообразие планет и конфигураций планет позволило нам по-новому взглянуть на формирование и характеристики планет. Многие вещи, которые мы считали само собой разумеющимися, когда нам нужно было описать только солнечную систему, оказались неправдой. Удивительно, но даже не видя напрямую большинство этих планет, мы можем понять их состав, климат и вероятность того, что на них будет жизнь.В этом курсе мы представим эти новые открытия и исследуем, как наше понимание планет, обитаемых миров и поиск жизни во Вселенной изменилось в результате этих открытий.

PHYS 0114 Наука и технология энергетики

Этот курс познакомит студентов с фундаментальными законами, регулирующими энергию и ее использование. Физические концепции будут обсуждаться в контексте важных технологических приложений энергии.Физические концепции включают механическую энергию, термодинамику, цикл Карно, электричество и магнетизм, квантовую механику и ядерную физику. Технологические приложения включают ветровую, гидро- и геотермальную энергию, двигатели и топливо, передачу и хранение электроэнергии, солнечную энергию и фотоэлектрическую энергию, ядерные реакторы и биомассу.

PHYS 0120 Приключения в Наномире

Этот класс представляет собой семинар первого года по нанонауке и квантовой информации.Ричард Фейнман сказал: «Внизу много места» о возможности создания машин размером с молекулы, работающих в соответствии с квантовой механикой. Ученые сейчас изучают искусство. На этом семинаре мы используем основы физики и простые математические модели, чтобы понять явления и материалы в наномире, от искусственных атомов и квантовых проводов до квантовой механики информации. Мы посещаем несколько лабораторий в здании Barus & Holley и за его пределами. Класс не требует никакого научного образования.

PHYS 0160 Введение в теорию относительности и квантовую физику

Этот курс представляет собой математически строгое введение в специальную теорию относительности, волны и квантовую механику. Это второй курс из трех семестров для тех, кто ищет сильнейшие основы физики, а также подходит для студентов, которым лучше знакомить с современной физикой, чем с электромагнетизмом.

Предварительные требования: PHYS0050 или PHYS0070 (обратите внимание, что ни ENGN0030, ни AP Physics не подходят).Рекомендуется MATH0180 или MATH0200.

PHYS 0220 Астрономия

Концептуальное введение в основные идеи и наблюдения в астрономии. Темы включают: свойства света; наблюдаемое небо; историческое развитие астрономических идей; свойства и жизненные циклы звезд; черные дыры; галактики; и эволюция Вселенной в целом («космология»). Особое внимание уделяется физическим законам, регулирующим астрономические объекты и системы.Материал рассматривается на более базовом уровне, чем PHYS0270. Будут использоваться основы алгебры и тригонометрии, но никакого опыта в области исчисления не требуется. Курс включает вечерние лабораторные занятия.

PHYS 0500 Продвинутая классическая механика

Мы рассмотрим классическую механику на более сложном уровне и представим новую структуру, то есть лагранжеву и гамильтонову механику, которая может упростить решение задач механики и будет полезна позже в других продвинутых классах физики, таких как квантовая механика.

Пререквизиты: механика нижнего уровня, математический анализ и базовые знания решения дифференциальных уравнений, в частности, дифференциальных уравнений второго порядка с постоянными коэффициентами.

PHYS 0560 Эксперименты в современной физике

Этот курс обучает квантовой механике через эксперимент, дает представление о современной физике и некоторых важных исторических фактах.Кроме того, этот курс развивает лабораторные навыки и навыки анализа данных, знакомит студентов с относительно современными методами экспериментальных исследований и дает студентам представление о том, как устроены эксперименты. Это письменный курс, развивающий навыки научного письма. В то же время презентационный компонент развивает навыки устного общения.

Требования: бакалавриат PHYS0070, минимальная оценка S и бакалавриат PHYS0160, минимальная оценка S или бакалавриат PHYS0050, минимальная оценка S и бакалавриат PHYS0060, минимальная оценка S и бакалавриат, PHYS0470, минимальная оценка S.

PHYS 1100 Введение в общую теорию относительности

Обзор специальной теории относительности. Формализм тензоров. Уравнения Эйнштейна. Решение Шварцшильда. Экспериментальные проверки общей теории относительности. Больше общих черных дыр. Гравитационные волны. Более сложные темы.

Предварительные требования: PHYS0470, PHYS0500

PHYS 1170 Введение в ядерную физику и физику высоких энергий

Phys 1170 обеспечивает качественное введение в современную физику элементарных частиц для студентов бакалавриата.Основное внимание в курсе уделяется стандартной модели физики элементарных частиц, которая оказалась весьма успешной в описании свойств и поведения элементарных частиц и полей, фундаментальных строительных блоков нашей Вселенной. Также будут выделены актуальные темы, новые разработки и нерешенные проблемы. Будет дан краткий обзор экспериментальных методов, таких как методы обнаружения элементарных частиц, конструкции детектора и ускорителя. Чтобы пройти этот курс, вам необходимо пройти как минимум два семестра по квантовой механике: первый семестр по квантовой механике PHYS 1410 или эквивалент; Второй семестр квантовой механики 1420 можно было пройти одновременно.

PHYS 1250 Звездная структура и межзвездная среда

Этот курс представляет собой введение в астрофизику звезд: их структуру, формирование и эволюцию. Поскольку звезд не существует в вакууме (просто рядом с ним!), Мы также уделим время обсуждению важных соображений, касающихся газа между звездами (межзвездной среды) и его связи со звездами, звездообразованием и эволюцией.Понимание того, как работают звезды, необходимо для понимания Вселенной. Вместе с Ph2270 (внегалактическая астрофизика) и Ph2280 (космология) этот курс является частью цикла, нацеленного на охват всей астрофизики.

Охватываемые темы: гидростатическое равновесие; Звездная структура; Перенос излучения в звездах; Звездный нуклеосинтез; Тепловой транспорт; Атомная и ионная непрозрачность; Звездные Атмосферы, Звездная эволюция; Звездные нестабильности; Сверхновые и планетарные туманности; Компактные объекты; Структура ISM; Энергетический цикл ISM; ISM Chemistry; Звездообразование; ISM Dynamics; Протозвезды;

PHYS 1420 Квантовая механика B

Этот курс представляет собой вторую часть всестороннего курса квантовой механики.В нем рассматриваются нетривиальные концепции и приложения квантовой механики. Квантование интеграла по путям Фейнмана рассматривается сначала как дополнение к стандартному операторному квантованию Гейзенберга и Шредингера. Продемонстрирована эквивалентность трех методов. Затем следует изучение симметрий в системах одного и двух тел. Подробно обсуждаются угловые моменты и спектры водорода и гелия. Сформулированы методы теории возмущений и дано исследование рассеяния. Обсуждение идентичных частиц и статистики завершает курс.

PHYS 1560 Лаборатория современной физики

Этот курс дает практический опыт работы с некоторыми экспериментальными методами современной физики и, в процессе, углубляет понимание отношений между экспериментом и теорией. Студенты проведут шесть экспериментов с явлениями, открытия которых привели к крупным достижениям в физике. За многие эксперименты вы бы получили Нобелевскую премию, если бы вы сделали это первым.

Предварительные требования: PHYS0470, PHYS0500 и PHYS0560; и MATH0520, MATH0540 или PHYS0720; или утвержденные эквиваленты. НАПИСАТЬ

ФИЗ 1600 Вычислительная физика

Введение в научные вычисления применительно к проблемам физики. Этот курс представляет собой общий обзор численных методов с упором на использование этих методов для лучшего понимания физических систем.Темы включают численное решение дифференциальных уравнений, хаотических систем, статистическое моделирование, молекулярную динамику и моделирование методом Монте-Карло.

Предварительные требования: PHYS0070, PHYS0160 (или PHYS0050, PHYS0060) и PHYS2070; MATH0180 и MATH0200 или MATH0350.

PHYS 1931S Медицинская физика

Медицинская физика – это прикладная область физики, связанная с применением концепций и методов для диагностики и лечения болезней человека.Это союзники медицинской электроники, биоинженерии, физики здоровья. Студенты ознакомятся с основными текстами и литературой по медицинской физике, познакомятся с методами визуализации и лечения, а также с процедурами контроля качества. Студенты получат физическую и научную подготовку, чтобы задавать вопросы и решать проблемы в области медицинской физики. Темы включают в себя визуализацию – показатели визуализации, ионизирующее излучение, радиационную безопасность, радиоактивность, компьютерную томографию, ядерную медицину, ультразвук, магнитно-резонансную томографию и радиационную терапию – системы доставки, планирование лечения, брахитерапию, визуализацию.

Предварительные требования: PHYS 0030 и (ENGN 0930L или 1930L) или минимальный балл WAIVE в «PreReq для аспирантов».

PHYS 1970C Теория струн для студентов

Введение в теорию струн для старших курсов бакалавриата. Охватываемые темы включают специальную теорию относительности, симметрии и теорему Нётер, нерелятивистские струны, релятивистские частицы и струны, квантование струн и фиксацию калибровки, электродинамику в различных измерениях, суперсимметрию и избранные продвинутые темы.

Необходимые компоненты PHYS0470 и PHYS1410.

PHYS

1970D

Статистическая физика в выводах и (глубоком) обучении В этом курсе студенты будут изучать принципы статистической физики, лежащие в основе вероятностного вывода и различных архитектур нейронных сетей. Курс предназначен для преодоления разрыва между подходами к преподаванию современной статистической физики, которые либо являются чисто теоретическими, либо в основном сосредоточены на ее приложениях в анализе данных.С этой целью будут предприняты сознательные усилия по изучению таких тем, как: модели MaxEnt, вариационные методы, правило Хебба, компромисс смещения и дисперсии, регуляризация и другие с аналитическими выводами, а также разработанные примеры кода в записных книжках Jupyter. Курс предназначен как для студентов, так и для аспирантов; Хотя предварительные знания статистической физики и программирования были бы полезны, курс разработан так, чтобы быть самодостаточным, и все соответствующие концепции будут рассмотрены перед обсуждением их приложений.

PHYS

1970G

Топологические вопросы

Это курс по топологии в физике, в котором содержится минимум элементарной топологии. Основная тема – теория, лежащая в основе недавно открытых материалов, называемых топологическими изоляторами, и то, что отличает их от обычных или тривиальных изоляторов. Также рассматривается экспериментальная ситуация.

Пререквизиты: Некоторые знания и интерес к физике и математике.Никаких специальных курсов не требуется, но необходим достаточно гибкий ум, готовый выслушивать новые странные идеи.

ФИЗ 1980 Бакалавриат по физике Экспериментальные или теоретические исследования под руководством преподавателя физики. У каждого профессора есть номер секции.
ФИЗ 1990 Старший конференц-курс Этот класс включает в себя тесное взаимодействие с преподавателем физики, например, курс чтения или контролируемое исследование.У каждого профессора есть номер секции.
PHYS 2010 Методы экспериментальной физики

Курс направлен на то, чтобы помочь студентам докторантуры и магистратуры изучить экспериментальные методы и развить экспериментальные и научные коммуникативные способности в основных областях современной физики. Мы обсуждаем применение научного метода. В течение семестра проводятся четыре основных эксперимента. Студенты развивают навыки, включая наблюдение и измерение физических явлений, анализ и интерпретацию данных (в основном с использованием записных книжек Python), четко определяя и включая возможные источники ошибок, а также делая выводы и публикуя результаты экспериментов.Студенты также учатся навыкам научной презентации и тому, как правильно читать опубликованные результаты и ссылки.

Предварительные требования: Нет (обратите внимание, что этот курс предназначен для студентов докторантуры и магистра наук. У студентов, как правило, нет в расписании достаточного количества времени для прохождения этого курса)

PHYS 2040 Классическая теоретическая физика II

Электростатика проводников и диэлектриков.Краевые задачи. Магнитостатика. Уравнения Максвелла и макроскопический электромагнетизм. Законы сохранения в электродинамике. Электромагнитные волны и распространение волн. Специальная теория относительности. Релятивистские частицы и электромагнитные поля. Электромагнитное излучение. Другие темы, если позволяет время.

Пререквизиты: PHYS2030 и знание основ электромагнетизма на бакалавриате.

PHYS 2060 Квантовая механика II

Второй семестр строгого годичного курса квантовой механики для аспирантов.Будут подчеркнуты две области: (1) Основные инструменты квантовой механики, включая добавление углового момента, теории возмущений и рассеяния, а также введение в релятивистскую квантовую механику. (2) Ключевые результаты квантовой механики, такие как раствор атома водорода, золотое правило Ферми и спонтанный распад возбужденных состояний атомов.

Пререквизиты: Квантовая механика на уровне бакалавриата и на уровне PHYS2050.Многопараметрическое исчисление, линейные обыкновенные и дифференциальные уравнения в частных производных, линейная алгебра. Готовность и способность изучать и использовать Python в простой вычислительной квантовой науке.

PHYS 2100 Общая теория относительности и космология

Этот выпускной курс по общей теории относительности и космологии будет охватывать принципы общей теории относительности Эйнштейна, дифференциальную геометрию, формулировку первого порядка общей теории относительности (теория Эйнштейна-Картана), экспериментальные проверки общей теории относительности и черные дыры.Вторая половина курса будет посвящена релятивистской космологии с упором на ее взаимодействие с теорией поля.

PHYS 2140 Статистическая механика

Этот курс обеспечивает введение для выпускников в основы классической и квантовой статистической механики с приложениями к идеальным газам (включая магнитные свойства электронных газов и конденсацию Бозе-Эйнштейна), взаимодействующим системам и фазовым переходам, включая введение в ренормализационную группу. и масштабирование при непрерывных фазовых переходах.

Пререквизиты: термодинамика, статистическая механика и квантовая механика.

PHYS 2170 Введение в ядерную физику и физику высоких энергий

Этот курс обеспечивает всестороннее введение в современную физику элементарных частиц для аспирантов и студентов старших курсов. Основное внимание в курсе уделяется подробному описанию Стандартной модели физики элементарных частиц, которая оказалась весьма успешной в описании свойств и поведения элементарных частиц и полей.Выделены актуальные темы, новые разработки и нерешенные проблемы. Особое внимание уделяется экспериментальным методам, результатом которых стали важнейшие открытия в физике элементарных частиц.

Предварительные требования: Введение в квантовую механику (PHYS0560, PHYS1410 или эквивалент).

ФИЗ 2280 Астрофизика и космология

Этот курс является выпускным курсом по космологической модели большого взрыва.Курс охватывает три отдельные области: однородная вселенная (кинематика, динамика, нуклеосинтез большого взрыва, производство реликтовых частиц, бариогенез / лептогенез), неоднородная вселенная (инфляция, теория линейных возмущений роста флуктуаций, космический микроволновый фон, крупномасштабный структура, статистические меры) и нелинейная эволюция бесстолкновительных жидкостей (сферический коллапс, экскурсионные множества, задача N тел).

Для этого необходимо пройти аспирантуру по электродинамике, классической, квантовой и статистической механике, а также по общей теории относительности.Предполагаются базовые знания Стандартной модели физики элементарных частиц, а также вычислительные навыки, которые включают решение связанных уравнений в частных производных.

PHYS 2300 Квантовая теория полей I

Введение в квантовую теорию полей. Темы включают теорию скалярного поля, квантовую электродинамику, интегралы по траекториям, теорию возмущений и введение в перенормировку.

PHYS 2340 Теория групп

Этот курс призван дать базовое введение в элементы теории групп, наиболее часто встречающиеся в физике, включая дискретные группы, группы Ли и алгебры Ли.В курсе особое внимание уделяется характерам и теории представлений алгебр Ли. Студенты должны иметь солидный фон в области линейной алгебры, и некоторое знакомство с квантовой механикой может быть полезно.

PHYS 2420 Физика твердого тела II

Продвинутые темы по физике твердого тела. Курс концентрируется на коллективных явлениях и уделяет большое внимание концепции квазичастиц в физике конденсированного состояния.Мы охватываем кинетическую теорию газов, теорию ферми-жидкости, сверхтекучие жидкости и сверхпроводники. Ожидается, что студенты будут знакомы с основами физики твердого тела и квантовой механикой.

PHYS 2600 Вычислительная физика

Введение в научные вычисления применительно к проблемам физики. Этот курс представляет собой общий обзор численных методов с упором на использование этих методов для лучшего понимания физических систем.Темы включают численное решение дифференциальных уравнений, хаотических систем, статистическое моделирование, молекулярную динамику и моделирование методом Монте-Карло.

Предварительные требования: PHYS0070, PHYS0160 (или PHYS0050, PHYS0060) и PHYS2070; MATH0180 и MATH0200 или MATH0350.

PHYS

2620H

Квантовые вычисления, информация и зондирование

Квантовая физика изменила нашу жизнь.Благодаря изобретению транзистора каждое электронное устройство в вашей руке является примером приложения квантовой физики. Классический компьютер может стать самым важным приложением и произвести революцию в науке и технологиях. Это помогло бы нам получить огромные вычислительные мощности, которых иначе люди не смогли бы достичь. Действительно, квантовая физика также устанавливает жесткий предел для современной кремниевой технологии. Квантовое туннелирование присутствует в наноразмерных транзисторах и подрывает закон Мура.

Похоже, что мы живем во времена второй квантовой революции, когда квантовая физика выступает как ключ к раскрытию невообразимой силы квантовых вычислений и квантовой информации. Из-за вероятностного характера квантовой механики квантовую информацию невозможно точно скопировать. Это кардинально меняет правила игры в криптографии; квантовые ключи невозможно взломать по законам природы. Квантовый параллелизм и квантовая интерференция обеспечивают фундаментальную основу для квантовых вычислений и позволяют решать ранее невозможные задачи.

Этот курс начнется с обзора основных концепций квантовой механики, которые обеспечивают физическую интерпретацию квантового мира и квантовых измерений. Мы также представим квантовые схемы, важные квантовые алгоритмы (Дойча-Йозса, Гровера, квантовое преобразование Фурье и т. Д.) И квантовые протоколы (BB84, квантовая телепортация и т. Д.). Реализация квантовых алгоритмов на реальных квантовых компьютерах (IBM QISKit) и квантовых симуляторах практически поможет студентам изучить квантовое кодирование.

PHYS

2620J

Статистическая физика в выводах и (глубоком) обучении В этом курсе студенты будут изучать принципы статистической физики, лежащие в основе вероятностного вывода и различных архитектур нейронных сетей. Курс предназначен для преодоления разрыва между подходами к преподаванию современной статистической физики, которые либо являются чисто теоретическими, либо в основном сосредоточены на ее приложениях в анализе данных.С этой целью будут предприняты сознательные усилия по изучению таких тем, как: модели MaxEnt, вариационные методы, правило Хебба, компромисс смещения и дисперсии, регуляризация и другие с аналитическими выводами, а также разработанные примеры кода в записных книжках Jupyter. Курс предназначен как для студентов, так и для аспирантов; Хотя предварительные знания статистической физики и программирования были бы полезны, курс разработан так, чтобы быть самодостаточным, и все соответствующие концепции будут рассмотрены перед обсуждением их приложений.
PHYS 2711 Семинар по исследовательским темам Этот курс включает изучение передовых материалов, представляющих актуальный исследовательский интерес, под руководством члена физического факультета. У каждого профессора есть номер секции.
PHYS 2970 Подготовка к предварительному экзамену Кандидат наук. студенты должны сдать предварительный экзамен. Экзамен посвящен продвинутой теме, представляющей интерес для текущих исследований.Этот класс можно взять для подготовки к экзамену.
ФИЗ 2981 Исследования в области физики Экспериментальные или теоретические исследования под руководством научного руководителя факультета. У каждого профессора есть номер секции.
ФИЗ 2990 Подготовка диссертации

Защита диссертации завершает карьеру аспиранта. В диссертации описываются оригинальные исследования, выполненные соискателем ученой степени.

Оставить комментарий