Вычисления интегралов формулы: Основные формулы и методы интегрирования

Курс высшей математики, Т.1

Курс высшей математики, Т.1
  

В.И.Смирнов Курс высшей математики, Т.1.: Изд-во “Наука”. 1974. – 479 с.

Фундаментальный учебник по высшей математике, выдержавший более двадцати изданий, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой – простым языком, подробными пояснениями и многочисленными примерами. Книга состоит из пяти томов. Тома третий и четвертый – каждый из двух частей.

Для студентов университетов и технических вузов.



Оглавление

ПРЕДИСЛОВИЕ К ВОСЬМОМУ ИЗДАНИЮ
ГЛАВА I. ФУНКЦИОНАЛЬНАЯ ЗАВИСИМОСТЬ И ТЕОРИЯ ПРЕДЕЛОВ
1. Величина и ее измерение.
2. Число.

3. Величины постоянные и переменные.
4. Промежуток.
5. Понятие о функции.
6. Аналитический способ задания функциональной зависимости.
7. Неявные функции.
8. Табличный способ.
9. Графический способ изображения чисел.
10. Координаты.
11. График и уравнение кривой.
12. Линейная функция.
13. Приращение. Основное свойство линейной функции.
14. График равномерного движения.
15. Эмпирические формулы.
16. Парабола второй степени.
17. Парабола третьей степени.
18. Закон обратной пропорциональности.
19. Степенная функция.
20. Обратные функции.
21. Многозначность функции.
22. Показательная и логарифмическая функции.
23. Тригонометрические функции.
24. Обратные тригонометрические, или круговые, функции.
§ 2. ТЕОРИЯ ПРЕДЕЛОВ. НЕПРЕРЫВНЫЕ ФУНКЦИИ
25. Упорядоченное переменное.
26. Величины бесконечно малые.
27. Предел переменной величины.
28. Основные теоремы.
29. Величины бесконечно большие.
30. Монотонные переменные.
31. Признак Коши существования предела.
32. Одновременное изменение двух переменных величин, связанных функциональной зависимостью.
33. Примеры.
34. Непрерывность функции.
35. Свойства непрерывных функций.
36. Сравнение бесконечно малых и бесконечно больших величин.
37. Примеры.
38. Число е.
39. Недоказанные предложения.
40. Вещественные числа.
41. Действия над вещественными числами.
42. Точные границы числовых множеств. Признаки существования предела.
43. Свойства непрерывных функций.
44. Непрерывность элементарных функций.
ГЛАВА II. ПОНЯТИЕ О ПРОИЗВОДНОЙ И ЕГО ПРИЛОЖЕНИЯ
45. Понятие о производной.
46. Геометрическое значение производной.
47. Производные простейших функций.
48. Производные сложных и обратных функций.
49. Таблица производных и примеры.
50. Понятие о дифференциале.
51. Некоторые дифференциальные уравнения.
52. Оценка погрешностей.
§ 4. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ
53.
Производные высших порядков.
54. Механическое значение второй производной.
55. Дифференциалы высших порядков.
56. Разности функций.
§ 5. ПРИЛОЖЕНИЕ ПОНЯТИЯ О ПРОИЗВОДНОЙ К ИЗУЧЕНИЮ ФУНКЦИЙ
57. Признаки возрастания и убывания функций.
58. Максимумы и минимумы функций.
59. Построение графиков.
60. Наибольшее и наименьшее значения функций.
61. Теорема Ферма.
62. Теорема Ролля.
63. Формула Лагранжа.
64. Формула Коши.
65. Раскрытие неопределенностей.
66. Различные виды неопределенностей.
§ 6. ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ
68. Частные производные и полный дифференциал функции двух независимых переменных.
69. Производные сложных и неявных функций.
§ 7. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ПОНЯТИЯ О ПРОИЗВОДНЫХ
70. Дифференциал дуги.
71. Выпуклость, вогнутость и кривизна.
72. Асимптоты.
73. Построение графиков.
74. Параметрическое задание кривой.
75. Уравнение Ван-дер-Ваальса.
76. Особые точки кривых.
77. Элементы кривой.
78. Цепная линия.
79. Циклоида.
80. Эпициклоиды и гипоциклоиды.
81. Развертка круга.
82. Кривые в полярных координатах.
83. Спирали.
85. Овалы Кассини и лемниската.
ГЛАВА III. ПОНЯТИЕ ОБ ИНТЕГРАЛЕ И ЕГО ПРИЛОЖЕНИЯ
86. Понятие о неопределенном интеграле.
87. Определенный интеграл как предел суммы.
88. Связь определенного и неопределенного интегралов.
89. Свойства неопределенного интеграла.
90. Таблица простейших интегралов.
91. Правило интегрирования по частям.
92. Правило замены переменных. Примеры.
93. Примеры дифференциальных уравнений первого порядка.
§ 9. СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
94. Основные свойства определенного интеграла.
95. Теорема о среднем.
96. Существование первообразной функции.
97. Разрыв подынтегральной функции.
98. Бесконечные пределы.
99. Замена переменной под знаком определенного интеграла.
100. Интегрирование по частям.
§ 10. ПРИЛОЖЕНИЯ ПОНЯТИЯ ОБ ОПРЕДЕЛЕННОМ ИНТЕГРАЛЕ
101. Вычисление площадей.
102. Площадь сектора.
103. Длина дуги.
104. Вычисление объемов тел по их поперечным сечениям.
105. Объем тела вращения.
106. Поверхность тела вращения.
107. Определение центров тяжести. Теоремы Гульдина.
108. Приближенное вычисление определенных интегралов; формулы прямоугольников и трапеций.
109. Формула касательных и формула Понселе.
110. Формула Симпсона.
111. Вычисление определенного интеграла с переменным верхним пределом.
112. Графические способы.
113. Площади быстро колеблющихся кривых.
§ 11. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ ОБ ОПРЕДЕЛЕННОМ ИНТЕГРАЛЕ
115. Разбиение промежутка на части и образование различных сумм.
116. Интегрируемые функции.
117. Свойства интегрируемых функций.
ГЛАВА IV. РЯДЫ И ИХ ПРИЛОЖЕНИЯ К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
118. Понятие о бесконечном ряде.
119. Основные свойства бесконечных рядов.
120. Ряды с положительными членами. Признаки сходимости.
121. Признаки Коши и Даламбера.
122. Интегральный признак сходимости Коши.
123. Знакопеременные ряды.
124. Абсолютно сходящиеся ряды.
125. Общий признак сходимости.
§ 13. ФОРМУЛА ТЕЙЛОРА И ЕЕ ПРИЛОЖЕНИЯ
126. Формула Тейлора.
127. Различные виды формулы Тейлора.
128. Ряды Тейлора и Маклорена.
129. Разложение exp(x).
130. Разложение sin x и cos x.
131. Бином Ньютона.
132. Разложение log(1+x).
133. Разложение arctg x.
134. Приближенные формулы.
135. Максимумы, минимумы и точки перегиба.
136. Раскрытие неопределенностей.
§ 14. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ РЯДОВ
137. Свойства абсолютно сходящихся рядов.
138. Умножение абсолютно сходящихся рядов.
139. Признак Куммера.
140. Признак Гаусса.
141. Гипергеометрический ряд.
142. Двойные ряды.
143. Ряды с переменными членами. Равномерно сходящиеся ряды.
144. Равномерно сходящиеся последовательности функций.
145. Свойства равномерно сходящихся последовательностей.
146. Свойства равномерно сходящихся рядов.
147. Признаки равномерной сходимости.
148. Степенные ряды. Радиус сходимости.
149. Вторая теорема Абеля.
150. Дифференцирование и интегрирование степенного ряда.
ГЛАВА V. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 15. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ФУНКЦИИ
152. О предельном переходе.
153. Частные производные и полный дифференциал первого порядка.
154. Однородные функции.
155. Частные производные высших порядков.
156. Дифференциалы высших порядков.
157. Неявные функции.
158. Пример.
159. Существование неявных функций.
160. Кривые в пространстве и поверхности.
§ 16. ФОРМУЛА ТЕЙЛОРА. МАКСИМУМЫ И МИНИМУМЫ ФУНКЦИИ ОТ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
161. Распространение формулы Тейлора на случай функции от нескольких независимых переменных.
162. Необходимые условия максимума и минимума функции.
163. Исследование максимума и минимума функции двух независимых переменных.
164. Примеры.
165. Дополнительные замечания о нахождении максимумов и минимумов функции.
166. Наибольшее и наименьшее значения функции.
167. Относительные максимумы и минимумы.
168. Дополнительные замечания.
169. Примеры.
ГЛАВА VI. КОМПЛЕКСНЫЕ ЧИСЛА, НАЧАЛА ВЫСШЕЙ АЛГЕБРЫ И ИНТЕГРИРОВАНИЕ ФУНКЦИЙ
170. Комплексные числа.
171. Сложение и вычитание комплексных чисел.
172. Умножение комплексных чисел.
173. Деление комплексных чисел.
174. Возвышение в степень.
175. Извлечение корня.
176. Показательная функция.
177. Тригонометрические и гиперболические функции.
178. Цепная линия.
179. Логарифмирование.
180. Синусоидальные величины и векторные диаграммы.
181. Примеры.
182. Кривые в комплексной форме.
183. Представление гармонического колебания в комплексной форме.
§ 18. ОСНОВНЫЕ СВОЙСТВА ЦЕЛЫХ МНОГОЧЛЕНОВ И ВЫЧИСЛЕНИЕ ИХ КОРНЕЙ
185. Разложение многочлена на множители.
186. Кратные корни.
187. Правило Горнера.
188. Общий наибольший делитель.
189. Вещественные многочлены.
190. Зависимость между корнями уравнения и его коэффициентами.
191. Уравнение третьей степени.
192. Решение кубического уравнения в тригонометрической форме.
193. Способ итерации.
194. Способ Ньютона.
195. Способ простого интерполирования.
§ 19. ИНТЕГРИРОВАНИЕ ФУНКЦИИ
196. Разложение рациональной дроби на простейшие.
197. Интегрирование рациональной дроби.
198. Интеграл от выражений, содержащих радикалы.
199. Интегралы вида…
200. Интегралы вида…
201. Интегралы вида…

Вычислительные методы для инженеров

Вычислительные методы для инженеров
  

Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. — М.: Высш. шк., 1994. — 544 с.

В книге рассматриваются вычислительные методы, наиболее часто используемые в практике инженерных и научно-технических расчетов: методы решения задач линейной алгебры и нелинейных уравнений, проблема собственных значений, методы теории приближения функций, численное дифференцирование и интегрирование, поиск экстремумов функций, решение обыкновенных дифференциальных уравнений. Значительное внимание уделяется особенностям реализации вычислительных алгоритмов на ЭВМ и оценке достоверности полученных результатов. Имеется большое количество примеров и геометрических иллюстраций.

Для студентов и аспирантов технических вузов, а также для инженеров и научных работников, применяющих вычислительные методы.



Оглавление

ПРЕДИСЛОВИЕ
Глава 1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И РЕШЕНИЕ ИНЖЕНЕРНЫХ ЗАДАЧ С ПРИМЕНЕНИЕМ ЭВМ
§ 1.2. Основные этапы решения инженерной задачи с применением ЭВМ
§ 1.3. Вычислительный эксперимент
§ 1.4. Дополнительные замечания
Глава 2. ВВЕДЕНИЕ В ЭЛЕМЕНТАРНУЮ ТЕОРИЮ ПОГРЕШНОСТЕЙ
§ 2.1. Источники и классификация погрешностей результата численного решения задачи
§ 2.2. Приближенные числа. Абсолютная и относительная погрешности
2. Правила записи приближенных чисел.
3. Округление.
§ 2.3. Погрешности арифметических операций над приближенными числами
§ 2. 4. Погрешность функции
§ 2.5. Особенности машинной арифметики
2. Представление целых чисел.
3. Представление вещественных чисел.
4. Арифметические операции над числами с плавающей точкой.
5. Удвоенная точность.
6. Вычисление машинного эпсилон.
§ 2.6. Дополнительные замечания
Глава 3. ВЫЧИСЛИТЕЛЬНЫЕ ЗАДАЧИ, МЕТОДЫ И АЛГОРИТМЫ. ОСНОВНЫЕ ПОНЯТИЯ
§ 3.2. Обусловленность вычислительной задачи
2. Примеры плохо обусловленных задач.
3. Обусловленность задачи вычисления значения функции одной переменной.
4. Обусловленность задачи вычисления интеграла …
5. Обусловленность задачи вычисления суммы ряда.
§ 3.3. Вычислительные методы
§ 3.4. Корректность вычислительных алгоритмов
§ 3.5. Чувствительность вычислительных алгоритмов к ошибкам округления
§ 3.6. Различные подходы к анализу ошибок
§ 3.7. Требования, предъявляемые к вычислительным алгоритмам
§ 3.8. Дополнительные замечания
Глава 4. МЕТОДЫ ОТЫСКАНИЯ РЕШЕНИЙ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
§ 4. 2. Обусловленность задачи вычисления корня
§ 4.3. Метод бисекции
§ 4.4. Метод простой итерации
§ 4.5. Обусловленность метода простой итерации
§ 4.6. Метод Ньютона
§ 4.7. Модификации метода Ньютона
§ 4.8. Дополнительные замечания
Глава 5. ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
§ 5.2. Нормы вектора и матрицы
§ 5.3. Типы используемых матриц
§ 5.4. Обусловленность задачи решения системы линейных алгебраических уравнений
§ 5.5 Метод Гаусса
§ 5.6. Метод Гаусса и решение систем уравнений с несколькими правыми частями, обращение матриц, вычисление определителей
§ 5.7. Метод Гаусса и разложение матрицы на множители. LU-разложение
§ 5.8. Метод Холецкого (метод квадратных корней)
§ 5.9. Метод прогонки
§ 5.10. QR-разложение матрицы. Методы вращений и отражений
§ 5.11. Итерационное уточнение
§ 5.12. Дополнительные замечания
Глава 6. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
§ 6. 1. Метод простой итерации
§ 6.2. Метод Зейделя
§ 6.3. Метод релаксации
§ 6.4. Дополнительные замечания
Глава 7. МЕТОДЫ ОТЫСКАНИЯ РЕШЕНИЙ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
§ 7.2. Метод простой итерации
§ 7.3. Метод Ньютона для решения систем нелинейных уравнений
7.4. Модификации метода Ньютона
§ 7.5. О некоторых подходах к решению задач локализации и отыскания решений систем нелинейных уравнений
§ 7.6. Дополнительные замечания
Глава 8. МЕТОДЫ РЕШЕНИЯ ПРОБЛЕМЫ СОБСТВЕННЫХ ЗНАЧЕНИЙ
§ 8.2. Степенной метод
§ 8.3. Метод обратных итераций
§ 8.4. QR-алгоритм
§ 8.5. Дополнительные замечания
Глава 9. МЕТОДЫ ОДНОМЕРНОЙ МИНИМИЗАЦИИ
§ 9.2. Обусловленность задачи минимизации
§ 9.3. Методы прямого поиска. Оптимальный пассивный поиск. Метод деления отрезка пополам. Методы Фибоначчи и золотого сечения
§ 9.4. Метод Ньютона и другие методы минимизация гладких функций
§ 9.5. Дополнительные замечания
Глава 10. МЕТОДЫ МНОГОМЕРНОЙ МИНИМИЗАЦИИ
§ 10. 1. Задача безусловной минимизации функции многих переменных
§ 10.2. Понятие о методах спуска. Покоординатный спуск
§ 10.3. Градиентный метод
§ 10.4. Метод Ньютона
§ 10.5. Метод сопряженных градиентов
§ 10.6. Метода минимизации без вычисления производных
§ 10.7. Дополнительные замечания
Глава 11. ПРИБЛИЖЕНИЕ ФУНКЦИЙ И СМЕЖНЫЕ ВОПРОСЫ
§ 11.2. Интерполяция обобщенными многочленами
§ 11.3. Полиномиальная интерполяция. Многочлен Лагранжа
§ 11.4. Погрешность интерполяции
§ 11.5. Интерполяция с кратными узлами
§ 11.6. Минимизация оценки погрешности интерполяции. Многочлены Чебышева
§ 11.7. Конечные разности
§ 11.8. Разделенные разности
§ 11.9. Интерполяционный многочлен Ньютона. Схема Эйткена
§ 11.10. Обсуждение глобальной полиномиальной интерполяции. Понятие о кусочно-полиномиальной интерполяции
§ 11.11. Интерполяция сплайнами
§ 11.12. Понятие о дискретном преобразовании Фурье и тригонометрической интерполяции
§ 11.13. Метод наименьших квадратов
§ 11.14. Равномерное приближение функций
§ 11.15. Дробно-рациональные аппроксимации и вычисление элементарных функций
§ 11.16. Дополнительные замечания
Глава 12. ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ
§ 12.1. Простейшие формулы численного дифференцирования
§ 12.2. О выводе формул численного дифференцирования
§ 12.3. Обусловленность формул численного дифференцирования
§ 12.4. Дополнительные замечания
Глава 13. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ
13.2. Квадратурные формулы интерполяционного типа
§ 13.3. Квадратурные формулы Гаусса
§ 13.4. Апостериорные оценки погрешности. Понятие об адаптивных процедурах численного интегрирования
§ 13.5. Вычисление интегралов в нерегулярных случаях
§ 13.6. Дополнительные замечания
Глава 14. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 14.1. Задача Коши для дифференциального уравнения первого порядка
§ 14.2. Численные методы решения задачи Коши. Основные понятия и определения
§ 14. 3. Использование формулы Тейлора
§ 14.4. Метод Эйлера
§ 14.5. Модификации метода Эйлера второго порядка точности
§ 14.6. Методы Рунге-Кутты
§ 14.7. Линейные многошаговые методы. Методы Адамса
§ 14.8. Устойчивость численных методов решения задачи Коши
§ 14.9. Неявный метод Эйлера
§ 14.10. Решение задачи Коши для систем обыкновенных дифференциальных уравнений и дифференциальных уравнений m-го порядка
§ 14.11. Жесткие задачи
§ 14.12. Дополнительные замечания
Глава 15. РЕШЕНИЕ ДВУХТОЧЕЧНЫХ КРАЕВЫХ ЗАДАЧ
§ 15.1. Краевые задачи для одномерного стационарного уравнения теплопроводности
§ 15.2. Метод конечных разностей: основные понятия
§ 15.3. Метод конечных разностей: аппроксимации специального вида
§ 15.4. Понятие о проекционных и проекционно-разностных методах. Методы Ритца и Гадеркина. Метод конечных элементов
§ 15.5. Метод пристрелки
§ 15.6. Дополнительные замечания
x \), второй интеграл стал бы более беспорядочным, чем простым.

Полезное правило

При выборе \(u\) для интегрирования по частям выберите логарифмическое выражение, если оно присутствует. Если нет, выберите алгебраическое выражение (например, \(x\) или \(dx\)).

(Для выбора \( u \) и \(dv \) можно записать большое дерево решений, но, поскольку в этом курсе мы не рассматриваем никакие тригонометрические функции, приведенного выше правила достаточно для функций мы интегрируем.) 92\право)\право)\\ =& 128\ln(4)-45\\ \ приблизительно & 132,446 \end{выравнивание*} \]

Интегрирование с использованием таблиц интегралов

Есть много методов интеграции, которые мы не будем изучать. Многие из них приводят к общим формулам, которые можно скомпилировать в Таблицу интегралов — своего рода шпаргалку для интегрирования.

Например, вот две записи, которые вы можете найти в таблице интегралов:

96+16}\вправо|+С \]

Вычисление I – Среднее значение функции

Онлайн-заметки Пола
Главная / Исчисление I / Приложения интегралов / Среднее значение функции

Показать мобильное уведомление Показать все примечания Скрыть все примечания

Уведомление для мобильных устройств

Похоже, вы используете устройство с «узкой» шириной экрана ( т. \ число пи \\ & = 0\конец{выравнивание*}\]

Значит, в этом случае среднее значение функции равно нулю. Не волнуйтесь о том, чтобы получить здесь ноль. Это произойдет при случае. На самом деле, если вы посмотрите на график функции на этом интервале, нетрудно увидеть, что это правильный ответ.

Существует также теорема, связанная со средним значением функции.

Теорема о среднем значении для интегралов

Если \(f\left( x \right)\) является непрерывной функцией на \(\left[ {a,b} \right]\), то существует число \( c\) в \(\left[ {a,b} \right]\) такое, что 9{{\,b}}{{f\влево(x\вправо)\,dx}} = f\влево(c\вправо)\]

и из этого мы можем видеть, что эта теорема говорит нам, что существует число \(a < c < b\) такое, что \({f_{avg}} = f\left(c \right)\). Или, другими словами, если \(f\left( x \right)\) — непрерывная функция, то где-то в \(\left[ {a,b} \right]\) функция будет принимать свое среднее значение.

Давайте кратко рассмотрим пример, использующий эту теорему.

Оставить комментарий